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Cut locus and parallel circles of a closed curve on a
Riemannian plane admitting total curvature

KATSUHIRO SHIOHAMA'

0. Introduction

A Riemannian plane is a complete Riemannian manifold homeomorphic to a
plane R?. The total curvature c¢(M) of a Riemannian plane M is defined to be an
improper integral [, Gdv of the Gaussian curvature G with respect to the
volume element dv of M. A well known theorem due to Cohn—Vossen [1] states
that if such an M admits total curvature, then —o=c(M)=2m. Since total
curvature is not a topological invariant but depends on the choice of Riemannian
metric, it is natural to ask what is the geometric significance of total curvature.
Indeed it was proved in [4] and in [5] that the existence of total curvature on a
Riemannian plane imposes strong restrictions to the mass of rays emanating from
an arbitrary fixed point. Moreover, for a finitely connected Riemannian 2-
manifold admitting total curvature the behavior of Busemann functions on it is in
some sense controlled by total curvature (see [6], [7]).

The purpose of this paper is to investigate certain restrictions of the existence
of total curvature an M to the distance function d induced from the Riemannian
metric. Throughout this paper let M be a Riemannian plane admitting total
curvature, let € be a simply closed regular smooth curve on M and let M; be the
complement of the open disk bounded by €. The cut locus C(€) of € in M, is
discussed throughout. Geodesics are parametrized by arclengths. For a point x on
M; a minimizing geodesic o:[0,a]l— M is called a segment from x to € if
0(0)=x, o(a)e® and the length L(o) of o is d(x,E). Let p:M; — R be the
distance function to €. If € is a geodesic circle around a fixed point p with radius
less than the injectivity radius of the exponential map exp, : M, — M at p, then p
is the distance function to p. A cut point x to € along a segment o is by definition
a point with the property that any extension of o beyond x is not a segment to €.
Let L =L(Q), let s €[0, L] be the arclength parameter of €, and let N be the unit

! Dedicated to Professor W. Klingenberg on his 60th birthday.
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126 KATSUHIRO SHIOHAMA

outer normal field to €. A point x on M, is a focal point to € if x is a critical
value of the normal exponential map (s, t) = expg(s) tN(s), s€[0, L], t=0. For
each t=0 set S(t):={xeM;; p(x)=t} and B(t):={xeM;; p(x)<t}. S(t) is a
smooth curve for all sufficiently small ¢ such that it is contained inside the cut
locus of €.

A complete description on the cut locus and focal locus of € on a Riemannian
plane which is not assumed to admit total curvature was established by Hartman
[3], and his results are the C” extension of Fiala’s results in which Fiala assumed
that a closed curve and Riemannian metric are analytic. Here, the same notations
as used in [2] and [3] will be employed. A cut point x to € is called normal if
there exist exactly two distinct segments from x to € such that x is not a focal
point to € along any of the two segments. A cut point x to € is called anormal if
it is not normal. A number t >0 is called anormal if there is an anormal point on
S(t). A number t>0 is called exceptional if it is either anormal or if it is not
anormal and there is a normal point on S(t) at which the angle between the two
vectors tangent to the segments to € is 7. It was proved by Hartman [3] that the
set of all exceptional values is closed and of measure zero on [0, =), and that if
t>0 is not exceptional, then S(t) intersects C(€) only at finitely many points and
S(t) is a piecewise smooth curve, where the smoothness breaks at points of the
intersection C(€)N S(t). The continuity of the length L(t) of S(t) will break at
each exceptional value t where there exists a normal point on S(t) at which the
angle between the two vectors tangent to the segments to € is 7. The cut locus
forms a smooth curve in a small neighborhood of each normal cut point, and the
curve bisects the two segments to €.

