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On o-filtered vector spaces and their application to abelian
p-groups: I

PauL C. EkLoF™®.and MARTIN HUBER

0. Introduction

Let w denote the first infinite ordinal. An w-filtered vector space is an ordinary
vector space, X, together with a descending chain of subspaces

X=X2X's---2X"2:-+ (n<o).

A morphism between w-filtered vector spaces X and Y is a linearmap f: X — Y
such that for all n, f(X™)< Y". The first treatment of w-filtered vector spaces, in a
somewhat more restricted sense, was given by Charles [C], who was studying
abelian p-groups of length <w. If G is any abelian p-group, there is associated
with it an w-filtered vector space over Z(p), the field of p elements, called the
socle of G:

X=G[p]‘{§f{xeG: px =0}

X" =(p"G)p]={xep"G: px=0}.

In general, the socle of G does not determine G up to isomorphism. But it is
possible to identify 3 -cyclic groups and torsion-complete groups from their socles
(cf. Corollaries 1.9 and 1.11). Moreover, Fuchs and Irwin [FI] showed that
p“*l-projective p-groups are determined by their socles (cf. Section 5). Richman
[R] used w-filtered vector spaces to study extensions of p-bounded groups; this
led to a classification of p“*'-injective p-groups by w-filtered vector spaces (cf.
Section 4). Filtered vector spaces have also arisen in the work of Gross on
quadratic forms on infinite dimensional vector spaces (see e.g., [GK]).

In recent years, more general filtered vector spaces — with a subspace filtration
of arbitrary ordinal length — have been studied; these have usually been consi-
dered as valuated vector spaces, where the correspondence between filtered
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146 PAUL C. EKLOF AND MARTIN HUBER

vector spaces and valuated vector spaces is given by:
v(x)=oc & xe X —X" (cf.[F2], [F3], [Hi], [HW)).

Much of this work has focused on the use of valuated vector spaces to study
p-groups of length >w. However, recently, set-theoretic methods have been
proved effective in the study of separable p-groups, most notably in Megibben’s
work on Crawley’s problem [Megl] and the work of Megibben [Meg2], Eklof-
Mekler [EM], and Huber [Hu] on (weakly) w,-separable p-groups.

Thus, in this paper we begin a systematic investigation of w-filtered vector
spaces, over an arbitrary countable field, making use of set-theoretic methods to
obtain new results about the structure and classification of such spaces, and new
applications to p-groups.

In Section 1 we review the work of Charles, Gabriel and others on the
categorical properties of w-filtered vector spaces and the relevance of such spaces
to the study of abelian p-groups. In Section 2 we begin our investigation of
w-filtered vector spaces of uncountable dimension by introducing a set-theoretic
invariant, I', analogous to that used in the study of groups. (In fact, for a separable
p-group G, I'(G[p]) =T'(G): see 2.10.)

Two of the main concerns of the paper are: the classification problem for
(weakly) w,-separable spaces; and the number of dense subspaces in a given
space. (A weakly w,-separable (resp. w,-separable) space is one s.t. [, <, X" =0
and every countable subset is contained in a countable closed subspace (resp.
countable direct summand)). In Section 2 we begin the study of the first question
by showing the existence of a large number of w,-separable spaces of dimension
R, with the same I'-invariant and even the same basic subspace (Theorem 2.8). In
Section 4 we obtain, as a consequence, the existence of large numbers of
non-isomorphic p“*!-injective groups.

In Section 3 we take up the second question; the main theorem (3.4)
characterizes exactly which I'-invariants can be realized by (dense) subspaces of a
given space X, in terms of a new invariant 3 (X). This leads to the identification of
an interesting new property of w-filtered vector spaces (and hence of p-groups):
the SCC (for ‘‘smooth chain of closures”) property (cf. 3.7). One consequence for
p-groups is the following (3.11): if a separable p-group G of cardinality X,
contains at least one pure subgroup which is weakly w,-separable but not
3 -cyclic, then it contains 2™ such subgroups, which are pure and dense. Another
consequence is a strengthening of a theorem of Warfield about the number of
w-elongations of certain separable p-groups by elementary p-groups (Theorem
3.13).

In Section 5 we discuss the existence of certain projective resolutions; as a
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consequence we are able to characterize the socles of p“*'-projective p-groups
(5.5).

In a second paper on the same subject we shall continue to discuss the two
themes proposed above. In there we shall deal with results not provable in
ordinary (Zermelo-Fraenkel) set theory. Using different additional hypotheses,
we shall establish a classification theorem for w,-separable w-filtered vector
spaces of dimension X; on the one hand, and the existence of a large number of
non-isomorphic dense subspaces of codimension one on the other.
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1. The category of w-filtered vector spaces

In this section we focus on categorial properties of w-filtered vector spaces and
review some known facts about socles of abelian p-groups. To some extent the
present discussion follows an unpublished note by Gabriel [G].

The category of w-filtered K-vector spaces and their morphisms, as defined in
the introduction, will be denoted by V' or, more precisely, FVx; it is additive
and has kernels and cokernels. We say that Y is a (filtered) subspace of X € FV if
the inclusion map f: Y < X is an embedding, i.e., f '(X")=Y" for all n. The
quotient space X/Y will always be equipped with the filtration given by (X/Y)" =
(X" +Y)/Y, n<w, so that the natural map m:X — X/Y is a cokernel. Not every
monomorphism is a kernel and not every epimorphism is a cokernel; thus FV" is
pre-abelian but not abelian.

Furthermore, V7 has arbitrary products and coproducts. The symbols “II”’
and “@” will be used for products and coproducts in 7V, and the latter will be
called direct sums. If X and Y are subspaces of an w-filtered vector space, X+Y
will denote the obvious subspace. Note that X+Y=X@Y if and only if
XNY=0and forall n<ew, (X+Y)"=X"+Y"

Given any Xe %V, we note that for all n, X" is a direct summand of X:
if C is any vector space complement of X" in X, we have X=C® X". Also
x=< Mheo X™ is a direct summand of X.
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We remark that an w-filtered vector space X may as well be regarded as a
valuated vector space, where the valuation v: X — w U{®} is given by

)= {n if xeX"-—-Xx"*!
PO =1 it xex= '
In contrast to [F2, F3] we allow v(x)= also for x#0.

An w-filtered vector space X is called homogeneous (of value n where
ne€wU{x}) if v(x)=n for all xe X—{0} or, equivalently, X = X" for some n and
(if n#w) X"*1=0. A space X is 3-homogeneous if it is a direct sum of
homogeneous subspaces; X is II-homogeneous if it is a product of homogeneous
spaces. The subspaces X", n <w, of X e ¥V form a neighborhood basis at zero of
a linear topology. All topological notions will refer to this topology. Thus X is
separated (Hausdorff) if and only if X*=0. Note that a discrete space is a finite
direct sum (product) of homogeneous spaces.

