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An answer to a question by J. Mîlnor

Ya. G. Sinai

We consider two commuting automorphisms Tl9 T2 of the Lebesque space (M, M, ^) such that
hmn h(T™T2)&lt;°° where h is the measure-theoretic entropy. Under additional assumptions we show
the existence of the limits lim(l/m)hmn where m—?&lt;», n-&gt;&lt;», m/n—»o&gt; and ai is an irrational
number.

§1. Formulation ol the problem and the resuit

Let X {x(1),..., x(k)} be a finite alphabet and M be the space of double-
infinité séquences x {x^}!!,», x» e X, S is the shift in M, i.e. Sx x&apos; {xjj,
x&apos;^Xn+x. Then M is a compact topological space in topology of direct product
and S is a homeomorphism of M. Assume that a function /(x_r,..., x,.) with
values in X is given. It générâtes a homomorphism T of M by the formula:
Tx y {yM}_oo, yn /(xn-n • • • &gt; xn+r). S and T commute and we assume that they
generate an action of the group Z2 on M: for (m, n)eZ2 the corresponding
transformation is Tmn SmTn. The described situation was considered by Professor
J. Milnor in his talk &quot;Cellular automata as discrète dynamical Systems&quot; during the
célébration of the 20-th anniversary of the Forschungsinstitut fur Mathematik, ETH
in Zurich. He formulated the following question. Assume that |ul is a normed
ergodic measure invariant under the action of Z2. Dénote hmn h(SmTn) measure-
theoretic entropy of Tmn with respect to jul. It is easy to show that hmo&lt;&lt;x&gt; for ail
-oo&lt; m &lt;oo. We shall consider the case when h^^ &lt;oo for ail -oo&lt; m, n &lt;°o. From
the properties of entropy (see [1]) it follows that the function h^ is an
homogeneous function of the first degree, i.e. hKm,Kn |k| f^^. Fix an irrational
number coo&gt;0 and choose a séquence (m,, nl)€Z2, m, —&gt; &lt;*&gt;, n» ~&gt; °°, mjr^ —&gt; o)o as

i —&gt; oo. The question is whether there exists a limit limj^oo (l/Vmf-f n2)^^ which
can be called as entropy per unit of length in the direction &lt;oo. The aim of this

paper is to give an affirmative answer to this question. It will be more convenient
to show the existence of the limit lim,.^ (l/n,)^^ which is équivalent to the first
one.

We introduce the partition £ into k sets CK, 1 ^ i^ k, Q {x | x0 x(l)}, ^mn
Tm,nè&gt; We shall use later standard notations and facts of the theory of measurable
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partitions and measure-theoretic entropy (there are many good références, we
shall mention only few of them, [1], [2], [3]). By I I(a, co) we dénote the

segment on the plane joining the points (a, 0) and (a + co&quot;1,1) and F(a, co) is the
half-line y co(x —a), y^l. It is clear that I(a, o&gt;)c= F(a, o&gt;). We shall always
consider the case co&gt;0. The main rôle in our analysis play the conditional
entropies

V V V
n 0

V V

It is easy to see that both fflr(I), %€\(I) are finite. We shall list three properties of
them which will be used later:

1. $fr(I), 9ift(I) are periodic functions of a with the period 1 for each fixed co;

2. if co is a rational number, co p/q, then 5ifr(I), Sifi(I) are constants on each

interval of a of the length 1/p where the half-lines F(a, co) do not pass through
points of the lattice Z2.

3. if co is irrational and F(a, co) does not pass through points of the lattice Z2

then 3ifr(J), ffli(I) are continuous at the point (a, w).
The last property follows easily from the properties of continuity of conditional

entropy. We shall use also a transformation Q in the space of segments
I(a, co), where Q(I(a, co)) I(a\ co), a&apos; a + co&quot;1.

Our first resuit is the following theorem.

THEOREM 1. Let p&gt;0, q&gt;0 hâve no common factor. Then hp&gt;q

p H %(I) da for any interval I I(a, -q/p).

The proof of Theorem 1 is given in §2.

THEOREM 2. Let co0 be an irrational number, (m,, n,) be a séquence of points

of the lattice Z2, m,, ^ —&gt; oo and m^n, —» coo as i -* ». TTien

lim-hmi&gt;ni= f
i-« n,

wn| Jo
Slf(I(a,coo))cia.
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Proof of Theorem 2. We hâve from Theorem 1
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-fcm,.n,= J #(J(a, m,/*,)) do.

Ail functions %t(I(a, mjnj) are uniformly bounded and non-negative. It
follows from the property 3 that for almost every a

lim mjn,))

Thus in view of Lebesgue dominance theorem we hâve the desired
resuit. Q.E.D.