Under the assumption that M admits total curvature, more precise observa-
tions on the cut locus of € will be provided. The following notions play an
important role in our discussion on C(€). For each x € M, at which there are
more than one segment to €, let E(x) < M, be the maximal compact set bounded
by a subarc of € and two segments from x to € such that every segment from x to
€ lies on E(x) and that E(x) is homeomorphic to a closed 2-disk. The segments
lying in the boundary of E(x) will be denoted by o, o5 :[0, p(x)]— M,. If there
is a unique segment o, from x to €, then E(x) consists of the points on the
segment. Let B:M; — [0, 27) be defined as the angle between ¢ (0) and ¢;(0)
measured with respect to E(x). Then B8(x)=0 if and only if there is a unique
segment from x to €. A geodesic vy :[0, ©) — M is called a ray from € if y(0)e @€
and p(y(t)) =t for all t=0. It is elementary that there exists at least a ray from €.
Let F < M, be the set of all points on rays from €. Then F# J and is closed since
the limit of a converging sequence of rays from € is a ray from €. The
complement M, — F consists of a countable disjoint union |, ., D, of relatively
open sets in M, each D, is connected, noncompact and bounded by two (possibly
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one ray, if there is a unique ray from €) rays from € and an open subarc €, of €,
where A is an index set. Each component of C(€) is contained in some D, and

each D, contains a component of C(€). Our first observation on C(€) is the
following

THEOREM A. Let M be a Riemannian plane admitting total curvature and let
€ be a simply closed smooth regular curve on M. Assume that M,— F# . Then
there exists for each A € A a number t, and a curve x :[t,, ©) — D, N C(€) with the
properties:

(1) p(x(®))=t for t=t,.

(2) x(t) is smooth except at a set of measure zero in [t,, ).

(3) {E(x(t))} is monotone increasing and lim,_,., E(x(t)) = D,.

4) lim,_,.. B(x(t))=0, and in particular, if I, is the domain of €, and k(s) is
the geodesic curvature of & at &(s) with respect to N, then

c(D)= —j k(s) ds.
1,

The statement (2) was already established by Hartman (see Proposition 5.6, p.
713, [3]). Note that the constant ¢, depends on a small number taken less than
half of the length of €,. The starting point of x is not clearly stated because there
are many (possibly infinitely many if ¢, is exceptional) curves with these proper-
ties. A special choice will be made from a geometric viewpoint as stated in
Lemma 1.1, (2). Roughly speaking x may be considered as a “main street” of cut
locus in D,. Note also that {t,} contains a divergent subsequence.

THEOREM B. Let M be a Riemannian plane admitting total curvature and let
€ be a simply closed smooth regular curve on M. Then there exist constants R, =R,
with the following properties:

(1) If t>R,, then S(t) is arcwise connected.

(2) If t>R,, then S(t) is homeomorphic to a circle.

The discontinuity of L(t) will occur at ¢t when there are points on S(t) at each
point of which there are exactly two segments to €& making an angle w. Such a
point may still allow to exist on S(t) for t > R,. But there exists no such point on
S(t) if t>R,. It is a natural consequence of Theorem B that there exists a
constant R; = R, such that p(x) < for all x e M; with p(x)> R;. L(t) is continu-
ous for all t> R,. Note also that if the metric and € are analytic, then L(t) is
continuous (see Théorem 1, p. 326, [2]).

Now the function B will be discussed. It follows from Proposition 6.1 in [3]
that B(x(t)) is smooth if x(¢f) is a normal point and that it is not necessarily
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continuous if x(t) is anormal. Whatever t is exceptional or non-exceptional, 8 has
the following uniform property and this property plays an essential role for the
estimate of the derivatives of L(t) for all large normal values.

THEOREM C. Let M be a Riemannian plane admitting total curvature and let
€ be a simply closed smooth regular curve on M. For an arbitrary given positive &,
there exists a t(e) such that if t>t(g), then

Z B(x)<e.

xeS(t)

Note that when t is a non-exceptional value, the left hand side in the above
inequality is a finite sum, and when t is exceptional, it is a countable sum. In fact,
let t be exceptional and let {x,; u € A(t), x, € S(1), B(x,) >0}, where A(¢) is an
index set. For each n € A(t) if J, is the closed interval corresponding to the subarc
E(x,)NC of €, thenJ, NJ, = for u# ' and Y, () meas (J,) = L. This means
that A(t) is at most countable. The proof of Theorem C requires topological
properties of S(t) as stated in Theorem B.

