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Caractéristiques d&apos;Euler et groupes fondamentaux des variétés de
dimension 4

Jean-Claude Hausmann et Shmuel Weinberger(1)

Dans cet article, on établit des relations entre la caractéristique d&apos;Euler d&apos;une

variété close orientable de dimension 4 et l&apos;homologie de certains sous-groupes de

son groupe fondamental. Ceci nous permet de produire les premiers examples de

groupes qui sont des groupes fondamentaux de sphères d&apos;homologie en dimension
2*5 mais pas 4. On obtient aussi de nouveaux exemples de groupes de noeuds
multidimensionnels qui n&apos;apparaissent pas comme groupe de noeuds en dimension

4.

1. Résultats généraux

Soit X un CW-complexe. Pour F un corps, on définit bf(X) dimFHt(X; F).
Si G est un groupe, on note bf(G) dimF Ht(K(G, 1); F). Considérons une
présentation finie 3^ d&apos;un groupe G, avec g générateurs et r relateurs. La
déficience d(&amp;) de 0&gt; est définie par d(&amp;)=g-r. On sait que d(&amp;)^

bf(G)-bf(G) (voir [1]). La déficience dG de G est le maximum des d{$&gt;) pour
toutes les présentations finies &amp; de G.

Soit G un groupe de présentation finie. On définit

q(G) inf {x(M) \ M variété close orientable lisse de dimension 4 et

où x(M) est la caractéristique d&apos;Euler de M. A priori, on a q(G)€ZU{-&lt;»}. En
fait, on a:

THÉORÈME 1. Pour tout groupe G de présentation finie et tout corps F, on a:

2 + bf(G) - 2bf(G) ^ q(G) ^ 2(1 - dG)

1 Le second auteur est au bénéfice d&apos;une &quot;NSF Postdoctoral Fellowship&quot;
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140 J -C HAUSMANN ET S WEINBERGER

EXEMPLE. Pour G 1, on obtient 2^q(l)^2; les deux inégalités étant des

égalités, ceci prouve que l&apos;énoncé du Théorème 1 ne peut pas être amélioré en
général.

Démonstration. Sout M une variété close orientable de dimension 4 avec

tt^M) G. Par dualité de Poincaré, on a bF(M) bF(M) 1 et bF(M) bF(M).
D&apos;autre part, on a bF(M) bF(G) et bF(M) ^ bF(G). Ce dernier fait provient de ce

que, pour tout complexe X, on a KCtt^X), l) XU{cellules de dim ^3}, d&apos;où

H2(X;F)-^H2(K(7r1(X);F) est surjective. On a donc:

X(M) 2 + 6f(Af) - 2bF(M) ^ 2 + bf(G) - 2bF(G)

ce qui montre la première inégalité. Pour l&apos;autre inégalité, soit
&lt;al5..., ag | ml5..., mr) une présentation de G avec g-r dG. Soit \Vi la variété
de dimension 4 orientable obtenue par attachement de g anses d&apos;indice 1 à la
boule B4. Les mots m, représentent des éléments de tt1(3W1) ttiCWx) sur
lesquels on peut attacher des anses d&apos;indice 2. La variété W4 ainsi obtenue
satisfait tt^W) G et ^(ôW) -&gt; tti(W) est surjectif. Soit M le double de W (i.e.
le recollement de deux copies de W le long de leur bord). La variété M est

équipée d&apos;une décomposition en anses avec: une anse d&apos;indice 0, g anses d&apos;indice

1, 2r anses d&apos;indice 2, g anses d&apos;indice 3 et une anse d&apos;indice 4. D&apos;où x(M)
2(1 -dG). On vérifie que rr1(M) G par le théorème de Van-Kampen.

