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On co-filtered vector spaces and theîr application to abelian
p-groups: I

Paul C. Eklof(*) and Martin Huber

0. Introduction

Let co dénote the first infinité ordinal. An io-filtered vector space is an ordinary
vector space, X, together with a descending chain of subspaces

A morphism between co-filtered vector spaces X and Y is a linear map /:X-&gt; Y
such that for ail n, /(Xn) c Yn. The first treatment of co-filtered vector spaces, in a
somewhat more restricted sensé, was given by Charles [C], who was studying
abelian p-groups of length &lt;co. If G is any abelian p-group, there is associated
with it an co-filtered vector space over Z(p), the field of p éléments, called the
socle of G:

X=G[p]d= {xeG:px 0}

Xn (pnG)[p] {xe pnG: px 0}.

In gênerai, the socle of G does not détermine G up to isomorphism. But it is

possible to identify 2-cyclic groups and torsion-complète groups from their socles
(cf. Corollaries 1.9 and 1.11). Moreover, Fuchs and Irwin [FI] showed that
p&lt;o+1-projective p-groups are determined by their socles (cf. Section 5). Richman
[R] used co-filtered vector spaces to study extensions of p-bounded groups; this
led to a classification of pw+1-injective p-groups by co-filtered vector spaces (cf.
Section 4). Filtered vector spaces hâve also arisen in the work of Gross on
quadratic forms on infinité dimensional vector spaces (see e.g., [GK]).

In récent years, more gênerai filtered vector spaces - with a subspace filtration
of arbitrary ordinal length-hâve been studied; thèse hâve usually been consi-
dered as valuated vector spaces, where the correspondence between filtered

* First author partially supported by NSF Grants No. MCS80-03591E and DMS-8400451.
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146 PAUL C. EKLOF AND MARTIN HUBER

vector spaces and valuated vector spaces is given by:

v(x) &lt;r&lt;ïxeX&lt;T- X^1 (cf. [F2], [F3], [Hi], [HW]).

Much of this work has focused on the use of valuated vector spaces to study
p-groups of length &gt;w. However, recently, set-theoretic methods hâve been

proved effective in the study of separable p-groups, most notably in Megibben&apos;s

work on Crawley&apos;s problem [Megl] and the work of Megibben [Meg2], Eklof-
Mekler [EM], and Huber [Hu] on (weakly) o^-separable p-groups.

Thus, in this paper we begin a systematic investigation of &lt;o-filtered vector
spaces, over an arbitrary countable field, making use of set-theoretic methods to
obtain new results about the structure and classification of such spaces, and new
applications to p-groups.

In Section 1 we review the work of Charles, Gabriel and others on the
categorical properties of co-filtered vector spaces and the relevance of such spaces
to the study of abelian p-groups. In Section 2 we begin our investigation of
co-filtered vector spaces of uncountable dimension by introducing a set-theoretic
invariant, F, analogous to that used in the study of groups. (In fact, for a separable

p-group G, r(G[p]) r(G): see 2.10.)
Two of the main concerns of the paper are: the classification problem for

(weakly) wx-separable spaces; and the number of dense subspaces in a given

space. (A weakly a&gt;x-separable (resp. c^-separable) space is one s.t. nn&lt;&lt;o^n 0
and every countable subset is contained in a countable closed subspace (resp.
countable direct summand)). In Section 2 we begin the study of the first question
by showing the existence of a large number of a^-separable spaces of dimension
*&lt;! with the same F-invariant and even the same basic subspace (Theorem 2.8). In
Section 4 we obtain, as a conséquence, the existence of large numbers of
non-isomorphic pto&gt;+1-injective groups.

In Section 3 we take up the second question; the main theorem (3.4)
characterizes exactly which F-invariants can be realized by (dense) subspaces of a

given space X, in terms of a new invariant X(X). This leads to the identification of
an interesting new property of co-filtered vector spaces (and hence of p-groups):
the SCC (for &quot;smootfi chain of closures&quot;) property (cf. 3.7). One conséquence for
p-groups is the following (3.11): if a separable p-group G of cardinality Ht
contains at least one pure subgroup which is weakly o&gt;!-separable but not
2-cyclic, then it contains 2Ki such subgroups, which are pure and dense. Another
conséquence is a strengthening of a theorem of Warfield about the number of
eo-elongations of certain separable p-groups by elementary p-groups (Theorem
3.13).

In Section 5 we discuss the existence of certain projective resolutions; as a



On û&gt;-filtered vector spaces and their application to abelian p-groups: I 147

conséquence we are able to characterize the socles of p^^-projective p-groups
(5.5).

In a second paper on the same subject we shall continue to discuss the two
thèmes proposed above. In there we shall deal with results not provable in
ordinary (Zermelo-Fraenkel) set theory. Using différent additional hypothèses,
we shall establish a classification theorem for co1-separable co-filtered vector
spaces of dimension Kx on the one hand, and the existence of a large number of
non-isomorphic dense subspaces of codimension one on the other.
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1. The category of co-filtered vector spaces

In this section we focus on categorial properties of w-filtered vector spaces and
review some known facts about socles of abelian p-groups. To some extent the

présent discussion follows an unpublished note by Gabriel [G].
The category of co-filtered K-vector spaces and their morphisms, as defined in

the introduction, will be denoted by 9Y or, more precisely, 9YK ; it is additive
and has kernels and cokernels. We say that Y is a (filtered) subspace of Xg^7 if
the inclusion map /: YC^X is an embedding, Le., f1(Xn) Yn for ail n. The
quotient space X/Y will always be equipped with the filtration given by (X/Y)n
(Xn + Y)IY, n &lt;o&gt;, so that the natural map tt :X-&gt; XIY is a cokernel. Not every
monomorphism is a kernel and not every epimorphism is a cokernel; thus 9Y is

pre-abelian but not abelian.
Furthermore, 9Y has arbitrary products and coproducts. The symbols &quot;II&quot;

and &quot;©&quot; will be used for products and coproducts in 9Y, and the latter will be

called direct sums. If X and Y are subspaces of an û&gt;-fîltered vector space, X+ Y
will dénote the obvious subspace. Note that X+Y X@Y if and only if
Xn Y 0 and for ail n&lt;co, (X+ Y)n Xn + Yn.

Given any XefT, we note that for ail n, Xn is a direct summand of X:
if C is any vector space complément of Xn in X, we hâve X=C©Xn. Also
^°° rine&lt;o^n is a direct summand of X
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We remark that an &lt;*&gt;-filtered vector space X may as well be regarded as a

valuated vector space, where the valuation u:X^(uU{&lt;»} is given by

x (n if xGXn-Xn+1
lœ if xeX

In contrast to [F2, F3] we allow v(x) 00 also for xj= 0.

An co-filtered vector space X is called homogeneous (of value n where
n g a) U {00}) if v (x) n for ail x g X—{0} or, equivalently, X Xn for some n and
(if n^°°) Xn+1 0. A space X is X-homogeneous if it is a direct sum of
homogeneous subspaces; X is II-homogeneous if it is a product of homogeneous
spaces. The subspaces Xn, n &lt;&lt;o, of Xe^7 form a neighborhood basis at zéro of
a linear topology. Ail topological notions will refer to this topology. Thus X is

separated (Hausdorff) if and only if X°° 0. Note that a discrète space is a finite
direct sum (product) of homogeneous spaces.