In the final section a sharp estimate for the derivatives of L(f) at non-
exceptional values greater than R; will be obtained. And the following Theorem
D will be established as a direct consequence of the estimate. The formula for the
derivatives of L(t) at a non-exceptional value was first established by Fiala [2] in
the analytic case and later by Hartman [3] in the smooth case. They are essentially
the same. Under the assumption that M has total curvature an essential improve-
ment for the derivatives of L(t) will be provided here.

THEOREM D. Let M be a Riemannian plane admitting total curvature and let
€ be a simply closed smooth regular curve on M. If L(t) and A(t) are the length of

S(t) and the area of B(t), then
_ L2(t)
= B(1)

=22 —c(M)).

Hartman proved this relation under a stronger assumption that f,, |G| dv <ce.

I. The proof of Theoi'em A

The following Lemma 1.1 will be useful for the proof of Theorem A. This
lemma was recently proved by Shiga under the restriction that € is a geodesic
circle around an arbitrary fixed point with radius less than the injectivity radius of
the exponential map at that point (see Lemma C in [5]). For each A€ A let
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Yx> ¥ :[0, ) — M, be the rays from € which are contained in the boundary of
D,.

LEMMA 1.1. Assume that M, —F# . For any given positive ¢ there exists a
constant R(e)>0 with the following properties:

(1) If xe M, —F satisfies p(x)>R(e) and if o, :[0, p(x)]— M, is a segment
from x to €, then there exists a A € A such that one of the subarcs of €, divided by
o, (p(x)) has length less than .

(2) If the length L, of €, is greater than 2, then there exists for every t > R(¢)
a unique point x(t) on D, NS(t) N C(C) such that there are at least two distinct
segments from x(t) to € and such that each length of the two subarcs of ©, taken
outside of E(x(t)) is less than e.

Proof of Lemma 1.1. If x € D, and if L, is less than 2¢, then the conclusion (1)
is trivial. If x € D, and if L, =2¢, then (1) is a direct consequence of the fact that
D, contains no ray from €.

For the proof of (2), fix an £'€ (0, £). R(¢) may be replaced by R(e’). For each
t>R(e’) let ¢, :[0, 1]— S(t) N D, be a curve such that ¢, (0) =y (t), c,(1) = v, (t)
and such that the image of ¢, bounds D, —B(t). Let J :={ue[0, 1]; every
segment o, :[0, t]—= M, from ¢,(u) to € has the property that the subarc of €,
between v, (0) and o,(,)(t) has length less than ¢}, and similarly let J*:={ue
[0, 1]; every segment o,):[0, t]— M, from c,(u) to € has the property that the
subarc of €, between o(,)(t) and y5(0) has length less than €}. Clearly J~
(respectively, J*) contains a small interval around O (respectively, 1), and has the
property that if ueJ  (respectively, ueJ"), then [0,u]cJ” (respectively,
[u, 1]<= J*). This is an immediate consequence of the facts that any segment from
x € ¢,([0,1]) to € does not intersect ¢, ([0, 1]) at its interior and that any two
segments from distinct points on ¢, ([0, 1]) to € do not intersect each other. If
J7UJ" is a proper subset of [0, 1], then a point ¢,(u) with u'€[0, 1]—J UJ* has
the desired property. if J-UJ* =[0, 1], then J~ NJ" = & implies that one of them
is open and the other closed, and the point c,(u’) with u’ =sup {u; u€J7} has the
desired property.

The uniqueness of such a point x(t) = c,(u") follows from the fact that for any
uel0, u’) and for any segment o, :[0, t] > M, from c,(u) to € its endpoint
belongs to the subarc of €, between v, (0) and o, (t), and the similar property
holds for any u e (u’, 1] and for any segment from ¢,(u) to €.