In the category FV a sequence

O——->X—f———->Y-—f-—>Z-——->0

is exact if f is the kernel of g and g is the cokernel of f. Every kernel and cokernel
is semi-stable (in the sense of [RW]), so every exact sequence in ¥V is stable
exact (cf. also [Mi]). We thus obtain in 7" a homology theory w.r.t. all exact
sequences. We aim to determine the projectives and injectives. Variants of the
following results are well known (cf. [F2]); we therefore omit many of the proofs.

LEMMA 1.1. Every II-homogeneous w-filtered vector space is injective. In
particular, every discrete and every finite-dimensional space is injective. O

Let X € #V be of countable dimension. Then X =, ., X, where {X, | n <w}
is an increasing chain of finite-dimensional subspaces and X, = 0. It follows that
for all n, X,,,, =X, & C, for some finite-dimensional C,, and hence X=, _, C,.
Thus we have proved:

PROPOSITION 1.2. Every countable dimensional w-filtered vector space is
3 -homogeneous. O

PROPOSITION 1.3. There are enough projectives in FV'; they are precisely the
separated 3 -homogeneous w-filtered vector spaces.
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Proof. It is not hard to construct a cokernel f: Y — X where Y is separated
3 -homogeneous and thus projective. This shows that there are enough projectives
and that every projective is a direct summand of a separated X -homogeneous

space. That every projective is itself 3-homogeneous follows from 1.2 and
Theorem 4 of [WW]. O

PROPOSITION 1.4. If f: X — Y is a monomorphism in ¥V and Y is projec-
tive, then X is projective as well.

Proof: Write Y=, __ Y, where Y, is homogeneous of value n. Let X, =
f 1@<, Y:) so that X=J,.<, X,. Now since Y"NED, -, Y,)=0, it follows
that X" N X, =0. Therefore each X, is discrete and hence injective, and by the
same reasoning as in 1.2 we conclude that X is projective. []
Thus the dimension of the homology theory in 7V is one.

Remark. One could expect that our projectives would agree with the projec-
tives of length =w+1 in [F2]. This is not the case, however, because Fuchs
considers projectives relative to nice exact sequences (which agree with the proper
projectives in [HW]).

Given X e FV we define its nth Ulm invariant f,(X) by

fo(X)=dimg (X"/X"), n<w;

furthermore we let f.(X)=dimg (X~). Note that for 3-homogeneous spaces X
the cardinals f,,(X), n <w, and f.(x) form a complete set of invariants. We call a
subspace B of X basic if B is projective and dense in X. (Note again the
difference between this definition and that in [F2].)

PROPOSITION 1.5. Every w-filtered vector space X contains a basic subspace.
Any two basic subspaces of X are isomorphic. []

For any X e FV let X= 11m,,<u, X/ X", the completlon of X, be equipped with
the obvious filtration. The completlon map yx:X— X is a morphism in FV; its
kernel is X~. If X is projective, say X =@, X, where X, is homogeneous of
value k, we clearly have X =Tl <., X,. If X is any space and B a basic subspace of
X, then the inclusion h:B — X induces isomorphisms B/B"-5 X/ X" (n <w),
hence the induced map h:B— X is likewise an isomorphism.

PROPOSITION 1.6. There are enough injectives in FV'; they are precisely the
IT-homogeneous w-filtered vector spaces.

Proof. Each Xe %V can be embedded in X @ X which by the preceding
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considerations is IT-homogeneous and thus injective. This proves the first asser-
tion. It follows that any injective X is a summand of a II-homogeneous space.
Consequently, X/X* is complete and hence X itself is IT-homogeneous. L[]

Our next aim is to indicate some basic facts concerning the relevance of
w-filtered vector spaces to abelian p-groups. In what follows we adopt Gabriel’s
point of view [G], which differs somewhat from the usual one (as given in [C] or
[F3]). With any abelian p-group G we associate its socle S = G[p] which is an
w-filtered Z(p)-vector space where S"=p"GNS. Furthermore, to any
homomorphism f: G — H between p-groups we assign its restriction fy: G[p]—
H[p], which is a morphism in V.

LEMMA 1.7.

(a) f is a monomorphism if and only if so is fy;

(b) f is a pure monomorphism if and only if fy is an embedding;
(¢) f is a pure epimorphism if and only if fy is a cokernel;

(d) f is an isomorphism if and only if so0 is f.

Proof. Most of the statements are routine to check. We indicate only how to
prove the ““if”” part of (b). Consider the induced map f: p"G — Im (f) N p"H. Since

fx is an embedding, (f)4 is an isomorphism. By (d) f is an isomorphism, hence
Im (f) is pure in H. [

COROLLARY 1.8. [G]. Let f:G—H, g:H—> K be homomorphisms of
p-groups such that gof =0. Then the sequence

0 ;Gf>Hg>K > 0

is pure exact if and only if the sequence

0 —> Glp] 2> HIp] **> K[p] —> 0
is exact in FV. [1

COROLLARY 1.9 [C]l. A p-group G is 3-cyclic (i.e., a direct sum of cyclic
groups) if and only if G[p] is projective. [

COROLLARY 1.10 (IC], [G]). Given any w-filtered vector space X over Z(p),
there exists an abelian p-group G and an isomorphism G[p]= X in FV.
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Proof. Choose a projective resolution

0 — P, %5 P, > X > 0

in #V. There exists a homomorphism f:F; — F, of 3-cyclic groups such that

F[p]=P (1=0,1), and f extends h. Now f is a pure monomorphism; hence by
1.8 G = Coker (f) has the desired property. [

Given a p-group G, its p-adic completion is denoted by Gp, and the torsion
completion of G is t(G,), the torsion subgroup of Gp. The group G is torsion-
complete if G=t(G,).

COROLLARY 1.11 [F1, Theorem 70.6]. A p-group G is torsion-complete if
and only if G[p] is complete.

Proof. Obviously, if G is torsion-complete then G[p] is complete. Conversely,
suppose that G[p] is complete. Let v: G — G denote the natural map of G into
its torsion completion. By [F1, Corollary 68.2] v is a pure monomorphism whose
image is dense in G (w.r.t. the p-adic topology). Thus vy:G[p]l— G[p] is an
embedding with dense image. But then by hypothesis vy is an isomorphism and
hence so is v. [

We conclude this section by quoting a result of Hill and Megibben which will
be one of the main tools for the application of our results on w-filtered vector
spaces to p-groups.