In the category &amp;Y a séquence

0 &gt;X -L+Y-Ï-+Z &gt;0

is exact if / is the kernel of g and g is the cokernel of /. Every kernel and cokernel
is semi-stable (in the sensé of [RW]), so every exact séquence in SFY is stable
exact (cf. also [Mi]). We thus obtain in 3FY a homology theory w.r.t. ail exact

séquences. We aim to détermine the projectives and injectives. Variants of the

following results are well known (cf. [F2]); we therefore omit many of the proofs.

LEMMA 1.1. Every II-homogeneous (o-filtered vector space is injective. In
particular, every discrète and every finite-dimensional space is injective.

Let X g &amp;Y be of countable dimension. Then X Un«o Xn where {Xn | n &lt; co}

is an increasing chain of finite-dimensional subspaces and Xo 0. It foliows that
for ail n, Xn+1 Xn © Cn for some finite-dimensional Cn, and hence X ©n&lt;a) Cn.

Thus we hâve proved:

PROPOSITION 1.2. Every countable dimensional co-filtered vector space is

X-homogeneous.

PROPOSITION 1.3. There are enough projectives in &amp;Y; they are precisely the

separated X-homogeneous &lt;o-filtered vector spaces.
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Proof. It is not hard to construct a cokernel / : Y —» X where Y is separated
£-homogeneous and thus projective. This shows that there are enough projectives
and that every projective is a direct summand of a separated £-homogeneous
space. That every projective is itself £-homogeneous follows from 1.2 and
Theorem 4 of [WW].

PROPOSITION 1.4. Iff:X-+Y is a monomorphism in &amp;Y and Y is projective,

then X is projective as well.

Proof: Write Y ©n&lt;to Yn where Yn is homogeneous of value n. Let Xn
r\(Bk&lt;nYk) so that X=\Jn&lt;*,Xn- Now since Yn n(0k&lt;n Yk) 0, it follows
that Xn HXn 0. Therefore each Xn is discrète and hence injective, and by the
same reasoning as in 1.2 we conclude that X is projective.

Thus the dimension of the homology theory in &amp;^Y is one.

Remark. One could expect that our projectives would agrée with the projectives

of length &lt;co 4-1 in [F2]. This is not the case, however, because Fuchs
considers projectives relative to nice exact séquences (which agrée with the proper
projectives in [HW]).

Given X€ SFY we define its nth Ulm invariant /n(X) by

/n(X) dimK (X&quot;/Xn+1), n &lt;o&gt;;

furthermore we let /O0(X) dimK (X°°). Note that for X -homogeneous spaces X
the cardinals fn(X), n &lt;o&gt;, and /«(x) form a complète set of invariants. We call a

subspace JB of X basic if B is projective and dense in X. (Note again the
différence between this définition and that in [F2].)

PROPOSITION 1.5. Every co -filtered vector space X contains a basic subspace.

Any two basic subspaces of X are isomorphic.

For any Xe&amp;Y let X limn&lt;&lt;oX/Xn, the completion of X, be equipped with
the obvious filtration. The completion map yx :X-»X is a morphism in &amp;V; its
kernel is X°°. If X is projective, say X ©îc&lt;a)Xk where Xk is homogeneous of
value fc, we clearly hâve X rik&lt;a&gt; Xk. If X is any space and B a basic subspace of
X, then the inclusion h:B —»X induces isomorphisms B/Bn-^X/Xn (n&lt;co),

hence the induced map fi:Ê—»X is likewise an isomorphism.

PROPOSITION 1.6. There are enough injectives in SFY; they are precisely the

n-homogeneous &lt;*)-filtered vector spaces.

Proof. Each Xe&amp;Y can be embedded in X(BX°° which by the preceding
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considérations is /7-homogeneous and thus injective. This proves the first assertion.

It follows that any injective X is a summand of a /7-homogeneous space.
Consequently, X/X°° is complète and hence X itself is 17-homogeneous.

Our next aim is to indicate some basic facts concerning the relevance of
cu-filtered vector spaces to abelian p-groups. In what follows we adopt Gabriel&apos;s

point of view [G], which differs somewhat from the usual one (as given in [C] or
[F3]). With any abelian p-group G we associate its socle S G[p] which is an
co-filtered Z(p)-vector space where Sn pnGnS. Furthermore, to any
homomorphism f:G-*H between p-groups we assign its restriction f*:G[p] —&gt;

H[p], which is a morphism in iFKz(p).

LEMMA 1.7.

(a) f is a monomorphism if and only if so is /#;
(b) / is a pure monomorphism if and only if f* is an embedding;
(c) / is a pure epimorphism if and only if f* is a cokernel ;

(d) / is an isomorphism if and only if so is f*.

Proof. Most of the statements are routine to check. We indicate only how to
prove the &quot;if&quot; part of (b). Consider the induced map f : pnG —» Im (f) H pnH. Since

/# is an embedding, (f)% is an isomorphism. By (d) / is an isomorphism, hence
Im (f) is pure in H.

COROLLARY 1.8. [G]. Let f:G-+H, g:H-*K be homomorphisms of
p-groups such that g°/=0. Then the séquence

0 G -£-* H -£-* K &gt; 0

is pure exact if and only if the séquence

0 G[p] -!*-* H[p] ^&gt; K[p] 0

is exact in 3?Y.

COROLLARY 1.9 [C]. A p-group G is X-cyclic (Le., a direct sum of cyclic
groups) if and only if G[p] is projective.

COROLLARY 1.10 ([C], [G]). Given any œ-filtered vector space X over
there exists an abelian p-group G and an isomorphism G[p]:^X in 2FY.
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Proof. Choose a projective resolution

0 &gt; pt -iL_&gt; p0 » x &gt; 0

in &amp;Y. There exists a homomorphism f:F1-^F0 of S-cyclic groups such that
Ft[p] Pi (1 0,1), and / extends h. Now / is a pure monomorphism; hence by
1.8 G Coker (f) has the desired property.

Given a p-group G, its p-adic completion is denoted by Gp, and the torsion
completion of G is t(Gp), the torsion subgroup of Gp. The group G is torsion-
complète if G t(Gp).

COROLLARY 1.11 [FI, Theorem 70.6]. A p-group G is torsion-complète if
and only if G[p] is complète.

Proof. Obviously, if G is torsion-complète then G[p] is complète. Conversely,
suppose that G[p] is complète. Let v:G-*G dénote the natural map of G into
its torsion completion. By [FI, Corollary 68.2] v is a pure monomorphism whose
image is dense in G (w.r.t. the p-adic topology). Thus v*\G\_p\-+ G\_p\ is an
embedding with dense image. But then by hypothesis v* is an isomorphism and
hence so is v.

We conclude this section by quoting a resuit of Hill and Megibben which will
be one of the main tools for the application of our results on co-filtered vector
spaces to p-groups.

