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Sur Pinvariant de Kervaire des noeuds classiques

JEAN LANNES

0. Introduction

L’objet de cette note est de montrer que I'invariant de Kervaire d’un noeud de
R?, donné par I'une de ses projections génériques, s’exprime comme une somme
dans Z/2 de termes indexés par les paires de points de croisements.

Le plan du papier est le suivant. On rappelle tout d’abord la définition de
I'invariant de Kervaire d’un noeud (paragraphe 1). On fixe ensuite une immersion
générique de S' dans R? et on considére I’ensemble des noeuds de R> audessus de
cette immersion; cet ensemble fini, noté A, est muni trivialement d’une structure
de Z/2-espace affine (paragraphe 2). Au paragraphe 3, on caractérise ’invariant
de Kervaire parmi les fonctions définies sur A et a valeurs dans Z/2. Cette
caractérisation permet au paragraphe 4 le calcul de l'invariant de Kervaire. On
montre au paragraphe 5 que les formules du paragraphe 4 peuvent conduire a une
définition purement combinatoire de l’invariant de Kervaire d’un noeud. On
montre au paragraphe 6 que ces mémes formules permettent d’exprimer la forme
de Kervaire relative a la surface de Seifert du noeud construite a partir de sa
projection. Enfin, le paragraphe 7 est consacré a quelques exemples.

Le papier se veut ‘“élémentaire” aussi a-t-on essayé, dans la mesure du
possible, d’étre ‘‘self-contained”.

1. Rappel sur Pinvariant de Kervaire d’'un noeud

L’invariant de Kervaire d’un noeud a été découvert par Robertello dans [7]; il
a été étudié et sa définition reformulée par beaucoup d’auteurs (voir en particulier
Particle [5] de J. Levine). On trouvera dans [3] une méthode de calcul de cet
invariant, basée sur le travail de J. H. Conway [2], différant sensiblement de celle
de notre papier.

Soit N un noeud dans R>. On sait qu’il existe une surface compacte orientée M
plongée dans R? dont le bord est N; on dit que M est une surface de Seifert du
noeud. Le plongement de M dans R> induit une parallélisation stable de M, notée
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180 JEAN LANNES

t, qui détermine une application q,: H'(M, dM; Z/2) — Z/2 telle que 'on a, pour
tous u, v dans H'(M, aM; Z/2):

q,(u +v) = q,(u)+ q,(v) +{uUv,[M]).

En d’autres termes, q, est une forme quadratique, appelée forme de Kervaire,
associée a la forme bilinéaire non dégénérée:

H'(M,8M;Z/2)x H' (M, aM;2/2) > Z/2,  (u, v) > {uUv,[M]).

On montre que la classe de g, dans le groupe de Witt quadratique WQ(Z/2)
est indépendante du choix de M (c’est en fait un invariant de la classe de
cobordisme du noeud N). Or le groupe WQ(Z/2) ne contient qu’un seul élément
non trivial, 'unique isomorphisme de WQ(Z/2) sur Z/2 est appelé l'invariant de
Arf (parce qu’il coincide avec l'invariant de Arf défini plus généralement pour
tout corps de caractéristique 2 [1]); I'invariant de Arf de q, est appelé l'invariant
de Kervaire (ou parfois de Arf) du noeud N.

La forme de Kervaire g,, qui est définie pour toute surface compacte orientée
M munie d’une parallélisation stable t, peut étre caractérisée de la fagon suivante.
Soient C une sous-variété de dimension 1 compacte sans bord de M —dM dont le
fibré normal dans M est orienté et - la parallélisation stable de C induite par ¢,
alors la valeur de g, sur I’élément de H'(M, M ;Z/2), représenté par C, est la
classe de (C, t-) dans le groupe de cobordisme stablement parallélisé QF=7/2;
c’est aussi , dans le cas particulier ou M est une surface de Seifert, la réduction
modulo 2 de I’enlacement dans R?> de C et de sa translatée selon la normale
orientée a M.