This completes the proof of Lemma 1.1.

Proof of Theorem A. Let € >0 be chosen so as to satisfy that 2e <L, and set
t,:= R(e') for some €' in (0, £). (1) is obvious from the previous lemma. (2) has
already been established by Hartman, as stated in the introduction. To prove (3)
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let t,>t,>1t,. Then 0,0, t,]) intersects ¢, ([0, 1]) at o, (t; — t,) which belongs
to the subarc of ¢, between ¢, (0) = v, (t,) and x(t,). Therefore o, (t;) belongs to
the subarc of €, between <y, (0) and o,(t,). Similarly, o} (t;) lies on the subarc
of €, between oy,(t,) and v;(0). This proves E(x(t;))>E(x(t,)) and the
monotone property of {E(x(t))} is proved. Since £ >0 is any, lim,_,., E(x(t)) = D,
is obvious. This proves (3).

The existence of total curvature of M (and hence of D,) is essential for the
proof of (4). The proof technique is based on the situation that y, and vy, are
distinct. Taking account of the case where there is a unique ray from €, one uses
the prennage D, = M, of D, in the fundamental domain of M, under the covering
map Tr: M, — M,, where M1 is the universal Riemannian covermg Set
€ := #~1(G). The boundary of D, consists of two distinct rays ¥, ¥ :[0, ©) — M,
from € such that w(¥;) = w(¥}) =1, and of the subarc €, of € whose endpoints
are ¥5(0) and A;(0). If there are more than one ray from @, then D, is identical
with D,. Thus the arguments developed below covers the case where the
boundary of D, contains two distinct rays.

For a point x on D, let X € D, be such that (%) = x. Also let E(x) < D, be the
compact domain such that w(E(x)) = E(x) and let 67 and & be the preimages of
oy and o} through %. Then lim,_,.. E(x(t)) = D, implies that the limit of B(x(?)) as
t — o exists and satisfies:

(D) = e(,) = lim c(E(x(0) = lim B(x(0)~ | re(s) s

A

On the other hand for an arbitrary given >0 and for a given dlvergent

sequence {t;}, a monotone increasing sequence {Q, } of compact domains in D will
be constructed below in such a way that lim,_,,, O, = DK and that

,11_52 c(Q,-) =n- J' K(s) ds.
I,
If the above construction has been achieved, it will then follow that
lim,_, . c(é,-) =1lim,_,.. c(E(x(¢))) and hence (4) will be proved.

The construction of {Q—} is done as follows. Let d, : D, x D, — R be the dis-
tance function induced from the Riemannian metric on D,. It is elementary that
d, = dom, and also that every two points % and § in D, can be joined by a curve
in D, whose length realizes d, (%, ). Such a curve will be called a d, -segment. A
d, -segment is not necessarily the preimage of a geodesic in M. If a d, -segment
does not pass through a point on §€,, then its image under = is a geodesic in M,
but not necessary minimizing. Note that every d, -segment does not intersect vy,
and ¥, at any point on their interior.

Choose an mno>0 sufficiently small such that if t,= R(n,), then every geodesic
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in M passing through a point on D, N B(1)— E(x(t,)) intersects the boundary of
D, — E(x(ty)) and goes out D, beyond its intersection. This is possible because the
set is sufficiently narrow. For every j with ¢, > t, there exist large numbers t; and
t7 such that every d, -segment joining x(t,) to ¥, —(t;) does not intersect €,, and
such that every d,-segment joining %(t,) to ¥x(t7) does not intersect €,. The
minimizing property of Gy, 6., and ¥x, ¥ implies that such a d,-segment
does not intersect them at any point on its interior, and hence all interior points
on such a d, -segment lies in the interior of D,. This observation shows that the
domain bounded by §,, ¥, (0, t/ ], two d, -segments joining x(t;) to ¥5(t;) and to
F5(t7) and 75((0, t;]) contains E(x(t)) as a proper subset. Q, is obtained by
choosing t; and t; sufficiently large so as to satisfy that if 7 :[0,17]— D, and
77:[0,1;1> D, are d,-segments with #7(0)=7;(0)=%x(t), + (I)=%;(t),
77(I;7)=9x(t), then Q; is the domain bounded by €,, ¥x([0, t7]), ¥, (0, t;]),
77 ([0, 1D and 77 ([0, I;']), and the angles of the corners at ¥;(¢;") and at ¥5(t;) are
less than m/2. Such a choice of ¢; is seen as follows: If 6(t) is the angle between
75(t) and the tangent vector to a d,-segment joining x(t) to ¥x(t), then the
function t—d, (x(t;), yx (1)) for t=t, is Lipschitz continuous with the Lipschitz
constant 2 and bounded above by d, (X(2;), ¥x (o). This function is expressed as

