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On the Kneser-Tits problem

GoraL PrasaD and M. S.. RAGHUNATHAN

Introduction

Let G be a semi-simple, simply connected algebraic group defined, isotropic
and simple over a (commutative) field k. Let G(k) be the group of k-rational
points of G and G(k)" be the normal subgroup of G(k) generated by the
k-rational points of the unipotent radicals of parabolic k-subgroups of G. The
Kneser-Tits problem referred to in the title is the following: Is G(k)" = G(k) for
every G as above? The main object of this paper is to prove that for a field k, the
Kneser—Tits problem has an affirmative solution iff G(k)* = G(k) for all simply
connected, k-simple groups G of k-rank 1. This reduction of the Kneser-Tits
problem is an immediate consequence of Theorem A proved below. After this
work was complete, we learnt from Armand Borel that Theorem A was conjec-
tured by Jacques Tits in a lecture at the Institute for Advanced Study (Princeton),
and was proved by him for some fields by a method different from ours.

The proof of Theorem A depends on a theorem on Galois cohomology
(Theorem B) which may be of some independent interest.

In case k is a local field, the Kneser-Tits problem has an affirmative solution.
This was essentially proved by V. P. Platonov [4] using the known results on
classical groups and detailed knowledge of classification. He also gave the first
examples of fields for which the Kneser-Tits problem has a negative answer (see
Tits [8] for a survey). In §2 of this paper we use the reduction of the Kneser-Tits
problem to rank 1 groups stated above to provide a simple proof of its affirmative
solution for the local fields. This simple proof devised by the first-named author
was the starting point of the present work. We hope to come back to the problem
for global fields in the near future.

1.1. Let k be a (commutative) field, ¥ be a fixed separable closure of k and
let I' = Gal (¥/k). Let G be a semi-simple, simply connected group defined over
k. Let S be a maximal k-split torus of G. Let dim S =r (:= k-rank G). We assume
that r>0 i.e., G is isotropic over k; we also assume that G is k-simple, i.e., it has
no proper connected normal subgroup defined over k.
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108 G. PRASAD AND M. S. RAGHUNATHAN

1.2, Let T be a maximal torus of G containing S and defined over k. Let @ be
the set of roots of G relative to T. We fix a Borel subgroup B defined over X%,
B o T, and contained in a minimal parabolic k-subgroup of G. This induces an
ordering on @; let A be the set of all simple roots with respect to this ordering.
Let A, be the subset of A consisting of those roots which are trivial on S. There is
an action of I' on A (the *-action) defined in Tits [7: §2.3]; both A, and A — A, are
stable under this action. Since k-rank G =r, there are r I'-orbits in A — A,,.

1.3. For a simple root a, let U, and U_, be the root subgroups associated
with a and —a respectively; U, and U_, are connected unipotent ¥ -subgroups of
G, of dimension 1, normalized by T. Since G is simply connected, Va € 4, the
subgroup generated by U, and U_, is X-isomorphic to SL,; let T, be its
intersection with T, then T, is a one dimensional torus defined over X, and as G
is simply connected, T is a direct product of the T,(ae€ A). For a subset @ of A,
let T¢ be the subtorus generated by the tori T,, a € 6.

1.4. For a k-subgroup H of G, as usual, H(k) will denote the group of
k-rational points of H, and H(k)" will denote the normal subgroup of H(k)
generated by the k-rational points of the unipotent radicals of the parabolic
k-subgroups of H.

1.5. For a I'-stable subset @ of A —A,, let T® be the identity component of
Necoua, Ker 6. Let Mg be the centralizer of T® in G. Then Mg is a connected
reductive subgroup defined over k; in fact it is a Levi k-subgroup of a parabolic
k-subgroup of G (cf. Tits [7: §2.5.4]). Let 9g be the derived subgroup of Me.
Then % is a semi-simple, simply connected, k-subgroup of G, and hence it is a
direct product of its connected k-simple normal subgroups. Let Ag be the
product of all connected k-simple normal subgroups of % which are anisotropic
over k, and Gg be the product of all connected k-simple k-isotropic subgroups.
Then the k-rank of Gg is equal to the number of I'-orbits in @, and % is a direct
product (over k) of Ag and Gg. It is easily seen that Mg is a semi-direct product
of Te and Ye; where @’ is the complement of @ in A —A,. Hence, the natural
homomorphism: M e(K) — (Mel/Ge)(X) is surjective.