PROPOSITION 1.12 [FI, Theorem 66.3]. Let S be a dense subspace ofthe
socle of a p-group G. Then S supports a subgroup H which is pure and dense in G.

2. The abundance of oj,-separable spaces

In this section we begin our investigation of uncountable dimensional &lt;o-

filtered vector spaces by means of set-theoretic methods. For such spaces we
introduce a set-theoretic invariant F and discuss its significance. We shall prove
that for any prescribed value of F there exists a large family of non-isomorphic
spaces. This discussion largely parallels that in [Hu].

Let us first recall some terminology and notation from set theory. As usual, an
ordinal is identified with the set of its predecessors, and a cardinal is an ordinal
which has greater cardinality than ail its predecessors. Thus o&gt; is the first infinité
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cardinal, also denoted Ko. We shall use cuj and ^ interchangeably to dénote the
first uncountable cardinal. For any set X, |X| dénotes the cardinality of X. Given
an infinité cardinal k, a subset Xsk is closed if for each YeX, sup(Y)&lt;K
implies sup(Y)eX (where sup(Y) is the supremum of Y). A subset X is

unbounded (or cofinal) in k if sup(X)=K. The cofinality, cf(fc), of an infinité
cardinal k is the cardinality of the smallest Xçk such that X is cofinal in k. An
infinité cardinal k is regular if cf (k) k.

Suppose that k is a regular uncountable cardinal. A subset Cçk is called a
cub if it is closed and unbounded; Içk is thin if k-I contains a cub. The thin
subsets of k form an idéal ${k) of the Boolean algebra 0&gt;(k) of ail subsets of k.
Let D(k) dénote the quotient algebra $P(k)/£(k); dénote the image of Içk in
D(k) by L We hâve Ï J if and only if there is a cub C such that inC JnC.

def _. def
The least élément of D(k) is 0= 0 =$(k), and the largest élément is 1 k which
is just the filter dual to ${k). A subset Ic K is called stationary if 1^ 0; that is, for
ail cubs C,inC=£ 0. It can be proved that for every élément e €D(k)-{0}, the
interval [0, e] {feD(K) \f^e} has cardinality 2K; in particular, we hâve |D(k)|
2K.

Now let X be an co-filtered K-vector space of dimension k. A subspace Y of X
is said to be small if dimK(Y)&lt;K. An (ascending) K-filtration of X is a family of
subspaces {Xv | v&lt;k} of X such that

(0) Xo 0;
(i) if jx &lt; v then X^cX, (Le., it is a chain);

(ii) Xv is a small subspace of X for ail v;
(iii) if v is a limit ordinal, X,, U^&lt;v^ (the chain is smooth); and
(iv) x=a&lt;Kxv.

To indicate that {Xv|ï^&lt;k} is a K-filtration of X we will simply write X
Uv&lt;k ^C- The following observation is crucial.

LEMMA 2.1. I/X= Uv&lt;k K and X= Uv&lt;k ^v a^ ^wo K-filtrations ofX, then
the set C {v&lt;k \XV X&apos;V} is a cub.

The proof of this is essentially the same as for abelian groups (cf. [El, p. 260])
and is therefore omitted.

A filtered subspace Y of X is called a K-summand of X if Y is a direct
summand of every intermediate subspace Z such that dimK (Z/Y)&lt;k. Given a
K-filtration X Uv&lt;k^ we consider the set

E {v&lt;k\Xv is not a K-summand of X}.
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If we choose another filtration X UV&lt;K^ and let

E&apos; {v&lt;k | X&apos;v is not a k-summand of X},

then by 2.1 there is a cub C such that EnC EfCiC. Thus ÉgD(k) is an
invariant of X which will be denoted by F(X).

Analogously to [El, Thm. 2.5] one proves

THEOREM 2.2. Let X be an ù)-filtered vector space of regular uncountable
dimension k. Then

(1) F(X) 0 if and only if X is a direct sum of small subspaces.
(2) If F(X) f 1 then every small subspace Y of X is contained in a small

K-summand Y&apos; of X.

From now on we mainly concentrate on the case that dim(X) X1. Since
countable dimensional separated spaces are projective, 2.2(1) has the following
conséquence.

COROLLARY 2.3. A separated a)-filtered vector space X of dimension Ht
satisfies F(X) 0 if and only if it is projective.

We note that by 1.2 and 1.3 a subspace Y of a separated space X is an
cox-summand if and only if Y is closed in X. Therefore, if dim(X) co1, X
Uv&lt;a)1 Xv is any co^filtration of X, and E {v&lt;œ1 \ Xv is not closed in X}, then

É
An &lt;o-filtered vector space X will be called iùx-separable if every countable

subset of X is contained in a projective direct summand (hence in a countable
dimensional such summand). X will be termed weakly w^separable if it is

separated and every countable subset of X is contained in a closed countable
dimensional subspace. Clearly, every cox-separable space is weakly w

COROLLARY 2.4. IfXisa separated co-filtered vector space of dimension Xt
such that F(X) ^ 1, then X is weakly co^separable.

Let X be a separated space with dim (X) Ki, and let Y be a subspace of X
with the same dimension. Given an ûH-filtration X \Jv&lt;CoilXv, we let Yv

ynxv for ail v&lt;o)1. This defines an coi-filtration Y \Jv&lt;Ml Yv such that if Xv is
closed in X then so is Yv in Y. We conclude that T(Y)&lt;r(X).
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THEOREM 2.5. IfXhas dimension Xx and Y is a subspace with dim (X/Y)

Before we can prove this we need to rephrase in the language of co-filtered
vector spaces a significant relation which has been introduced by Hill in the
setting of valuated vector spaces [Hi]. Given an co-filtered vector space X and

subspaces Y, Z of X, Y is said to be compatible with Z if for ail n&lt;&lt;o,

(Y+Xn)C\Z^(YnZ) + Xn. We note that this relation is symmetric, and we
write Y || Z if Y is compatible with Z. The following facts are straightforward to
see.

LEMMA 2.6. (a) If {Z» | v &lt; p} is an ascending chain of subspaces of X with
Y || Z, for ail v&lt;p, then Y || LUP Zv.

(b) If Y\\Z then the natural map Y/YnZ-*(Y+Z)/Z is an isomorphism in
9Y.

PROPOSITION 2.7. Let X be an ay-filtered vector space of regular uncountable
dimension k. Then for any subspace Y of Xthere is a K-filtration X={JV&lt;K Xv such

that for ail v&lt;k, Y\\Xv.

This is a conséquence of [Hi; Lemma 3]. In this particular case, however, we
are in a position to offer a much simpler proof.

Proof. Let {xv \ v &lt; k} be a basis of X. By induction on v &lt; k we define
subspaces Xv of dimension &lt;k such that Y || Xv and for ail jx &lt; v, x^e Xv.
Suppose that X^ has been defined for ail jll &lt; v. If v is a limit ordinal, we let
XV U»&lt;VK- Clearly x^X, for ail &lt;x&lt;v, and Y||XV by 2.6(a). If v is a

successor, say i/ /m + l, we define an ascending séquence {Zk | k&lt;&lt;o} of
subspaces of dimension &lt;k such that Z0 Xix+Kx^, and for ail k, n&lt;w,

(Y+xn)nzkç(Ynzk+1)+xn.

