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The Euler and Pontrjagin numbers
of an n-manifold in Cn

S. M. Webster(1)

Introduction

According to a theorem of H. Whitney, every smooth n-dimensional manifold
Af can be smoothly embedded in the Euclidean space !R2n. Viewing IR2n as Cn,

one may ask for embeddings which hâve nice properties relative to the complex
structure. The simplest properties relate to complex tangents. If M has no
complex tangents, the embedding is said to be totally real. In gênerai there are
global obstructions to finding totally real embeddings. For example, if M is

compact, orientable and totally real, then its Euler number and Pontrjagin classes

must vanish, a resuit due to R. Wells [11].
In this paper we shall give an explicit formula for the Euler number of a

compact real n-manifold M suitably immersed in a complex n-manifold. (The
requirements on M hold generically if n ^5.) We shall also give a formula for the
Pontrjagin number of a compact, orientable M4 generically immersed in C4. We
must assume that M has only one-dimensional complex tangents which are
non-degenerate in a certain sensé, and occur along a smooth, compact, codimen-
sion two submanifold NcM. There is a smooth invariant function 7 on N,
0&lt;7&lt;+oo. In section 5 we dérive a relation among the Euler numbers x(M),
e x[ Y&lt;\], h (-l)nxly &gt;èL *(MX) (normal bundle), and the parabolic index p,
which is described in section 1. As a spécial case we hâve the following.

THEOREM (0.1). Let the compact, orientable n-manifold M be embedded in
Cn as just described. Then its Euler number satisfies

x(M) e — h-\-p. (0.1)

When n 2 we hâve p 0, since there are no parabolic points. In this case the

1 PartiaUy supported by N.S.F. grant No. MCS-8300245.
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theorem is due to E. Bishop [1], who reduced it to a theorem of Chern and

Spanier [3]. Our method of proof is différent, being based on the Poincare-Hopf
formula for the Euler number. If M is totally real, (0.1) implies x(M) 0. For a

direct proof see [11]. If the 2-sphere is embedded in C2 as above, then it must
hâve at least 2 elliptic points by (0.1). Elliptic points are of interest since they
contribute to the local hull of holomorphy of M. They hâve been studied most
recently in [6], [7], and [10]. It is not known whether a 4-sphere generically
embedded in C4 must hâve an elliptic point. If not then (0.1) gives h —2, which
puts some restriction on the topology of N Nh.

In some cases the Pontrjagin numbers give more information about the
complex-tangent structure. Let M be immersed in Cn, and J dénote the real
operator corresponding to multiplication by yf-i. Then Hm Tm(M)nJTm(M)
for meN, defines a complex line bundle H over N. N inherits a natural
orientation from M (section 1).

THEOREM (0.2). Suppose the compact, orientable 4-manifold M is generically
immersed in C4. Then its Pontrjagin number satisfies

Pl(M) X(H). (0.2)

This is proved in section 3, where we also show that x(H) 0 tf M has no
parabolic points. Thus if Pi(M) ^ 0, then M has a parabolic point, hence nearby
elliptic and hyperbolic points. A generic embedding of CP2 in C4 therefore has a
non-trivial hull of holomorphy.

In [8] H. F. Lai has given gênerai formulas for the Euler and Pontrjagin
classes of a wider class of submanifolds of Cn. The relation of his work to the

présent paper is not clear. His formulas do not yield (0.1) or (0.2). In section 1 we
describe the local properties of Mn c=Cn near a complex tangent. In section 2 we
study the real Grassmannian and give a transversality argument. Section 3

contains a gênerai resuit about the intersection properties of Schubert varieties
needed for Theorem (0.2). Section 4 is devoted to deriving suitable local équations

for M near a complex tangent.

1. Complex tangents and the parabolic index

Let M&quot; be a smooth real n-manifold immersed in the complex n-manifold M.
In a local holomorphic coordinate System z x + iy (z1,..., zn), M is given by

M:JR=(r\,..,rn) 0, R R, drV- •

drxA- • -Adrn =Bdz1A- • -Adzn. (1.1)
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Under a change of holomorphic coordinates z —&gt; z&apos; and defining function R—*R\
the factor B changes by

(1.2)

Let F dénote the normal bundle of M in M, and F* its dual. Also, let K dénote
the canonical Une bundle of M, and L and L* the real line bundles AnF and
AnF*y respectively. Then (1.2) says that the collection {B, B&apos;,...}, which we
dénote simply by B, defines a section of the complex line bundle K®L*~1
K®L over M. In particular, the set

N {meM:B(m) 0} (1.3)

is well defined and is precisely the set of points m at which M has a (non-trivial)
complex tangent space Hm. If Jm dénotes the real linear operator on the real

tangent space TmM corresponding to multiplication by V-l, then Hm Tm nJTm,
where T T(M) is the real tangent bundle of M

We assume that dinic Hm 1, so that Hm &lt;g)C H^®H&apos;^ H^ H^, and H^ is

spanned by

lé e(dR/dzl)\m=0. (1.4)

We further assume that the complex tangent Hm is non-degenerate, in that

eitherXB^O or XB^O. (1.5)

Since X is determined uptoX~&gt; cX, c a non-zero complex constant, it follows
that

&gt;] (1.6)

is a well defined biholomorphic invariant of M at m. It was first found by Bishop
[1] in the following form.

