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The Euler and Pontrjagin numbers
of an n-manifold in C"

S. M. WEBSTERY

Introduction

According to a theorem of H. Whitney, every smooth n-dimensional manifold
M" can be smoothly embedded in the Euclidean space R*". Viewing R*" as C",
one may ask for embeddings which have nice properties relative to the complex
structure. The simplest properties relate to complex tangents. If M has no
complex tangents, the embedding is said to be totally real. In general there are
global obstructions to finding totally real embeddings. For example, if M is
compact, orientable and totally real, then its Euler number and Pontrjagin classes
must vanish, a result due to R. Wells [11].

In this paper we shall give an explicit formula for the Euler number of a
compact real n-manifold M suitably immersed in a complex n-manifold. (The
requirements on M hold generically if n <5.) We shall also give a formula for the
Pontrjagin number of a compact, orientable M* generically immersed in C*. We
must assume that M has only one-dimensional complex tangents which are
non-degenerate in a certain sense, and occur along a smooth, compact, codimen-
sion two submanifold N< M. There is a smooth invariant function y on N,
0=y =<+, In section 5 we derive a relation among the Euler numbers (M),
e=x[vy<3l, h=(-1)"xly >3], x(M*) (normal bundle), and the parabolic index p,
which is described in section 1. As a special case we have the following.

THEOREM (0.1). Let the compact, orientable n-manifold M be embedded in
C" as just described. Then its Euler number satisfies

x(M)=e—h+p. 0.1)

When n =2 we have p =0, since there are no parabolic points. In this case the
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194 S. M. WEBSTER

theorem is due to E. Bishop [1], who reduced it to a theorem of Chern and
Spanier [3]. Our method of proof is different, being based on the Poincare-Hopf
formula for the Euler number. If M is totally real, (0.1) implies x(M)=0. For a
direct proof see [11]. If the 2-sphere is embedded in C? as above, then it must
have at least 2 elliptic points by (0.1). Elliptic points are of interest since they
contribute to the local hull of holomorphy of M. They have been studied most
recently in [6], [7], and [10]. It is not known whether a 4-sphere generically
embedded in C* must have an elliptic point. If not then (0.1) gives h = —2, which
puts some restriction on the topology of N = N,.

In some cases the Pontrjagin numbers give more information about the
complex-tangent structure. Let M be immersed in C", and J denote the real
operator corresponding to multiplication by v—1. Then H,, = T,.(M)NJT,,(M)
for me N, defines a complex line bundle H over N. N inherits a natural
orientation from M (section 1).

THEOREM (0.2). Suppose the compact, orientable 4-manifold M is generically
immersed in C*. Then its Pontrjagin number satisfies

p1(M) = x(H). 0.2)

This is proved in section 3, where we also show that x(H)=0 if M has no
parabolic points. Thus if p;(M)# 0, then M has a parabolic point, hence nearby
elliptic and hyperbolic points. A generic embedding of CP, in C* therefore has a
non-trivial hull of holomorphy.

In [8] H. F. Lai has given general formulas for the Euler and Pontrjagin
classes of a wider class of submanifolds of C". The relation of his work to the
present paper is not clear. His formulas do not yield (0.1) or (0.2). In section 1 we
describe the local properties of M" < C" near a complex tangent. In section 2 we
study the real Grassmannian and give a transversality argument. Section 3
contains a general result about the intersection properties of Schubert varieties
needed for Theorem (0.2). Section 4 is devoted to deriving suitable local equa-
tions for M near a complex tangent.

1. Complex tangents and the parabolic index

Let M™ be a smooth real n-manifold immersed in the complex n-manifold M.
In a local holomorphic coordinate system z = x+iy =(z',..., z"), M is given by

M:R=({,...,rm")=0, R=R, drla---Adr"#0,
ar*A---Adr=Bdz'A---Adz". (1.1)
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Under a change of holomorphic coordinates z — z' and defining function R — R/,
the factor B changes by

oR’ («92’)~l
B—-B'=—\|—] B. 2
g oR \oz (1.2)

Let F denote the normal bundle of M in 1\71, and F* its dual. Also, let K denote
the canonical line bundle of M, and L and L* the real line bundles A"F and
A"F*, respectively. Then (1.2) says that the collection {B, B’,...}, which we
denote simply by B, defines a section of the complex line bundle KQL* ' =
KQ®L over M. In particular, the set

N={meM:B(m)=0} (1.3)

is well defined and is precisely the set of points m at which M has a (non-trivial)
complex tangent space H,,. If J,, denotes the real linear operator on the real
tangent space T, M corresponding to multiplication by v—1, then H,, = T, NJT,,
where T = T(M) is the real tangent bundle of M.

We assume that dime H,, =1, so that H,®C=H_®H!", H"=H,, and H., is
spanned by

X =) £o/0z', XR=) E(@OR/3z')|, =0. (1.4)
We further assume that the complex tangent H,, is non-degenerate, in that
either XB#0 or XB#0. (1.5)

Since X is determined up to X — cX, ¢ a non-zero complex constant, it follows
that

v(m)=3|XB/XB|e[0, x| (1.6)

is a well defined biholomorphic invariant of M at m. It was first found by Bishop
[1] in the following form.