PROPOSITION 1.12 [F1, Theorem 66.3). Let S be a dense subspace of the
socle of a p-group G. Then S supports a subgroup H which is pure and densein G. [

2. The abundance of »,-separable spaces

In this section we begin our investigation of uncountable dimensional -
filtered vector spaces by means of set-theoretic methods. For such spaces we
introduce a set-theoretic invariant I' and discuss its significance. We shall prove
that for any prescribed value of I' there exists a large family of non-isomorphic
spaces. This discussion largely parallels that in [Hu].

Let us first recall some terminology and notation from set theory. As usual, an
ordinal is identified with the set of its predecessors, and a cardinal is an ordinal
which has greater cardinality than all its predecessors. Thus w is the first infinite
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cardinal, also denoted R,. We shall use w, and N, interchangeably to denote the
first uncountable cardinal. For any set X, | X| denotes the cardinality of X. Given
an infinite cardinal «, a subset X c«k is closed if for each Y< X, sup (Y)<«k
implies sup (Y)e X (where sup(Y) is the supremum of Y). A subset X is
unbounded (or cofinal) in k if sup (X)= k. The cofinality, cf (), of an infinite
cardinal « is the cardinality of the smallest X < « such that X is cofinal in k. An
infinite cardinal « is regular if cf (k)= k.

Suppose that « is a regular uncountable cardinal. A subset C <k is called a
cub if it is closed and unbounded; I < k is thin if x —I contains a cub. The thin
subsets of « form an ideal #(x) of the Boolean algebra P («) of all subsets of «.
Let D(x) denote the quotient algebra 2 (k)/#(k); denote the image of I< k in
D(k) by 1. We have I=17 if and only if there is a cub C such that INC=JNC.

The least element of D(k) is Od—:—fé = $(x), and the largest element is 1ic-fk which
is just the filter dual to $(k). A subset I =k is called stationary if 1#0; that is, for
all cubs C,INC# &. It can be proved that for every element e € D(k)—{0}, the
interval [0, e]={f € D(k) | f<e} has cardinality 2*; in particular, we have |D(x)| =
2%,

Now let X be an w-filtered K-vector space of dimension k. A subspace Y of X
is said to be small if dimg(Y)<k. An (ascending) «-filtration of X is a family of
subspaces {X, | v <«} of X such that

0) X,=0;
() if p<v then X, = X, (i.e., it is a chain);

(i) X, is a small subspace of X for all v;

(iii) if v is a limit ordinal, X, = |J, ., X,, (the chain is smooth); and

(iv) X=U,<. X..

To indicate that {X, | v <k} is a k-filtration of X we will simply write X =
U, <« X,. The following observation is crucial.

LEMMA 2.1. If X=U,«. X, and X =, .. X are two k-filtrations of X, then
the set C={v<k|X,=X'} is a cub.

The proof of this is essentially the same as for abelian groups (cf. [E1, p. 260])
and is therefore omitted. [

A filtered subspace Y of X is called a k-summand of X if Y is a direct
summand of every intermediate subspace Z such that dimg (Z/Y)<k. Given a
k-filtration X =J,.. X,, we consider the set

E={v<k|X, is not a k-summand of X}.
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If we choose another filtration X =], X’ and let
E'={vr<k| X} is not a k-summand of X},

then by 2.1 there is a cub C such that ENC=E'NC. Thus Ee D(k) is an
invariant of X which will be denoted by I'(X).
Analogously to [E1, Thm. 2.5] one proves

THEOREM 2.2. Let X be an w-filtered vector space of regular uncountable
dimension k. Then
(1) I'(X)=0 if and only if X is a direct sum of small subspaces.

(2) If I'(X)# 1 then every small subspace Y of X is contained in a small
k-summand Y' of X. O

From now on we mainly concentrate on the case that dim (X)=NX,. Since
countable dimensional separated spaces are projective, 2.2(1) has the following
consequence.

COROLLARY 2.3. A separated w-filtered vector space X of dimension R,
satisfies I'(X) =0 if and only if it is projective. []

We note that by 1.2 and 1.3 a subspace Y of a separated space X is an
o,-summand if and only if Y is closed in X. Therefore, if dim (X)=w,, X=
Uv<w, X, is any o,-filtration of X, and E ={v <w, | X, is not closed in X}, then
rx)=E.

An w-filtered vector space X will be called w,-separable if every countable
subset of X is contained in a projective direct summand (hence in a countable
dimensional such summand). X will be termed weakly w,-separable if it is
separated and every countable subset of X is contained in a closed countable
dimensional subspace. Clearly, every w,-separable space is weakly w,-separable.

COROLLARY 2.4. If X is a separated w-filtered vector space of dimension R,
such that I'(X) # 1, then X is weakly w,-separable. []

Let X be a separated space with dim (X) =X, and let Y be a subspace of X
with the same dimension. Given an w,-filtration X = U,,<ml X,, we let Y, =
Y NX, for all v <w,. This defines an w,-filtration Y =J,,,, Y, such that if X, is
closed in X then so is Y, in Y. We conclude that I'(Y) <I'(X).
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THEOREM 2.5. If X has dimension X, and Y is a subspace with dim (X/Y)=
Ro, then I'(Y) =I'(X).

Before we can prove this we need to rephrase in the language of w-filtered
vector spaces a significant relation which has been introduced by Hill in the
setting of valuated vector spaces [Hi]. Given an w-filtered vector space X and
subspaces Y, Z of X, Y is said to be compatible with Z if for all n <,
(Y+X")NZ<=(YNZ)+X". We note that this relation is symmetric, and we
write Y || Z if Y is compatible with Z. The following facts are straightforward to
see.

LEMMA 2.6. (a) If {Z, | v<p} is an ascending chain of subspaces of X with
Y| Z, for all v<p, then Y ||U, <, Z..

(b) If Y || Z then the natural map Y/YNZ — (Y + Z)/Z is an isomorphism in
FVv. O

PROPOSITION 2.7. Let X be an w-filtered vector space of regular uncountable
dimension k. Then for any subspace Y of X there is a «-filtration X =, .. X, such
that for all v<k, Y| X,.

This is a consequence of [Hi; Lemma 3]. In this particular case, however, we
are in a position to offer a much simpler proof.