This is possible because dim(Zk)&lt;fc. Now let Xv \Jk&lt;:oiZk. Then of course
xaeXv for ail a&lt;v and Y||XV. Thus by construction X \^]V&lt;KXV is a k-
filtration with the desired property. D

Proof of 2.5. By hypothesis and 2.7 there is an cox-filtration X [Jv&lt;œiXv

such that Y+Xx X, and Y||XV for ail v&lt;&lt;ox. Therefore for ail v&lt;a&gt;u

Y/YHXV=(Y+XV)/XV (in 9V) by 2.6(b). But this means that for ail v&lt;wt,

YHXV is closed in Y if and only if Xv is closed in X. Consequently, F(Y)
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The final dimension of an co-filtered vector space X is given by

findim (X) inf {dim (Xn)\n&lt; eo}.

We note that if findim (X) X0 then X X0©Xx where Xo is discrète and
dim (Xx) Ko. Therefore, if X is weakly cox-separable but not projective we hâve
findim (B)^o)1 for any basic subspace B of X.

We next prove that for any stationary subset £çû)15 F~1(É) has cardinality
&gt;2K*. In fact, our construction will provide a&gt;!-separable spaces, so that the
assumption on the given basic subspace is inévitable. Analogous results hold in
the case of o^-free groups [E2; Thm. 11.2] and a&gt;!-separable p-groups [Hu; Thm.
2.7]; in fact, for the scalar field Z(p) our theorem follows from that in [Hu].

THEOREM 2.8. Let B be a projective ay-filtered vector space with dim(B)
findim (B) K1? and let Ebe a stationary subset of&lt;ûx. Then there exist 2*1 mutually
nonisomorphic oy^separable œ-filtered vector spaces Xt (i&lt;2Ki) of dimension ^x
such that for ail i, r(Xt) É and B is isomorphic to a basic subspace of X,.

Before beginning the proof of 2.8, we prove a lemma which will also be used

in later sections.

LEMMA 2.9. Let Y, Z, S be subspaces of the separated space X such that Y is

dense in Z and Y+S=Y®S. Then we also hâve Z + S Z®S.

Proof. We first note that, since X is separated, for any pair (CJ, V) of
subspaces of X the statement l/+V=U©Vis équivalent to

forall ueU, ve Vand n&lt;&lt;o, u + ueXn implies v e Xn. (*)

Assuming (*) for the pair (Y, S), we show that (*) also holds for (Z, S). So let

zsZ, seS and n&lt;co such that z + seXn. By hypothesis there exists y 6 Y such

that z-yeXn. But then y + s (z + s)-(z-y)eXn. It follows that seXn, as

desired.

Proof of 2.8. Write B =©n&lt;a)Bn where Bn is homogeneous of value n. Since

countable dimensional summands do not change the F-invariant, we may assume

that for ail n, either Bn 0 or dim (Bn) o^. Furthermore, we may assume that E
consists of limit ordinals. Recall that a ladder on a limit ordinal 8 &lt;&lt;o1 is a strictly
increasing function % : eu -» 8 whose range is cofinal in 8. A ladder System on E is

an indexed family tj {% | 8 e E} such that % is a ladder on 8. We shall first
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construct for any ladder System TJ an cox-separable space X X(r\) as a subspace
of B=rïn«oBn.

If dim (Bn) ù)1 let {x(vn) | v &lt; oyj be a basis of Bn ; otherwise let x(vn) 0 for ail
v&lt;o)1. For any v&lt;o)1 let

S— £&amp; V^n^

e &lt;&lt;r&gt; | &lt; B(vy e &lt;x*r&gt; i »* *„&gt;,

n «n) !»*&lt;»&apos;&gt;, B(vx n

We observe that for ail v, B B(v)©B(v)&apos; and B B(v)©B(v)&apos;. For each

we define yô (yô(n))n&lt;aJ€B by yô(n) x^)(n); note that yôeB(S)-Uv&lt;ôB&lt;».
Now define X X(r\) as the union of a smooth chain {^ | v&lt;w1} of count

able dimensional subspaces of B where Xo 0 and

fXv + Sv if
v+1 lX + S + Ky if veE.

The following statements are easily checked:
(a) For ail v&lt;&lt;au BWçXvçBW;
(b) if veE then Xv is not closed in Xv+1.

Furthermore, we claim that
(c) if viE then X Xv©(XnB(y)&apos;).

To prove this we note that if 8 g E, 8 &gt; v, y6 may be written ys z + w where
zeB(i&gt;) and w€B(i/)&apos;. Therefore X Xv + (XflBW), and the claim follows by
2.9 since B(i^) is dense in X,,. Now (a) implies that B is a basic subspace of X, and
from (b) and (c) we infer that X is Wi-separable and f(X) É.

Our next aim is to prove that if r\ and tj1 are sufficiently différent ladder
Systems then X(tj) and X{t\x) are not isomorphic. (Hère the argument is simpler
than in the group theory case). Let h : a) -&gt; co be a strictly increasing function such

that for ail n, dim (Bh(n)) o&gt;i. Let i\ {% | 8 € E} and tj1 {rjs | ô g E} be ladder
Systems on E such that for each 8sE the following condition holds:

îïi(fc(n))^Tb(h(n + l)) for ail n&lt;o&gt;. (*)

We claim that X# Y where X X(tj) and Y X(t)1). Suppose to the contrary
that there exists an isomorphism fiX-^Y. Then there is 8eE and a strictly
increasing séquence of ordinals {v(n)\n&lt;&lt;o} with sup{v(n)} ô such that
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/(Xv(n)) Yv(n) for ail n and f(Xô) Y8. Now by définition we hâve

where z (xi1nft)(n))n&lt;to and w (x(T1f(n))n&lt;a). Since z eXf (the closure of X6 in X),
/(z) belongs to Yj. But Yj= Y6 + Kw, hence /(z) y + Aw for some y e Yô and

Now choose n large enough so that y e Yv(n) and let d
max{i&lt;co | î]ô(h(i))&lt;^(n)}. Define u (uk)k&lt;ZoieÊ by

f _«oo if
Mk~l0 oiotherwise

Thus we hâve ueXv(n) and z-ueXhid)+1. It follows that y-/(w)e Yv(n) and

/(z)-/(u)e Yh(d)+1. But this is impossible for *r\\{h(d))&gt;v(n) by (*) and thus the
h(d)th component of f(z) — f(u) cannot be zéro because Àxiîî^d» ^ 0.

This constructs two non-isomorphic spaces X and Y with the desired proper-
ties. To obtain 2*1 différent ones we proceed as in [E2; pp. 111-112].