We suppose that m is the origin of a coordinate system (z;, z%, 2<a=n-—
1, z,) in which T,, is the (z;, x*)-space. M is given locally as the graph R =0,

r=-z,+F(z,, x), F=q+x-0(1)+0(),
=y (2, %),  f=f"=0Q), 2<as=n-1, (1.7)

x=(x*), q=azi+bz,Z,+cz3.
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Here and elsewhere O(k) indicates a term which vanishes to order k at the origin.
Then, up to a constant, X =43/dz,, and

a s -, i — — ¥ ¥
SRR 2 20Fz, +OQ), XB=2c, XB=b
a(zls Zna z )

v(m)=|c/bl. (1.8)
We also introduce

A =|XB|*-|XB|%. (1.9)
N is partitioned into
N, =[y<3il, N,=ly=3l, N.=ly>3l], (1.10)

the sets of elliptic, parabolic, and hyperbolic points. These sets correspond to
A <0, A=0, A>0, respectively.

Next we examine more closely a parabolic point m. Since the determinant
(1.9) vanishes, (1.5) implies that the system

aXB+bXB=0, aXB+bXB =0,

has a non-trivial solution (a, b) unique up to (a, b) — (a’, b") = (na, ub). Complex
conjugation of these equations shows that b = Aa, @ = Ab, for some A, |A|=1. The
factor u can be adjusted so that b'=a’. Hence, there is an a, unique up to
a — pa, p €R, for which

YB =0, Y =aX+aX. (1.11)

It’s easily to be seen that the changes X — ¢X and (1.2) can change Y by at most
a real factor. Thus Y spans an intrinsic real line [, < H,,, which we call the
parabolic line at m.

Now we assume that

dBAdB#0 on B=0, (1.12)

so that N is a real submanifold of M of codimension 2. The conormal bundle S*
of N in M is spanned by the coframes dB along N, and hence is the restriction of
(K®L)* to N. So the normal bundle S of N in M is the complex line bundle
K®L restricted to N. The non-degeneracy condition (1.5) precludes H,, being
contained in T,,(N). It follows from (1.11) and (1.9) that m is a parabolic point
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precisely when T, NN H,, =1, is one dimensional. We denote by ¢ the composite
vector bundle mapping

¢:H < T(M)|x = (T(M)|n)/ T(N)=S. (1.13)

Since dB is local coframe for S and X is a (1, 0)-frame for H,, consideration of
the sign of (1.9) shows that ¢, is orientation reversing if m is elliptic and
orientation preserving if m is hyperbolic. It is singular of real rank one if m is
parabolic.

We assume still further that dy#0 when y=3, so that N, is a smooth
(n — 3)-dimensional manifold. We may now proceed to define the parabolic index.
For each m € N, we have two lines in T,,(N), the parabolic line I, and the line k,,
determined by the normal vector Vy (gradient relative to any convenient metric
on N). This gives us two sections [, k of the projective bundle P — N, which has
as fiber over m € N, all lines through the origin in T, (N).

We next describe an orientation on the open subset of P consisting of lines not
tangent to N,. Let x*,3=a=n—1, be local coordinates on N,. Let y be a local
defining function for N, :y =0, with 3y/dy>0. Then (x, y) are local coordinates
on N, and any line L € P, not tangent to N, is spanned by a unique vector

n—1

vy weler (1.14)

oy 3 0x*

Thus (x, w) are coordinates for L, and

Qp=dx3®n---Adx" P AdWPA- - AdWT? (1.15)

defines a local volume form on the (2n — 6)-dimensional manifold P. If (%, §) is
another such coordinate system, then one easily sees that

0, = (det 35/0x)2(37/3y) "> Qp.

Since dy/dy >0, we have a well defined orientation.

The parabolic index is defined as the intersection number of I[(N,) and k(N,)
relative to this orientation. This is possible since k,, is never tangent to N,. More
precisely, we take a slight perturbation of k, if necessary, so that k(N,) and 1(N,)
intersect transversely in P at a finite number of points. At a point m € N, where
l.. = k,,, we choose local coordinates as in the previous paragraph. Then al/ax®,
dk/ax*, 3=a <n—1, give frames for [(N,) and k(N,) at m. The intersection index
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at m is given by the sign

indp,, (I, k) = sgn 0,(31/3x, dk/dx). (1.16)

This is well defined since a change of orientation of the local coordinates x
changes the orientations on both I(N,) and k(N,), so that (1.16) remains un-
changed. The parabolic index is

p= {indp,.(l,k):meN,, .=k} (1.17)

2. The Grassmann manifold and transversality

In this section we consider an n-manifold M immersed in C". Its Gauss map g
associates to each m € M the real tangent plane T,,(M). It is a smooth mapping of
M into Gr(n; n)= Gr, the n?*-dimensional Grassmann manifold of real n-planes
through the origin of C" =R>". We define

C.={VeGr:dimc VNIV =k}, O0=k=n/2;

2.1)
C=C1U' : 'UC[n/Z]-

C, is the dense open subset of totally real planes, and Gr=CyU- - -U(,p; is a
disjoint union. For each k, 0<k =n/2, G, fibers over the complex Grassmannian
Gc(k, n—k) of complex k-planes in C". In fact, for V in G, VNJV=C* and
VN(VNIV)" is a totally real (n—2k)-plane in C" . So the fiber is an open
subset of Gr(n—2k; n—k), which has dimension n(n—2k), while the base has
real dimension 2k(n—k). Thus C, is a real submanifold of codimension 2k?. If
n=2m is even, C, =Gc(m;n); while if n=2m+1, C, is a bundle over
Gc(m; n) with fiber the real projective space RP(2m +1).

