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Commutators of diffeomorphisms, IIl: a group which is not perfect

Joun N. MATHERY

The group of C" diffeomorphisms of the real line with compact support is
perfect if r# 2 (cf. [1-3]). It is unknown whether this is the case if r =2 (cf. [4]).

In this note, we will give a very simple proof that the group G of compactly
supported C! diffeomorphisms of the real line whose first derivative has bounded
variation is not perfect. For fe G, log Df is a compactly supported function of
bounded variation. Let D log Df denote the derivative of log Df in the sense of
the theory of distributions. It is well known that D log Df is a compactly
supported Radon measure. In other words, if we think of D log Df as a linear
functional on the space of C™ functions on R, then D log Df has a unique linear
continuous extension to the space of continuous functions on R, where we provide
this last space with the C° topology.

A self homeomorphism f of R induces automorphism f* of the continuous
functions on R, defined by f*u = u<f. The dual of f* is an automorphism f,, of the
space of compactly supported Radon measures on R. Another way of describing
f4« is to observe that if X is a Borel subset of R, then (f,u)(X) = w(f 'X), for any
Radon measure w. If u is a compactly supported function of bounded variation,
then

f«'Du=D(ucf).

An easy way to see this is to use the fact that Du(I,,)=u(b—0)—u(a+0),
where I, is the open interval (a, b), and this uniquely specifies Du as a Radon
measure. It follows that if f, ge G, then

D log D(feg) =g 'D log Df + D log Dg.

Any Radon measure p uniquely decomposes as a sum p = flyeo+ Wging Where
the regular part w,., vanishes on all Borel sets of zero Lebesque measure and the
singular part pg,, has support in some Borel set X of zero Lebesque measure, in
the sense that g, (Y) = pgn (Y N X) for all Borel sets Y. Note that if g € G, then
g is Lipschitz, so it preserves the decomposition of a Radon measure into its
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regular and singular parts, i.e.

(g*“')reg = g*(“’reg)’ (g*f-’“)singz g*(“’sing)-
We let § u denote the total mass of u, i.e. w(R). For fe G, we define

#(f)= [ (D log Df)..,

Since § gom =§ u, we have

7(fg) = | (&5'D log Df + D log De).., = w(f)+ m(g)

In other words 7: G — R is a homomorphism.

In fact, the homomorphism 7 is surjective. This is easy to prove: Consider
a€R and construct a compactly supported real valued function u of a real
variable such that u(0)=a, u(1)=0, u is C' outside of [0, 1], and u |[0, 1] is a
monotone function whose derivative (as a Radon measure) is totally singular with
respect to Lebesque measure. Such a function may be constructed, for example,
by letting u be the primitive of an appropriate totally singular measure in [0, 1]
and extending u to be C! outside of [0, 1]. We further require that [~ (e*®—
1) dt =0. This may be arranged by altering u (if necessary) outside the interval
[0, 1]. Let f be the primitive of e* which is the identity near —». Then fe G and

0 o0
'n'(f)=j Du+J Du=a,
oo 1

since (Du),, | [0, 1]1=0 and Du,.,= Du, elsewhere. We have proved:
THEOREM. 7:G —R is a surjective homomorphism.

More generally, let R be a family of Borel subsets of R which is G-invariant,
closed under countable unions, and satisfies the condition that if Xe R and Yisa
Borel subset of X, then Y € R. Each compactly supported Radon measure p has a
unique decomposition

m = H'R-reg+ IJ*R—sing

where the R-regular part of w vanishes on all members of R and the R-singular
part has support in a member of R.
For fe G, let

()= | Dllog Df ) rs

The same argument as before shows that 7z is a homomorphism.
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We may obtain many different homomorphisms of G onto R this way, for
example, by taking R to be the set of subsets of Hausdorff dimension =a, for
0=<a <1, or of vanishing a-dimensional Hausdorff measure, for 0=a <1, or of
Hausdorff dimension <a, for 0<a <1, or the family of subsets which for any
€ >0 can be covered by a countable family of intervals whose lengths satisfy
Yo i —(ogl) ' <eg, etc.
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