We wish to apply Theorem 2.8 to p-groups. For a separable p-group G (Le.,
pwG 0) of cardinality a)t the F-invariant can be defined by F(G) É where

E {v&lt;&lt;x)11 Gv is not closed in G}

and G {Jv&lt;iOil Gv is any cox-filtration (cf. [Hu], remark after Cor. 1.3). Of course,
we may assume that each Gv is a pure subgroup of G. But then for ail v &lt;&lt;ol9 Gv
is closed in G if and only if Gv[p] is closed in G[p]. Thus we obtain

PROPOSITION 2.10. For any separable p-group G of cardinality ^ we hâve

n

Recall that a p-group is termed co^separable if every countable subset of G is

contained in a (countable) 2-cyclic direct summand of G, whereas G is weakly
(àx-separable if it is separable and every countable subset is contained in a
countable closed pure subgroup of G. We hâve not been able to dérive [Hu; Thm.
2.7] from 2.8 above, because we do not know whether every ûh-separable
w-filtered Z(p)-vector space is the socle of an o^-separable p-group. However, we
obtain the following slightly weaker resuit.

COROLLARY 2.11. Let B be a 2-cyclic p-group of cardinality Kx and final
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rank X1? and let E be a stationary subset of a)^ Then there exist 2Kl mutually
nonisomorphic weakly cj^separable p-groups Gx (i &lt;2K*) such that for ail i, B is a
basic subgroup of G, and F(Gl) É.

Proof. This is a conséquence of 1.12, 2.8 and the following theorem of
Megibben&apos;s which we quote explicitly since it will be applied again several
times.

THEOREM 2.12 [Meg2; Thm. 1.1]. Let G be a separable p-group. Then G is

weakly (o^separable if and only if G[p] is weakly ù)r-separable as an w-filtered
Z(p)-vector space.

3. The realization of F-invariants by subspaces

In this section we attempt to imitate inside a given co-filtered vector space X
the construction of the proof of Theorem 2.8 in order to find a dense subspace
with a prescribed value of F. This leads us to introduce another set-theoretic
invariant, X(X), taking its values in D(a)i). It will turn out that any value of F
between 0 and X(X) can be realized (Theorem 3.4).

In the sequel, X will always dénote a separated w-filtered vector space of
dimension wx. Given an o^-filtration X Uv&lt;a&gt;1^v&gt; we let

E — i v g Lim (ct&gt;i) IX^, 7= u

where Lim (cox) is the set of ail limit ordinals &lt;wl9 and Xv dénotes the closure of
Xv in X. Let X \Jv&lt;ù}îX&apos;v be another ûh-filtration and let E&apos;

{v e Lim (coO | Xfv £ U^&lt;v X&apos;J. From 2.1 we know that C {v&lt;a)1\Xv Xrv} is a

cub, and thus so is C, the set of limit points of C. But E fï C E&apos; n C\ so that
ÉeDia)^ is an invariant of X which will be denoted by X(X).

We note that X(X) 0 if and only if X admits an cox-filtration X=\J^&lt;VXV
such that for ail v€Lim(a&gt;!), Xv= [J^^X^ If this holds we shall say that X
satisfies SCC (the smooth chain of closures condition). For example, every
projective space satisfies SCC; on the other hand, any space X containing a
countable dimensional basic subspace trivially satisfies SCC.

If p is an ordinal =^&lt;0i, the diagonal intersection of a family {Ia \ a &lt; p) of
subsets of ù)x is defined by Aa&lt;P4 {v&lt;a&gt;11 v e rL&lt;nmliVtP) Ia}, whereas the
diagonal union is Va&lt;pIa ={v&lt;a&gt;11 vGUa&lt;min(v,P)4}- From the fact that the
diagonal intersection of p cubs is again a cub [J; Lemma 7.5], it follows that
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(Va&lt;p4)~ is the supremum in D^) of the family {ïa:a&lt;p}; we dénote it by
V«&lt;P4. Of course V«&lt;P4 (U«&lt;P4r if p&lt;oy1.

PROPOSITION 3.1. Let p be an ordinal &lt;co1? and let X 0&lt;K&lt;pX(ot) where

for each a&lt;p, X(ot) has dimension ù)t. Then X(X) \/a&lt;CpX(X(a)).

Proof. For each a&lt;p choose an o^-filtration X(ot) Uv&lt;o&gt;1 Xa) and let Ea
{v€Lim(co1)|X^T^U^&lt;vX^}. Let X {jv&lt;tûiXv be the eoi-filtration given by
Xv=®a&lt;nuniVfP)X^\ and let E {veUm(a&gt;1) \ KÏU^XJ. Now for each
limit ordinal v we hâve

ux,= u © xf)= © u x&lt;r\
ix&lt;v m-&lt;v a&lt;min(|x,p) a&lt;min(v,p) m-&lt;v

We infer that E Va&lt;p Ea and hence X(X) (Va&lt;p £:a)~ V«&lt;P X(X(a)). D

Thus, in particular, X ©ot&lt;pX(o0 satisfies SCC if and only if so does X(o° for
each a &lt; p. This implies, for instance, that any space X with a basic subspace of
countable final dimension satisfies SCC.

PROPOSITION 3.2. For any subspace Y of X we hâve X(Y)&lt;X(X). In
particular, if X satisfies SCC, then so does every subspace of X.

Proof. By 2.7 there is an wx-filtration X Uv&lt;Wl^ such that for ail v, Y\\ Xv.
For ail v&lt;o)l9 let Yv YCiXv. Clearly, Yj is contained in YHXV. On the other
hand, by the choice of the Xv&apos;s

Ynxv= fl [Yn(xv+xn)]ç n [(Yv+xn)nY]=yy.

Therefore, if v is a limit ordinal such that Xv U^^ we obtain

Y?=Ynxv= u (Ynxj= y fl
We conclude that X(Y)&lt;X(X), as desired. D

A (weakly) wj-separable space will be called proper if it is not projective.

PROPOSITION 3.3. (a) For each space X we hâve 2(X)&lt;F(X).
(b) If X is weakly (o^separable, then 5(X) F(X). Thus no proper weakly

&lt;*&gt;i-separable space satisfies SCC.
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Proof. Statement (a) is clear from the définitions. To prove (b) we let X
Uv&lt;&lt;u1 X» t&gt;e an oh-filtration such that for ail v &lt;a&gt;u Xv+1 is closed in X. Then for
each vGlimCûJi) we hâve X^-iJ^^X^. Therefore Xvî\}^&lt;vX^ if and only if
Xv is not closed in X; hence 2(X) F(X). D

Remark. Let X be a space satisfying £(X)&lt;F(X). Then X is not weakly
cox-separable and hence F(X) 1. Actually such spaces are in abundance: To any
subset JE of a&gt;! there exists a space X such that 2(X) É and F(X) 1: take
X X0©X1 where dim (Xo) dim (Xx) o&gt;l5 Xo has a countable dimensional
basic subspace, and Xx is weakly o^-separable with r(Xt) É.

Let X be a space of dimension Kl9 and let Y be a subspace of X with
r{Y)îr(X). Then Y is weakly ah-separable, hence r(Y) X(Y)^2(X) (by
3.3(b) and 3.2). Therefore the next theorem (which is the main resuit of this
section) is best possible.