Le fait que xiM) - k # x(M) pour M—? M un revêtement à k feuillets donne
immédiatement le corollaire suivant:

COROLLAIRE 2. Soit G un groupe de présentation finie et soit T un sous-

groupe d&apos;indice k dans G. Alors, pour tout corps F, on a:

2+bF(T)-2bF(T)*zk -q(G)

Remarquons que cette condition est spécialement forte lorsque q(G)^0.

EXEMPLES. Le groupe Zm contient des sous-groupes isomorphes à lui-
même d&apos;indice arbitrairement grand. D&apos;où q(Zm)^0 par le Corollaire 2. Le
Théorème 1 donne que -l^q(Z2)^0. D&apos;où q(!2) 0. De même, q(Z4) 0,

puisque la caractéristique d&apos;Euler du tore de dimension 4 est 0. En revanche, un
argument de M. Kreck permet de montrer que q(Z3) 2.

Dans le même esprit que le Corollaire 2, on a:

PROPOSITION 3. Soit G un groupe de présentation finie et P un sous-groupe
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parfait d&apos;indice k dans G. Alors, pour tout groupe abélien A, il existe un homomor-
phisme surjectif Akq(G)~2 -* H2(K(P, 1); A).

Démonstration. Soit M une variété close orientable de dimension 4 avec

tt^M) G et x(M) q(G). Soit M -&gt; M le revêtement avec ir^M) P. Comme
P est parfait, on a Ht(M; Z) H1(M; Z) H3(M; Z) 0 et H2(M; Z) H2(M; Z)
est abélien libre. On obtient *(M) k • q(G) 2 + rang (H2(M; Z)), d&apos;où

H2CM; A) Akq(G)~2. La proposition découle alors de l&apos;épimorphisme

H2(M; A) -* H2(K(P, 1); A) rappelé dans la démonstration du Théorème 1.

Remarque. Dans les trois résultats ci-dessus, il n&apos;est pas nécessaire que M soit
une variété. Seule la dualité de Poincaré à coefficients constants est utilisée dans

la démonstration du Théorème 1, et la dualité de Poincaré à coefficients locaux

pour le Corollaire 2 et la Proposition 3. On peut donc définir qp(G) (on remplace
&quot;variété close&quot; par &quot;complexe de Poincaré&quot;). Nous ignorons si qp(G) q(G) en
général. De même, il serait intéressant de savoir si Ton obtient le même q(G)
pour des variétés difïérentiables où topologiques.

2. Application aux groupes de noeuds

Un groupe G est un groupe de noeud en dimension n s&apos;il existe un plonge-
ment difïérentiable f:Sn~l ^ Xn (Sn~~2 étant la sphère standard et X une sphère
d&apos;homotopie), tel que ir1(i;-/(Sn~2))= G.

LEMME 4. Soit g un groupe de noeud en dimension 4. Alors q(G) 0.

Démonstration. Il est bien connu que H^G; Z) Z et H2(G; Z) 0 (voir [4]).
D&apos;où q(G)^0 par le Théorème 1. D&apos;autre part, si f:S2^&gt;24 est un noeud avec

ttx(X ~f(S2)) G, une chirurgie sur /(S2) produit une variété close orientable M4

avec 7rl(M)=G et H2(M;Z) 0. D&apos;où q(G)^x(M) 0.

THÉORÈME 5. Soit 1-&gt;T-*G-&gt;Z-»1 une suite exacte de groupes, avec T
fini. Supposons que q(G) 0. Alors, tout sous-groupe abélien de T est cyclique.

Démonstration. Le groupe G est un produit semi-direct G TxZ. Comme le

groupe des automorphismes de T est fini, il existe un sous-groupe Gt d&apos;indice fini
dans G isomorphe à TxZ.

Soit A un groupe abélien non-cyclique de T. Alors A contient un sous-groupe
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de la forme Zp x Zp, pour p premier, et Gt contient un sous-groupe d&apos;indice fini
G2 isomorphe à ZpxZpxZ. Pour F FP, on a bf(G2) 3 et b27(G2) 5. Ceci
contredit le Corollaire 2, puisque q(G) 0.