We shall denote the centralizer of S in G by M and sometimes also by M. Let
% be the derived group of M. Then M = My; G =Y, (Where J is the empty
subset of A —A,). ¥ is anisotropic over k, and it is easy to see that Ag is a normal
subgroup of ¥ for every I'-stable subset ® of A —A,.

For a I'-stable subset @ of A —A,, let Sg be the maximal k-split torus of Gg
contained in S, and let Mg denote the centralizer of Sg¢ in Gg. Then Mg is a
connected reductive k-subgroup. Moreover, since 9 is a direct product of Gg
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and Ag, the centralizer of Sg in %g is just Ag - Mg (direct product). It is easy to
see, by considering the reductive groups S - Gg and S - 9g, that Mg = M NGy
and M NYg = Ag - Mg.

16. Let O, i=1,...,r, be the I'-orbits in A—A4,. Recall that Gg is a
semi-simple simply connected k-subgroup of G of k-rank 1; it is k-simple since it
does not contain any connected normal k-anisotropic subgroup. It follows from
the Bruhat-decomposition that G(k)= M(k) - G(k)*. Thus G(k)" = G(k) if and
only if G(k)* > M(k). Similarly as Gg(k)=Mg(k) - Gg(k)", Gg(k)" = Gg(k) if
and only if Gg(k)™ @ Mg(k). In view of these observations, the following Theorem
A implies that the Kneser-Tits problem for a field k has an affirmative solution if
and only if for every k-simple simply connected group G of k-rank 1, G(k)" =
G(k).

THEOREM A. Assume that k-rank G =2. Then M(k) is generated by the
subgroups Mg (k) (1=i=r).

1.7. Remark. If k is an infinite field, then G(k)* has no proper non-central
normal subgroups (Tits [6: Main Theorem]), in particular it is perfect i.e.
(G(k)*, G(k)")=G(k)". Now Theorem A implies that to prove that G(k) is
perfect for all k-simple, simply connected k-isotropic G, it suffices to prove that
this is so for all k-simple, simply connected groups of k-rank 1.

We shall prove Theorem A using the following:

THEOREM B. For i<n, let A, be a I' (= Gal (¥/k))-stable subset of A —A4,
such that (-, A, = &. Then the natural morphism:

H'(k, 9) - [ H'(k, 4,),

i=1

induced by the inclusion of 4 in 4, (1=i=n), is injective (i.e., its kernel is trivial).
Now assuming Theorem B we shall prove Theorem A:

NOTATION. In the sequel we shall denote the complement of @, in A -4,
by @l' and A@{a (ge,’» 69{9 Mﬂ,’a MG: and T@, by Aia (gi’ Gia J“i, M and ’rt
respectively.

Proof of Theorem A. It is obvious from the Tits index ([7]) of G/k that given a
connected normal k-simple subgroup of the derived group 4 of ., there is an
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i(=r) such that Gg, and therefore Mg, contains it. Now since ¢ is a direct
product of its connected normal k-simple subgroups, we conclude that the
subgroup generated by the Mg (k) (1=i=r) contains ¥(k).

The inclusion of M in M; induces a k-rational homomorphism #/4 —
[1i-1 #/%, and also a homomorphism M (k)/%4(k) — [}, #;(k)/%.(k) of abstract
groups. We now observe that the k-rational homomorphism #/4 — [}, #,/%,
is an isomorphism. In fact, as ; is a semi-direct product of the torus T; =T,
and the normal semi-simple subgroup ¥, /% is isomorphic to T;(=Tg,)
and as M is a semi-direct product of T,_,,6 and ¥, #M/% is isomorphic to T,_,,.
But T,_,, is a direct product of the tori T; since A —4, is a disjoint union of the
O, (1=i=r). From this we conclude at once that the homomorphism /94—
[Ti-, #,/%, is an isomorphism.