2. Formalisme relatif aux noeuds de R’ au-dessus d’une immersion générique de
S! dans R®

Soit a:S'—R? une immersion générique. On note respectivement X et X
I’ensemble des points doubles de a a la source et au but. La restriction de
a:X— X est un revétement trivial & deux feuillets dont ’ensemble des sections
est noté A. Cet ensemble est un espace affine sous le Z/2-espace vectoriel
V =(Z/2)*: l1a différence entre deux sections s,, s, est la fonction caractéristique
du sous-ensemble {x; s (x)# s,(x)} de X. On observera que l’on peut aussi
considérer V comme le Z/2-espace vectoriel de base X. On note enfin £+ £*
Iinvolution de X associée au revétement X — X.



Sur Pinvariant de Kervaire des noeuds classiques 181

A une section s de X — X, on fait correspondre un noeud de la facon
suivante. Soit A, : S’ — R une fonction telle que:

A(s(x)> A ((s(x))¥), VxeX;

alors P’application B, = a X A, : S — R> est un plongement dont la classe d’isotopie
est indépendante du choix de A,. Le noeud correspondant est noté N..

Nous espérons que les prochains paragraphes convaincront le lecteur de
'utilité du formalisme ci-dessus qui peut paraitre a priori un tantinet pédant!

3. Caractérisation de Pinvariant de Kervaire des noeuds N,

Soit a un point de S'—X, on définit une section, notée s, du revétement
X — X de la fagon suivante. On munit S'—{a} de la relation d’ordre induite par
un difféomorphisme orienté de S'—{a} sur R et on pose s,(x)=inf a '(x). Il est
clair que s, ne dépend que de la composante connexe de a dans S 1_X. Nous
appelons les sections du type s, les sections descendantes. Le tracé des noeuds
correspondants explique cette terminologie; ces noeuds sont triviaux.

Soient x et y deux points distincts de X, on note e: VXV —Z/2 'unique
forme bilinéaire alternée telle que:

1 si a }(x) et a”'(y) sont enlacés dans S’
e(x,y)=

0 sinon.

THEOREME 3.1. L’application k:A — Z/2 qui associe a une section s du
revétement X — X invariant de Kervaire du noeud N, est caractérisée par les
propriétés suivantes:

() k(s+u+v)—k(stu)—k(s+v)+k(s)=e(u,v), VseA, V(uv)eVXV

(i) k est nulle sur les sections descendantes.

Démontrons tout d’abord l'unicité. La différence entre deux applications
possédant les propriétés (i) et (ii) est une application affine qui est nulle sur les
sections descendantes; P'unicité résulte donc du lemme suivant:

LEMME 3.2. Les sections descendantes engendrent affinement A.

Démonstration. Soient £ un point de X et s,, s, les sections descendantes
correspondant aux deux composantes connexes de S'—X adjacentes a ¢, il est
clair que s,—s; = a(£).
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Suite de la démonstration du théoréme 3.1. 1l est évident que l'invariant de
Kervaire vérifie (ii), il reste 2 montrer qu’il vérifie (i). Pour cela, on va utiliser la
surface de Seifert du noeud N, que I’on construit a partir de sa projection (voir
par exemple [8] p. 120).

Commengons par définir la surface de Seifert de I'immersion «. Les sous-
ensembles o '(x), x parcourant X, sont des 0-sphéres plongées dans S'. Nous
notons L la trace des chirurgies orientées correspondant a ces 0-spheres, L est
donc une surface orientée dont le bord est une somme disjointe (—d,L) 11 3, L, 3oL
désignant notre S d’origine et 3,L le résultat de la chirurgie. Nous appelons
surface de Seifert de I'immersion « la surface orientée, notée M, obtenue en
collant un disque D? sur chacune des composantes connexes de ;L.

La construction de Seifert (loc. cit.) montre qu’il existe un plongement
vs:M —R? qui étend le plongement B, :S'<>R>. Le plongement vy, détermine
une parallélisation stable de M compatible avec I’orientation; cette parallélisation
stable est notée f(s). L’ensemble, noté B, des parallélisations stables de M
compatibles avec l’orientation est un espace affine sous [M, SO]=H'(M;Z/2).