We suppose that m is the origin of a coordinate System (zl5 za, 2&lt;a&lt;n-
1, zn) in which Tm is the (zx, xO£)-space. M is given locally as the graph R 0,

(1.7)

x (xa), q az\+bzxzx + cz\.
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Hère and elsewhere O(fc) indicates a term which vanishes to order k at the origin.
Then, up to a constant, X d/dz1, and

B J(f&gt;
f&gt; r\ d/2)n~2 3F/d*i + O(2), XB 2c, XB S,

d\zi&gt; Zr» z
\clb\. (1.8)

We also introduce

A \XB\2-\XB\\ (1.9)

N is partitioned into

(1.10)

the sets of elliptic, parabolic, and hyperbolic points. Thèse sets correspond to
A &lt;0, A 0, A &gt;0, respectively.

Next we examine more closely a parabolic point m. Since the déterminant
(1.9) vanishes, (1.5) implies that the System

has a non-trivial solution (a, b) unique up to (a, b) -&gt; (a&apos;, b&apos;) (/ma, /utb). Complex
conjugation of thèse équations shows that b Àa, â Àb, for some A, |A| 1. The
factor fx can be adjusted so that b&apos; â\ Hence, there is an a, unique up to
a-+pa, p e R, for which

YB 0, Y=aX+âX. (1.11)

It&apos;s easily to be seen that the changes X--&gt; cX and (1.2) can change Y by at most
a real factor. Thus Y spans an intrinsic real Une lm c= Hm, which we call the
parabolic Une at m.

Now we assume that

dBAdë^O on B 0, (1.12)

so that N is a real submanifold of M of codimension 2. The conormal bundle S*
of JV in M is spanned by the coframes dB along N, and hence is the restriction of
(K&lt;8&gt;L)* to N. So the normal bundle S of N in M is the complex line bundle
K(&amp;L restricted to N. The non-degeneracy condition (1.5) precludes Hm being
contained in Tm(N). It follows from (1.11) and (1.9) that m is a parabolic point
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precisely when TmN H Hm lm is one dimensional. We dénote by &lt;p the composite
vector bundle mapping

&lt;p:H ^ T(M)\N -» (T(M)|N)/T(N) * S. (1.13)

Since dB is local coframe for S and X is a (1,0)-frame for Hm, considération of
the sign of (1.9) shows that &lt;pm is orientation reversing if m is elliptic and
orientation preserving if m is hyperbolic. It is singular of real rank one if m is

parabolic.
We assume still further that dy^O when 7 5, so that Np is a smooth

(n — 3)-dimensional manifold. We may now proceed to define the parabolic index.
For each m € Np we hâve two Unes in Tm(N), the parabolic Une lm and the line fcm

determined by the normal vector Vy (gradient relative to any convenient metric
on N). This gives us two sections I, fc of the projective bundle P-^NP, which has

as fiber over m gNp ail Unes through the origin in Tm(N).
We next describe an orientation on the open subset of P consisting of Unes not

tangent to Np. Let x*\3&lt;a&lt;n-l, be local coordinates on Np. Let y be a local
defining function for Np :y 0, with dyldy&gt;0. Then (x, y) are local coordinates

on N, and any line LeP, not tangent to Np, is spanned by a unique vector

il^ (1.14)
dy a==3 dx

Thus (x, w) are coordinates for L, and

np dx3A- • •Adxn-1Adw3A- • -Adw&quot;&quot;1 (1.15)

defines a local volume form on the (2n - 6)-dimensional manifold P. If (x, y) is

another such coordinate System, then one easily sees that

ÛP (det ax/Ôx)2(dy/ay)~n+3f2P.

Since dy/dy &gt;0, we hâve a well defined orientation.
The parabolic index is defined as the intersection number of l(Np) and fc(Np)

relative to this orientation. This is possible since km is never tangent to Np. More
precisely, we take a slight perturbation of fc, if necessary, so that fc(Np) and l(Np)
intersect transversely in P at a finite number of points. At a point meNp where
&apos;m fcm» we choose local coordinates as in the previous paragraph. Then dl/dx&quot;,

Bk/dxa, 3 &lt; a &lt; n -1, give frames for l(Np) and fc(Np) at m. The intersection index
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at m is given by the sign

indP&gt;m(J, fc) sgn nP(dl/dx, dk/dx). (1.16)

This is well defined since a change of orientation of the local coordinates x
changes the orientations on both l(Np) and fc(Np), so that (1.16) remains un-
changed. The parabolic index is

(1.17)

2. The Grassmann manifold and transversality

In this section we consider an n-manifold M immersed in Cn. Its Gauss map g

associâtes to each me M the real tangent plane Tm(M). It is a smooth mapping of
M into Gr(n; n) Gr, the n2-dimensional Grassmann manifold of real n-planes
through the origin of Cn =R2n. We define

Q={VeGr:dimc VCiJV=k}, 0&lt;fc&lt;n/2;

c=c1u-.-uc(n/2].

Co is the dense open subset of totally real planes, and Gr C0U • • • U C[n/2\ is a

disjoint union. For each fc, 0&lt;fc &lt;n/2, Ck fibers over the complex Grassmannian

Gc(k,n-k) of complex fc-planes in Cn. In fact, for V in Q, VH JV=Ck and

VPl(VnJV)x is a totally real (n-2fc)-plane in Cn~k. So the fiber is an open
subset of Gr(n — 2fc; n — fc), which has dimension n(n-2fc), while the base has

real dimension 2fc(n-fc). Thus Ck is a real submanifold of codimension 2k2. If
n 2m is even, Cm Gc(m;n); while if n 2m + l, Cm is a bundle over
Gc(m; n) with fiber the real projective space MP(2m +1).