t
J [1—cos 6(w)] du +{to—d, (x(1), vx (to))}.
to

Therefore lim inf, ... [1—cos 8(u)]=0, and the existence of a desired constant is
verified. The original idea of this technique was developed by Cohn—Vossen [1].
Thus a monotone increasing sequence {Q;} of compact domains is obtained by
choosing a suitable subsequence, and lim,_,.. Q, = D, is obvious from the con-
struction.

Finally

c(D)= —j k(s) ds
I,
is obvious from (1) and lim,_,. B(x(#))=0.
This completes the proof of Theorem A.

II. The proof of Theorem B

The idea of the proof of Theorem B (1) is summarized as follows: Suppose
that there is a divergent sequence {t} such that for each j S(t) is not arcwise
connected. For each j the value ¢, is replaced by a t]=¢; in such a way that S(t]) is
not arcwise connected and that there exists a compact component of M; — B(t})
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which has a nonempty interior. Thus one may suppose that for each j M; — B(t;)
contains a compact component W(t;) having nonempty interior. Then it will be
possible to find for each j a geodesic v; : [0, 2];] — M, such that v,(0), v;(21;) are
on € and hits orthogonally to €. Then the compact domains {D;}, each D; is
bounded by v;([0, 21;]) and a subarc of €, have an infinite subsequence {D, } which
is monotone increasing and lim, _, ., D, = D, for some A € A. Then it will turn out
that D, does not admit total curvature, a contradiction. The proof technique of
deriving the nonexistence of total curvature on D, has already been employed in
the proof of Theorem A.

For each t>0 let ¢,:[0, 1]— S(t) be a simply closed curve which bounds the
unique unbounded component of M; — B(t). The proof of Theorem B, (2) will be
achieved if the image of ¢, coincides with S(t) for all t> R,. The same idea as
used in the proof of (1) will be employed for the proof of (2).

The following Lemmas 2.1 and 2.2 will be useful for the proof of Theorem B.

LEMMA 2.1. Assume that there exists a monotone divergent sequence {t;} such
that for each j M — B(t;) has a compact component W, with nonempty interior. Then
there exists for each j a geodesic v; :[0, 21;] — M, with the following properties:

(1) The endpoints of y; are on € at which vy; hits orthogonally to G.

(2) v,([0, 2L.]) and a subarc €; (having the same endpoints as v;) of some €, ;,
A(j)e A, bounds a compact domain in M; which is homeomorphic to a closed
2-disk and which contains W; in its interior.

(3) v;(L;) is a cut point to & along v,, and in particular I; is exceptional.

Proof. Fix a number j and let ¢;:[0, 1]— W, —int (W) be a simply closed
curve. M —int (W,) is homeomorphic to a closed half cylinder S*x[0, ) whose
fundamental group is generated by [y;], where [5;] represents the free homotopy
class of all closed curves in M —int (W) containing 5. There is a A(j)e A such
that W, < D, .