THEOREM 3.4. Let X be a separated œ-filtered vector space of dimension Xl5

and let Ebe a subset of o)1 such that S(X) É. Then for every subset E&apos; of E there

exists a weakly wi-separable dense subspace Y of X of dimension H1 such that

COROLLARY 3.5. If X is weakly oy^separable with F(X) É, then for every
subset E&apos; of E there exists a dense subspace Y of X satisfying F(Y) E&apos;.

Remark. In [EMS] a resuit similar to 3.5 has been proved for strongly K-free

groups of regular uncountable cardinality k.

COROLLARY 3.6. Every separated ay-filtered vector space X of dimension Ki
which fails to hâve SCC contains 2Kl mutually nonisomorphic dense subspaces
which are weakly iax-separable and of codimension N^

Proof. This follows from 3.4, 2.5 and the fact that for each e e Dico^ -{0} the
interval [0, e] has cardinality 2Ki.

Proof of Theorem 3.4: Let B be a basic subspace of X, let X Uv&lt;o&gt;1 Xv be an

oh-filtration, and let BV BC\XV for ail v&lt;w1. Since B is dense in X, there is for
each n&lt;a) a cub Cn such that for ail veCn, Bv + (XnnXv) Xv. Now C
rin&lt;a&gt; Cn is again a cub, hence we may assume that

(i) for ail v&lt;û)l9 Bv is dense in X^,.

Furthermore, w.l.o.g. we may assume that E equals {v e Lim (ah) | Xv^ Um.&lt;v X^}
and that the following conditions hold:

(fi) for ail veE, (XvnXv+1)-U&lt;vX^ 0;
(iii) for ail v&lt;a&gt;1, Bv is a summand of B.

For each v&lt;(ol9 let BV+1
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Now if E&apos; is a subset of E we define Y as the union of an c^-filtration
{Yv | v &lt;&lt;ot} of subspaces of X such that

n if
if veE&apos;,

where xve(XvnXv^1)-\J^&lt;CvX^. By (ii) such an xv exists. Obviously, we hâve
BV^YV^ Xv for ail v &lt;&lt;o1&apos;, thus by (i) Yv is dense in Xv.IiveE&apos; then Yv is not
closed in Y because xveXvHY=Yj but xv^Xv, hence xv g Yj- Yv.

It remains to show that Yv is closed in Y for ail vewx-E&apos;. Given v£E\ we
shall prove by induction on t that Yv is closed in YT for ail r &gt; v. There is no
problem at limit stages. So suppose that t /x 4-1 where jul &gt; v. We wish to prove
that Yv H Y^+j Yv H Y^ and thus Yv H Y^+i Yv by induction hypothesis. So let
a e Yv H Y^+1. Then we hâve

_f
l

where yeY^seS^AeK if n

y + s where yeY^seS^ otherwise.

If juleE&apos; there is a &lt;r, i/&lt;ct&lt;jul, such that yeY^, and thus Kx^ a-y — se
X^ + S^. On the other hand, kx^ e X^ and hence Ax^ eX^fl (^ + S,,,). Since B^ is
dense in X^, we hâve X^ H S^ 0 by 2.9. Therefore Ax^ 6 X^ which implies A 0,
and thus in both cases a y + s for some y g Y^ and s g S^. But then a g
^v H Y^ + S^), and the argument just used shows that indeed aeYvC\ Y^.

Consequently, Yv is closed in Y for ail v g ù)1 - E&apos; and thus F(Y) É&apos;. Finally,
since E1 consists of limit ordinals, we infer that Y is weakly cox-separable, and

hence2(Y) F(Y).

As a further conséquence, we obtain a characterization of spaces satisfying
SCC.

COROLLARY 3.7. For a separated (o-filtered vector space X of dimension Kx
the following statements are équivalent:

(a) X satisfies SCC;
(b) every weakly oy^separable subspace of X is projective;
(c) every weakly (o^separable dense subspace of X is projective.

Proof. This follows readily from 3.2, 3.3 and 3.4.

On the other hand, assuming the Continuum Hypothesis (CH) we can con-
struct an X which fails to hâve SCC yet does not hâve a closed subspace which is

proper weakly cox-separable:
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THEOREM 3.8. Assume CH. Given a countable field K, there exists an
(û-filtered K-vector space X of dimension Xx which fails to hâve SCC, but such that

every closed subspace of X which is weakly oii-separable is discrète (hence

projective).

Proof. Let B ©n&lt;Cl) Bn where for each n, Bn is homogeneous of value n, and

dim(Bn) o&gt;1. We construct X as a dense subspace of B as in the proof of 2.8,
with the following changes.

Let Ebea stationary set of limit ordinals &lt;o)1. By CH the set of ail countable
subsets of Ê has cardinality %. Fix an enumeration {Yv\vG(o1~E} of ail
nondiscrete countable (dimensional) subspaces of B such that each of them occurs
(o1 times.

Now define Xv by induction on v&lt;(o1 such that B(v)çXvçB(v) (notation as

in 2.8). The crucial cases are when i&gt;€JE, resp. when vsa)1-E and YvçXv. If
v e E we let

where Sv is as in 2.8 and yv eÊ(v)- U^&lt;v B(/ul). If v e cû1 -E and Yv c Xv we let

where zveYv- Yv. Such a zv exists because every closed subspace of B is

U-homogeneous, hence Yv cannot be closed.

Finally, let X=\Jv&lt;oiiXv. By construction we hâve X^j^U^^X* for each

veE9 hence 2(X)&gt;Éj=0. On the other hand, for any nondiscrete countable
subspace C of X there is a v e (ox — E such that C=YV^ Xv, hence C is not closed
in X. We infer that X has the desired properties.

Theorem 3.4 and its corollaries hâve interesting applications to p-groups. The
first of them is immédiate from 3.7. (Following the terminology for spaces a

(weakly) cox-separable p-group is said to be proper if it is not X-cyclic).

COROLLARY 3.9. If G is a separable p-group of cardinality Ht whose socle

satisfies SCC, then G does not contain any pure subgroup that is proper weakly
cûx-separable. Thus every pure subgroup H of G satisfies either F(H) 0 or
r(H)=i. n

The next resuit follows from 3.4, 1.12 and 2.10.
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COROLLARY 3.10. Suppose that G is separable and of cardinality Kx such
that G[p] does not satisfy SCC. Then there is a stationary subset E of ù)x such that
for each JE&apos; c JE there is a pure dense subgroup H of G satisfying F(H) Ë&apos;. If Gis
weakly a)t-separable, then E can be chosen so that F(G) É.

As an immédiate conséquence of 3.9 and 3.10 we obtain the following

COROLLARY 3.11. If a separable p-group G of cardinality ï&lt;t contains any
pure subgroup which is proper weakly (o^separable, then G contains 2*1 pairwise
nonisomorphic pure dense subgroups which are weakly co^separable.