Les deux résultats précédents permettent de produire des exemples de groupes
de noeuds en dimension ^5 qui ne sont pas des groupes de noeuds en dimension
4. Voici deux exemples:

1) Soit à (a, b | a5 b3 (ai?)2) le groupe de l&apos;icosaèdre (120 éléments). Le
groupe G Am xZ est un groupe de noeud en toute dimension 5»5. En effet, on a

Hi(G)=Z, H2(G) 0, G est de présentation finie et est &quot;tué&quot; par la relation
t a1a2t • # dm (où t est un générateur de Z et a^ dénote le générateur a de la ie

copie de â). Cela implique que G est un groupe de noeud en toute dimension ^5
par le Théorème 1.1 de [4]. Par le Lemme 4 et le Théorème 5 ci-dessus, G n&apos;est

pas un groupe de noeud en dimension 4 si m s* 2. En revanche, A x Z est le

groupe du noeud obtenu par un &quot;5-twist-spining&quot; sur le noeud de trèfle (voir [9]).
2) Le groupe SLm(F)xZ, où m^5 et F est un corps fini, apparait comme

groupe de noeud en toute dimension ^5 (voir l&apos;exemple 4 de [3]). D&apos;après les

résultats de ce paragraphe, il n&apos;est pas un groupe de noeud en dimension 4. En
effet, SLniF) contient des sous-groupe isomorphes à Z2xZ2, par exemple celui
engendré par les matrices diagonales de coefficients diagonaux (-1, -1,1,..., 1)

et (1,..., 1,-1,-1).

Remarque. Des exemples de groupes de noeuds en toute dimension ^5 qui ne
sont pas des groupes de noeud en dimension 4 figurent à plusieurs endroits dans

la littérature (voir [7] pour des exemples et des références). A notre connaissance,
les auteurs ont toujours utilisé des conditions nécessaires que doit satisfaire la
torsion de Hi([G, G]) pour un groupe de 4-noeud G. Les exemples donnés
ci-dessus ayant tous Ht([G, G]) 0, ils n&apos;étaient pas traitables par ces techniques.

3. Application aux groupes de sphères d&apos;homologie

Une sphère d&apos;homologie est une variété close ayant l&apos;homologie entière d&apos;une

sphère. Dans [5], Kervaire montre qu&apos;un groupe G est le groupe fondamental
d&apos;une sphère d&apos;homologie de dimension n pour tout n ^ 5 si et seulement si G est
de présentation finie et H1(G;Z) H2(G;Z) 0 (G est dit &quot;super-parfait&quot;). Le

groupe fondamental d&apos;une sphère d&apos;homologie de dimension 4 satisfait également
à ces conditions mais, contrairement au cas des groupes de noeud, le statut de la
réciproque n&apos;est pas connu. La proposition suivante éclaire ce point:

PROPOSITION 6. Il existe des groupes super-parfait de présentation finie qui
ne sont pas des groupes fondamentaux de sphères d&apos;homologie de dimension 4.
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Démonstration. Nous allons donner deux familles d&apos;exemples: l&apos;une formée de

groupes finis et l&apos;autre de groupes sans torsion.
1) Soit F FP (p premier). Considérons le groupe fini P SLm(F), m ^5. Il

est classique que P est super-parfait (voir [3], Exemple 4). Soit JR (Fp)m.
Considérons une extension 1—&gt;JRk-»G0—»P—»1, où P agit par sa

représentation naturelle sur chaque facteur R de Rk. Les discussions du §3 de [2]
montrent que H0(P; R) 0 H0(P; R a R). D&apos;où Ho(P; Rk) ®kH0(P; R) 0

et H0(P; H2(Rk ; Z)) H0(P; Rk a Rk) 0fc2 H0(P&apos;, R a R) 0. La suite spectrale
de Hochschild-Serre de notre extension donne alors que Go est parfait et que
H2(G0;l) est un quotient de H1(P;Rk) ÇBkH1(P; R). Comme Go est parfait,
on a H2(G0;F) H2(G0;Z)®F d&apos;où l&apos;on déduit que b2(G0) est une fonction
linéaire de fc.