We repeat some of the constructions of section one in this &quot;universal&quot; setting.
For VeGr there are two natural vector spaces; V itself and Fv=Cn/V. We also
hâve the two real line bundles L /\n F,L* f\n F*, and the complex line bundle
K&gt;An(GrxCn*) GrxC. We refer back to (1.1) where now the drl are n

independent real linear forms on Cn annihilating a fixed V in Gr, and the dzl are
a basis of complex linear functions on Cn. As before it follows that B is a section
of X®L, having as zéro set precisely C. We restrict this bundle to Cl5 where it is

identified with the normal bundle S of Cx in Gr. Its dual bundle has local frames
dB restricted to Ct. Also, we hâve the complex line bundle H-*Cl9
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In addition we hâve a real 4-plane bundle E —&gt; Cx defined by
JEv=HomR (Hv, Sv). Each élément of Ev may be described by an équation

where X is a frame vector for Hf and 6 is its dual. If we dénote by Eo the zéro
section of E, which corresponds to XB XB - 0, then we hâve a well defined
function y:(E — Eo) —» [0, &lt;»] given by (1.6). Parallel to (1.10) we hâve the disjoint
union E=J50UEe UHpUEh, where Ee,Ep,Eh are the sets where 7&lt;|, 7=3,
7&gt;5, respectively.

For M immersed in Cn with at most one dimensional complex tangents, it is

clear that g*H and g*S are the corresponding bundles of section 1. For each

meN we hâve

dgm : Hm Hg(m) -* Tg(m)Gr -» T^Gr/T^d SSg(m),

which defines a map dg:N—»R The degenerate points form the set dg&quot;1(E0)-

Clearly, 7 ° dg is the invariant (1.6).

PROPOSITION (2.1). Let fiMT-^C*1 be a smooth immersion, a) A generic
small perturbation of f results in an immersion with the following properties: M has

no complex k-dimensional tangents if 2k2&gt; n, while if 2k2&lt; n, the points with such

tangents form a submanifold of codimension 2k2. b) Suppose in addition that the

immersion f has only one dimensional complex tangents which occur along the set

N. After a generic small perturbation, N is a compact smooth (n — 2)-manifold, and
the set No of degenerate points is a smooth (n - 6)-manifold. c) Assume further that
No is empry. Then after a generic small perturbation the parabolic set Np forms a

compact smooth (n-3)-manifold along which

Remark. As a conséquence a generic M&quot; in Cn has the following characteris-
tics:

i) n 2 —isolated elliptic or hyperbolic points;
ii) n 3,4,5 —at most one-dimensional non-degenerate complex

tangents with Np smooth;
iii) n 6 —at most one-dimensional complex tangents and at most

isolated degenerate points;
iv) n 8 —at most isolated 2-dimensional complex tangents.

Case i) is due to Hunt and Wells [5].

The main ingrédient in the proof is the parametric transversality theorem (see
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e.g. Hirsch [4], p. 79). Let / be any immersion of M with Gauss map g ff. Let Q
dénote the set of ail real affine transformations A(z) A&apos;(z) + cl, A&apos;eGl(2n,R),

aeCn. Then G(A, z)^gAf(z) Ar ° gf(z) defines a smooth map

G:QxM-*Gr. (2.2)

We daim that the mapping G is transverse to Ck for every k &lt;[n/2]. This means
that TCk + T$mG TGr, at every point G(A,z)eCk, where T#mG^
DG(T(Q x M)). This will follow from T#mG TGr, which has nothing to do with
complex tangents. We let Cn V© V1- with coordinates (xl9 x2), and restrict to
the submanifold of Q of maps of the form (x1,x2)-+(x1,x2-Bx1)9 Be
Hom^CV, Vx). It is clear that DG maps the tangent space of this submanifold at
B 0 onto TvGr.

By the parametric transversality theorem, the set Qk of A&apos;s for which

z —&gt; G(A, z) is transverse to Ck is residual. It follows that Ch fl • • • H Q[n/2] is also

residual and therefore dense. Thus there are affine (or even linear) mappings A,
arbitrarily close to the identity, for which A ° / is transverse to every Q. Part a)

follows by transversality. Under the additional assumption of b) N is a compact
smooth (n - 2)-manifold.

For parts b) and c) we must use mappings quadratic in (z9z): A(z) a +
A&apos;(z) + A&quot;(z2). We first replace / by a perturbation as in a), so that the Gaussian

image g(M) remains disjoint from Q, k&gt;l, and intersects Cx transversely. We
then restrict to quadratic mappings A with A&apos; unitary and A&quot; so small that this
situation is preserved. We let Q dénote this set of maps. For A&quot; small enough,
perturbation by A € Q will resuit in a new manifold iVA close to the original N in
the following sensé. NA will lie in a small tubular neighborhood u U{Dm : m e

N} and will intersect each normal 2-disc Dm in a unique point TjA(m), giving a

difîeomorphism r\A :N-~+NA. We consider the composite map.

G&apos;(A9 m) dgAf o ru (m), G&apos;:QxN-*E.