Comme nous I’avons rappelé au §1, un élément ¢t de B détermine une forme
quadratique q,: H'(M, dM;Z/2) — Z/2, associée 3 la forme bilinéaire alternée
notée b:H'(M,oM;Z/2)x H'(M,dM;Z2/2) —>Z/2, (u,v)—>{uUv,[M]). L’in-
variant de Kervaire du noeud N; est par définition I'invariant de Arf de la forme
quadratique qy)-

LEMME 3.3. L’invariant de Arf de q,, noté k(t), vérifie la formule:

k(t+u+v)—x(t+u)—x(t+v)+ k()= b(u, jv),
Vte B, V(u,v)e H'(M; Z/2) x H\(M; Z/2),

j:H'(M;Z/2)= H'(M, 0M; Z/2) désignant I’isomorphisme inverse de celui induit
par Dinclusion: (M, &) <> (M, oM).

Démonstration. L’effet d’'un changement de trivialisation sur la forme de
Kervaire est décrit par la formule suivante:

Giu(©)=qc)+uUc[M], VceHYM,oM;Z/2);
sSoit encore:
Gi+u(€)=q(c)+b(ju,c), Vce H'(M,oM;Z/2). (*)

Pour s’en convaincre, on peut considérer la caractérisation de g, que nous
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avons donnée au §1 et utiliser que le J-homomorphisme: 7,SO — Qf est un
isomorphisme. On en déduit:

k(t+u) =k (t) = q.(ju) (**)

et le résultat.

Compte tenu du lemme précédent, la preuve du théoréme 3.1 sera achevée
deés qu’on aura démontré les deux lemmes suivants.

LEMME 3.4. L’application f: A — B est affine et I’application linéaire sous-
jacente V —HYM;Z/2) est la _composition  ci-dessous, notée h:V=
H1(L, aoL; 2/2) - Hl(M, aM, le) dualité de Pomcare; Hl(M, 2/2)

LEMME 3.5. Les formes bilinéaires alternées e et b sont reliées par la formule:
e(u, V) =b((jeh)u, (jeh)v), V(u,v)eVxXV

Démonstration de 3.4. 1l suffit de vérifier 1a formule f(s + x) — f(s) = h(x). Pour
cela on observe que les surfaces de Seifert v,(M) et .., (M) différent seulement
au voisinage de x par le remplacement d’'une bande tordue d’un demi-tour dans
un certain sens par une bande tordue d’un demi-tour dans le sens opposé€. Soyons
un peu plus formel. Par construction, la 0-sphére o *(x) de S* borde dans M un
1-disque que ’on note D, ; un voisinage tubulaire de D, dans M est de la forme
D, XD ou D, est encore un 1-disque. Les bandes auxquelles nous avons fait
allusion ci-dessus sont vy, (D, X D) et v,.,(D, X D;). On vérifie que la différence
f(s +x)— f(s) est 'image dans H'(M; Z/2) du générateur de H'(D, dD;; Z/2) par la
composition:

H'\(D.,aD!.; 2/2)=HYD, xD., D, xaD.; Z/2)
=H'M, M—(D, x(D,—8D.)); Z/2—> H'(M;Z/2).

Démonstration de 3.5. Soient M la surface sans bord M |Jg: D? et D, la
réunion du 1-disque D, introduit ci-dessus et du segment joignant dans D? les
deux points de a(x). Il est clair que (joh)(x), qui appartient 38 H'(M, dM; Z/2) =
H'(M; Z/2), est le dual de Poincaré de I’élément de H,(M;Z/2) représenté par
D,. Soient x et y deux points distincts de X, D, et D, se rencontrent bien
transversalement en un point ou sont disjoints suivant que o~ '(x) et o *(y) sont
enlacés ou non.
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4. Calcul de Pinvariant de Kervaire des noeuds N,

On choisit & nouveau un point a de S'—X et on munit X de la relation
d’ordre image réciproque de celle de S'—{a} par la section descendante s,. En
d’autres termes, on a x <y, x et y désignant deux points de X, si et seulement si
inf @ '(x) <inf a(y). 11 est clair 12 encore que cette relation d’ordre ne dépend
que de la composante connexe de a dans S'—X.

