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Sur l&apos;invariant de Kervaire des noeuds classiques

Jean Lannes

0. Introduction

L&apos;objet de cette note est de montrer que l&apos;invariant de Kervaire d&apos;un noeud de
IR3, donné par l&apos;une de ses projections génériques, s&apos;exprime comme une somme
dans Z/2 de termes indexés par les paires de points de croisements.

Le plan du papier est le suivant. On rappelle tout d&apos;abord la définition de
l&apos;invariant de Kervaire d&apos;un noeud (paragraphe 1). On fixe ensuite une immersion
générique de S1 dans M2 et on considère l&apos;ensemble des noeuds de IR3 audessus de

cette immersion; cet ensemble fini, noté A, est muni trivialement d&apos;une structure
de Z/2-espace affine (paragraphe 2). Au paragraphe 3, on caractérise l&apos;invariant

de Kervaire parmi les fonctions définies sur A et à valeurs dans Z/2. Cette
caractérisation permet au paragraphe 4 le calcul de l&apos;invariant de Kervaire. On
montre au paragraphe 5 que les formules du paragraphe 4 peuvent conduire à une
définition purement combinatoire de l&apos;invariant de Kervaire d&apos;un noeud. On
montre au paragraphe 6 que ces mêmes formules permettent d&apos;exprimer la forme
de Kervaire relative à la surface de Seifert du noeud construite à partir de sa

projection. Enfin, le paragraphe 7 est consacré à quelques exemples.
Le papier se veut &quot;élémentaire&quot; aussi a-t-on essayé, dans la mesure du

possible, d&apos;être &quot;self-contained&quot;.

1. Rappel sur l&apos;invariant de Kervaire d&apos;un noeud

L&apos;invariant de Kervaire d&apos;un noeud a été découvert par Robertello dans [7]; il
a été étudié et sa définition reformulée par beaucoup d&apos;auteurs (voir en particulier
l&apos;article [5] de J. Levine). On trouvera dans [3] une méthode de calcul de cet

invariant, basée sur le travail de J. H. Conway [2], différant sensiblement de celle
de notre papier.

Soit N un noeud dans (R3. On sait qu&apos;il existe une surface compacte orientée M
plongée dans U3 dont le bord est N; on dit que M est une surface de Seifert du
noeud. Le plongement de M dans R3 induit une parallélisation stable de M, notée
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180 JEAN LANNES

f, qui détermine une application qt :HX(M9 dM; Z/2)-* Z/2 telle que l&apos;on a, pour
tous u, v dans H\M,dM;ï/2):

En d&apos;autres termes, qt est une forme quadratique, appelée forme de Kervaire,
associée à la forme bilinéaire non dégénérée:

H\M,dM; 1/2)xH\M,dM;Z/2)-»Z/2, (u, d)^(mUv,[M]).

On montre que la classe de qt dans le groupe de Witt quadratique WQ(Z/2)
est indépendante du choix de M (c&apos;est en fait un invariant de la classe de
cobordisme du noeud N). Or le groupe WQ(Z/2) ne contient qu&apos;un seul élément

non trivial, l&apos;unique isomorphisme de WQ(Z/2) sur Z/2 est appelé l&apos;invariant de

Arf (parce qu&apos;il coïncide avec l&apos;invariant de Arf défini plus généralement pour
tout corps de caractéristique 2 [1]); l&apos;invariant de Arf de qt est appelé l&apos;invariant

de Kervaire (ou parfois de Arf) du noeud N.

La forme de Kervaire qt, qui est définie pour toute surface compacte orientée

M munie d&apos;une parallélisation stable t, peut être caractérisée de la façon suivante.
Soient C une sous-variété de dimension 1 compacte sans bord de M—dM dont le
fibre normal dans M est orienté et tc la parallélisation stable de C induite par t,

alors la valeur de qt sur l&apos;élément de ^(M, dM; Z/2), représenté par C, est la
classe de (C, tc) dans le groupe de cobordisme stablement parallélisé Qf{^Z/2;
c&apos;est aussi dans le cas particulier où M est une surface de Seifert, la réduction
modulo 2 de l&apos;enlacement dans R3 de C et de sa translatée selon la normale
orientée à M.