Proof. Let {x,| v<«} be a basis of X. By induction on v<k we define
subspaces X, of dimension <k such that Y| X, and for all u<v, x, €X,.
Suppose that X, has been defined for all u <wv. If v is a limit ordinal, we let
X, =U,<,X,. Clearly x,€X, for all u<w, and Y| X, by 2.6(a). If v is a
successor, say v=pu +1, we define an ascending sequence {Z, | k <w} of sub-
spaces of dimension <k such that Z,= X + Kx,, and for all k, n <w,

(Y+X")NZ, =(YNZ )+ X"

This is possible because dim (Z,)<k. Now let X, =|Ji<, Z,. Then of course
x,€X, for all a<v and Y||X,. Thus by construction X=J,.. X, is a k-
filtration with the desired property. [

Proof of 2.5. By hypothesis and 2.7 there is an w;-filtration X=J, -, X,
such that Y+X,=X, and Y| X, for all v<w,. Therefore for all v<w,,
YYNX,=(Y+X)/X, (in V) by 2.6(b). But this means that for all v <w,,
YNX, is closed in Y if and only if X, is closed in X. Consequently, I'(Y)=
r. o
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The final dimension of an w-filtered vector space X is given by
findim (X) = inf {dim (X™) | n <w}.

We note that if findim (X)=X, then X=X,® X, where X, is discrete and
dim (X;) = N,. Therefore, if X is weakly w;-separable but not projective we have
findim (B) = w, for any basic subspace B of X.

We next prove that for any stationary subset E € w,;, I'"*(E) has cardinality
=2, In fact, our construction will provide w,-separable spaces, so that the
assumption on the given basic subspace is inevitable. Analogous results hold in
the case of w,-free groups [E2; Thm. 11.2] and w,-separable p-groups [Hu; Thm.
2.7]; in fact, for the scalar field Z(p) our theorem follows from that in [Hu].

THEOREM 2.8. Let B be a projective w-filtered vector space with dim (B) =
findim (B) = NX,, and let E be a stationary subset of w,. Then there exist 21 mutually
nonisomorphic w,-separable w-filtered vector spaces X; (i <2™) of dimension R,
such that for all i, I'(X,) = E and B is isomorphic to a basic subspace of X..

Before beginning the proof of 2.8, we prove a lemma which will also be used
in later sections.

LEMMA 2.9. Let Y, Z, S be subspaces of the separated space X such that Y is
dense in Z and Y+S=Y @D S. Then we also have Z+S=ZD S.

Proof. We first note that, since X is separated, for any pair (U, V) of
subspaces of X the statement U+ V=U® V is equivalent to

forallue U, veVand n<w, u+veX" implies veX". *)

Assuming (*) for the pair (Y, S), we show that (*) also holds for (Z, S). So let
zeZ, se S and n <o such that z+s e X". By hypothesis there exists y e Y such
that z—ye X". But then y+s=(z+s)—(z—y)e X" It follows that se X", as
desired. O

Proof of 2.8. Write B =, _,, B, where B, is homogeneous of value n. Since
countable dimensional summands do not change the I'-invariant, we may assume
that for all n, either B, =0 or dim (B,) = »,. Furthermore, we may assume that E
consists of limit ordinals. Recall that a ladder on a limit ordinal 8§ <w, is a strictly
increasing function ms : @ — 8 whose range is cofinal in 8. A ladder system on E is
an indexed family m ={n; | 8 € E} such that n, is a ladder on 8. We shall first
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construct for any ladder system m an w,-separable space X = X(n) as a subspace
of B=[l,-., B,

If dim (B,) = o, let {x™ | v <w,} be a basis of B, ; otherwise let x™ =0 for all
v<w,. For any v <w, let

S, = @ Kx™
Bv)= @ <P |u<v), B@)'=® «P|p=v),
Bw)= [l a®lu<v), B@y=Il G |p=w).
n<w n<w

We observe that for all v, B=B(»)® B(»v) and B=B()® é(v)'. For each 8¢ E
we define y5 = (y5(n)), <. € B by ys(n)= x;r;)(n); note that ys € B(S) —Uv<s é(V)

Now define X = X(7n) as the union of a smooth chain {X, | v <w,} of count-
able dimensional subspaces of B where X,=0 and

x __{;(V+S‘, if v¢E;
vl +S,+Ky, if veE

The following statements are easily checked:

(a) For all v<w,, Bw)c X, cB(»);

(b) if ve E then X, is not closed in X, ;.
Furthermore, we claim that

(c) if v¢ E then X=X, ® (XNB®W)).

To prove this we note that if € E, § >v, ys may be written y; =z +w where
zeB(v) and we B(v)'. Therefore X = X, +(XNB(v)), and the claim follows by
2.9 since B(v) is dense in X,. Now (a) implies that B is a basic subspace of X, and
from (b) and (c) we infer that X is w,-separable and I'(X) = E.

Our next aim is to prove that if 7 and n' are sufficiently different ladder
systems then X(n) and X(n') are not isomorphic. (Here the argument is simpler
than in the group theory case). Let h: @ — w be a strictly increasing function such
that for all n, dim (B,,,)) = ;. Let n={n; | 8 € E} and ' ={n; | 8 € E} be ladder
systems on E such that for each § € E the following condition holds:

nath(n))=ns(h(n+1)) forall n<w. *)
We claim that X% Y where X =X(n) and Y =X(n"). Suppose to the contrary

that there exists an isomorphism f:X - Y. Then there is 6 € E and a strictly
increasing sequence of ordinals {v(n)|n<w} with sup{r(n)}=8 such that
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f(X, ) = Y, for all n and f(X;) = Ys. Now by definition we have

X5+1:X8+88+KZ, Y8+l:: Y8+SS+KW

where z = (x%))n<w and w = (x",)), <. Since z € XX (the closure of X; in X),

f(z) belongs to Y. But Y=Y, +Kw, hence f(z)=y+Aw for some ye Y; and
A e K—{0}.
Now choose n large enough so that yeY,,, and let d=

max {i <o | n5(h(i)) <v(n)}. Define u = (w ), -, €B by

- {xg:i)(k) if k = h(d)
k 0 otherwise

Thus we have ue X, and z—ueX"“*' It follows that y—f(u)e Y, and
f(z)—f(u)e Y@+, But this is impossible for ni(h(d))=r(n) by (*) and thus the
h(d)th component of f(z)—f(u) cannot be zero because Ax%{®hy, # 0.

This constructs two non-isomorphic spaces X and Y with the desired proper-

ties. To obtain 2™: different ones we proceed as in [E2; pp. 111-112]. O

We wish to apply Theorem 2.8 to p-groups. For a separable p-group G (i.e.,
p“G =0) of cardinality w, the I'-invariant can be defined by I'(G) = E where

E={v<w,|G, is not closed in G}

and G =J, <., G, is any w,-filtration (cf. [Hu], remark after Cor. 1.3). Of course,
we may assume that each G, is a pure subgroup of G. But then for all v <w,, G,
is closed in G if and only if G,[p] is closed in G[p]. Thus we obtain

PROPOSITION 2.10. For any separable p-group G of cardinality R, we have
I'(G)=r(G[p). O

Recall that a p-group is termed w,-separable if every countable subset of G is
contained in a (countable) 3 -cyclic direct summand of G, whereas G is weakly
w-separable if it is separable and every countable subset is contained in a
countable closed pure subgroup of G. We have not been able to derive [Hu; Thm.
2.7] from 2.8 above, because we do not know whether every w,-separable
w-filtered Z(p)-vector space is the socle of an w;-separable p-group. However, we
obtain the following slightly weaker result.