We repeat some of the constructions of section one in this ‘“universal’ setting.
For V e Gr there are two natural vector spaces; V itself and F,,=C"/V. We also
have the two real line bundles L = A" F, L*= A" F*, and the complex line bundle
K=A"(GrxC"*)=GrxC. We refer back to (1.1) where now the dr' are n
independent real linear forms on C" annihilating a fixed V in Gr, and the dz' are
a basis of complex linear functions on C". As before it follows that B is a section
of K®L, having as zero set precisely C. We restrict this bundle to C,, where it is
identified with the normal bundle S of C, in Gr. Its dual bundle has local frames
dB restricted to C,. Also, we have the complex line bundle H— C,
Hy=VNJV, HRC=H'®H".
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In addition we have a real 4-plane bundle E — C; defined by
E,=Homg (Hy, Sy). Each element of E, may be described by an equation

dB = XB6 + XB6,

where X is a frame vector for H' and 0 is its dual. If we denote by E, the zero
section of E, which corresponds to XB = XB =0, then we have a well defined
function vy : (E — E;) — [0, ] given by (1.6). Parallel to (1.10) we have the disjoint
union E=E,UE,UE,UE,, where E,_,E, E, are the sets where y<3, y=3,
v >3, respectively.

For M immersed in C" with at most one dimensional complex tangents, it is
clear that g*H and g*S are the corresponding bundles of section 1. For each
m € N we have

dgm :Hm EICIg(v‘n) - Tg(m)Gr - Tg(m)Gr/Tg(m)Cl = Sg(m)’

which defines a map dg:N — E. The degenerate points form the set dg™ '(E,).
Clearly, vy o dg is the invariant (1.6).

PROPOSITION (2.1). Let f:M" —C" be a smooth immersion. a) A generic
small perturbation of f results in an immersion with the following properties: M has
no complex k-dimensional tangents if 2k>> n, while if 2k* < n, the points with such
tangents form a submanifold of codimension 2k>. b) Suppose in addition that the
immersion f has only one dimensional complex tangents which occur along the set
N. After a generic small perturbation, N is a compact smooth (n—2)-manifold, and
the set N, of degenerate points is a smooth (n —6)-manifold. c) Assume further that
N, is empty. Then after a generic small perturbation the parabolic set N, forms a
compact smooth (n— 3)-manifold along which dy# 0.

Remark. As a consequence a generic M" in C" has the following characteris-
tics:

i) n=2 —isolated elliptic or hyperbolic points;
i) n=3,4,5 —at most one-dimensional non-degenerate complex
tangents with N, smooth;
iii) n=6 —at most one-dimensional complex tangents and at most
isolated degenerate points;
iv) n=8 —at most isolated 2-dimensional complex tangents.

Case i) is due to Hunt and Wells [5].

The main ingredient in the proof is the parametric transversality theorem (see
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e.g. Hirsch [4], p. 79). Let f be any immersion of M with Gauss map g = f;. Let Q
denote the set of all real affine transformations A(z)=A'(z)+a, A'e GI(2n,R),
aeC". Then G(A, z)=gus(z) = A’ ° g(z) defines a smooth map

G:QxXM— Gr. 2.2)

We claim that the mapping G is transverse to C, for every k <[n/2]. This means
that TC, +T$mG=TGr, at every point G(A, z)eC, where T$FmG=
DG(T(Q x M)). This will follow from T$mG = TGr, which has nothing to do with
complex tangents. We let C" = V@ V* with coordinates (x,, x,), and restrict to
the submanifold of Q of maps of the form (x,,x,)— (x,,x,—Bx,;), Be
Homg(V, V*). It is clear that DG maps the tangent space of this submanifold at
B =0 onto TyGr.

By the parametric transversality theorem, the set Q, of A’s for which
z — G(A, z) is transverse to C, is residual. It follows that Q, N - - N Qy,; is also
residual and therefore dense. Thus there are affine (or even linear) mappings A,
arbitrarily close to the identity, for which A e f is transverse to every C,. Part a)
follows by transversality. Under the additional assumption of b) N is a compact
smooth (n —2)-manifold.

For parts b) and ¢) we must use mappings quadratic in (z, Z): A(z)=a+
A'(2)+ A"(z?). We first replace f by a perturbation as in a), so that the Gaussian
image g(M) remains disjoint from C,, k>1, and intersects C, transversely. We
then restrict to quadratic mappings A with A’ unitary and A” so small that this
situation is preserved. We let Q denote this set of maps. For A” small enough,
perturbation by A € Q will result in a new manifold N, close to the original N in
the following sense. N, will lie in a small tubular neighborhood u=U{D,,:me
N} and will intersect each normal 2-disc D,, in a unique point n,(m), giving a
diffeomorphism n, : N— N,. We consider the composite map.

G'(A, m)=dgas°na(m), G':QxN-—E.

We claim that the map G’ is transverse to E; under the assumptions of b) and
transverse to E, under those of c). Assume G'(A, m) € E,. After an affine unitary
coordinate change we may assume that m =0 and that M is given as in (1.7). We
then restrict G’ to the submanifold of Q consisting of mappings of the special
form

Z,—> 2, 2% > 2% 2=a=n-1
A:
z, = z, +Bz,Z,+ Cz3,
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which result in (b, ¢) = (b-B, c-C) in (1.7). Locally E=C,; XR* and E,= C, x{0}.
The normal space to E, at m is {m}xR*={m}xC? with coordinates (b, c¢). If we
restrict G’ further to (A, m) with A as described and m =0, then it is clear that
DG’ at (A, m)= (I, 0) maps onto the normal space. Thus G' is transverse to E;. A
similar argument shows that G’ is transverse to E, = C; X Cone. Now b) and c)

follow by the parametric transversality theorem since E; has codimension 4 and
E, codimension one in E.