2. Formalisme relatif aux noeuds de U3 au-dessus d&apos;une immersion générique de
S1 dansIR2

Soit arS1—»IR2 une immersion générique. On note respectivement X et X
l&apos;ensemble des points doubles de a à la source et au but. La restriction de

a :X—»X est un revêtement trivial à deux feuillets dont l&apos;ensemble des sections
est noté A. Cet ensemble est un espace affine sous le Z/2-espace vectoriel
V (Z/2)x: la différence entre deux sections sl9 s2 est la fonction caractéristique
du sous-ensemble {x; Si(x) ^ s2(x)} de X On observera que l&apos;on peut aussi

considérer V comme le Z/2-espace vectoriel de base X On note enfin ^ «~&gt; C*
l&apos;involution de X associée au revêtement X —? X.
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A une section s de X-»X, on fait correspondre un noeud de la façon
suivante. Soit Às :S1 —&gt;R une fonction telle que:

Às(s(x))&gt;Às((s(x))*), VxeX;

alors l&apos;application 3S a x As : S1 -&gt; IR3 est un plongement dont la classe d&apos;isotopie

est indépendante du choix de Às. Le noeud correspondant est noté Ns.

Nous espérons que les prochains paragraphes convaincront le lecteur de
Futilité du formalisme ci-dessus qui peut paraître a priori un tantinet pédant!

3. Caractérisation de l&apos;invariant de Kervaire des noeuds Ns

Soit a un point de Sx-X, on définit une section, notée sa9 du revêtement

X-»X de la façon suivante. On munit S1-{a} de la relation d&apos;ordre induite par
un difïéomorphisme orienté de S1-{a} sur M et on pose sa(x) infa&quot;1W- H est

clair que sa ne dépend que de la composante connexe de a dans S1 — X. Nous

appelons les sections du type sa les sections descendantes. Le tracé des noeuds

correspondants explique cette terminologie; ces noeuds sont triviaux.
Soient x et y deux points distincts de X, on note e:VxV^Z/2 l&apos;unique

forme bilinéaire alternée telle que:

1

1 si a *(x) et a *(y) sont enlacés dans S1

0 sinon.

THEOREME 3.1. L&apos;application k:A-+ Z/2 qui associe à une section s du
revêtement X—&gt;X Vinvariant de Kervaire du noeud Ns est caractérisée par les

propriétés suivantes:
(i) k(s + u + u)-k(s + u)-fe(s + i;) + k(s) e(u,u), VseA, V(u,t))eVxV
(ii) k est nulle sur les sections descendantes.

Démontrons tout d&apos;abord l&apos;unicité. La différence entre deux applications

possédant les propriétés (i) et (ii) est une application affine qui est nulle sur les

sections descendantes; l&apos;unicité résulte donc du lemme suivant:

LEMME 3.2. Les sections descendantes engendrent affinement A.

Démonstration. Soient £ un point de X et sl9 s2 les sections descendantes

correspondant aux deux composantes connexes de S*-X adjacentes à £ il est

clair que s2 — sx a(£).
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Suite de la démonstration du théorème 3.1. Il est évident que l&apos;invariant de

Kervaire vérifie (ii), il reste à montrer qu&apos;il vérifie (i). Pour cela, on va utiliser la
surface de Seifert du noeud Ns que l&apos;on construit à partir de sa projection (voir
par exemple [8] p. 120).

Commençons par définir la surface de Seifert de l&apos;immersion a. Les sous-
ensembles a~1(x), x parcourant X, sont des 0-sphères plongées dans S1. Nous
notons L la trace des chirurgies orientées correspondant à ces 0-sphères, L est
donc une surface orientée dont le bord est une somme disjointe (—d0L) II dxh, d0L

désignant notre S1 d&apos;origine et dtL le résultat de la chirurgie. Nous appelons
surface de Seifert de l&apos;immersion a la surface orientée, notée M, obtenue en
collant un disque D2 sur chacune des composantes connexes de dxL.

La construction de Seifert (loc. cit.) montre qu&apos;il existe un plongement
ys :M —&gt;U3 qui étend le plongement |3S :SlcL*!R3. Le plongement ys détermine
une parallélisation stable de M compatible avec l&apos;orientation; cette parallélisation
stable est notée /(s). L&apos;ensemble, noté B, des parallélisations stables de M
compatibles avec l&apos;orientation est un espace affine sous [M, SO] — H*(M; Z/2).