COROLLARY 2.11. Let B be a 3 -cyclic p-group of cardinality R, and final
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rank R,, and let E be a stationary subset of w,. Then there exist 2% mutually
nonisomorphic weakly w,-separable p-groups G, (i <2*) such that for all i, B is a
basic subgroup of G, and I'(G;) = E.

Proof. This is a consequence of 1.12, 2.8 and the following theorem of
Megibben’s which we quote explicitly since it will be applied again several
times. [

THEOREM 2.12 [Meg2; Thm. 1.1]. Let G be a separable p-group. Then G is
weakly w,-separable if and only if G[p] is weakly w,-separable as an w-filtered
Z(p)-vector space. [

3. The realization of I -invariants by subspaces

In this section we attempt to imitate inside a given w-filtered vector space X
the construction of the proof of Theorem 2.8 in order to find a dense subspace
with a prescribed value of I'. This leads us to introduce another set-theoretic
invariant, 3(X), taking its values in D(w,). It will turn out that any value of I
between 0 and 3 (X) can be realized (Theorem 3.4).

In the sequel, X will always denote a separated w-filtered vector space of
dimension w;. Given an w,-filtration X =J, -, X,, we let

E= {veLim (01| X,# U Xu}

n<v

where Lim (w,) is the set of all limit ordinals <w,, and X, denotes the closure of
X, in X Let X=U,, X, be another w,-filtration and let E'=
{reLim (w,) | X, # U, <, X.}. From 2.1 we know that C={vr<w,| X, =X} is a
cub, and thus so is C’, the set of limit points of C. But ENC’'=E'NC’, so that
E € D(w,) is an invariant of X which will be denoted by 3(X).

We note that 3(X) =0 if and only if X admits an w,-filtration X=1J,, X,
such that for all v eLim (w,), X, = U, ., X,. If this holds we shall say that X
satisfies SCC (the smooth chain of closures condition). For example, every
projective space satisfies SCC; on the other hand, any space X containing a
countable dimensional basic subspace trivially satisfies SCC.

If p is an ordinal <w,, the diagonal intersection of a family {I, |« <p} of
subsets of w; is defined by A,., L, ={v <®;| v € Na<minwp) L}, Whereas the
diagonal union is V.., L, ={v<w;| v €Ua<minw,p) L}- From the fact that the
diagonal intersection of p cubs is again a cub [J; Lemma 7.5], it follows that
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(Va<o a)'” is the supremum in D(w,) of the family {L, : « <p}; we denote it by
\/a<p Of course \/a<p ot (Ua<p1 ) lf P<w1

PROPOSITION 3.1. Let p be an ordinal =w,, and let X =B, _, X' where
for each a<p, X has dimension w,. Then 3(X)=\/,, 3(X).

Proof. For each a <p choose an w,-filtration X’ =J, ., X! and let E, =
{veLim (w,) IF#UM<D F} Let X=UJ,<., X, be the w,-filtration given by
X, =B, <minevy X%, and let E={veLim(w,)|X,#U.<,X.}. Now for each
limit ordinal » we have

UuX=U & Xx¥= & U X,

n<v w<v a<min(u,p) a<min(v,p) w<v

We infer that E=V,_, E, and hence 3(X)= Vo, E,)” =Vae, 2(X®). O

Thus, in particular, X =@, ., X satisfies SCC if and only if so does X for
each a <p. This implies, for instance, that any space X with a basic subspace of
countable final dimension satisfies SCC.

PROPOSITION 3.2. For any subspace Y of X we have 3(Y)=3(X). In
particular, if X satisfies SCC, then so does every subspace of X.

Proof. By 2.7 there is an w;-filtration X ={J, -, X, such that for all v, Y || X,.
For all v<w,, let Y, = YNX,. Clearly, YY is contained in YN X,. On the other
hand, by the choice of the X,’s

YNX, =N [YNX+X]c N LY, +X")NY]=YY.

n<w n<w

Therefore, if v is a limit ordinal such that X = Up<o }‘(u, we obtain

YY=ynX =U (YNX)=U YY.

n<v w<v

We conclude that 3(Y)=3(X), as desired. [

A (weakly) w,-separable space will be called proper if it is not projective.

PROPOSITION 3.3. (a) For each space X we have 3(X)=I'(X).
(b) If X is weakly w,-separable, then 3(X)=I'(X). Thus no proper weakly
w;-separable space satisfies SCC.
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Proof. Statement (a) is clear from the definitions. To prove (b) we let X =
U, <, X, be an w,-filtration such that for all v <w;, X, ,, is closed in X. Then for
each v € Lim (w,) we have X, ={J, ., X,. Therefore X, #|J,., X, if and only if
X, is not closed in X; hence 3(X)=I'(X). O

Remark. Let X be a space satisfying 3(X)<I'(X). Then X is not weakly
w,-separable and hence I'(X) = 1. Actually such spaces are in abundance: To any
subset E of w, there exists a space X such that 3(X)=E and I'(X)=1: take
X =X,®X; where dim (X,)=dim (X;)=w,;, X, has a countable dimensional
basic subspace, and X, is weakly w,-separable with I'(X,) = E.

Let X be a space of dimension X,, and let Y be a subspace of X with
I(Y)#I'(X). Then Y is weakly w,;-separable, hence I'(Y)=23(Y)=3(X) (by
3.3(b) and 3.2). Therefore the next theorem (which is the main result of this
section) is best possible.

THEOREM 3.4. Let X be a separated w-filtered vector space of dimension R,
and let E be a subset of w, such that 3,(X) = E. Then for every subset E' of E there

exists a weakly w.-separable dense subspace Y of X of dimension X, such that
Ir¢y)=3(Y)=~F'.

COROLLARY 3.5. If X is weakly w,-separable with I'(X) = E, then for every
subset E' of E there exists a dense subspace Y of X satisfying I'(Y)=E'. O

Remark. In [EMS] a result similar to 3.5 has been proved for strongly «-free
groups of regular uncountable cardinality «.

COROLLARY 3.6. Every separated w-filtered vector space X of dimension R,
which fails to have SCC contains 2% mutually nonisomorphic dense subspaces
which are weakly w,-separable and of codimension X,.

