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Commutators of diffeomorphisms, ni: a group which is not perfect

John N. Mather(1)

The group of Cr diffeomorphisms of the real line with compact support is

perfect if rf 2 (cf. [1-3]). It is unknown whether this is the case if r 2 (cf. [4]).
In this note, we will give a very simple proof that the group G of compactly

supportée C1 diffeomorphisms of the real line whose first derivative has bounded
variation is not perfect. For feG, log Df is a compactly supported function of
bounded variation. Let D log Df dénote the derivative of log Df in the sensé of
the theory of distributions. It is well known that D log Df is a compactly
supported Radon measure. In other words, if we think of D log Df as a linear
functional on the space of C°° functions on R, then D log Df has a unique linear
continuous extension to the space of continuous functions on R, where we provide
this last space with the C° topology.

A self homeomorphism / of R induces automorphism /* of the continuous
functions on R, defined by f*u u°f. The dual of /* is an automorphism /* of the

space of compactly supported Radon measures on R. Another way of describing
/# is to observe that if X is a Borel subset of R, then (f*ii)(X) fx(f~1X), for any
Radon measure /x. If u is a compactly supported function of bounded variation,
then

An easy way to see this is to use the fact that Du(Ia&gt;b) u(fc-0)-u(a
where I^b is the open interval (a, b), and this uniquely spécifies Du as a Radon

measure. It follows that if /, g e G, then

D log D(fo g) g^D log Df + D log Dg.

Any Radon measure ju, uniquely décomposes as a sum jll /xreg+ ju,smg where
the regular part /xreg vanishes on ail Borel sets of zéro Lebesque measure and the

singular part /msmg has support in some Borel set X of zéro Lebesque measure, in
the sensé that ju,smg(Y) jxsmg(YnX) for ail Borel sets Y. Note that if g e G, then

g is Lipschitz, so it préserves the décomposition of a Radon measure into its
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regular and singular parts, i.e.

(g*^)reg= g*(^reg), (g*M-)smg g*(^smg)-

We let J in dénote the total mass of /x, i.e. /ul(R). For fe G, we define

7r(/) J(DlogD/)reg.

Since J g*fx J /ll, we hâve

In other words u : G —&gt; R is a homomorphism.
In fact, the homomorphism tt is surjective. This is easy to prove: Consider

aeU and construct a compactly supported real valued function u of a real
variable such that u(0) a, w(l) 0, u is C1 outside of [0,1], and u | [0,1] is a
monotone function whose derivative (as a Radon measure) is totally singular with
respect to Lebesque measure. Such a function may be constructed, for example,
by letting u be the primitive of an appropriate totally singular measure in [0,1]
and extending u to be C1 outside of [0,1]. We further require that J!!oo(eM(t)-
1) dt 0. This may be arranged by altering u (if necessary) outside the interval
[0,1], Let / be the primitive of eu which is the identity near -o°. Then /€ G and

tt(/) Du+\ Du a,

since (Dw)reg | [0,1] 0 and Dwreg Du, elsewhere. We hâve proved:

THEOREM. tt:G—&gt;IR is a surjective homomorphism.

More generally, let R be a family of Borel subsets of R which is G-invariant,
closed under countable unions, and satisfies the condition that if Xe R and Y is a

Borel subset of X, then YeR. Each compactly supported Radon measure /ul has a

unique décomposition

M* ~ M&apos;R-reg&quot;*&quot; M-R-sing

where the R -regular part of jll vanishes on ail members of R and the R -singular
part has support in a member of R.

For/eG, let

The same argument as before shows that ttr is a homomorphism.
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We may obtain many différent homomorphisms of G onto (R this way, for
example, by taking R to be the set of subsets of Hausdoriï dimension =^a, for
O^a &lt; 1, or of vanishing a-dimensional Hausdorff measure, for O^a ^ 1, or of
Hausdorff dimension &lt;a, for 0&lt;a^l, or the family of subsets which for any
e &gt; 0 can be covered by a countable family of intervais whose lengths satisfy
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