Comme nous l&apos;avons rappelé au §1, un élément t de B détermine une forme
quadratique qt :H1(M9 dM; Z/2) —» Z/2, associée à la forme bilinéaire alternée
notée b:HHM,eM;Z/2)xHHM,dM;Z/2)-H&gt;Z/2, (u,v)^(uUv,[M]).
L&apos;invariant de Kervaire du noeud Ns est par définition l&apos;invariant de Arf de la forme
quadratique qf(s).

LEMME 3.3. L&apos;invariant de Arf de qt, noté k(0, vérifie la formule:

Vt g B, V(u, v) € H\M; Z/2) x H\M; Z/2),

/ :H1(M;Z/2)I:&gt;H1(M, dM; Z/2) désignant Visomorphisme inverse de celui induit

par Vinclusion: (M, 0) ^ (M, dM).

Démonstration. L&apos;effet d&apos;un changement de trivialisation sur la forme de

Kervaire est décrit par la formule suivante:

qt+u(c) qt(c) + (uUc, [M]), Vc g H^M, dM; Z/2);

soit encore:

qt+u(c) qt(c) + b(ju, c), Vc € H\M9 dM; Z/2). (*)

Pour s&apos;en convaincre, on peut considérer la caractérisation de qt que nous
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avons donnée au §1 et utiliser que le J-homomorphisme: 7r1SO-^f2{r est un
isomorphisme. On en déduit:

et le résultat.

Compte tenu du lemme précédent, la preuve du théorème 3.1 sera achevée
dès qu&apos;on aura démontré les deux lemmes suivants.

LEMME 3.4. L&apos;application f:A-*B est affine et Vapplication linéaire sous-
jacente V-»H1(M;Z/2) est la composition ci-dessous, notée h:V —

; Z/2) -» Ht(M, dM; Z/2)
duahté de Pomcaré

&gt; H\M; 1/2).

LEMME 3.5. Les formes bilinéaires alternées eetb sont reliées par la formule:

e(u, v) b((j°h)u, (j°h)v\ V(u, u)g Vx V

Démonstration de 3.4. Il suffit de vérifier la formule f(s + x)-f(s) h(x). Pour
cela on observe que les surfaces de Seifert ys(M) et ys+x(M) différent seulement
au voisinage de x par le remplacement d&apos;une bande tordue d&apos;un demi-tour dans

un certain sens par une bande tordue d&apos;un demi-tour dans le sens opposé. Soyons
un peu plus formel. Par construction, la 0-sphère a~1(x) de S1 borde dans M un
1-disque que l&apos;on note Dx ; un voisinage tubulaire de Dx dans M est de la forme
Dx x D&apos;x où D&apos;x est encore un 1-disque. Les bandes auxquelles nous avons fait
allusion ci-dessus sont y*(Dx xD&apos;x) et ys+x(DxxDrx). On vérifie que la différence

f(s + x) - f(s) est l&apos;image dans H\M; 1/2) du générateur de H\D&apos;X, dDfx; Z/2) par la

composition:

H\Dx,dD&apos;x; l/2)~H\DxxDx,DxxdDfx; Z/2)

~Hl(M9M-(Dxx(Dx-dDfx))ai2-»H1(M;l/2).

Démonstration de 3.5. Soient M la surface sans bord MlJs1^2 et Âc la
réunion du 1-disque Dx introduit ci-dessus et du segment joignant dans D2 les
deux points de a&quot;1^). Il est clair que (j°h)(x), qui appartient à HX(M, dM; 1/2)^
H\M; Z/2), est le dual de Poincaré de l&apos;élément de H^M; Z/2) représenté par
Dx. Soient x et y deux points distincts de X, Dx et Dy se rencontrent bien
transversalement en un point ou sont disjoints suivant que a~x(x) et a~*(y) sont
enlacés ou non.
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4. Calcul de l&apos;invariant de Kervaire des noeuds Ns

On choisit à nouveau un point a de S1 — X et on munit X de la relation
d&apos;ordre image réciproque de celle de S1—{a} par la section descendante sa. En
d&apos;autres termes, on a x &lt; y, x et y désignant deux points de X, si et seulement si

inf a~1(x)&lt;inf a~1(y). Il est clair là encore que cette relation d&apos;ordre ne dépend
que de la composante connexe de a dans S1 — ^.