Proof. This follows from 3.4, 2.5 and the fact that for each e € D(w,) —{0} the
interval [0, e] has cardinality 2%:. [

Proof of Theorem 3.4: Let B be a basic subspace of X, let X =], .., X, be an
w,-filtration, and let B, = BN X, for all v <w,. Since B is dense in X, there is for
each n<w a cub C, such that for all veC,, B,+(X"NX,)=X,. Now C=
(V<o C,. is again a cub, hence we may assume that

(i) for all v<w,, B, is dense in X,.

Furthermore, w.l.0.g. we may assume that E equals {v € Lim (w,) | X, # U, <, X..}
and that the following conditions hold:

(ii) for all veE, (XI NX,.1)— Uu.<v Xu. # J;

(iii) for all v <w,, B, is a summand of B.

For each v<w,, let B,.,=B,®S,.
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Now if E’ is a subset of E we define Y as the union of an w,-filtration
{Y, | v <w;} of subspaces of X such that

y __{Y,,+S,, if véE',

"1y, +S,+Kx, if veE,
where x, e (X, NX,.1)—U.< X,. By (ii) such an x, exists. Obviously, we have
B,c Y, c X, for all v<w;; thus by (i) Y, is dense in X,. If v€ E’ then Y, is not
closed in Y because x, e X, NY =YY but x,¢ X,, hence x,c YY-Y,.

It remains to show that Y, is closed in Y for all v€ w,—E’. Given v¢ E’, we
shall prove by induction on 7 that Y, is closed in Y, for all r>v». There is no
problem at limit stages. So suppose that 7=y +1 where u =v. We wish to prove
that Y, N Y, .= Y, N Y, and thus Y, N Y,., =Y, by induction hypothesis. So let
acY,NY,,,. Then we have

{y+s+)xxu where yeY, seS,AeK if peFE
a=
y+s where yeY,,seS, otherwise.

If weE' there is a 0, v=0<p, such that yeY,, and thus Ax, =a—y—se
X, +S,. On the other hand, Ax, € X, and hence Ax, e X, N(X, +8S,). Since B, is
dense in X, we have X, NS, =0 by 2.9. Therefore Ax, € X, which implies A =0,
and thus in both cases a=y+s for some yeY, and seS,. But then ae
X, (Y, + S.), and the argument just used shows that indeed ac Y, NY,.

Consequently, Y, is closed in Y for all v € w,—E' and thus I'(Y) = E'. Finally,
since E' consists of limit ordinals, we infer that Y is weakly w,-separable, and
hence 3(Y)=TI(Y). O

As a further consequence, we obtain a characterization of spaces satisfying
SCC.

COROLLARY 3.7. For a separated w-filtered vector space X of dimension X,
the following statements are equivalent:

(a) X satisfies SCC;

(b) every weakly w,-separable subspace of X is projective;

(c) every weakly w,-separable dense subspace of X is projective.

Proof. This follows readily from 3.2, 3.3 and 3.4. [

On the other hand, assuming the Continuum Hypothesis (CH) we can con-
struct an X which fails to have SCC yet does not have a closed subspace which is
proper weakly w,-separable:
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THEOREM 3.8. Assume CH. Given a countable field K, there exists an
w-filtered K-vector space X of dimension X, which fails to have SCC, but such that
every closed subspace of X which is weakly w,-separable is discrete (hence
projective).

Proof. Let B=@D, ., B, where for each n, B, is homogeneous of value n, and
dim (B,) = w,. We construct X as a dense subspace of B as in the proof of 2.8,
with the following changes.

Let E be a stationary set of limit ordinals <w;. By CH the set of all countable
subsets of B has cardinality w,. Fix an enumeration {Y, |vew,—E} of all
nondiscrete countable (dimensional) subspaces of B such that each of them occurs
w; times.

Now define X, by induction on v <w, such that B(v) < X, < B(v) (notation as
in 2.8). The crucial cases are when ve E, resp. when vew,;—E and Y, c X,. If
ve E we let

Xv+1 = Xv + Sv + Kyv
where S, isasin 2.8 and y, eB(v)—UuQ,é(p,). If rew;,—E and Y, = X, we let
Xu+1 = Xv + sv +sz

where z,€Y,-Y,. Such a z, exists because every closed subspace of B is
IT-homogeneous, hence Y, cannot be closed.

Finally, let X =J, ., X,. By construction we have XX#|J,., XX for each
veE, hence 3(X)=E#0. On the other hand, for any nondiscrete countable
subspace C of X there is a ve w; — E such that C=Y, < X,, hence C is not closed
in X. We infer that X has the desired properties. [J

Theorem 3.4 and its corollaries have interesting applications to p-groups. The
first of them is immediate from 3.7. (Following the terminology for spaces a
(weakly) w,-separable p-group is said to be proper if it is not 3 -cyclic).

COROLLARY 3.9. If G is a separable p-group of cardinality X, whose socle
satisfies SCC, then G does not contain any pure subgroup that is proper weakly

w,-separable. Thus every pure subgroup H of G satisfies either '(H)=0 or
rm=1. O

The next result follows from 3.4, 1.12 and 2.10.



On w-filtered vector spaces and their application to abelian p-groups: I 163

COROLLARY 3.10. Suppose that G is separable and of cardinality R, such
that G[p] does not satisfy SCC. Then there is a stationary subset E of w, such that
for each E' < E there is a pure dense subgroup H of G satisfying I'(H) = E". If Gis
weakly w,-separable, then E can be chosen so that I'(G)=E. O

As an immediate consequence of 3.9 and 3.10 we obtain the following
COROLLARY 3.11. If a separable p-group G of cardinality X, contains any
pure subgroup which is proper weakly w,-separable, then G contains 2% pairwise

nonisomorphic pure dense subgroups which are weakly w,-separable. [

For the next application we need to recall some facts about w-elongations.
Given p-groups G and B, an w-elongation of G by B is an exact sequence

() O > B > A 4~ G — 0

such that Ker(¢) < p®A. Given an w-elongation (¢), we define
P(¢)=Im (¢x: Alp]— G[pD.

(If G=A/p“A and ¢:A — A/p“A is the natural map, we shall write P(A)
instead of P(¢).) It is readily seen that P(¢) is a dense subspace of G[p].
Conversely, to every dense subspace P of G[p] there exists an w-elongation (¢)
of G by an elementary p-group B such that P(¢) = P. (Here a p-group B is called
elementary if pB =0; in this case B is a Z(p)-vector space). More precisely, we
have the following criterion which is essentially due to Richman [R].