We claim that the map G&apos; is transverse to Eo under the assumptions of b) and

transverse to Ep under those of c). Assume G&apos;{A, m) e Eo. After an affine unitary
coordinate change we may assume that m 0 and that M is given as in (1.7). We
then restrict G&apos; to the submanifold of Q consisting of mappings of the spécial
form

A:
&lt;a &lt;s n -
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which resuit in (b, c) -» (b-B, c-Q in (1.7). Locally E ss d x IR4 and Eo Cx x {0}.
The normal space to Eo at m is {m}xlR4a={m}xC2 with coordinates (b, c). If we
restrict G&apos; further to (A, m) with A as described and m 0, then it is clear that
DG&apos; at (A, m) (I, 0) maps onto the normal space. Thus G&apos; is transverse to Eo. A
similar argument shows that G&apos; is transverse to Ev Cx x Cône. Now b) and c)

follow by the parametric transversality theorem since Eo has codimension 4 and

Ep codimension one in R

3. The Pontrjagin number of a 4-manifold in C4

By a well-known theorem [9] the Pontrjagin class PkCTXM)) equals
(-l)kc2k(T(M)&lt;g&gt;C), where c dénotes the Chern class. For M&quot; c=Cn with Gauss

map g,pk(T(M)) g*pk(VGr), where VGr—&gt;Gr is the universal bundle. Gr&lt;=^

Gc(n, n) and VGr)&lt;8&gt;C is the restriction of the complex universal bundle VGc —&gt;

Gc. Thus we must consider the Chern classes ck(VGc).
We begin by recalling some facts [2] about Gc(n, r), the space of ail complex

n-planes ZncCn+r. For O^k^-&apos;-^fcn^r and linear spaces L^-&apos;-cl^,
dim L, fc, + /, the Schubert variety is defined by

Z(ku kn) {ZeGc(n, r) IdimZHL, ^/},

and has complex dimension k1 + • • • + fcn. The Chern class ck(VGc(n, r)) is dual to
^k(t» r)sZ(r-l,..., r— 1, r,..., r), where r-1 appears fc-times. It may also be

defined as

Zk(n, r) {ZeGc(n, r) \dimZHL&gt;fc}, dimL r-1 + k, (3.1)

and décomposes into the disjoint union of

and

Zk{n, r) {Z: dim Z H L &gt; fc}.

Zk(n, r) is a complex manifold of complex codimension fc, fibering over Gc(k, r —

1), and Zk(n, r) Z(r-2, ...,r-2, r, ...,r) (fc + l(r-2)&apos;s) has codimension

2(k + l). Thus a generic compact orientable real 2fc-manifold in Gc(n, r), which
we also dénote by M, will be disjoint from Zk{n, r) and intersect Zl(n, r)



202 S M WEBSTER

transversely in finitely many points. ck(VGc(n, r))[M] is the sum of the intersection

indices at thèse points.
We fix fc and Lr-2+k ^Lr-i+k» subscripts denoting dimension, and consider the

corresponding varieties Z^xin, r)^&gt;Zk(n, r), Zj^Ot, r)=&gt;Zk(rc, r). A generic M2k

will miss Zfc_i(rc, r), since it has real codimension 4k. Thus

is a smooth compact oriented 2-manifold containing the finite set Zk(n, r)DM.
For Z€Z£_i(n, r), we set

AZ ZD Lr-2+k and BZ

so that Z AZ@BZ is an orthogonal direct sum relative to the standard hermi-
tian inner product on Cn+r. We define a smooth map |3 by

fîz. (3.2)

For Z € Zg-iCn, r), Z s Z^(n, r) if and only if Bz e Zt(n - fc +1, r + fc -1); i.e.

Zk(n, r) nZiU(tt, r) ^\Zx(ji - k +1, r + fc -1)).

LEMMA (3.1)

ck(VGc(n,r))[M]=c1(VGc(n-k + l,r + fc-l))[pN]. (3.3)

Proof. This cornes down to comparing two intersection indices. First, we hâve
the equality of oriented vector spaces at me MO Zk(n, r)

TmZ°k(n, r)®TmM=ckTmGc(ny r),

where ck ±1. If S is the normal bundle of Zk-t(n, r) in Gc(n, r), then its
restriction to N is that of N in M, so

and TmM=TmN@Sm.

It follows that

TmZ°k(n9 r)0 TmN ckTmZ°k^(n, r). (3.4)
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The map /3 is not holomorphic since it involves the orthogonal complément
Az. However, a slight local déformation of it is. For ail Z€Z£_i(n, r) sufficiently
near m we may replace Az by A^, then a(z) ZnAi, is holomorphic and

approximates |3 near m. Clearly, a&quot;1(Z?(n-fc + l, r + k-l)) Zk(n, r). By (3.4)

£(n, r))©Tam(aN) ckTam(aZU(n, r)), (3.5)

where the orientations agrée with those from Gc(n-fc + l, r + fc-1), since a is

holomorphic. If S is the normal bundle of aZ£_x(n, r) in Gc(n - k +1, r + k — 1) it
is also the normal bundle of aZk(n, r) in Z®(n — fc + 1, r + k-1). Adding Sam to
both sides of (3.5) gives

Now am (3m, and if we continuously deform a back to p, we see that ck c1?

where Cx is the intersection index at j3m entering into the right hand side of (3.3).
Summing over ail such m in MnZk(n, r) gives (3.3).