THEOREME 4. Uinvariant de Kervaire des noeuds Ns est donné par la
formule:

(1)

où Yéx&lt;y désigne la sommation sur les couples (x, y) de Xx X vérifiant x &lt; y pour la
relation d&apos;ordre définie ci-dessus par le choix d&apos;un point a et où u désigne la
différence entre la section s et la section descendante sa. On a de même:

fc(s)=Ie(x,y)u(x)(l + M(y)). (2)
x&lt;y

Démonstration. On pose JE(w) X{x,y}e(x, y)w(x)u(y), £{x,y} désignant la
sommation sur les parties à deux éléments de X. On a:

V(u,v)eVxV
Vz€X.

D&apos;après le théorème 3.1, la différence L(u) k(sa + u)-E(u) est une forme
linéaire en u; puisque L(z) k(sa + z), il suffit donc de calculer k(sa + z) pour
déterminer L et avoir ainsi l&apos;expression de k.

Soient sl9 s2 deux éléments de A; la propriété (i) du théorème 3.1 s&apos;écrit:

ou encore compte tenu de fc(sa) 0

(s1-sa9s2-s1). (3)

Soient maintenant z un point de X et s_, s+ les sections descendantes

associées aux composantes connexes de S1-^ respectivement adjacentes à
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gauche et à droite à inf a~1(z). On vérifie les formules:

s+-s_ z (4)

e(s_-sa, z)= Z *(r,z). (5)
reX
r&lt;z

Les formules (3), (4) et (5) impliquent la suivante:

k(s+) — k(s_) fc(sa + z)+ Z efa z).
reX
r&lt;z

Compte tenu de fc(s_) 0 et fc(s+) O, il vient:

Z e(r, z). (6)
reX
r&lt;z

D&apos;où:

fc(sa + u) Z e(x, y)u(x)u(y) +
{x,y} zeXlreX

\r&lt;z

Z e(x, y)u(x)u(y)+ Z e(x, y)u(y)

¦w(x))u(y). Cqfd.
x&lt;y

Soient d&apos;autre part, s&apos;_ et s+ les sections descendantes associées aux
composantes connexes de SX~X respectivement adjacentes à gauche et à droite à

supa~1(z); on vérifie les formules:

reX

On en déduit comme précédement:

~Z e(r9z)+ Z e&amp;z)*

reX reX
r&lt;z
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ou encore

reX

d&apos;où l&apos;on tire:

I e(r, z) (7)
reX
r&gt;z

et la formule (2).

Remarque. Les formules (6) et (7) impliquent la suivante:

Ie(r,z) O, Vz€X; (D
reX

en d&apos;autres termes, le vecteur £xex* appartient au noyau de la forme e.

Voici une preuve directe de (F). Soit D un petit disque fermé de (R2 de centre
z, on note Il912 les deux composantes connexes dans S1 de a~1(D-dD); on note
Jl9 i 1,2, le segment joignant dans D les deux points de a(dlt), et Q9 i 1,2, la
réunion aCOUJ,; on observera que J1 et J2 rie se rencontrent pas. La somme
Zrex6(^2:)r représente dans H0([R2;Z/2) l&apos;intersection des deux cercles
&quot;immergés&quot; Cx et C2, on a donc Zrex^O&quot;» z) 0.

La formule (F) explique pourquoi fc(s) est donné à la fois par les formules (1)

et (2), ce qui traduit deux propriétés de l&apos;invariant de Kervaire d&apos;un noeud. En
effet, les seconds membres de (1) et (2) sont échangés dans les deux cas suivants,
quand on remplace s par s*, quand on change l&apos;orientation de S1: un noeud et
son image dans un miroir, un noeud et son inverse, ont même invariant de

Kervaire.

5. Digression combinatoire

Essayons d&apos;abstraire la combinatoire des paragraphes précédents. On
considère un ensemble fini X, et un revêtement à deux feuillets: X—» X, où X est

un sous-ensemble (fini) de S1. On note V le Z/2-espace vectoriel (Z/2)x et A
l&apos;espace affine sous V formé des sections du revêtement: X—&gt;X. On définit
comme au §2 le sous-ensemble de A des sections descendantes et la forme
bilinéaire alternée e:Vx V-»Z/2.
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PROPOSITION 5. Il existe une application k : A -» Z/2 possédant les propriétés
(i) et (ii) du théorème 3.1 si et seulement si la condition (F) de la fin du §4 est
satisfaite. Dans ce cas, cette application k est unique et est donnée par les formules
(1) et (2) du théorème 4.