3. The Pontrjagin number of a 4-manifold in C*

By a well-known theorem [9] the Pontrjagin class p (T(M)) equals
(= 1D*c (T(MY®C), where ¢ denotes the Chern class. For M™ «C" with Gauss
map g, p(T(M)) = g*p.(VGr), where VGr— Gr is the universal bundle. Grc
Gc(n, n) and (VGr)QC is the restriction of the complex universal bundle VGc —
Gc. Thus we must consider the Chern classes ¢, (VGc).

We begin by recalling some facts [2] about Gc¢(n, r), the space of all complex
n-planes Z"cC"*". For 0<k,=<-:--<k,=<r and linear spaces L,c---<L,
dim L; = k; +j, the Schubert variety is defined by

Z(kyy ..., k,)={Ze Gc(n,r)|dim ZNL,=j},
and has complex dimension k,+- - - + k,. The Chern class ¢, (VGc(n, r)) is dual to

Z,(n,n=Zr—-1,...,r—1,r,...,r), where r—1 appears k-times. It may also be
defined as

Z.(n,r)={ZeGc(n,r)|dim ZNL =k}, dimL=r—1+k, (3.1)
and decomposes into the disjoint union of
ZYn,r)={Z:dim ZNL =k},
and
wn,r)={Z:dim ZNL >k}.
Z3(n, r) is a complex manifold of complex codimension k, fibering over Ge(k, r—
1), and Zi(n,r)=Z(r—-2,...,r=2,1,...,1r) (k+1(r—2)s) has codimension

2(k+1). Thus a generic compact orientable real 2k-manifold in Gc(n, r), which
we also denote by M, will be disjoint from Zi(n,r) and intersect Zg(n,r)
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transversely in finitely many points. ¢, (VGc(n, r))[ M] is the sum of the intersec-
tion indices at these points.

We fix k and L,_,,, < L,_,,«, subscripts denoting dimension, and consider the
corresponding varieties Z, _;(n, r)> Z,(n, 1), Z;_1(n,r)> Zi(n, r). A generic M**
will miss Z}_,(n, r), since it has real codimension 4k. Thus

MnN Zk__l(n, r) = angﬁl(n, r)EN

is a smooth compact oriented 2-manifold containing the finite set Z, (n, r) M.
For ZeZ)_,(n, 1), we set

AZ =2 ﬂL,_2+k and BZ =2 nA%,

so that Z = A,@® B, is an orthogonal direct sum relative to the standard hermi-
tian inner product on C"*". We define a smooth map 8 by

B:ZY_(n,r)—> Gc(n—k+1,r+k—-1), B(Z)=B,. (3.2)
For ZeZ)_i(n,r), Ze ZXn,r) if and only if Be Z,(n—k+1,r+k—1); i.e.

ZnnNZ_(n,r)=B (Z,(n—k+1,r+k-1)).

LEMMA (3.1)
& (VGe(n, D)IM]=c(VGec(n—k+1,r+k—1))[BN]. (3.3)

Proof. This comes down to comparing two intersection indices. First, we have
the equality of oriented vector spaces at me M N Zy(n, r)

T..Z(n, r)® T M= cT,.Gc(n,r),

where ¢, =+1. If S is the normal bundle of Z)_,(n,r) in Gc(n,r), then its
restriction to N is that of N in M, so

T,Gc=T,Z2_®S,, and T,M=T,N®S,.
It follows that

Tng(n: r)@ TmN= CkTmZg—l(n’ r)' (3-4)
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The map B is not holomorphic since it involves the orthogonal complement
A7%. However, a slight local deformation of it is. For all Z e Z}_,(n, r) sufficiently
near m we may replace Az by A;., then a(z)=ZNA,;, is holomorphic and
approximates 8 near m. Clearly, a (Z%(n—k+1,r+k—1))=Z%n, r). By (3.4)

T, .(aZ2(n, N)DT,, (aN)= ¢, T,..(aZ?_,(n, r)), (3.5)

where the orientations agree with those from Gec(n—k+1,r+k—1), since a is
holomorphic. If S is the normal bundle of aZ9_,(n,r) in Ge(n—k+1,r+k—1) it
is also the normal bundle of aZ(n,r) in Z¥n—k+1,r+k—1). Adding S, to
both sides of (3.5) gives

T.mZin—k+1,r+k-1)T,,.(aN)=cT,.Gc(n—k+1,r+k—1).

Now am = Bm, and if we continuously deform a back to B, we see that ¢, =c,,
where c, is the intersection index at Bm entering into the right hand side of (3.3).
Summing over all such m in MNZYn, r) gives (3.3).

Note. The same argument gives
& (VGe(n, nN|M* |= ¢ ((VGc(n— 1L r+ ) MN Z}(n, 1)),

when the intersections are nice, which is generically so when 21 +2>k.

We return to the study of Gr(n;n). We set C"=(W,J), WQRC=W =
WOW" W'=W ={we W°:Jw=iw}. For a subspace V=W, V:c W, V>
V'®V" where V'=V°NW', V"=V NW" The map V — V¢ embeds Gr(n; n)
in Gc(n, n) as a totally real submanifold.

LEMMA (3.2). a) V*=V'@®&V" if and only if JV=1V.
b) Vi=H'if H=VNJV.
c) C=Gr(n;n)NZ,(n, n).

Proof. a) If JV =V, then JV°=V*, and any we V° is the sum 3(w— iJw)+
wH+iwW)e VO V" If Ve=V'@®V”, then IV =JV'+JV"'=V'PV"=V*;
JV=V.b) V' oH'is clear since VS-oHC If we V', then Jw=iw. So if w= u+
iv, u,v eV, then u=Jv, v=—Ju. Hence, u, v e H and b) holds. If we apply a) to
H, then it follows that Ve C if and only if dime VSN W’'=1. So c) follows by
taking n=r, k=1, and L, = W' in (3.1).