Soit 0 —&gt; H2(G0; —» G —&gt; Go —» 1 l&apos;extension centrale universelle de Go (voir
[6]), produisant un groupe fini G superparfait. Le noyau A de l&apos;épimorphisme

G-*P est une extension centrale 0-&gt;H2(G0;Z)-* A -^Rk —? 1. La suite
spectrale de cette extension donne la suite exacte:

H2(A ; F) -* H2(l*k ; F) -* H2(G0; F) -&gt; HX(A ; F) -&gt; H1(l?k ; F) ^ 0

(on utilise que H0(Rk ; H!(H2(G0; Z); F))) H2(GQ; Z)®F, puisque l&apos;extension est
centrale et que H2(G0;Z)®F H2(G0; F) puisque Go est parfait). On déduit de

cette suite exacte que bf(A)^bf(G0) + bf(jRk) qui est un polynôme de degré 1

en k et que b2(A)^b2CRk)-fr2(G0) qui est un polynôme du deuxième degré
en k.

Nous pouvons ainsi montrer que le groupe fini super-parfait G n&apos;est pas le

groups fondamental s&apos;une sphère d&apos;homologie de dimension 4 lorsque fc est assez

grand. En effet, on aurait alors q(G) 2. Comme A est d&apos;indice \P\ dans G, on
aurait l&apos;inégalité du Corollaire 2:

ce qui devient impossible lorsque fc est assez grand.
2) Pour construire des exemples sans torsion, on procède comme suit: soit G

un groupe comme construit dans 1) avec fc assez grand pour avoir la condition
2 + b27(A)-26^(A)&gt;2|P|. Soit K un 3-complexe fini acyclique avec 7r!(K) G
(par exemple le 3-squelette d&apos;une sphère d&apos;homologie M7 avec tt^M7) G
construite comme dans la démonstration du Théorème 1 de [5]). Par le procédé
de Baumslag-Dyer-Heller-Maunder (voir [8]), on construit un groupe Q tel que:

a) K(Q, 1) est un complexe fini de dimension 3

b) il existe une application K(Q, 1) -&gt; K qui induit un épimorphisme Q ^» G
et un isomorphisme sur l&apos;homologie à coefficient locaux.



144 J C HAUSMANN ET S WEINBERGER

On en déduit que Q est super-parfait de présentation finie. Le noyau T de
l&apos;épimorphisme Q -*• G -» F est un sous-groupe d&apos;indice \P\ dans Q. Par b),
on a:

d&apos;où, pour F FP, la même contradiction que dans le cas 1).

Remarque. Rappelons qu&apos;un groupe H est dit &quot;efficient&quot; s&apos;il existe un corps F
tel qui dH Bi(H)-b%(H) (voir [1]; on a toujours l&apos;inégalité dH^fcf(H)-
bf(H)). Les groupes G et Q ci-dessus ne sont pas efficients, sinon dG dQ 0 et
q(G) q(Q) 2, ce que nous avons montré ne pas être le cas. Nous avons donc
construit un groupe Q tel que K(Q, 1) est un complexe fini de dimension 3 et qui
n&apos;est pas efficient. Ceci contraste avec le fait qu&apos;un groupe H ayant pour K(H, 1)

un complexe fini de dimension 2 est efficient: ce K(H, 1) donne une présentation
0&gt; de H telle que d(0&gt;) bf(H)-bf(H) pour tout corps F.

PROBLÈME. Existe-t&apos;il un groupe fondamental de sphère d&apos;homologie de
dimension 4 fini autre que le groupe A de l&apos;icosaèdre (voir §2)?
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