For the next application we need to recall some facts about co-elongations.
Given p-groups G and B, an oj-elongation of G by B is an exact séquence

(&lt;p) 0 &gt; B &gt; A -^-* G &gt; 0

such that Ker(&lt;p) c p^A. Given an œ-elongation (&lt;p), we define

(If G Alp°iA and ç&apos;.A-^A/p^A is the natural map, we shall write P(A)
instead of P(&lt;p).) It is readily seen that P(&lt;p) is a dense subspace of G[p].
Conversely, to every dense subspace P of G[p] there exists an o&gt;-elongation (&lt;p)

of G by an elementary p-group B such that P(&lt;p) P. (Hère a p-group B is called
elementary if pB 0; in this case B is a /(p)-vector space). More precisely, we
hâve the following criterion which is essentially due to Richman [R].

CRITERION 3.12. Let G and B be p-groups where B is elementary of
dimension d and assume that co-elongations of G by B exist. Then the map which
associâtes to each co-elongation (&lt;p) ofGbyB the cj-filtered vector space P(ç) gives
a one-to-one correspondence between isomorphism classes of (o-elongations of G by
B and équivalence classes of dense subspaces of G[p] of codimension d.

Hère two subspaces P, Q of G[p] are called équivalent if there is an
automorphism 7 of G such that 7(P) Q. Two co-elongations 0-*B-»A^
G-»0 and 0-»B-*A&apos;^»G-»0 are isomorphic if there is an isomorphism
ot:A^Ar and an automorphism 7 of G such that y°&lt;p ip°a. By [N; Thm. 1.6]
w-elongations of G by B exist if and only if dim(B)&lt;finrk(G) where
finrk(G)d= inf {dim (pnG[p]) | n &lt;o&gt;}, the final rank of G.
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The final resuit of this section strengthens Theorem 3.1 of [W] for a certain
class of separable p-groups. Recall that, in contrast to this, if G is 5-cyclic and B
is any p-group, then every two co-elongations of G by B are isomorphic. (This
follows from [FI; Thm. 83.4].)

THEOREM 3.13. Let Gbe a separable p-group of cardinality Hx containing a

pure subgroup which is proper weakly ù)x-separable, and let B be an elementary

p-group of dimension Xx. Then there exist 2*1 mutually nonisomorphic w-
elongations of G by B.

Proof. The hypothesis on G implies that G{p] does not hâve SCC (by 3.9).
Thus by 3.6 G\_p] contains 2Ki mutually non-isomorphic dense subspaces of
codimension &lt;ol9 and the theorem follows by 3.12.

4. On pa&gt;+1-injectîve p-groups

For any ordinal a, a reduced p-group A is called pa-injective if
p&quot; Ext (C, A) 0 for ail p-groups C. The group A is p&lt;o+1-injective if and only if
p^A^Alp] and A/pwA is torsion-complète (cf. [S; Thm. 54.5]). Such groups
hâve been studied by Richman; as a conséquence of the main theorem of [R] (cf.
3.12 above) he obtained:

CRITERION 4.1 [R; Corollary 1]. Let A and B be p^-injective p-groups.
Then A=B if and only if P(A)^P(B) as œ-filtered vector spaces. Moreover, for
any separated aj-filtered Z(p)-vector space X there is a p^^-injective p-group A
such that P(A X.

(The définition of P(A) has been given before 3.12.) The following characteri-
zation of p&lt;o+1-injectives is of quite some interest to us. This is essentially
contained in [S; section 55]; for the sake of completeness we hâve chosen to
include a proof. Let G dénote the torsion completion of G, and let the Z(p)-
vector space G[p2]/G[p] always be equipped with the filtration from G/G[p],

THEOREM 4.2. (a) Let G be a separable p-group. Then A G/G[p] is

p^^-injective and P(A)^G[p2]/G[p] (as (o-filtered l(p)-vector spaces).

(b) IfA is a p^^-injective p-group, then there exists a separable p-group G such

that A s G/G[pl

Proof. (a) If A G/G[p] then clearly p&quot;A G[p]/G[pl We infer that

^pG, and the latter obviously is torsion-complète. Hence A is
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p^-injective. To verify that P(A) G[p2]IG[p] (in 9Y) we consider the
composite map il*:G/G[p] &lt;-* G/G[p]-^&gt;GIG[p]. Clearly ijj is injective and
t/&gt;(G[p2]/G[p])eP(A). Furthermore, Im(i//) is pure in G/G[p], since G is pure
in G. So it remains to show that P(A) is contained in the socle of Im (ifj). Let
xeôbe such that px g G[p]. Then by purity of G in G there is y g G such that

py px. It follows that y e G[p2], y — x g G[p], and hence x + G[p] i|/(y + G[pD.
(b) By Corollary 1.10 there is a p-group H such that H[p] P(A). Now if G is

a p-group such that pG^H, then P(A) G[p2]/G[p], and the resuit follows from
4.1 and 4.2(a).

For a separable p-group G, we say that A G/G[p] is the p&lt;u+1-injective

p-group associated with G. Clearly G is 5-cyclic if and only if P(A) is projective,
and if G, H are JS-cyclic and B ïi/H[p], then A=B if and only if pG pH.
Furthermore, we hâve the following.

PROPOSITION 4.3. Let G be a separable p-group, and let A be its associated
p&lt;o+1&quot;injective group. Then

(a) G is weakly w^separable if and only if so is P(A);
(b) If \G\ a&gt;u then

Proof. Because of 4.1, 2.12 and 2.10 it suffices to show that G[p] is weakly
corseparable if and only if so is G[p2]IG[pl resp. r(G[p]) r(G[p2]IG[p]). But
this will follow from the subséquent lemma.

Given any space Xe&amp;Y, for each n &lt;w define spaces X(&quot;n) and X(n) in &amp;Y

by

(X(~n))k Xn+\ (X(n))k Xmax{ak-rt}, fc &lt; co.

Note that if X==G[p] then X(-l)^G[p2]/G[pl

LEMMA 4.4. For ail n&lt;o) we hâve

(a) X is weakly oy^separable if and only if so is X(~n);

(b) If dim (X) co! then T(X) r(X(~n)).

Proof. (a) The &quot;only if&quot; part is straightforward to prove. Suppose now that
X(n) is weakly corseparable, and let Y be a countable dimensional subspace of
X. Let Y=Yn0Yn, and let X Xn0Xn such that YnçXn. Since YnfïXn 0,
such an Xn exists, and Yn is a direct summand of Xn because Yn is discrète. By
hypothesis, Y(~n) is contained in a closed countable dimensional subspace W of
X(~n). Then we hâve YnçW(n)ç=Xn and W(n) is closed in Xn. Therefore,
yn © W(n) is a closed countable dimensional subspace of X containing Y.
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(b) Let X Xn©Xn. Choose c^-filtrations Xn^\Jv&lt;MlYv and Xn
Uv&lt;col2^« Then XV YV(BZV defines an co^filtration of X. But by définition
X» is closed in X if and only if Zv is closed in Xn if and only if (Xv)(~n) is closed
in X(&apos;n). Hence T(X) F(X(~n)), as desired.

Remarks. (1) Similarly one proves that X is cox-separable if and only if X(~n)
is û&gt;!-separable.

(2) Note that if G is cot-separable and A is its associated p&lt;u+1-injective, then

every countable subset of A is contained in a direct summand with countable
basic subgroup.