We now turn to the proof of Theorem (0.2) of the introduction. Since M* is
generically immersed in C* it has the properties of Remark (ii) following Proposi-
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tion (2.1). We have

p1(M) = p(T(M))[M]=p,(VGr(4; 4))[gM]
=—c(VGc(4, 4))[gM]= —¢,(VGc(3, 5))[BgN],

by (3.3) with n=r=4, k=2. Now over the surface N (or rather BgN)
VGc(4,4)=ADPB=H'D VGc(3,5) by Lemma 3.2). Thus, the total Chern class
c=1+c,; satisfies [9] c(VGc(4,4))=c(H)c(VGc(@3,5)) or c¢c(VGc(4,4))=
c,(H)+¢,(VGc(3,5)). Over Gr(4;4) VGc(4,4)=VGr(4;4)Q@C, hence its first
Chern class is a 2-torsion element. When pulled back to the compact orientable
surface N it vanishes; thus ¢,(VGc(3, 5))= —c¢,(H')=—c(H). Hence, p,(M) =
x(H), since x(H)=c,(H)[N].

The bundle mapping ¢ (1.13) can be used to get a formula for x(H). Since
M =C", the canonical bundle K is trivial. Since M is orientable, so is its normal
bundle, hence the line bundle L is trivial. It follows that S = KQ®L is trivial. ¢ is a
bundle isomorphism over N, and an anti-isomorphism over N,. Therefore H is
trivial over any connected component of N which does not meet N,. If we let N°
be the union of the components of N which meet N,, and H° the restriction of H
to N°, then x(H) = x(H®). We choose a section v of H® which does not vanish on
N?UN, and has only isolated non-degenerate zeros in Nj. v gives a trivialization
of H over N,; hence, the parabolic line I gives a map [: N, —>RP,, where N, and
RP, have naturally induced orientations. We define the H-parabolic index py to
be the degree of this mapping I. If w is a piecewise smooth section of H over N,
which spans [ at each point, then w = pv, u# 0 and piecewise smooth. We have

1( d
pH=Re;I :“ (3.6)
N,

Note that w is determined up to w — pw, with p# 0, real and piecewise smooth. It
follows that (3.6) is not affected by this change. Also, v may be changed by
v— &, £€#0 and smooth on N,UNY. Applying Stokes’s theorem to d¢/¢é on Ng
shows that the integral in (3.6) remains unchanged. Thus py is well defined.

LEMMA (3.3). x(H) = —pg.

Proof. This follows by comparing the index sums for v and ¢(v). We assume
that v has been chosen so that 1, contains v,, at only a finite number of points m
in N, and that [ crosses v transversely at such points. In otherwords 1€RP, is a
regular value of I. At such a point m we choose local coordinates (x, y) on N so
that m = (0, 0), N, is given by y =0, N;, by y>0, and N, by y<0. We let { =& +im
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be a local fiber coordinate on H® relative to v and choose a local frame v’ and
related coordinate {'=¢'+in’ for S near m. We may assume that ¢(v) is a
positive multiple of iv’ at m. Then

g=at+bn, a(0)=b0)=c(0)=0,
n' =cé+dn, d(0)>0.

A=ad—bc, A(x,0)=0, A,(x,0)>0. We let (£, n)=(1,A(x)), A(0)=0, span [
along N,; then the sign of A,(0) gives the intersection index of | with respect to v.
Since ¢(I)=0, we have c+dr =0, so A,(0)=-—c.(0)/d(0). Also, a(x,0)=
(bc/d)(x, 0), so a,(0)=0, and A0, 0)=a,(0)d(0), so a,(0)>0. Finally, ¢(v)=
¢(1,0)=(a, ¢) has index at m =(0, 0) given by the sign of

d(a, c)
a(x, y)

(0, 0) = —(a,c.)(0, 0).

Thus the index of ¢(v) at m is the same as the H-parabolic index at m. Since ¢ (v)
has the same index as v at any zero of v(in N,), we have x(S)= x(H) + py. But
x(8)=0, since S is trivial, and the lemma follows.

Theorem (0.2) and Lemma (3.3) give

COROLLARY (3.4). If M* is compact, orientable and generically immersed in

C*, then p,(M)=—py. If py(M)#0, then M must have elliptic, parabolic, and
hyperbolic points.

4. Local equations for M

To facilitate the study of M near a complex tangent, we shall simplify the
presentation (1.7) by means of a local holomorphic coordinate change. In this
section we prove the following.

PROPOSITION (4.1). Suppose M has a non-degenerate one-dimensional
complex tangent at a point m. Then holomorphic coordinates z=
(z4,2%,2=<a=n-—1, z,) can be chosen so that m =0 and M is given locally by

= = (v2 n—1
M: z, = F(z,, x), X (_x s, XU, (4.1)
y*=f*(z.,x), f*=f*2=a=n-1.
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If m is an elliptic or hyperbolic point, then

F=q+H,q=az?+bz,Z,+az}, H=0Q),
f*=b%2,Z,+h", h*=0Q@),

(4.2)

where a =0, and b, b™ are either 0 or 1. If m is a parabolic point, then

F=Q+H, f*=0@4
Q=1%(z,+z,)*+i(z;— Z))c(x), c(x) = cgx?, (4.3)

where B is summed from 2 to n—1, cg, ng are real, and m is either 0 or 1. If the
transversality condition dB AdB# 0 holds, then c(x)#0. In this case the parabolic
line at m, which is the y,-axis, is tangent to N, if and only if n=0.

We remark that (4.2) is already known [1], [10].

