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Caractéristiques d’Euler et groupes fondamentaux des variétés de
dimension 4

JEAN-CLAUDE HAUSMANN et SHMUEL WEINBERGER'Y

Dans cet article, on €tablit des relations entre la caractéristique d’Euler d’une
vari€té close orientable de dimension 4 et ’homologie de certains sous-groupes de
son groupe fondamental. Ceci nous permet de produire les premiers examples de
groupes qui sont des groupes fondamentaux de sphéres d’homologie en dimension
=5 mais pas 4. On obtient aussi de nouveaux exemples de groupes de noeuds
multidimensionnels qui n’apparaissent pas comme groupe de noeuds en dimen-
sion 4.

1. Resultats generaux

Soit X un CW-complexe. Pour F un corps, on définit b (X)=dimg H,(X; F).
Si G est un groupe, on note bf(G)=dimgH;(K(G, 1); F). Considérons une
présentation finie ? d’un groupe G, avec g générateurs et r relateurs. La
déficience d(P) de P est définie par d(P)=g—r. On sait que d(P)<
bY(G)—b5(G) (voir [1]). La déficience d; de G est le maximum des d(%?) pour
toutes les présentations finies # de G.

Soit G un groupe de présentation finie. On définit

q(G)=inf {x(M) | M variété close orientable lisse de dimension 4 et
m(M) = G}

ou x(M) est la caractéristique d’Euler de M. A priori, on a q(G)eZU{~=}. En
fait, on a:

THEOREME 1. Pour tout groupe G de présentation finie et tout corps F, on a:
2+ b5(G)-2b%(G)=q(G)<2(1—dg)
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140 J.-C. HAUSMANN ET S. WEINBERGER

EXEMPLE. Pour G = 1, on obtient 2=<q(1) <2; les deux inégalités étant des
égalités, ceci prouve que 1’énoncé du Théoréme 1 ne peut pas étre amélioré en
général.

Démonstration. Sout M une variété close orientable de dimension 4 avec
(M) = G. Par dualité de Poincaré, on a b§(M)=bi(M)=1 et b¥(M)= bi(M).
D’autre part, on a b5(M) = b%(G) et b5(M)=b%(G). Ce dernier fait provient de ce
que, pour tout complexe X, on a K(m(X), 1) = X U{cellules de dim =3}, d’ou
H,(X; F) — H,(K(7(X); F) est surjective. On a donc:

x (M) =2+ b5(M)—2b5(M)=2+b5(G)—2b7(G)

ce qui montre la premiere inégalit€. Pour I'autre inégalité, soit
(@y,...,a, | My, ..., m) une présentation de G avec g—r = dg. Soit W, la variété
de dimension 4 orientable obtenue par attachement de g anses d’indice 1 a la
boule B*. Les mots m; représentent des éléments de m,(dW;)=m(W,) sur
lesquels on peut attacher des anses d’indice 2. La variété W* ainsi obtenue
satisfait 7,(W)= G et 7,(dW) — (W) est surjectif. Soit M le double de W (i.e.
le recollement de deux copies de W le long de leur bord). La variété M est
équipée d’une décomposition en anses avec: une anse d’indice 0, g anses d’indice
1, 2r anses d’indice 2, g anses d’indice 3 et une anse d’indice 4. D’ou x(M)=
2(1—-dg). On vérifie que 7{(M)= G par le théoréme de Van-Kampen.

Le fait que x(M) =k - x(M) pour M — M un revétement a k feuillets donne
immédiatement le corollaire suivant:

COROLLAIRE 2. Soit G un groupe de présentation finie et soit T un sous-
groupe d’indice k dans G. Alors, pour tout corps F, on a:

2+ b5(T)-2b5(T)<k - q(G)
Remarquons que cette condition est spécialement forte lorsque q(G)=<0.

EXEMPLES. Le groupe Z™ contient des sous-groupes isomorphes a lui-
méme d’indice arbitrairement grand. D’ou q(Z™)=0 par le Corollaire 2. Le
Théoréme 1 donne que —1=<q(Z*=<0. D'ou q(Z*=0. De méme, q(Z*) =0,
puisque la caractéristique d’Euler du tore de dimension 4 est 0. En revanche, un
argument de M. Kreck permet de montrer que q(Z>) = 2.

Dans le méme esprit que le Corollaire 2, on a:

PROPOSITION 3. Soit G un groupe de présentation finie et P un sous-groupe
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parfait d’indice k dans G. Alors, pour tout groupe abélien A, il existe un homomor-
phisme surjectif A*972 » H,(K(P, 1); A).