Note. The same argument gives

ck(VGc(n, r)[M2k ] ck^(VGc(n-1, r + !))|MflZ?(n, r)],

when the intersections are nice, which is generically so when 2/ + 2&gt;fc.

We return to the study of Gr(n;n). We set Cn (W,J), W&lt;g&gt;C Wc
W&apos;®W&quot;, W&quot;= W&apos; {weWc:/w iw}. For a subspace VcW, Ve c: Wc, Ve 3
V;0 V;/, where Vf Ve Pi W, V&quot; Ve D W&quot;. The map V-» Ve embeds Gr(n ; n)
in Gc(n, n) as a totally real submanifold.

LEMMA (3.2). a) Ve V0V&quot; if and only if JV= V.

b) V&apos; H&apos; if H= VnJV.
c) C=Gr(n;n)nZ1(n, n).

Proof. a) If JV= V, then JVC Ve, and any w€ Ve is the sum è(w-iJw) +
è(w + Uw) 6V0 V&quot;. If Ve V&apos;9 V\ then JVC JV&apos; + JV&quot; V&apos;0 V&quot; Ve ; so

JV V. b) V ^ H&apos; is clear since Ve 3 Hc. If w € V, then Jw iw. So if w u +
iu, u, t;€ V, then m Jv, v -Ju. Hence, m,ugH and b) holds. If we apply a) to
H, then it follows that VeC if and only if dinic Ve H W&gt;1. So c) follows by
taking n r, k 1, and L» W in (3.1).

We now turn to the proof of Theorem (0.2) of the introduction. Since M4 is

generically immersed in C4 it has the properties of Remark (ii) following Proposi-
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tion (2.1). We hâve

Pl(M) Pl(T(M))[M) Pl(VGr(4; 4))[ gM]

-c2(VGc(4,4))[gM] -Cl(VGc(3,

by (3.3) with n — r 4, k 2. Now over the surface N (or rather |3gN)

VGc(4,4) A©B =H&apos;© VGc(3, 5) by Lemma 3.2). Thus, the total Chern class

satisfies [9] c(VGc(4,4))=c(H&apos;)c(VGc(3, 5)) or Cx(VGc(4,4))
1(VGc(3,5)). Over Gr(4;4) VGc(4,4)= VGr(4;4)(8)C, hence its first

Chern class is a 2-torsion élément. When pulled back to the compact orientable
surface N it vanishes; thus Ci(VGc(3, 5))= -c1(H&apos;) -c(H). Hence, Pi(M)
*(H), since x(H) c1(H)[N].

The bundle mapping &lt;p (1.13) can be used to get a formula for x(H). Since

M Cn, the canonical bundle K is trivial. Since M is orientable, so is its normal
bundle, hence the Une bundle L is trivial. It follows that S K®L is trivial. &lt;p is a

bundle isomorphism over Nh and an anti-isomorphism over Ne. Therefore H is

trivial over any connected component of N which does not meet Np. If we let N°
be the union of the components of N which meet Np, and H° the restriction of H
to N°, then x(H)= x(H°)- We choose a section v of H° which does not vanish on
N^UNP and has only isolated non-degenerate zéros in N£. v gives a trivialization
of H over Np; hence, the parabolic line Z gives a map f rNp-^MPt, where Np and

IRPi hâve naturally induced orientations. We define the H-parabolic index pH to
be the degree of this mapping f. If w is a piecewise smooth section of H over Np
which spans l at each point, then w jxt?, /ut ^ 0 and piecewise smooth. We hâve

TTI JNp IX
(3.6)

Note that w is determined up to w —&gt; pw, with p^ 0, real and piecewise smooth. It
follows that (3.6) is not affected by this change. Also, v may be changed by
v -&gt; |u, £^0 and smooth on Np\JN%. Applying Stokes&apos;s theorem to dÇ/Ç on N£
shows that the intégral in (3.6) remains unchanged. Thus pH is well defined.

LEMMA (3.3). *(H) -pu.

Proof. This follows by comparing the index sums for v and &lt;p(v). We assume
that v has been chosen so that l^ contains vm at only a finite number of points m
in Np and that l crosses v transversely at such points. In otherwords IgIRPx is a

regular value of f. At such a point m we choose local coordinates (x, y) on N so
that m (0,0), Np is given by y 0, Nh by y &gt;0, and Ne by y &lt;0. We let £ f -h rn
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be a local fiber coordinate on H° relative to v and choose a local frame v&apos; and
related coordinate £&apos; £&apos; + 117&apos; for S near m. We may assume that &lt;p(v) is a

positive multiple of iv&apos; at m. Then

A ad -6c, A(x,0) 0, 4y(x,0)&gt;0. We let (£ tî) (1, à(x)), A(0) 0, span I

along Np; then the sign of Àx(0) gives the intersection index of l with respect to v.
Since &lt;p(0 0, we hâve c + dÀ=0, so Àx(0) -cx(0)/d(0). Also, a(x,0)
(5c/d)(x,0), so ^(0) 0, and 4y(0,0) oy(0)d(0), so oy(0)&gt;0. Finally, cp(v)

&lt;p(l, 0) (a, c) has index at m (0, 0) given by the sign of

,0). -&lt;a,c,K0,0&gt;.