COROLLARY 4.5. A p-group G is weakly o}x-separable if and only if so is

pnG for some n.

Proof. This is immédiate from 4.4(a) and 2.12.

For cox-separable p-groups the corresponding resuit is contained in [Cu]. We
conclude this section with an abundance resuit which is a conséquence of 2.8, 4.1,
4.2 and 4.3.

COROLLARY 4.6. For any stationary subset E of o)x there exist 2Ki weakly
œ^separable p-groups Gt (i&lt;2to&gt;1) of cardinality Ht such that their associated

p^^-injective groups At GJG^p] are mutually nonisomorphic yet for ail i,

K n

5. Projectile résolutions and socles of p o+1-projective p-groups

We begin this section by considering the following question: Given
for which projective spaces K does there exist a projective resolution

in 2FY1 The resuit of this investigation (Theorem 5.3) will be applied to
characterize the socles of p°&gt;+1-projective p-groups.

PROPOSITION 5.1. Let X be an &lt;o-filtered vector space of countable dimension,

and let S be a coinfinite subset of oj. Then there is a projective resolution
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such that for ail nea&gt;,

f(K) \° if n€Si
11 otherwise.

(For the définition of fn(K) see Section 1.)

Proof. Since dim (X) is countable, we hâve X X°°© Q where Q is projective.
Thus we may assume that X X°°; say X 0ieI Kx,y where \I\ &lt; co. Let S w - S,

and décompose S LIk&lt;pSk (disjoint union) such that each Sk is infinité and

p |J|. Define the projective space P by Pm=0 KOn, and let tt:P-»X be

given by ttCc^) xk, where fc is the unique number such that n e Sk. Clearly, tt is a

cokernel, and if K Ker(Tr) we obtain a projective resolution

Clearly, for n e co,

fO if neS
fn{

11 otherwise.

Since fn(P) fn(K) + fn(X), and /n(X) 0, the resuit follows.

COROLLARY 5.2. IfXis a countable dimensional (o-filtered vector space and
K is any nondiscrete projective space, then there exists a projective resolution

Proof. Since K is nondiscrete, we may write K K0(&amp;K1 such that, for some
coinfinite subset S of co,

if ne S;

otherwise.

Now the resuit follows from 5.1.

THEOREM 5.3. Let X be an co-filtered vector space of dimension k. Then for
any projective w-filtered vector space K with findim(X)&gt;K there exists a projective

resolution

0-+K-+P-+X-+0.
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Proof. The proof is by induction on k. For k &lt;o&gt; this is precisely Corollary 5.2.
Now suppose that k is uncountable. In this case, it suffices to consider spaces K
such that for some coinfinite subset S of eu,

if ne S;
otherwise.

We represent X as the union Uv&lt;K X,, of a smooth chain of subspaces such that
dim(Xv)&lt;K. For each v&lt;k we choose a projective resolution

0 &gt; Kv &gt; Pv ^ Xv+1/Xv &gt; 0

such that

f
l

O if neS;
dim(Xv+1/Xv) otherwise.

By induction hypothesis such a resolution exists. Now by induction on v we define

projective resolutions

P(v):0 &gt; 0K, &gt; 0 F^ ^^ Xv ^ 0

such that for ail p&lt;v the diagram

o —&gt; ei^ —^p,-^xp —&gt;o
jx&lt;p M-&lt;P

f f f

commutes. Suppose that P(n) has been defined for ail jll &lt; v. If ^ is a limit
ordinal, we take unions. If v is a successor, say v p 4-1, we shall construct P(v)
such that the diagram D(p, v) commutes. Then by induction hypothesis D(jll, v)
will commute for ail jx &lt; v.

Since Pp is projective, there exists a map 0:PP -»XP+1 making the diagram

Xp+1/Xp
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commute. Let PP=©^&lt;PPP, and let x *&gt;°% :PP -*XP+i, where i:Xp -*XP+1
dénotes inclusion. Then there is a unique morphism %+1:Pp®Pp -»XP+1 satis-
fying %+1 \ Pp x and %+1 \ Pp 0; an easy computation shows that %+1 is a
cokernel. Now let N Ker(^p+1). It is easy to see that the exact séquence of
vector spaces

0-»© K^^N^K^O

is in fact exact in 2FV. Therefore Ns©^^^, and the construction of P(v) is
accomplished.

Finally, taking limits, we obtain a projective resolution

and by construction we hâve K=©tA&lt;K K^.

We are now going to apply Theorem 5.3 to p-groups. For any ordinal a, a

p-group G is called pa-projective if for ail p-groups A, p&quot; Ext (G, A) 0. The

group G is p&apos;^-projective if and only if G[p] contains a subgroup K such that
G/K is 2-cyclic if and only if G is the quotient of a 2-cyclic p-group modulo an
elementary p-group (cf. e.g., [S; Thm. 38.1]). Fuchs and Irwin hâve shown that
pa&gt;+1-projective p-groups are determined by their socles regarded as valuated
vector spaces [FI; Thm. 3]. (Notice that since such groups hâve length &lt;oy +1, we
may as well regard their socles as objects in SFV.)

THEOREM 5.4. Suppose that X is an œ-filtered ïipYvector space such that
X=Y©P, where P is projective and fin dim (X) fin dim (P). Then there is a
unique p°*+1-projective p-group G such that G[p] X (in 2FY).

Proof. Let K P(1) (cf. Section 4). Clearly fin dim (K) fin dim (P). Therefore
by 5.3 there exists a projective resolution

At this point we could appeal to [FI; Thm. 4], but instead we give a self-contained
construction. Now let F be the S-cyclic p-group determined by F[p]=Q and let
G F/K which is p^^projective. Since K is a projective subsocle of F, it
supports a pure (X-cyclic) subgroup U of F. Let i : 17 e-» F dénote inclusion, let
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ir:U-* U/K be the natural map, and define

A:U~*F®U/K

to be the unique map with components i and —it. It is readily seen that A(U) is

pure in F© U/K and that Coker(4) G. Hence we hâve obtained a pure-
projective resolution

Passing to the socles, we infer from 1.8 that G[p] (F/U)[p]©(U/K)[p] (in &amp;Y).

But (F/U)[p]= Y and (UIK)[p]^K(-x)^P. Hence G[p]=Y@P X, as desired.

Finally, uniqueness of G follows from Theorem 3 of [FI] quoted above.

A p-group G is called C-decomposable if G H(BC where C is 5-cyclic and
has the same final rank as G. Analogously, we call an co-filtered vector space X
C-decomposable if X Y®P where F is projective and fin dim (F) fin dim (X).
Clearly, if G is C-decomposable, then so is G[p]. It follows from [FI; p. 466] that

every p&lt;°+1-projective p-group is C-decomposable. Consequently, together with
5.4 we obtain the following.

COROLLARY 5.5. Let X be an œ-filtered l(p)-vector space. Then X is the

socle of a p*°+1-projective p-group if and only if X is C-decomposable.

Remark. Theorem 5.4 is implicit in [CuM]; in there, a différent means of
proof is employed.
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