Démonstration. Soit M une variété close orientable de dimension 4 avec
m(M)=G et x(M)=q(G). Soit M — M le revétement avec m,(M)=P. Comme
P est parfait, on a H,(M;Z)= H'(M; Z)=H,(M;Z) =0 et H,(M;Z)=H*M;Z)
est abélien libre. On obtient x(M)=k - q(G)=2+rang (Hy(M;Z)), d’ou
H,(M; A)= A*©~2 1a proposition découle alors de I’épimorphisme
H,(M; A) » H,(K(P, 1); A) rappelé dans la démonstration du Théoréme 1.

Remarque. Dans les trois résultats ci-dessus, il n’est pas nécessaire que M soit
une variété. Seule la dualité de Poincaré a coeflicients constants est utilisée dans
la démonstration du Théoréme 1, et la dualité de Poincaré a coefficients locaux
pour le Corollaire 2 et la Proposition 3. On peut donc définir q¥(G) (on remplace
“variété close” par ‘“‘complexe de Poincaré”). Nous ignorons si g (G)=q(G) en
général. De méme, il serait intéressant de savoir si ’on obtient le méme q(G)
pour des variétés différentiables ou topologiques.

2. Application aux groupes de noeuds

Un groupe G est un groupe de noeud en dimension n s’il existe un plonge-
ment différentiable f:S" ' & 3" (S" 2 étant la sphére standard et 3 une sphere
d’homotopie), tel que (3 —f(S"?))=G.

LEMME 4. Soit g un groupe de noeud en dimension 4. Alors q(G)=0.

Démonstration. 11 est bien connu que H,(G; Z)=7Z et H,(G;Z) =0 (voir [4]).
D’out q(G)=0 par le Théoréme 1. D’autre part, si f:S*>— 3* est un noeud avec

(3 — f(S?)) = G, une chirurgie sur f(S?) produit une variété close orientable M*
avec m;(M)=G et H,(M;Z)=0. Dot q(G)<x(M)=0.

THEOREME 5. Soit 1 > T — G —Z — 1 une suite exacte de groupes, avec T
fini. Supposons que q(G)=0. Alors, tout sous-groupe abélien de T est cyclique.

Démonstration. Le groupe G est un produit semi-direct G = T>Z. Comme le
groupe des automorphismes de T est fini, il existe un sous-groupe G, d’indice fini

dans G isomorphe & T XZ.

Soit A un groupe abélien non-cyclique de T. Alors A contient un sous-groupe
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de la forme Z, XZ,, pour p premier, et G, contient un sous-groupe d’indice fini
G, isomorphe a Z,xZ,xZ. Pour F=F,, on a b{(G,)=3 et b5(G,)=5. Ceci
contredit le Corollaire 2, puisque q(G)=0.

Les deux résultats précedents permettent de produire des exemples de groupes
de noeuds en dimension =5 qui ne sont pas des groupes de noeuds en dimension
4. Voici deux exemples:

1) Soit A =(a, b|a®=b?=(ab)?) le groupe de I'icosaedre (120 éléments). Le
groupe G =A™ XZ est un groupe de noeud en toute dimension =5. En effet, on a
H,(G)=Z, H,(G)=0, G est de présentation finie et est “tué’ par la relation
t=a,a,- - a, (out est un générateur de Z et a, dénote le générateur a de la i®
copie de A). Cela implique que G est un groupe de noeud en toute dimension =5
par le Théoréme 1.1 de [4]. Par le Lemme 4 et le Théoréme 5 ci-dessus, G n’est
pas un groupe de noeud en dimension 4 si m=2. En revanche, A XZ est le
groupe du noeud obtenu par un “5-twist-spining”’ sur le noeud de trefle (voir [9]).

2) Le groupe SL,(F)XZ, ot m=5 et F est un corps fini, apparait comme
groupe de noeud en toute dimension =5 (voir ’exemple 4 de [3]). D’aprés les
résultats de ce paragraphe, il n’est pas un groupe de noeud en dimension 4. En
effet, SL,.(F) contient des sous-groupe isomorphes a Z,XZ,, par exemple celui
engendré par les matrices diagonales de coefficients diagonaux (—-1,-1,1,..., 1)
et (1,...,1,—-1,-1).

Remarque. Des exemples de groupes de noeuds en toute dimension =5 qui ne
sont pas des groupes de noeud en dimension 4 figurent a plusieurs endroits dans
la littérature (voir [7] pour des exemples et des références). A notre connaissance,
les auteurs ont toujours utilisé des conditions nécessaires que doit satisfaire la
torsion de H,([G, G]) pour un groupe de 4-noeud G. Les exemples donnés
ci-dessus ayant tous H,([G, G]) =0, ils n’étaient pas traitables par ces techniques.