We begin with M in the form (1.7). If b#0, we replace z, by bz, to make
b= 1. By a rotation z; — uz,, uf =1, we can make ¢ =0. Then by a change of
the form

z, >z, +(c—a)zi+e,z,2% + f5,2°2",

(4.4)
z* = z°+2i(a*z3+ djz,2° + f5,2527),
we can achieve (4.2) but with
H=c(x)z,+¢(x)z,+ O(3), c(x) = cgx®. 4.5)
The b* are either 0 or can be made 1 by z* — b“z“.
We make the further change
;> 2,+A(2), A(2)=A.z% (4.6)

under which c(x) in (4.5) changes by

c(x) = c(x)+2aA(x)+bA(x),
é(y) = &(x) + bA(x) +2aA(x).

If y=|a/b|#31, then the determinant b?—4a*#0, and A(z) can be chosen
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uniquely to make c(x) — 0. If y =3, we take b =1 and a =3. Then (4.6) results in
c(x) = c(x)+2Re A(x),

which may be used to make the c(x) in (4.5) purely imaginary. The x“x® terms
introduced by (4.6) can then be removed by a transformation of the form (4.4).
This gives (4.2) and the form (4.3) for the quadratic term Q.

We must investigate the third order terms in the parabolic case. Since b =1,
the change z* — z* —b*z,, followed by one of the type (4.4), makes f*=h"=
O(3) in (4.1). We put

h* =h3+hgx® + h3 xPx" +c5,,xx"x° + O(4),
he=c*z3+e*22z,+&%z,23+¢*23,
hg=cszi+enz,Z,+Caz3, ef real,

By = CBy21 1t CayZ1, Cp,, real.
The transformation
z* — z* +2i{c*z} +c5ziz® + ¢§,z,2%2"Y +3¢5,,2°272°} @.7)
reduces h* to the form
h* =(c®z,+C%Z,+cax®)z,Z, + O(4). (4.8)
The substitution
z® — 2%+ 2i{c*z, +3¢c32%}z,, (4.9

followed by another one of type (4.7) (to remove any newly introduced third
order terms already removed by (4.7)) results in

z,=Q+H, H=0()

(4.10)
y* =he, h* = O(4).
Next we consider the third order terms in h,
H=H,+H,x*+ H,x*x® + K 3, x*x®x" + O(4),
Hy=K,z23+K,z37,+ K,z,Z?+ K573, 4.11)

H, =K, 0z3+K,12,Z, + K,,73,
HaB = Kaﬂozl+Ka3121.
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We shall simplify this by means of a transformation of the form

z,—> z,+A(z,, 2%, 2,.), A=A,+Ayz,

z, — z, +B(z,4, 2%, z,), B =B;+B,z,,

Ar=Ayzi+ Asaz 2%+ Apupz®z®, A, = const., (4.12)
B3 =B3yz1+B3,212z% + B3,32,2°2° + B3,5,2°2"27,

B, = B3z, +B,,z".
This will not alter any of the previous normalizations. Note that
Q(z,+ A, x)=Q(z,, x) +(z)+ Z,)(A + A)+ Q(A, x).
Therefore, when we substitute (4.12) into (4.10), we get
H—> H+(z;+Z,)(A+A)-B+i(A—A)c(x) +3A +A)?, (4.13)

in which we must make the substitution (4.10). We shall simplify the terms of H
in order of increasing degree in x®. This allows us to ignore the term i(A —
A)c(x), and hence Q(A, x), since (A + A)? is of fourth order.

In simplifying H, we ignore terms in x* and z* = x* + O(4), so that

Hy,— Hy+(z,+2,)(Ay+ A, + (A + Ap)Q)— B;— B, Q,

with A2E Az()z%, B3 = B3oz?, Bl EBle, Q E%(Zl + 21)2. Comparison of coeffi-
cients shows that

Ko— Ko+ Ay +3(Ag+ Ag)— B3o—3Bi,
K;— K+ Ay +3(Ag+Ag)— By,

K, — K+ Ay +3(Ag+ Ag) =3By,
K;— K3+ Ay +3(Ag+Ay).

By proper choice of A,, and B;, we can realize K,=K,;=0, after which
A,o=—Re Ag, B;y=—3B,,. Then K,— K, — K,— K,—1B,,, so that we can make
K, =K,, and restrict to B,,=0. This leaves the change K; — K;+2 Re A, by
which we make K, = —in, purely imaginary.

To simplify H_x* in (4.11), we set A,,= A, = B;3,=B;,=0 in (4.12) and work
mod x°x®, z*z®. With A;=A,,=0, i(A — A)c(x)=0, mod x*x?, so

Hx* — H,x*+(z;+ Z,)(A +A)“Bs"B1Q,
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with A=A, z,z% B;=B,,z1z° B,=B,,z%, and Q=%(z,+ Z,)>. Comparison of
coefficients gives

K.o— K, o+ Az, —Bs, —%Blay
K.,1i—> K1+ Az + Az —By,,
K.~ K>+ A, —3By,.

So we normalize to K,,=K,,=0 and restrict to A,, =B, +iB,, =iB,. . It

follows that K, ; — K, +3(B;, — B1.), so that we can make K_, = n, = f,, real.
Now we further restrict to A,, =B5,=B;,=0 in (4.12) and work

mod x*xfx", z*z®z". Again i(A — A)c(x) can be ignored in (4.13). We have

H_gx*x® — H gx*x® +(z,+Z,)(A+ A)—B,,
where A =A,.32°x?, B;=B;,5z,2°z". This results in the change

Kogo— Kugot+ Azag — Biggs
K.g1— KxBl+A2ctB'

It’s clear that we can make K,go=K,g;=0. Finally, we remove the term
K., x*xPx” by a transformation

2, = 2, + B3,5,2%2%2".