Démonstration. La deuxième partie de cette proposition a déjà été prouvée.
Montrons que la condition (F) est nécessaire. Considérons les sections descendantes

s_, s+, sL, s&apos;+ introduites dans la démonstration du théorème 4. On a:

s+ S- + z, s&apos;- s_ + Y,r&lt;=xe(r,z)r, s+ s_ + z+£reXe(r, z)r\ si k possède la
propriété (i) du théorème 3.1, il vient:

s&apos;+)-k(sL)-k(s+) + k(s&apos;J) e[ £ e(r, z)r, z)
VeX &apos;

I e(r, z).
reX

Si en outre k possède la propriété (ii), alors Erex^fo z) 0 pour tout z dans

X.
Réciproquement, supposons (F) satisfaite. On définit alors une application

l : A x X -&gt; Z/2, en posant ï(s, z) e(s - f, z), f désignant l&apos;une des sections s_, s+,
s&apos;_, s+, et on note L:Ax V —&gt;Z/2 le prolongement linéaire par rapport à V de

l(L(s, m) X2€xKs, z)m(z)). On considère enfin l&apos;application K:Ax A-+Z/2,
(sl5 s2)|-^&gt; £(52-50 +L(s!, s2-st). On vérifie la formule:

K(sl9 s2) + K(s2, s3) K(s!, s3), V(s1? s2, s3)eAxAxA. (8)

Par définition même K(sl9 s2) 0 si st et s2 sont deux sections descendantes

correspondant à deux composantes connexes adjacentes de Sx-X; la formule (8)
montre plus généralement que K(sl9 s2) 0 pour tout couple (sx, s2) de sections
descendantes. Fixons une section descendante sa de A ; il est clair à présent que
l&apos;application: A -» Z/2, s &gt;-? K(sa, s) répond à la question (K(su s2) n&apos;est pas autre
chose que k(s2) — k(st)).

La conclusion de cette digression est la suivante: On peut définir &quot;l&apos;invariant

de Kervaire&quot; d&apos;un noeud de manière &quot;combinatoire&quot; sans parler de surface de

Seifert et de forme de Kervaire. Voici brièvement comment procéder. Un noeud
étant donné par l&apos;une de ses projections génériques, on considère a priori
l&apos;élément k de Z/2 déterminé par les formules (1) ou (2) du théorème 4. Pour

montrer qu&apos;il s&apos;agit bien d&apos;un invariant du noeud, il suffit de vérifier que cet
élément est invariant par les trois modifications de Reidemester [4], [6]; cette
vérification est immédiate parce que, dans les formules (1) ou (2), on a le choix du

point a.
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6. Retour sur la forme de Kervaire

L&apos;objet de ce paragraphe est de montrer que les calculs du §4 déterminent
aussi les formes quadratiques qf(s) : HX{M, dM; Z/2) --&gt; Z/2 considérées au §3.

Puisque l&apos;application linéaire j°h : V-+H\M, dM; Z/2) est surjective et que la
forme bilinéaire alternée b : H\M, dM; Z/2) x Hl(M, dM; Z/2) est non dégénérée,
le lemme 3.5 montre que le noyau de j°h coïncide avec celui de la forme
bilinéaire alternée e et que j°h induit une isométrie de (V/ker e, ê), ë désignant la
régularisée de e, sur (^(M, dM; Z/2), b). En d&apos;autres termes, b s&apos;identifie à la
régularisée de e.

Soit maintenant K(u) le second membre des formules (1) ou (2) du théorème
5. La formule (*) de la démonstration de 3.3 donne:

k(sa + u) - k(sa) qHSa)(U°h)u);

soit encore

qf(Sa)((joh)u) K(u); (9)

plus généralement, d&apos;après la formule (**) de 3.3, on a:

-sa, u). (10)

L&apos;application: V—»Z/2, m^K^u), Ks(u) désignant le second membre de

(10), est une forme quadratique associée à e; la formule (10) montre que Ks
s&apos;annule sur ker e et que Ks induit une forme quadratique notée Ks : V/ker e —&gt;

Z/2 associée à ê. Elle montre également que j°h induit une isométrie de

(V/ker e, Ks) sur (H\M9 dM; Z/2), %s)). En d&apos;autres termes, qm s&apos;identifie à la

régularisée de Ks.