THEOREME 4. L’invariant de Kervaire des noeuds N; est donné par la
formule:

k(s)= 2. e(x, y)(1+ux)uly), (1)

x<y

ou )., ., désigne la sommation sur les couples (x, y) de X x X vérifiant x <y pour la
relation d’ordre définie ci-dessus par le choix d’un point a et ot u désigne la
différence entre la section s et la section descendante s,. On a de méme:

k(s)= Y e(x, y)u(x)(1+u(y)). )

x<y

Démonstration. On pose E(u) =Y, e(x, y)u(x)u(y), Y. désignant la som-
mation sur les parties 2 deux éléments de X. On a:

E(u+v)—E(u)—E@w)=e(u,v), V(u,v)e VXV
E(z)=0, Vze X

D’apres le théoréme 3.1, la différence L(u)=k(s, +u)— E(u) est une forme
linéaire en u; puisque L(z)=k(s,+z), il suffit donc de calculer k(s, +2z) pour
déterminer L et avoir ainsi ’expression de k.

Soient s;, s, deux éléments de A; la propriété (i) du théoréme 3.1 s’écrit:

k(sz)—k(sy)—k(s, +5,—81)+k(s,)=e(s,—5,, $2—51);
ou encore compte tenu de k(s,)=0

k(sy)— k(sy) = k(s, +5,— 1)+ e(s;— Sg, $2—51). (3)

Soient maintenant z un point de X et s_, s, les sections descendantes
associées aux composantes connexes de S'—X respectivement adjacentes a
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gauche et a droite a inf @ (z). On vérifie les formules:

S,—S_=2

e(s_—s, 2)= Z e(r, 2).
reX
r<z

Les formules (3), (4) et (5) impliquent la suivante:

k(s,)—k(s_)=k(s, +2)+ 2, e(r, 2).

Compte tenu de k(s_)=0 et k(s,)=0, il vient:

k(s,+2)= Z e(r, z).

rex
r<z

D’ou:

{x,v} zeX \ reX
r<z

k(s,+u)= Y, e(x, yu@uy)+ Y (Z e(r, z))u(z)

= Y e(x, Yux)u(y)+ Y, e(x, y)u(y)

{x,y} x<y
=Y e(x, y)A+u@)uly). Cqfd.

185

(4)
()

(6)

Soient d’autre part, s et s’ les sections descendantes associées aux com-
posantes connexes de S'—X respectivement adjacentes a gauche et a droite a

sup o~ '(z); on vérifie les formules:

si—sl=2z
s’ —-s_= Z e(r, 2)r.
reX

On en déduit comme précédement:

k(s)—k(s)=k(s, +2)+ Y, e(r,z)+ 3, e(r, 2);
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ou €ncore

k(st)—k(s")=k(s, +2)+ ), e(r, 2);
rexX

d’ou l'on tire:

k(s,+2)= Z e(r, 2) @)
reX

et la formule (2).

Remarque. Les formules (6) et (7) impliquent la suivante:

Z e(r,z)=0, VzeX; ()

rex

en d’autres termes, le vecteur ), .x x appartient au noyau de la forme e.

Voici une preuve directe de (I'). Soit D un petit disque fermé de R? de centre
z, on note I, I, les deux composantes connexes dans S* de a'(D —9D); on note
J, i=1, 2, le segment joignant dans D les deux points de a(3L;), et C, i=1,2, 1a
réunion «(l)UJ;; on observera que J; et J, ne se rencontrent pas. La somme
Y.cxe(r,z)r représente dans Hy([R?*; Z/2) lintersection des deux cercles
“immergés” C; et C,, on a donc },.xe(r, 2)=0.

La formule (I") explique pourquoi k(s) est donné a la fois par les formules (1)
et (2), ce qui traduit deux propriétés de I'invariant de Kervaire d’un noeud. En
effet, les seconds membres de (1) et (2) sont échangés dans les deux cas suivants,
quand on remplace s par s*, quand on change I'orientation de S': un noeud et
son image dans un miroir, un noeud et son inverse, ont méme invariant de
Kervaire.

5. Digression combinatoire

Essayons d’abstraire la combinatoire des paragraphes précédents. On
considére un ensemble fini X, et un revétement a deux feuillets: X — X, ou X est
un sous-ensemble (fini) de S'. On note V le Z/2-espace vectoriel (Z/2)* et A
I’espace affine sous V formé des sections du revétement: X — X. On définit
comme au §2 le sous-ensemble de A des sections descendantes et la forme
bilinéaire alternée e: VXV —7/2.
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PROPOSITION 5. Il existe une application k : A — Z/2 possédant les propriétés
(i) et (ii) du théoreme 3.1 si et seulement si la condition (I') de la fin du §4 est

satisfaite. Dans ce cas, cette application k est unique et est donnée par les formules
(1) et (2) du théoréme 4.