This achieves the form (4.3). If n#0, a dilation (z,, z% z,,) = (Az, Az%, A%z,)
with A real results in n — A7, so we can make n = 1.
At a parabolic point (1.8) and (4.3) give

B =(i/2)" (2, + Z, +ic(x) +in(27+22,Z,) + mgx®Z,) + O(3). (4.14)

It follows that dB A dB = 4" "ic(dx) Adx,+ O(1), so that c(x)=0 if the transver-
sality condition holds. We make a linear change in the coordinates (x>, ..., x""")
so that c¢(x) = x?, then N has the local equations

X, = 0(3)’

(4.15)

n—1
x2=-my?+ Y, maxPy; +0(3).
g=3
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The conditions Xr = X7 = Xr* =0, which determine X give

X=21+(Q+H), > +00). (4.16)
a9z, 9z,

Also,

XB=B, +03)=1+7y,+0(2),

_ n—1 (4.17)
XB=B; +03)=1+ ), 1n5x®*+0(2).
B=3

The condition (1.11) gives a(0)+a(0)=0, so we may take a=a’'+i, a’ real,
a'(0)=0. Then

YB = a'(2+ny; + ngx®) +i(ny, —mpx®) + O(2),
so that a’ = O(2). Thus, in coordinates (y,, x%,...,x" 1)
Y =9/9y,+ O(2). (4.18)

From (4.17) and (1.9)

n—1
A=2ny,—2 Y, maxP+0(2); (4.19)
B=3

so that Y[A]=2n+ O(1). It follows that Y is tangent to N,:A =0 if and only if
n=0.If n=1, then Y[A]>0 implies that Y points toward N,,.

5. A formula for the Euler number

To derive our formula we shall make use of the Poincare-Hopf theorem
characterizing the Euler number x(M) as the sum of the indices of the zeros of a
vector field tangent to M. This does not require M to be orientable and is
applicable to compact manifolds with boundary, provided the vector field points
outward along the boundary. For M" immersed in the complex n-manifold M
with normal bundle F, x(F) denotes the sum of the indices of the zeros of a
suitable section of F. The index at an isolated zero m e M is well defined since
T,.M=T,M®F,, as oriented vector spaces locally. A reversal of the local
orientation of M near m results in a reversal of that of F as well as of TM.
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In this section we prove the following, which does not require M to be
orientable.

THEOREM (5.1). Suppose that the compact n-dimensional manifold M is
immersed in the complex n-dimensional manifold M with at most nondegenerate,
one-dimensional complex tangents as in section 1 and Proposition (2.1c). Then

xM)=¢g.x(F)+e—h+p, e, =(-1)""D" (5.1)
where e = x(N,), h=(—1)"x(N,), and p is the parabolic index.

If M is also orientable and embedded in C", then a theorem of Whitney (see
[4] or [9]) asserts that x(F)=0. Theorem (0.1) follows immediately from this. As
mentioned after Proposition (2.1) the assumptions of Theorem (5.1) are generic if
n <5. The remainder of this section is devoted to the proof of Theorem (5.1).

We choose some convenient hermitian metric on M and denote by
. : T,,M — F,, the orthogonal projection onto F, along T, =T,M. Then
7w © J. gives a linear mapping from T,, to F,,, which will be a linear isomorphism
if m is a totally real point of M. If v is a vector field tangent to M, then wJv is a
section of F. The idea of the proof is to relate the index sum of wJv to that of v
for a suitable choice of v.

About any particular m in M we choose holomorphic coordinates z = x +iy
for M centered at m. The orientation of M is given by the local form

0= 1':[1 (-;—dz“/\df“)*—-en dx'A- - Adx™"Ady A - - AdyT, (5.2)

and the operator J is identified with (x, y) — (—y, x). Suppose m is a totally real
point of M. Then the coordinates may be chosen so that T,, is the x-space and F,,
is the y-space, which by (5.2) have the orientations

Qr=dx'An- - Adx", Q. =¢,dy'A- - -Ady".

Since 7 is smoothly deformable to (x, y)— (0, y) and 7 ° J to (x, 0) — (0, x), we
have

(o N*Qp =y, sgn ¢ = g,.

It follows that the effect of 7J on the index of a vector field v with isolated zero at
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m is
indg,,,, (7Jv) = ¢, indp, ., (v),

so that

§ indg, . (mJv) = £,x(M). (5.3)
m¢N
This proves (5.1) if M is totally real.

In the general case we start with a smooth vector field v, tangent to N with the
following properties. It is to have only finitely many zeros m;, 1 =j =<1, which are
non-degenerate and lie in N, U N,, and is to be transverse to N, and point toward
N, along N,. Furthermore, the line field k along N, spanned by v, is to satisfy
k.. =1, for only finitely many m € N,, and at such m this intersection is transverse
in the space P (see (1.15)). We find disjoint neighborhoods U; of m; in N— N,
and smooth sections v; of H, compactly supported in U,, with v;(m;) # 0. Then we
smoothly extend vy+) v; to a vector field v on M having a finite number of
non-degenerate zeros. By construction v does not vanish on N; however #wJv will
have a zero at each m; and at each m in N, where v(m)el, < H,, as well as at
each zero of v. There is much freedom in the choice of such a v, which we shall
specify more precisely later.