It is asserted that there exists a point y on ¢;([0, 1]) such that the boundary
dE(y) is not homotopic to 0 in M —int (W;). In fact, if otherwise supposed, then a
contradiction is derived as follows: Note first that every segment from a point on
;([0,1)) to € does not pass through any point on int(W,). If V=
Uvuero, 11 E(W;(u)), then V< M;—int (W,). It follows from the supposition that
E(y;(u)) is homeomorphic to a closed 2-disk for each u €[0, 1] with B(y;(u))>0.
Thus V is homeomorphic to S* %[0, 1], and in particular M; = V Uint (W) leads
to a contradiction that M, is bounded.

Since dE(y) is not homotopic to 0 in M —int (W}), it belongs to [¢;]* for some
integer k. Since 9E(y) has no self-intersection, k=1. Clearly ¢;([0,1]) <
E(y) N\ D, .
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If B(y) =, then the desired v, is nothing but the geodesic o *o :[0, 2] —
M, which is defined as

or*xo, (v :={
=75 () oy(v—14) =Ev=2j,

where [, =t

Consider the case where B(y)# w. Since ([0, 1]) intersects E(y) only at the
point y and since dE(y) is homotopic to ¢;, W, is contained in E(y). It is asserted
that B(y)> . In fact, if otherwise supposed, then for a sufficiently small h >0,
d(oy(h), o (h))<2h. It follows from B(y)<m that for some h >0 the segment 7
joining o (h) to o (h) passes through a point in int (W;) and the length of a curve
obtained by joining o, ([h, t]))UTUo([h, t]) is less than 2t, a contradiction.

As is seen in the above paragraph, B(y)>m and o *o, can be replaced by a
shorter curve in D, ;,—int (W) which is freely homotopic to it. Then a standard
length-decreasing deformation procedure in D, ,—int (W,) is carried out to this
broken geodesic with endpoints on €, and the linit of the deformation exists and
is a geodesic v; : [0, 21;]— D, ), where |, <t. This v; has the properties (1) and (2).
If y;(l}) is not the cut point to € along v;, then there is a segment o :[0, I/]— M,
from +;(};) to € and I} <[, and its image is in D, . Clearly o ([0, I;]) N W, # J and
one of the two broken geodesics o *v, | [0, ;] and o *¥, | [1, 21;] together with the
corresponding subarcs of € is freely homotopic to j, and they bound a closed
2-disk containing W, in its interior. By iterating this procedure, the desired
geodesic satisfying (3) is obtained as the limit of length-decreasing deformations.

This completes the proof of Lemma 2.1.

For each j let D;< D, be the compact domain bounded by +;([0, 2;]) and
the corresponding subarc €; of €, . Recall that D, contains W; in its interior.

LEMMA 2.2. Under the same assumption as in Lemma 2.1, there exists a
monotone increasing subsequence {D,} of {D;} such that lim, _,.. D, = D, holds for
some A € A.

Proof. It follows from the property (3) of v, that if j# k, then either D; N D, =
& or else one is contained in the other as a proper subset. If there are infinitely
many disjoint D;’s and if I; is the domain of the subarc €;, then

c(D,)=m— J k(s) ds
I]
holds for each j, and hence the sum of c¢(D;) over all disjoint members is . This
contradicts to the assumption that M admits total curvature. Therefore, except a
finite members of {D;} it is monotone increasing. Let {D,} be an infinite
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monotone subsequence of {D;}. Then {I.} is also a monotone increasing sequence
of intervals and there is a A € A such that I, < I, for all k.

It is asserted that {[, } is divergent. Let L, :=sup,_,.. k. and let lim, .. I, = I.
Suppose that I, <. It is elementary that there exists a geodesic vy, :[0, 21,]— D,
such that vy, is the limit of {vy,}. Since D, contains W, and since {D,} is monotone
increasing, the domain D bounded by €(I,) and v,([0, 21,]) contains a divergent
sequence, a contradiction to the assumption that M is homeomorphic to a plane.

Finally D, = D, is an immediate consequence of the facts that the boundary
of D, contains two (or possibly one) rays from € and that D, contains no ray
from €.

This completes the proof of Lemma 2.2.