Démonstration. La deuxieme partie de cette proposition a déja été prouvée.
Montrons que la condition (I') est nécessaire. Considérons les sections descen-
dantes s_, s,, s’, s’ introduites dans la démonstration du théoréme 4. On a:
s,=s_+tz, sL=s_+) . .xerz)r, si=s_+z+),.xe(r,z)r; si k possede la
propriété (i) du théoréme 3.1, il vient:

k(s’")— k(s )—k(s,)+k(s")= e( Z e(r, 2)r, z)

reX

= Z e(r, 2).

reX

Si en outre k posséde la propriété (ii), alors Y, x e(r, z) =0 pour tout z dans
X.

Réciproquement, supposons (I') satisfaite. On définit alors une application
l:AXxX —>7/2, en posant l(s, z) =e(s—t, z), t désignant I'une des sections s_, s,
s’, s%, eton note L:A XV —7Z/2 le prolongement linéaire par rapport a V de
W(L(s,u)=Y,cx (s, 2)u(z)). On considére enfin I'application K:AXA —7/2,
(s1, $5) = E(s,—s1)+ L(sq, s,—s1). On vérifie la formule:

K(sb SZ) + K(829 83) = K(Sla S3)9 V(Sl, 82, S3) € A X A X A' (8)

Par définition méme K(s,, 5s,) =0 si s; et s, sont deux sections descendantes
correspondant 2 deux composantes connexes adjacentes de S'—X; la formule (8)
montre plus généralement que K(s,, s,) =0 pour tout couple (s;, s,) de sections
descendantes. Fixons une section descendante s, de A; il est clair a présent que
lapplication: A —Z/2, s — K(s,, s) répond a la question (K(s;, s;) n’est pas autre
chose que k(s,)—k(s,)).

La conclusion de cette digression est la suivante: On peut définir ‘“I'invariant
de Kervaire” d’un noeud de maniére ‘‘combinatoire” sans parler de surface de
Seifert et de forme de Kervaire. Voici brieévement comment procéder. Un noeud
étant donné par I'une de ses projections génériques, on considére a priori
I’élément k de Z/2 déterminé par les formules (1) ou (2) du théoréeme 4. Pour
montrer qu’il s’agit bien d’un invariant du noeud, il suffit de vérifier que cet
élément est invariant par les trois modifications de Reidemester [4], [6]; cette
vérification est immédiate parce que, dans les formules (1) ou (2), on a le choix du
point a.
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6. Retour sur la forme de Kervaire

L’objet de ce paragraphe est de montrer que les calculs du §4 déterminent
aussi les formes quadratiques gy, : H (M, 0M; Z/2) — Z/2 considérées au §3.

Puisque I’application linéaire joh: V — H'(M, dM; Z/2) est surjective et que la
forme bilinéaire alternée b : H'(M, dM; Z/2) x H (M, dM; Z/2) est non dégénérée,
le lemme 3.5 montre que le noyau de joh coincide avec celui de la forme
bilinéaire alternée e et que joh induit une isométrie de (V/ker e, €), € désignant la
régularisée de e, sur (H'(M, 3M;Z/2), b). En d’autres termes, b s’identifie a la
régularisée de e.

Soit maintenant K(u) le second membre des formules (1) ou (2) du théoréme
5. La formule (*) de la démonstration de 3.3 donne:

k(s, +u)—k(s,) =g ((joh)u);

soit encore

s ((oh)u) = K(u); 9)

plus généralement, d’aprés la formule (**) de 3.3, on a:

dss((jeh)u) = K(u) +e(s —s,, u). (10)

L’application: V—27Z/2, u— K (u), K,(u) désignant le second membre de
(10), est une forme quadratique associée a e; la formule (10) montre que K|
s’annule sur ker e et que K, induit une forme quadratique notée K, : V/ker e —
Z/2 associée a é. Elle montre également que joh induit une isométrie de
(Viker ¢, K,) sur (H'(M, 3M; Z/2), g,)- En d’autres termes, gy, s’identifie a la
régularisée de K..