Voici une application de la formule (9):

PROPOSITION 6. La proportion des éléments s de A tels que Vinvariant de

Arf du noeud Ns vaut 1 est donnée par la formule:

#A

g désignant Ventier défini par 2g rang de e et le symbole # le cardinal d&apos;un

ensemble fini.
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Démonstration. Soient W un Z/2-espace vectoriel de dimension finie et
q : W-*Z/2 une forme quadratique non dégénérée; alors l&apos;invariant de Arf de q,
noté K(q), peut être défini par la formule:

ou encore:

W 2\ 21/2dimW/*

Comme, d&apos;après ce qui précède, g est le genre de la surface de Seifert M de
l&apos;immersion a et que l&apos;invariant de Arf de qf(s) est nul, on a:

1(M,3M;Z/2) 2\ 2V&apos;

d&apos;où, grâce à (9):

ce qui, compte tenu du théorème 4, démontre la proposition.

7. Exemples

Voici le mode d&apos;emploi du théorème 4.
Soit N un noeud donné par l&apos;une de ses projections génériques. On choisit une

origine sur N (indiquée sur les figures par un tiret transverse au tracé du noeud)
en dehors de l&apos;ensemble X des points de croisements. On parcourt ensuite N en
suivant l&apos;orientation (indiquée par une flèche sur les figures). La succession des

passages aux points de croisements détermine une application v :{1, 2,..., 2n}—&gt;

X, n désignant le cardinal de X, qui est un revêtement à deux feuillets. On définit
une bijection i/:{l,2,...,n}-»Xen posant

moins formellement: on numérote les points de croisements à mesure qu&apos;on les
rencontre! En pratique, en même temps qu&apos;on numérote les points de croise-
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ments, on met en mémoire l&apos;application co v
1 ° v : {1,2,..., 2n} —&gt; {1,2,..., n},

autrement dit on écrit le 2n-uple (co(l), o&gt;(2),..., co(2n)) que l&apos;on note encore co.

La bijection v identifie l&apos;espace vectoriel V (Z/2)x à (Z/2)n et un élément u
de V à un n-uple (ul9 u2,..., iO d&apos;éléments de Z/2. La fonction polynôme K(u)
second membre des formules (1) et (2) du théorème 4 s&apos;écrit:

K(u)= iOu, ou
d,])eA

A désignant le sous-ensemble de {1,2,..., n}x{l, 2,..., n} formé des couples
(i,j) tels que î&lt;/ et inf co~1(/)&lt;supco~1(0&lt;supo&gt;~1(/), ou ce qui revient au
même inf co~1(i)&lt;inf co~1(/)&lt;supco~1(0&lt;supco~10), c&apos;est-à-dire tels que le
quadruple (i,j, i,j) apparaît, dans cet ordre là, dans le 2n-uple ca.

La &quot;différence&quot; u entre le noeud N et le noeud &quot;descendant&quot; correspondant à

l&apos;origine choisie se définit comme suit: u, 0 ou 1 respectivement suivant que, la
première fois où l&apos;on passe par le point de croisement numéro i, l&apos;on se trouve sur
le brin supérieur ou inférieur du nœud.

L&apos;invariant de Kervaire fc du noeud N est la valeur de K pour cet élément u.

Nous terminons par trois exemples.

7.1. Le noeud de trèfle

co (1,2, 3,1,2, 3)

K(u) ux(l + u2) + ut(l + u3) + u2(l + u3)
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7.2. Le noeud de huit

191

o&gt; (1,2, 3,1,4,3,2,4)
K(U) UjU + U2) + Ut(l + U3) + U2(l + U4) + U3(l + U4) (Ut + U4 + 1)(U2+ M3)

u (0,1,0,0)

7.3. Le noeud torique de type (2,2m+ 1) (généralisation du premier exemple)

2m+i
V

2m+i croisements

w (1, 2,

K(u)=

u (0,l,
m(m

2m +1,1,2,..., 2m +1)

I (l + u,)u,
js2m + l
l,...,l,0), ul î-l(mod2)

l)
(mod2)
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