The proof of Theorem B. Suppose (1) is false. Then there exists a divergent
sequence {t;} such that for each j, M, — B(t;) has a compact component W, with
nonempty interior. There is a A € A and an infinite sequence {D,} of compact
domains, the boundary of each D, containing the geodesic vy, with the properties
(1), (2) and (3) in Lemma 2.1, and lim D, = D,. Therefore

c(D)= '}1_1)130 c(D)=m— J k(s) ds.
I,

This contradicts to Theorem A, (4).

Suppose (2) is false. Then there exists a divergent sequence {t} such that
t, >R, for all j and such that ¢, ([0, 1]) is contained in S(t;) as a proper subset. As
is proved in (1), S(;) is arcwise connected, and hence there exists a nontrivial
curve b;:[0,1]— S(t;)—c, ([0, 1]). Since no point on the image of b; is on the
boundary of M, — B(t;), p takes a local maximum on each point of the image of b,.
Let N be a small ball around a point q = b;(1/2) which is contained entirely in the
interior of E(t,-) such that N is divided by b;([0, 1]) into two components N; and
N,. Every segment from a point on N; UN, to € does not intersect b;([0, 1]), and
hence there exist two distinct segments from q to € which makes an angel 7 at q.
In particular ¢ is an exceptional value. This means that for each j there exists a
geodesic v, :[0, 2t;,]— M, having the properties (1), (2) and (3) in Lemma 2.1.
Thus a contradiction is derived by developing the same arguments as in the proof
of (1). ,

This completes the proof of Theorem B.

The following Corollary is a direct consequence of the above arguments, and
the proof of it will be omitted here.

COROLLARY TO THEOREM B. Assume that a Riemannian plane M
admits total curvature and let € be a simply closed regular smooth curve on M.
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Then there exists a constant R;= R, such that B(x)<w holds for all x with

p(x)>R;. Or equivalently, the function p has no critical point on the set M, —
B(Rj).

III. The proofs of Theorems C and D

The proof of Theorem C is based on the fact that if t >R, and if {x,,; p € A(1)}
is the set of all cut points to € on S(t), where A(t) is an index set, then the set
E(t):= U.caw E(x,) is strictly monotone increasing with t. This fact will be
guaranteed by the property that p has no critical point on M;—B(R;). The
monotone increasing property of {E(t)} will be established in Lemma 3.1 below.
Assuming Lemma 3.1 for the moment, Theorem C is proved as follows.

The proof of Theorem C by assuming Lemma 3.1. For each t>R; let
C,:=E()NE and let I(t)<[0, L] be such that €(I(t))=C,.

Let £ be an arbitrary given positive number. Then there are at most finite
elements A, A5, ..., A, iIn A such that

Z L,- Z L,\‘

A€A i=1

< gf2.

Theorem A implies that there is a number t.>max{t,, ..., t,_, Rs} such that for
each t>1t,

‘Z L, -L@Q)|<e/2.

i=1

It then follows that lim, . I(t)=|J,ca I, and that lim, . E(t)=|J,ca D). In
particular, there exists a number t. such that for every t>t,,

|k (s)| ds <&/2

Unea Li—I(®
and

Y, c(E(x))- Y, c(D,)

weA() AeA

<g/2.

Applying the Gauss-Bonnet theorem for each E(x,), n € A(t) and summing up
over A(t), one obtains

> Bx)= X C(E(xu))+j()x(s)ds<s

neA(r) neA(t)

This proves Theorem C.
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LEMMA 3.1. If a cut point p satisfies t:= p(p) > R, then every point y in E(p)
has the property that p(y)=t, and p(y) =1 holds if and only if y =p. In particular
C(@)NE(p)NS(t)={p}. Moreover there exists a unique curve x,:[0,)—
C(€) N D, such that x,(0) = p and such that {E(x,(u))} is monotone increasing with
u and p(x,(u)) =u+p(p) for all u=0.