Voici une application de la formule (9):

PROPOSITION 6. La proportion des éléments s de A tels que U'invariant de
Arf du noeud N, vaut 1 est donnée par la formule:

o ig)

g désignant ’entier défini par 2g = rang de e et le symbole # le cardinal d’un
ensemble fini.
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Démonstration. Soient W un Z/2-espace vectoriel de dimension finie et
q: W —Z/2 une forme quadratique non dégénérée; alors ’invariant de Arf de q,
noté k(q), peut étre défini par la formule:

#a710)— #q71(1) = 2129 W(— <@
ou encore:

#aW) 1( (1@
=3 (1 gaw)

Comme, d’aprés ce qui précéde, g est le genre de la surface de Seifert M de
I'immersion a et que I'invariant de Arf de dss,) €st nul, on a:

#a56,(1) =1(1_ L).
#H'(M,aM;Z/2) 2 28}°

d’ou, grace a (9):

ce qui, compte tenu du théoréme 4, démontre la proposition.

7. Exemples

Voici le mode d’emploi du théoréme 4.

Soit N un noeud donné par I'une de ses projections génériques. On choisit une
origine sur N (indiquée sur les figures par un tiret transverse au tracé du noeud)
en dehors de I’ensemble X des points de croisements. On parcourt ensuite N en
suivant I’orientation (indiquée par une fleche sur les figures). La succession des

passages aux points de croisements détermine une application 7:{1,2,...,2n}—
X, n désignant le cardinal de X, qui est un revétement a deux feuillets. On définit
une bijection v:{1,2,...,n}— X en posant

v(i)=v(nf {j; #7({1,2,...,jh=i});

moins formellement: on numérote les points de croisements 2 mesure qu’on les
rencontre! En pratique, en méme temps qu’on numérote les points de croise-
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ments, on met en mémoire 'application w = v 'e9:{1,2,...,2n}—>{1,2,...,n},
autrement dit on écrit le 2n-uple (w(1), ®(2), ..., ®(2n)) que 'on note encore w.

La bijection v identifie 'espace vectoriel V =(Z/2)* a (Z/2)" et un élément u
de V a un n-uple (uy, u,, ..., u,) d’éléments de Z/2. La fonction polyndme K(u)

second membre des formules (1) et (2) du théoréme 4 s’écrit:

KW= Y (+u)y ou Ku)= Y w(l+uw),

Gi.DeA (i.j)eA

A désignant le sous-ensemble de {1,2,...,n}x{1,2,..., n} formé des couples
(i, j) tels que i<j et inf w (j)<sup w (i) <sup w '(j), ou ce qui revient au
méme inf 0 (i) <inf 0 '(j) <sup o (i) <sup w " 1(j), c’est-a-dire tels que le
quadruple (i, j, i, j) apparait, dans cet ordre 13, dans le 2n-uple w.

La “différence’” u entre le noeud N et le noeud ‘““descendant’ correspondant a
Porigine choisie se définit comme suit: u; =0 ou 1 respectivement suivant que, la
premicere fois ou I’on passe par le point de croisement numéro i, I’on se trouve sur
le brin supérieur ou inférieur du noeud.

L’invariant de Kervaire k du noeud N est la valeur de K pour cet élément u.

Nous terminons par trois exemples.

7.1. Le noeud de tréfle

w=(1,2,3,1,2,3)

K@) =u;(1+uy) +u (14 us) +u(1+us)
u=(0,1,0)

k=1.
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7.2. Le noeud de huit

3
(.02(1, 2, 3, 1, 43 3’ 2’ 4)

K(u)=u, (14 uy) + u (14 us) + up(1+uy) + us(1+ uy) = (ug + ug + 1(uy+ us)
u=(0,1,0,0)
k=1.

7.3. Le noeud torique de type (2,2m+ 1) (généralisation du premier exemple)
2m+1
N— —

2m+1 croisements

w=(1,2,...,2m+1,1,2,...,2m+1)
Ku)= Z (1+u)y,

Il=i<j=2m+1
u=(0,1,0,1,...,1,0), w,=i—1 (mod?2)

_ m(m+1)
2

k (mod 2)
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