Thus the index of &lt;p(v) at m is the same as the H-parabolic index at m. Since &lt;p(v)

has the same index as v at any zéro of u(in Nh), we hâve x(S) x(H) + Ph- But
x(S) 0, since S is trivial, and the lemma follows.

Theorem (0.2) and Lemma (3.3) give

COROLLARY (3.4). If M4 is compact, orientable and generically immersed in
C4, then Pi(M) -pH. If pl(M)j=0, then M must hâve elliptic, parabolic, and

hyperbolic points.

4. Local équations for M

To facilitate the study of M near a complex tangent, we shall simplify the
présentation (1.7) by means of a local holomorphic coordinate change. In this
section we prove the following.

PROPOSITION (4.1). Suppose M has a non-degenerate one-dimensional
complex tangent at a point m. Then holomorphic coordinates z

{zu z™, 2&lt;a &lt; n -1, zn) can be chosen so that m 0 and M is given locally by

Mm
zn F(zl9 x), x (x2,..., x&quot;&quot;1),

^4r() r r



206 S M WEBSTER

If m is an elliptic or hyperbolic point, then

1z1 + az\,H O(3),
(4f bazxzx + ha, h&quot; O(3),

wherc a&gt;0, and b, ba are either 0 or 1. If m is a parabolic point, then

Q èfei + zO2 + î(2i - zi)c(x), c(x) c0x*, (4.3)

where ($ is summed from 2 to n — 1, c&amp;9 tj3 arc real, and r\ is either 0 or 1. If the

transversality condition dB AdB^O hoJds, then c(x)^0. In this case the parabolic
Une at m, which is the yx-axis, is tangent to Np if and only if t|=0.

We remark that (4.2) is already known [1], [10].
We begin with M in the form (1.7). If b^O, we replace zn by bzn to make

b 1. By a rotation zx —» jaZx, ^xfx 1, we can make c &gt;0. Then by a change of
the form

^f^xzz9
+/^z3z^),

we can achieve (4.2) but with

H c{x)z1 + c(x)z1 + O(3), c(x) c3x*. (4.5)

The ba are either 0 or can be made 1 by za -» b^z&quot;.

We make the further change

(4.6)

under which c(x) in (4.5) changes by

If 7 |a/b|^|, then the déterminant b2-4a2ïO, and A(z) can be chosen
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uniquely to make c(x) -&gt; 0. If 7 5, we take b 1 and a \. Then (4.6) results in

c(x)-»c(x) + 2ReA(x),

which may be used to make the c(x) in (4.5) purely imaginary. The x&quot;x3 terms
introduced by (4.6) can then be removed by a transformation of the form (4.4).
This gives (4.2) and the form (4.3) for the quadratic term Q.

We must investigate the third order terms in the parabolic case. Since b 1,

the change za —&gt;za-bazn9 followed by one of the type (4.4), makes /asfia
O(3) in (4.1). We put

yxp 4- O(4),

+ ^z^?+ caz?,

2 real,

The transformation

za -&gt; za +2i{c~z\ + c%z21z&lt;i + c%yZlz&amp;zy HclypZ^z»} (4.7)

reduces ha to the form

h&quot; (c^Zr + c^fi + c|x3)z1z1 + O(4). (4.8)

The substitution

z3}zn, (4.9)

followed by another one of type (4.7) (to remove any newly introduced third
order terms already removed by (4.7)) results in

zn Q + H, H=O(3) (41Q)
ya h&quot;, ha O(4).

Next we consider the third order terms in h,

H Ho+HtX* + H^x&quot;*0 + K^axV + O(4),
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We shall simplify this by means of a transformation of the form

Ao const.,

zn -+ zn +B(zu ztt, zn),

A2 A2Oz?+A2o£z1z

B3 B3Oz\ + B3az2xz&lt;

Bx Bxozx + B^z*.

This will not alter any of the previous normalizations. Note that

(4.12)

Therefore, when we substitute (4.12) into (4.10), we get

(4.13)

in which we must make the substitution (4.10). We shall simplify the terms of H
in order of increasing degree in xa. This allows us to ignore the term i{A-
Â)c(x), and hence O(A, x), since (A + Â)2 is of fourth order.

In simplifying Ho we ignore terms in xa and za xa + O(4), so that

with A2^
cients shows that

Comparison of coeffi¬

o + A20 + |(A0 + Âo) - B30 -
x + A20 + |(A0 + Âo) - B10,

K3 -* K3 + Â20 + |(A0 + Âo).

By proper choice of A20 and B30 we can realize K0 K3 0, after which
A20 -Re Ao, B30 —|B10. Then Kx-K2-^&gt; Kx — K2-^Bi0, so that we can make

Kt K2, and restrict to B10 0. This leaves the change Kt ~&gt; Kx + 2 Re Ao, by
which we make Ki — ir\, purely imaginary.

To simplify H^x* in (4.11), we set A20 Ao B30 B10 0 in (4.12) and work
modxax3, z^z*. With Ao A20 0, i(A-Â)c(x) 0, modxax0, so
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with A=A2az1z&lt;x, B3^B3azjza, Bt^BlOLz^ and Q=|(zi + fi)2. Comparison of
coefficients gives

So we normalize to K€t0 Kct2 0 and restrict to A2tx B3oL+\B1OL \È1OL. It
follows that K^i —&gt; Kai+K^ia ~^i«)&gt; so that we can make Kvtl r\a fja, real.