CRITERION 3.12. Let G and B be p-groups where B is elementary of
dimension d and assume that w-elongations of G by B exist. Then the map which
associates to each w-elongation (¢) of G by B the w-filtered vector space P(¢) gives
a one-to-one correspondence between isomorphism classes of w-elongations of G by
B and equivalence classes of dense subspaces of G[p] of codimension d. [

Here two subspaces P, Q of G[p] are called equivalent if there is an
automorphism y of G such that y(P)= Q. Two w-elongations 0 > B — A %>
G—0 and 0>B— A'% G—0 are isomorphic if there is an isomorphism
a:A=> A’ and an automorphism vy of G such that yc¢ =¢ca. By [N; Thm. 1.6]
w-elongations of G by B exist if and only if dim (B)=finrk(G) where

finrk(G) = inf {dim (p"G[p]) | n <w}, the final rank of G.
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The final result of this section strengthens Theorem 3.1 of [W] for a certain
class of separable p-groups. Recall that, in contrast to this, if G is 3-cyclic and B
is any p-group, then every two w-elongations of G by B are isomorphic. (This
follows from [F1; Thm. 83.4].)

THEOREM 3.13. Let G be a separable p-group of cardinality X, containing a
pure subgroup which is proper weakly w,-separable, and let B be an elementary
p-group of dimension R,. Then there exist 2% mutually nonisomorphic -
elongations of G by B.

Proof. The hypothesis on G implies that G[p] does not have SCC (by 3.9).
Thus by 3.6 G[p] contains 2% mutually non-isomorphic dense subspaces of
codimension w,, and the theorem follows by 3.12. [J

4. On p“*'-injective p-groups

For any ordinal «, a reduced p-group A is called p*-injective if
p* Ext (C, A)=0 for all p-groups C. The group A is p“*'-injective if and only if
p®A c A[p] and A/p“°A is torsion-complete (cf. [S; Thm. 54.5]). Such groups
have been studied by Richman; as a consequence of the main theorem of [R] (cf.
3.12 above) he obtained:

CRITERION 4.1 [R; Corollary 1]. Let A and B be p“*'-injective p-groups.
Then A =B if and only if P(A)=P(B) as w-filtered vector spaces. Moreover, for

any separated w-filtered Z(p)-vector space X there is a p“*'-injective p-group A
such that P(A)=X. O

(The definition of P(A) has been given before 3.12.) The following characteri-
zation of p“*l-injectives is of quite some interest to us. This is essentially
contained in [S; section 55]; for the sake of completeness we have chosen to
include a proof. Let G denote the torsion completion of G, and let the Z(p)-
vector space G[p?*]/G[p] always be equipped with the filtration from G/G[p].

THEOREM 4.2. (a) Let G be a separable p-group. Then A =G/Glp] is
p“*l-injective and P(A)= G[p*)/Gl[p] (as w-filtered Z(p)-vector spaces).

(b) If A is a p“™*'-injective p-group, then there exists a separable p-group G such
that A = G/G[p].

Proof. (a) If A =G/G[p] then clearly p“A = G[pl/G[p]. We infer that
A/p“®A =G/G[p]=pG, and the latter obviously is torsion-complete. Hence A is
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p®*'-injective. To verify that P(A)= G[p*]/G[p] (in FV') we consider the com-
positt map ¢:G/G[p] & G/G[p]— G/G[p]. Clearly ¢ is injective and
U(G[p?)Glp) = P(A). Furthermore, Im (¢) is pure in G/G[p], since G is pure
in G. So it remains to show that P(A) is contained in the socle of Im (). Let
x € G be such that px € G[p]. Then by purity of G in G there is y € G such that
py = px. It follows that y € G[p?], y—x € G[p], and hence x + G[p]= ¢(y+ G[p).

(b) By Corollary 1.10 there is a p-group H such that H[p]=P(A). Now if G is
a p-group such that pG = H, then P(A)= G[p*]/G[p], and the result follows from
4.1 and 4.2(a). O

For a separable p-group G, we say that A = G/G[p] is the p“*'-injective
p-group associated with G. Clearly G is 3 -cyclic if and only if P(A) is projective,
and if G, H are 3-cyclic and B = H/H[p], then A =B if and only if pG = pH.
Furthermore, we have the following.

PROPOSITION 4.3. Let G be a separable p-group, and let A be its associated
p“*-injective group. Then

(a) G is weakly w,-separable if and only if so is P(A);

(b) If |G|= w,, then I'(G)=T'(P(A)).

Proof. Because of 4.1, 2.12 and 2.10 it suffices to show that G[p] is weakly
w,-separable if and only if so is G[p*}/Glp], resp. I'(G[p]) = I'(G[p*)/GIp)). But
this will follow from the subsequent lemma. [

Given any space X € #V, for each n <w define spaces X and X™ in FV’
by

(X(—n))k — X"+k, (X(n))k — Xmax{O,k—n}, k < w.
Note that if X = G[p] then X" = G[p*)/Glp].

LEMMA 4.4. For all n<w we have
(a) X is weakly w,-separable if and only if so is X,
(b) If dim (X)=w, then ['(X)=T(X"").

Proof. (a) The “only if” part is straightforward to prove. Suppose now that
X s weakly w,-separable, and let Y be a countable dimensional subspace of
X letY=Y,®Y" and let X=X,DX" such that Y, € X,. Since Y, N X" =0,
such an X, exists, and Y, is a direct summand of X, because Y, is discrete. By
hypothesis, Y©™ is contained in a closed countable dimensional subspace W of
X“™_ Then we have Y"< W™ < X" and W™ is closed in X". Therefore,
Y, ® W™ js a closed countable dimensional subspace of X containing Y.
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(b) Let X=X, X" Choose w,-filtrations X, =J,., Y, and X"=
Uv<w, Z,. Then X, =Y,@BZ, defines an w,-filtration of X. But by definition
X, is closed in X if and only if Z, is closed in X™ if and only if (X,)™ is closed
in X Hence I'(X)=T(X“™), as desired. [

Remarks. (1) Similarly one proves that X is w,-separable if and only if X“™
is w;-separable.

(2) Note that if G is w,-separable and A is its associated p“*'-injective, then
every countable subset of A is contained in a direct summand with countable
basic subgroup.

COROLLARY 4.5. A p-group G is weakly w,-separable if and only if so is
p"G for some n.

Proof. This is immediate from 4.4(a) and 2.12. O

For w,-separable p-groups the corresponding result is contained in [Cu]. We
conclude this section with an abundance result which is a consequence of 2.8, 4.1,
4.2 and 4.3.