Let m; be one of the zeros of vy, and choose coordinates as in (4.1), (4.2), so
that (z,, x*) are coordinates on M. We may assume that the hermitian metric on
M has been chosen so that F,, coincides with the (y*, z,)-space for all m near m,.
The local orientations are given by

ﬂr=%d21/\d21/\dx2/\- ceAdx™ Y, (5.4)

n—-1

Q. =¢g,_,dy*A---Ady /\—;—dz“/\dfn. (5.5)

We set G(z,, x*) =(z,, x* +if*, F), so that G,, G,, G, span T(M). In the local
coordinates (z;, x*) on M we have

v = 0,8/9z, + U,8/0Z, + v*3/9x*, (5.6)
so that as a vector in C"

v=0|G]=(v,, v* +iv[f*], v[F]),
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where v[-] denotes directional derivative. It follows that

Ju=iv[G]= (iv,, —v[f*]+iv*, iv[ F)),
so that

mJv=iv[|G]-c'G,,— c"G,,—c*G,
=iv[G]—-cG,,—CG;,— c*G, =(0, 0+ ix,*).

Here G, =(1,if;, F,), G5, = (0, if;,, F;), and G, =(0, 85+if%,, F,), so that c =
iv, and c® =—v[f*]. Hence, as a map from (z,, x*)-space to (y*®, z,)-space, wJv
has the form

y* = v —iv f3, +i0,fs + o[ f* Ifse,

(5.7
z, = iv| F]—iv, F, +i0,F; + v[f® | F,e.

If we substitute (5.7) into (5.5), we get (5.4) multiplied by the Jacobian factor

a(ya, zﬂ,, zn)
Ly —————— S.
"2 5(zy, 21, x°) (58)

the sign of which gives the index of wJv at m;. If we take into account (4.2), (5.7)
becomes

y* =0*—iv,b*zZ,+iv,b%z, + O(2),
Ly = 2i131q51 + 0(2).
We may assume that the H-component v; added to v, is such that v;=1 near 0.

Also, we assume that the extension of v from N to M is made so that the

coefficients of v are locally independent of z,. Then at the origin (5.8) has the
value

4(b>—4a?>) det (0v3/9x®)(0). (5.9

The sign of the determinant is the index of v, at m;, and b>—4a? is positive if m;
is elliptic and negative if m; is hyperbolic. Hence,

En-2 indF,mi ("n‘Jv) =9 indN’,n' (Uo), (5.10)
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where 8 = +1 if m; is elliptic or § =—1 if m; is hyperbolic. If we sum (5.10) over
the m; in N,, the right hand side is x(N,). To get x(N,) we must use —v, which
multiplies the determinant in (5.9) by (—1)" 2. Thus we get

£n—2 2. g, (mJ0) = X(N,) — (= 1)"X (N,), (5.11)

which accounts for the term e—h in (5.1).

Finally, we consider a zero of wJv at a point m in N, which arises when v(m),
which spans the line k,,, lies in [,,. We first elaborate further on the construction
of v along N,. It is initially defined so that k(N,) intersects I(N,) transversely at
m. Then it will be extended to N. We take coordinates as in (4.1), (4.3) with

c(x)=x?, so that N is given by (4.15). (x?,..., x""") gives coordinates on N,, and

(v, x3,...,x" 1) coordinates on N. In (5.6) we take v, =v'+i, v'=7", so that
n_l . .

v =49/dy,+ Z v'9/ox’, v'(0)=0. (5.12)

j=1

The condition that v be tangent to N gives, via (4.15) and (5.12),

n—1
v'=0(2), v2=-2qy;+ ). nx®+0(2). (5.13)
=3

Thus we start with

a a
=023, ..., x" Y, v°(0)=0, deta—z-E(O)%O, 3<q,B=n-1,

(5.14)

and determine v' and v? by (5.13). We then extend this vector v locally from N,
to N by keeping (5.14) independent of y,, and from N to M by keeping (5.14)
independent of x, and x>. Again we assume that F,, is the (y®, z,)-space for m
near 0. Note that we may take m =1, since l, =k, is transverse to N,

The parabolic index as defined in section 1 is computed relative to a coordi-
nate system (x%, ys) with y%=0 on N,. Therefore we set (4.19)

1
ye=24 =y~ 2, nex®+0(2), xgz=x"
g8=3



The Euler and Pontrjagin numbers of an n-manifold in C* 215

The chain rule in (1.14) gives
W§ = W (@y4/dy; + WP dy/ax®) 1 = we(1—muw? + O(1)) .

Since w* = O(1) for both Y (4.18) and v (5.12), and 8/8x£ = 8/0x® for functions
defined along N,, we have awg/ax§(0) = dw°/dx®?(0). Thus the parabolic intersec-
tion index at m =0 is given (see (1.15)) by the sign of

) RS
Q"(ax’ax \0)=det 8ug  O0%0xP(0) )

Hence,
indp,m (l, k) =8sgn det (avm/axB (O))3Sa,B =n—1- (5 ‘ 15)

For the index of wJv at m we again compute the determinant (5.8). We
substitute (4.3) into (5.7) and ignore second order terms. By (5.12) and (5.13) we
get

n—1
y?=v?=-2y;+ J, mex®,  y*=0v°(x%...,x"Y), 3=a=n-1,
g=3
2, =2i0,Q, =4x, +2ix>.
Thus,

a(y% v, z,, Z,)
3(21, Z4, xz’ xB)

(0) =16 det [8v°/8x" (0) 1< g <n—1-

Comparison with (5.15) gives
indF,m (’ITJU) =E,2 indP,m (l’ k)a

so that

Y. indg.,. (mJv) = &, _,p. (5.16)
N,

D

Combining (5.3), (5.11), and (5.16) gives (5.1), since €,&,-,=—1.
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