In §3 we make some additional remarks.
The author expresses his sincère gratitude to Professor Milnor for the formulation

of problem and useful discussions. He is also grateful to Professors B.
Eckmann, H. Fôllmer, J. Frôhlich, K. Hepp, R. Jost, J. Moser, K. Osterwalder
and other collègues from ETH, Zurich for their warm hospitality.

§2. Proof of Theorem 1

It follows from the properties of measure-theoretic entropy that

hq,p lim h( V V Un
s—&gt;oo \n i a+a}~1n—s**m^a+ai in+s

v
£0 v

The last conditional entropy is equal to

Êh( V Ui\ V V
1 1 \i+a)~1l-s&apos;«m«a4-a&gt;~ll+s I n&lt;l |m—a-&lt;u~

&lt;*=&lt;j/p-

Îh( v èJ v v
1 1 Na+ft)~1I-s«m&apos;«a+a&gt; H+s I n&lt;0 \m-a—to 1n

We shall show that the I-th term converges as s -* oo to 3if(Ql(I)). It is sufficient to
consider 1 1, other terms are treated in the same way. From the description of
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our System it follows easily that

V

V

V

Ên.lV

V U,n)

V Ul
1

V V
n*£0 a+&lt;u 1n—s^m^ a 1n4-s

V Ê-.1 V V

V V

XV V

The first term in (1) is equal to

V V V
n^O a+m &apos;n-2s— [a+&lt;u &apos;J^m

Un) (1)
n+s /

Sm,n I

It follows from the properties of continuity of conditional entropy that this
expression converges to 9?i(I). We shall show that the second terni in (1)

converges to $fr(I). We hâve

V 6n.l V

V V V
n*eO a+a&gt; xn—s*m«6a+(i) 1n+s

h( V Ui
\a+t*j *—[a+&lt;o ^^m^a+o» l—[a+a&gt; a]H-r

v V

We dénote

V

6».l

V

_t
Sm,n I •

bm,l

V
_

Ç
^a+a) x—[a+&lt;o&quot;1]4-r
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and Cn(x) is an élément containing xeM. Also let us introduce the partitions

V V V Un,
n&lt;0 a+&lt;o 1(n + l)—[a+&lt;*&gt; l]**m^a-l-a&gt; 1(n4-l)—[a+o* 13+2s

r= v v u,n
rt*sO a+a&gt; 1(n + l)—[a+a&gt; ^m

In view of Doob&apos;s theorem on convergence of conditional probabilities

fxCQOc) | Qs(x)) -&gt; julCCCx) | Cr(x)) a.e.,

where C^Cx), Q+(x) are éléments of corresponding partitions containing x. But

VV V Un) (2)

can be represented as finite linear combinations of ti(Cv(x) \ C^ix)). This shows

easily that the conditional probabilities (2) also converge a.e. as s —&gt; » to
| Cr(x)). This gives the desired resuit. Q.E.D.

§3. Several gênerai remarks

Let us consider two commuting automorphisms Tl9 T2 of Lebesgue space
(M, M, jui). Then we hâve a measure-preserving action of the group 1? on M and
we shall assume that it is ergodic and at least one of automorphisms Tl9 T2 is
also ergodic. Without any loss of generality we can assume Tx is ergodic. If the
measure-theoretic entropy h (TV) is finite one can find a finite generating partition
£ {Cu CK} in view of Krieger&apos;s theorem [4]. It means that 1\ is isomorphic
to the shift in the space of doubly-infinite séquences written in the alphabet of k
symbols. If T2x y {yn} then yn /(j^, x^, xn±2, • • •) where / is a measurable
function with the values in the space {1,2,..., k}. Thus the pair (Tl9 T2) is

represented as a System of cellular automata but maybe with an infinité memory.
Our arguments presented above can be extended to the case when f can be

approximated sufficiently well by functions of finite number of variables. How-
ever, the gênerai case remains completely open. One can mention also an
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interesting paper by G. A. Galperin [5] where some results concerning topological
entropy of Systems of cellular automata were established.
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Added in proof :

It îs clear that theorems 1 and 2 are easily generahzed to the case of
non-ergodic measures. Indeed, if vmv îs the measurable partition of M mto
ergodic components of the action of Z2 correspondmg to the measure jx, then

where jmmv is the induced measure on the factor-space M | vmv. We showed

already for a.e. élément CVnv of vmv the convergence of (l/n)fi(SmTn | CVmv),

(m/n)-+ a), which implies the convergence of (l/n)hmn.
Also in the same way one can consider the action of the semi-group Z+

{(m, n): -oo&lt; m &lt;o°? n ^ 0}. In order to get the assertions of theorems 1 and 2 one
should replace possible pasts by possible futures in ail arguments.
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