COROLLARY 4.6. For any stationary subset E of w, there exist 2% weakly
w,-separable p-groups G, (i<2“') of cardinality R, such that their associated

w+1

p®*-injective groups A,= G,/G[p] are mutually nonisomorphic yet for all i,
F(Gi)=F(P(Ai))=E- U

5. Projective resolutions and socles of p“*'-projective p-groups

We begin this section by considering the following question: Given X e 7,
for which projective spaces K does there exist a projective resolution

0-K—-P—>X—->0

in FV? The result of this investigation (Theorem 5.3) will be applied to
characterize the socles of p“*!-projective p-groups.

PROPOSITION 5.1. Let X be an w-filtered vector space of countable dimen-
sion, and let S be a coinfinite subset of w. Then there is a projective resolution

0>K—>P—->X—->0
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such that for all n € w,

0 if neS,
1 otherwise.

.00 =1

(For the definition of f,(K) see Section 1.)

Proof. Since dim (X) is countable, we have X = X”@® Q where Q is projective.
Thus we may assume that X = X*; say X =,_; Kx;, where |[|<w. Let S=w -,
and decompose S=[[.., S, (disjoint union) such that each S, is infinite and
p =|I|. Define the projective space P by P™ =@ _. Ka,, and let 7:P— X be

n=m

given by m(a,) = x;, where k is the unique number such that n € S,. Clearly, 7 is a
cokernel, and if K =Ker(wr) we obtain a projective resolution

0—K—P>X—0.
Clearly, for n € w,

0 if neS
1 otherwise.

f.p)={
Since f,,(P) = f,,(K)+f,.(X), and f,,(X) =0, the result follows. [J

COROLLARY 5.2. If X is a countable dimensional w-filtered vector space and
K is any nondiscrete projective space, then there exists a projective resolution

0->K—>P—->X-—-0.

Proof. Since K is nondiscrete, we may write K = Ko® K; such that, for some
coinfinite subset S of w,

0 if nesS;
1 otherwise.

ko ={
Now the result follows from 5.1. O
THEOREM 5.3. Let X be an w-filtered vector space of dimension k. Then for

any projective w-filtered vector space K with findim (K)=« there exists a projec-
tive resolution

0>K—-P->X—0.
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Proof. The proof is by induction on «. For k < this is precisely Corollary 5.2.
Now suppose that k is uncountable. In this case, it suffices to consider spaces K
such that for some coinfinite subset S of w,

0 if neS,;
a0={0 1 nes:
fu(K) k otherwise.
We represent X as the union | J, .. X, of a smooth chain of subspaces such that
dim (X, ) <«k. For each v <k we choose a projective resolution

@

0-——_)Kv > P "> v+1/Xv—__->0

v

such that

0 if neS;
fulK,) = {dim (X,.1/X,) otherwise.

By induction hypothesis such a resolution exists. Now by induction on v we define
projective resolutions

P(1):0 — DK, —> D P, =5 X, —> 0

w<v w<v

such that for all p <v the diagram

0—> ®K,— BP, —> X, — 0

n<p w<p

oo [

0— DK,— PP, —>X,— 0

<y w<v

commutes. Suppose that P(u) has been defined for all w <v. If v is a limit
ordinal, we take unions. If v is a successor, say v = p + 1, we shall construct P(v)
such that the diagram D(p, v) commutes. Then by induction hypothesis D(u, v)
will commute for all p <w.

Since P, is projective, there exists a map 6: P, — X ., making the diagram
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commute. Let P, =B, _, P, and let x=°¥,:P, - X ,,, where X, > X
denotes inclusion. Then there is a unique morphism ¥,,,:P,®P, — X_ ., satis-
fying ¥,., | P,=x and ¥,.1 | P,=0; an easy computation shows'that ¥, , is a
cokernel. Now let N=Ker (¥,,,). It is easy to see that the exact sequence of
vector spaces

0->®D K, >N->K, -0

uw<p

is in fact exact in V. Therefore N=@,__ K,, and the construction of P(v) is
accomplished.

Finally, taking limits, we obtain a projective resolution

0->DK,—>DPP,>X->0

n<w <k

and by construction we have K=®,_ . K,. O

We are now going to apply Theorem 5.3 to p-groups. For any ordinal «, a
p-group G is called p*-projective if for all p-groups A, p™ Ext (G, A)=0. The
group G is p“*'-projective if and only if G[p] contains a subgroup K such that
G/K is 3-cyclic if and only if G is the quotient of a 3 -cyclic p-group modulo an
elementary p-group (cf. e.g., [S; Thm. 38.1]). Fuchs and Irwin have shown that
p®*!-projective p-groups are determined by their socles regarded as valuated
vector spaces [FI; Thm. 3]. (Notice that since such groups have length =w +1, we
may as well regard their socles as objects in FV.)

THEOREM 5.4. Suppose that X is an w-filtered Z(p)-vector space such that
X =Y®P, where P is projective and fin dim (X) = findim (P). Then there is a
unique p“*'-projective p-group G such that G[p]=X (in FV).

Proof. Let K = P® (cf. Section 4). Clearly fin dim (K) = fin dim (P). Therefore
by 5.3 there exists a projective resolution

0->K—->Q—>Y—0.

At this point we could appeal to [FI; Thm. 4], but instead we give a self-contained
construction. Now let F be the 3 -cyclic p-group determined by F[p]= Q and let
G =F/K which is p“*'-projective. Since K is a projective subsocle of F, it
supports a pure (3-cyclic) subgroup U of F. Let i: U > F denote inclusion, let
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7 : U — U/K be the natural map, and define

A:U—-FOUK

to be the unique map with components i and —. It is readily seen that A(U) is
pure in FOU/K and that Coker (4)=G. Hence we have obtained a pure-
projective resolution

0->U3SF®OUK - G—0.

Passing to the socles, we infer from 1.8 that G[p]=(F/U)[p]D(U/K)[p] (in FYV).
But (F/U)[p]=Y and (UK)[p]=K“V=P. Hence G[p]=Y®P =X, as desired.
Finally, uniqueness of G follows from Theorem 3 of [FI] quoted above. [J

A p-group G is called C-decomposable if G = H® C where C is 3 -cyclic and
has the same final rank as G. Analogously, we call an w-filtered vector space X
C-decomposable if X = Y@ P where P is projective and fin dim (P) = fin dim (X).
Clearly, if G is C-decomposable, then so is G[p]. It follows from [FI; p. 466] that
every p“*!-projective p-group is C-decomposable. Consequently, together with
5.4 we obtain the following.

COROLLARY 5.5. Let X be an w-filtered Z(p)-vector space. Then X is the
socle of a p***-projective p-group if and only if X is C-decomposable. [

Remark. Theorem 5.4 is implicit in [CuM]; in there, a different means of
proof is employed.
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