3. Application aux groupes de spheres d’homologie

Une sphére d’homologie est une variété close ayant I’homologie entieére d’une
spheére. Dans [5], Kervaire montre qu’un groupe G est le groupe fondamental
d’une sphére d’homologie de dimension n pour tout n =35 si et seulement si G est
de présentation finie- et H,(G;Z) = H,(G;Z)=0 (G est dit “super-parfait’). Le
groupe fondamental d’une sphére d’homologie de dimension 4 satisfait €galement
a ces conditions mais, contrairement au cas des groupes de noeud, le statut de la
réciproque n’est pas connu. La proposition suivante éclaire ce point:

PROPOSITION 6. Il existe des groupes super-parfait de présentation finie qui
ne sont pas des groupes fondamentaux de sphéres d’homologie de dimension 4.
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Démonstration. Nous allons donner deux familles d’exemples: I'une formée de
groupes finis et I'autre de groupes sans torsion.

1) Soit F=F, (p premier). Considérons le groupe fini P=SL,,(F), m=5. 1l
est classique que P est super-parfait (voir [3], Exemple 4). Soit R =(F,)™.
Considérons une extension 1—R*—>G,—>P—>1, ou P agit par sa
représentation naturelle sur chaque facteur R de R*. Les discussions du §3 de [2]
montrent que Hy(P; R)=0=Hy(P; RAR). Dot H,(P; R*)=@, Hy,(P; R)=0
et Hy(P; Hy(R";Z))= Hy(P; R* AR*)=&,. Hy(P; R AR)=0. La suite spectrale
de Hochschild-Serre de notre extension donne alors que G, est parfait et que
H,(Gy; Z) est un quotient de H,(P; R*)=€D, H,(P; R). Comme G, est parfait,
on a Hy(Gy; F)=H,(Gy;Z)QF dou lon déduit que b5(G,) est une fonction
linéaire de k.

Soit 0 = H,(Gy; ) — G — Gy — 1 ’extension centrale universelle de G, (voir
[6]), produisant un groupe fini G superparfait. Le noyau A de I’épimorphisme
G - P est une extension centrale 0 — H,(Gy;Z)— A — R*—1. La suite
spectrale de cette extension donne la suite exacte:

H,(A; F) = Hy(R*; F) = Hy(G,; F) > Hy(A; F) > H,(R*; F) > 0

(on utilise que Ho(R*; H,(Hx(Go; Z); F))) = H,(G,; Z)®F, puisque I’extension est
centrale et que H,(G,; Z)QF = H,(G,; F) puisque G, -est parfait). On déduit de
cette suite exacte que bi(A)<bi(G,)+ bi(R¥) qui est un polyndme de degré 1
en k et que b5(A)=bE(R*)—b5(G,) qui est un polyndme du deuxieme degré
en k.

Nous pouvons ainsi montrer que le groupe fini super-parfait G n’est pas le
groups fondamental s’une sphére d’homologie de dimension 4 lorsque k est assez
grand. En effet. on aurait alors q(G)=2. Comme A est d’indice |P| dans G, on
aurait I'inégalité du Corollaire 2:

2+bE(A)—2bF(A)<2|P|

ce qui devient impossible lorsque k est assez grand.

2) Pour construire des exemples sans torsion, on procede comme suit: soit G
un groupe comme construit dans 1) avec k assez grand pour avoir la condition
2+b5(A)—2b5(A)>2|P|. Soit K un 3-complexe fini acyclique avec m(K)=G
(par exemple le 3-squelette d’une sphére d’homologie M’ avec m(M7)=G
construite comme dans la démonstration du Théoréme 1 de [5]). Par le procedé
de Baumslag-Dyer-Heller-Maunder (voir [8]), on construit un groupe Q tel que:

a) K(Q, 1) est un complexe fini de dimension 3

b) il existe une application K(Q, 1) = K qui induit un épimorphisme Q » G

et un isomorphisme sur I’homologie a coefficient locaux.
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On en déduit que Q est super-parfait de présentation finie. Le noyau T de
I’épimorphisme Q - G —» P est un sous-groupe d’indice |P| dans Q. Par b),
on a:

H,(T; F)=H,(Q; F[P)=H(G; F[P)=H,(A; F)
d’ou, pour F=F,, la méme contradiction que dans le cas 1).

Remarque. Rappelons qu’un groupe H est dit “efficient” s’il existe un corps F
tel qui dy=BY(H)-b5(H) (voir [1]; on a toujours I'inégalité dy <bi(H)—
b%(H)). Les groupes G et Q ci-dessus ne sont pas efficients, sinon dg =dg =0 et
q(G)=q(Q) =2, ce que nous avons montré ne pas étre le cas. Nous avons donc
construit un groupe Q tel que K(Q, 1) est un complexe fini de dimension 3 et qui
n’est pas efficient. Ceci contraste avec le fait qu’un groupe H ayant pour K(H, 1)
un complexe fini de dimension 2 est efficient: ce K(H, 1) donne une présentation
P de H telle que d(?)= b (H)— b5(H) pour tout corps F.

PROBLEME. Existe-t’il un groupe fondamental de sphére d’homologie de
dimension 4 fini autre que le groupe A de I'icosaédre (voir §2)?
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