Proof. The first conclusion is obvious if there exists a unique segment from p
to €. (In this case p is an isolated focal point to €). For the proof of the first
conclusion assume that the interior of E(p) is nonempty. Suppose that there is a
point in int (E(p)) at which p is greater than t. Then there exists a point in
int (E(p)) at which p takes a local maximum, contradicting to the Corollary to
Theorem B. Assume that p(y)=t holds for some ye E(p). Suppose that y# p.
Then y must belong to int (E(p)). It follows from Theorem B, (2) that there exists
a proper subarc of S(t) containing in E(p) whose endpoints are p. This means that
S(t) has a self-intersection at p, a contradiction to Theorem B, (2).

For a point p e C(€) with p(p)> R, let x,:[0, ) - C(€)N D, be the curve
obtained in Theorem A such that x,(0) = p. The monotone property of {E(x,(u))}
has already been established in the proof of Theorem A. The uniqueness of x, is
seen as follows.

Suppose that there are two curves x,, x,:[0,%)— C(€)ND, having the
properties required. Note that there is no closed curve in C(€) which bounds an
open bounded set. Therefore if {u;} is a decreasing sequence such that lim y; =
uo=0, and such that x,(x)# x;(w) for all i=1,2,..., and that x,(up) = x}(uo),
then x,(u) # x.(u) holds for all u > u,. It follows from what is supposed that there
is a up=0 such that x,(u) # x,(u) for all u>u, and such that x,(u) = x,(u) for all
u€l0, uy). Without loss of generality one may assume that u,>0. Then there
exists a small ball N around x,(u,) which is divided by the curves x,([0, u,)),
x,([uy, u;]) and x,([uo, u,]) for some u; > u, into three components. There are at
least three distinct segments from x,(u,) to € each of which passes through points
on each of the three distinct components in N. Two of the three curves in
C(€)N N pass through points in the interior of E(x,(u,)). But this contradicts to
the first conclusion since p(x,(u)) = p(x;(u))> p(p) holds for u > u,.

This completes the proof of Lemma 3.1.
Note that if p, e S(t) N C(®), p# q and if t> R;, then there exists a number
uy>0 such that x,(u) # x,(u) for 0=u<u, and x,(u)=x,(u) for all u = u,.

The proof of Theorem D. The continuity of L(t) for t>R; is a direct
consequence of the fact that

’1‘1% S(t+h)= ;ll% S(t—h)=S(1).
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As was already shown by Hartman L(t) is differentiable at each non-exceptional t.
The derivative of L(t) at such a t was first given by Fiala (see p. 330, [2]) as

follows: Let t be a non-exceptional value and let x,(1), . . ., x, (¢t) be all the normal
cut points on S(t) and let m(t) be the number of components of S(t). Then
dL(t -
—-—(—i—tg—) =27r—c(B@®)-27(m(t)—1)

~ 21 [2 tan (B(x (1))/2)— B(x(1)].

For an arbitrary given £ in (0, 7) let T'(e):=max (R, t(e)), where t(¢g) is a
constant obtained in Theorem C. If t> T'(¢) is non-exceptional, then m(t)=1
follows from Theorem B, and from Theorem C one obtains

k
0= 2, [2tan (B(x(1)/2)~ B(x ()] <e.

Therefore if t> T'(¢) is non-exceptional, then

2m—c(B(t)—¢ <£%—:Q§27r—c(ﬁ(t)).

On the other hand the area A(f) of B(t) is given as

t

A@)—A(T)= j L(u) du.

T

Now, if ¢(M) = —», then lim,_,., dL(t)/dt =, and the proof of Theorem D in
this case is an immediate consequence of the L’Hospital theorem.

Consider the case where c¢(M)>-x. Let T"(¢) be a number such that
lc(B(t))—c(M)|<e holds for all t>T"(¢) and set T(e):=max (T'(g), T"(g)).
Then it is clear that for every t> T(¢g)

L
2m—c(M)—2¢ _.S_tlim “—fﬂ§2W—C(M)+S,

and
At
2a—c(M)—2¢ é}im 2:2)§27T—‘C(M)+8.

Since E is any positive, this completes the proof of Theorem D.
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