Now we further restrict to A2ot 03« Blflt 0 in (4.12) and work
modxax3x\ zazpz\ Again i(A-Â)c(x) can be ignored in (4.13). We hâve

+ Â) -B3,

where A ^A^a^&quot;^3, B3 B3&lt;X3Z12otz3. This results in the change

It&apos;s clear that we can make Kot30 K&lt;X31 0. Finally, we remove the term
K&lt;xfiyXOLxfixy by a transformation

This achieves the form (4.3). If tî^O, a dilation (zl9 za, zn) ~» (Xzt, Az&quot;, A2zn)

with À real results in tj —? àtî, so we can make r\ 1.

At a parabolic point (1.8) and (4.3) give

B (i/2)n-2(z! + zt + ic(x) + ît,(zÎ+2z1z1) + T|pXef i) + O(3). (4.14)

It follows that dB AdB 41~nic(dx)Adx1 + O(l), so that c(x)#0 if the transver-

sality condition holds. We make a linear change in the coordinates (x2,..., x&quot;&quot;1)

so that c(x) x2, then N has the local équations

(4.15)
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The conditions Xr X? Xra 0, which détermine X give

l+O(3). (4.16)
dZn

Also,

BZi + O(3) 1 + îiyi + O(2),
»-l (4.17)

l+ 1 %x3 + O(2).
3=3

The condition (1.11) gives a(0) + â(0) 0, so we may take a a&apos; + U a
a&apos;(0) 0. Then

so that a&apos; O(2). Thus, in coordinates (yl9 x2,..., xn-1)

Y a/dy1 + O(2). (4.18)

From (4.17) and (1.9)

4 2Tîy1-2nf %x* + O(2); (4.19)
3=3

so that Y[A ] 2ti + O(l). It follows that Y is tangent to Np : A 0 if and only if
t| 0. If 7] 1, then Y[4]&gt;0 implies that Y points toward Nh.

5. A formula for the Euler number

To dérive our formula we shall make use of the Poincare-Hopf theorem
characterizing the Euler number *(M) as the sum of the indices of the zéros of a

vector field tangent to M. This does not require M to be orientable and is

applicable to compact manifolds with boundary, provided the vector field points
outward along the boundary. For M&quot; immersed in the complex n-manifold M
with normal bundle F, x(F) dénotes the sum of the indices of the zéros of a
suitable section of F. The index at an isolated zéro meMis well defined since

TmM=TmM®Fm as oriented vector spaces locally. A reversai of the local
orientation of M near m results in a reversai of that of F as well as of TM.
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In this section we prove the following, which does not require M to be
orientable.

THEOREM (5.1). Suppose that the compact n-dimensional manifold M is
immersed in the complex n-dimensional manifold M with at most nondegenerate,
one-dimensional complex tangents as in section 1 and Proposition (2.1c). Then

X(M) enX(F) + e - h + p, en (-l)*&quot;-»&quot;* (5.1)

where e — xtNe)&gt; h (-l)nx(Nh), and p is the parabolic index.

If M is also orientable and embedded in Cn, then a theorem of Whitney (see

[4] or [9]) asserts that x(F) ~ 0- Theorem (0.1) follows immediately from this. As
mentioned after Proposition (2.1) the assumptions of Theorem (5.1) are generic if
n&lt;5. The remainder of this section is devoted to the proof of Theorem (5.1).

We choose some convenient hermitian metric on M and dénote by
irm : TmM —» Fm, the orthogonal projection onto Fm along Tm TmM. Then

^m ° Jm gives a linear mapping from Tm to Fm, which will be a linear isomorphism
if m is a totally real point of M. If t; is a vector field tangent to M, then irJv is a

section of F. The idea of the proof is to relate the index sum of irJv to that of v
for a suitable choice of v.

About any particular m in M we choose holomorphic coordinates z x + iy
for M centered at m. The orientation of M is given by the local form

tf= fi (^d2otAdfot) endx1A---AdxnAdy1A---Adyn, (5.2)

and the operator / is identified with (x, y) —? (-y, x). Suppose m is a totally real

point of M. Then the coordinates may be chosen so that Tm is the x-space and Fm

is the y-space, which by (5.2) hâve the orientations

QT dx1A- • -Adxn, OF endy1A- • -Adyn.

Since ir is smoothly deformable to (x, y) -&gt; (0, y) and v ° / to (x, 0) -» (0, x), we
hâve

(ir o J)*/}F cfîr, sgn c sn.

It follows that the efïect of ttJ on the index of a vector field v with isolated zéro at
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m is

indFm (ttJv) en indM&gt;m(i&gt;),

so that

I (5.3)

p

This proves (5.1) if M is totally real.
In the gênerai case we start with a smooth vector field v0 tangent to N with the

following properties. It is to hâve only finitely many zéros m,, 1&lt;/&lt; i, which are
non-degenerate and lie in Ne U Nh9 and is to be transverse to Np and point toward
Nh along Np. Furthermore, the Une field fe along Np spanned by t;0 is to satisfy
fcm ^ for only finitely many m e Np9 and at such m this intersection is transverse
in the space P (see (1.15)). We find disjoint neighborhoods U, of m, in N-N
and smooth sections u, of H, compactly supported in U]9 with ^(m,) ^ 0. Then we
smoothly extend uo+E^, to a vector field v on M having a finite number of
non-degenerate zéros. By construction v does not vanish on N; however ttJv will
hâve a zéro at each m, and at each m in Np where v(m)elm&lt;^Hm, as well as at
each zéro of v. There is much freedom in the choice of such a v, which we shall

specify more precisely later.
Let m, be one of the zéros of v0, and choose coordinates as in (4.1), (4.2), so

that (zx, xa) are coordinates on M. We may assume that the hermitian metric on
M has been chosen so that Fm coïncides with the (y&quot;, zn)-space for ail m near mr
The local orientations are given by

(5.4)

(5.5)

We set G(zl9 xa) (zl9 xa + if, F), so that GXl, Gyi, GxOt span T(M). In the local
coordinates (zl9 xa) on M we hâve

t; v1d/dz1 + C^/df + v^d/dx&quot;, (5.6)

so that as a vector in Cn
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where v[*] dénotes directional derivative. It follows that

so that

ttJv iv[ G1 - c&apos;GXl - c&quot;Gyi - caGx&lt;x

iv[ G ] - cGZl - cGz
x - caGxOL (0,0 4- i*, *

Hère GZl (1, îft, F2l), G2l (0, îft, Ffl), and G « (0, «2+»/*L, *1J, so that c

it?! and ca -vif0&quot;]. Hence, as a map from (zl9 xa)-space to (ya, zn)-space, ttJv
has the form

(5
zn iu[F]- iUiF^ + ivtF2l + u[/3 ]Fxa.

If we substitute (5.7) into (5.5), we get (5.4) multiplied by the Jacobian factor

a(ytt, zm zn)
S (58

the sign of which gives the index of irJv at mr If we take into account (4.2), (5.7)
becomes

va - iv1baz1 + iû^^Zi 4- O(2),

We may assume that the H-component v] added to u0 is such that v^l near 0.

Also, we assume that the extension of v from N to M is made so that the
coefficients of v are locally independent of zx. Then at the origin (5.8) has the
value

4(b2 - 4a2) det (dvZldx*)(0). (5.9)

The sign of the déterminant is the index of t;0 at mv and b2-4a2 is positive if m,
is elliptic and négative if m, is hyperbolic. Hence,

en_2 indFtmj(ttJv) 8 indN&gt;mj(u0), (5.10)
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where 8 +1 if m, is elliptic or 8 -1 if m, is hyperbolic. If we sum (5.10) over
the m, in Nei the right hand side is x(Ne). To get x(NH) we must use -v0 which
multiplies the déterminant in (5.9) by (— l)n~2. Thus we get

en_2 I ind^iirJv) x(N€)-(-l)nx(Nh), (5.11)
J

which accounts for the term e — h in (5.1).
Finally, we consider a zéro of ir/u at a point m in Np which anses when u(m),

which spans the Une fcm, lies in l^. We first elaborate further on the construction
of v along Np. It is initially defined so that k(Np) intersects l(Np) transversely at
m. Then it will be extended to N. We take coordinates as in (4.1), (4.3) with
c(x) x2, so that N is given by (4.15). (x3,..., xn~l) gives coordinates on Np, and

(yi, x3,..., xn-1) coordinates on N. In (5.6) we take vx ux + i, v1 û\ so that

n-l
X vJd/dx\ uJ(0) 0. (5.12)

The condition that v be tangent to N gives, via (4.15) and (5.12),

i/ O(2), t&gt;2 -2îiyi+I r,3x0 + O(2). (5.13)
3=3

Thus we start with

u« ^«(^ xn-i) ^«(q) Oj det Ë!L (0) ^ 0? 3 &lt; a, /3 &lt; m -1,âXp

(5.14)

and détermine u1 and v2 by (5.13). We then extend this vector v locally from Np
to N by keeping (5.14) independent of yl9 and from N to M by keeping (5.14)
independent of xx and x2. Again we assume that Fm is the (ya, zn)-space for m

near 0. Note that we may take r\ 1, since lo= k0 is transverse to Np.

The parabolic index as defined in section 1 is computed relative to a coordi-
nate System (xj, y*) with y* 0 on Np. Therefore we set (4.19)

y*=U yi- t ^ + o(2), xj xa.
0=3
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The chain raie in (1.14) gives

wJ wa(dy*/ay1 + we dyjdx*)-1 wa(l - rjpW3 -I- O(l))&quot;1.

Since wa O(l) for both Y (4.18) and v (5.12), and d/dx^d/dx^ for functions
defined along Np, we havedw#/ax|(O) dw°ydx3(O). Thus thé parabolic intersection

index at m =0 is given (see (1.15)) by the sign of

Hence,

indP,m(i, k) sgn det (dvaldxe(0))3^^n-i- (5.15)

For the index of ttJv at m we again compute the déterminant (5.8). We
substitute (4.3) into (5.7) and ignore second order ternis. By (5.12) and (5.13) we

get

n-12»o22y2»o2—2y1+2 îipx&quot;, y&quot; t;tt(x3,..., x&quot;&quot;1),

Thus,

8(y2, y&quot;, z», zn)
(Q) 16^(^^

OvZ^, Zj_, X X

Comparison with (5.15) gives

indF&gt;m(7rJi;) eM_2 indPm(i, fc),

so that

X indF&gt;m(7r/i;) en_2p. (5.16)

Combining (5.3), (5.11), and (5.16) gives (5.1), since eMen_2 -l.
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