The commutative diagram

1— ¥ —_— M — MG — > 1

Lk

1—s [T9 — M4 — [Tays — 1,
i=1 i=1 i=1

gives the following commutative diagram involving Galois cohomology:

1— Yk) — Mk) — WEGKk) —> H' (k9

l l I l

1 — 140 — [Tt — I s — [Tk 9),

in which the horizontal rows are exact. Now since H'(k, 4) = [I'_, H'(k, %) is
injective (Theorem B), we easily conclude from the second commutative diagram
that the natural homomorphism #(k)/%(k) — [I; -1 #;(k)/%,(k) is surjective; now
since ().1% =9%, it follows that the induced homomorphism A (k)/%4(k)—
IT;=1 M;(k)/%4 (k) is an isomorphism. It is evident from this that # (k) is generated
by the subgroups 6;:=M(k)N(;x G(k) (i=r). But (i G =iz Y, = Y.
Therefore

€ =Mk)N ﬂjaﬁi (é,'(k) =(MN @91)(’() = Ae‘(k) : Me‘(k) (cf. 1.5).

As the subgroup generated by the Mg (k) (1=i=r) contains 4(k) and hence
also Ag_(k) for 1=c =r (recall that Ag_is a normal subgroup of ¥), we conclude
that M(k)(= #(k)) is generated by the subgroups Mg (k), 1=i=r. This proves
Theorem A.
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§2. The Kneser-Tits problem for nonarchimedean local fields

We will now prove that the Kneser-Tits problem has an affirmative solution if
k is a nonarchimedean local (i.e. locally compact, non-discrete, totally discon-
nected) field. For such a field it is known that H(k, %) is trivial (recall that ¥ is
connected and simply connected): If k is a local field of characteristic zero, this
was proved by M. Kneser ([3]) and then by Bruhat-Tits ([2]) for local fields of
arbitrary characteristic. Thus, for a local field, Theorem B is an immediate
consequence of this result. The first-named author originally proved Theorem A
for local fields and deduced the Kneser-Tits conjecture in that case, the deduction
is described below:

Let k be a nonarchimedean local field and let G be a k-simple, simply
connected k-group of k-rank 1. Then ([1: 6.21(ii)]) there exists a finite separable
extension K of k and an absolutely simple, simply connected group G defined over
K, and of K-rank 1, such that G = R, (G); K is again a nonarchimedean local
field and from the classification (due to Kneser in characteristic zero and due to
Bruhat-Tits in arbitrary characteristic) of absolutely simple groups over such a
field we know that an absolutely simple, simply connected K-group of K-rank 1 is
one of the following (note that there are no rank 1 forms of exceptional groups
over a nonarchimedean local field):

(i) SL, p, where D is a finite dimensional central division algebra over K.

(i) SU(f), where f is a hermitian form, of Witt index 1, in 3 or 4 variables,
defined in terms of a quadratic Galois extension K of K.

(iii) The spin group of a o-quadratic form of Witt index 1 and rank 4 or 5, or
the symplectic group of a o-antihermitian form of rank 2 or 3 and Witt index 1;
where ¢ is an involution of the quaternion central division algebra D over K such
that the dimension of D, the space of symmetric elements, is 3.

For each of the above groups G, it is known that G(K)* = G(K); see, for
example, [8].

§3

We shall now begin our proof of Theorem B. A standard argument which uses
the fact that there is a finite separable extension K of k and an absolutely simple,
simply connected group defined over K such that G is obtained from it by
restriction of scalars ([1: 6.21(ii)]), and Shapiro’s lemma in Galois cohomology
(Serre [S: 5.8(b)]), allows us to assume that G is absolutely simple (and of k-rank
=2). The proof (of Theorem B) uses the classification of absolutely simple groups
in terms of Tits index (see Tits [7]); we shall assume familiarity with it.

From the Tits index of absolutely simple k-groups of k-rank =2 we see that if
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the Tits index is not one of the following six:

O Eox —C_{]

i) 'E%: G——i T TR
X
(i) E3L: k @:T:@
X
(iv) E3%: G—iP i .[ ——)
%

B *%
i
-

) E3%: —— y
X

then there exists a I'-orbit in 4 — A4, such that if @ is its complement in A — A,
then, in the notation introduced in 1.5, Ge¢ has at most one connected normal
k-simple subgroup which meets % non-trivially and this connected normal k-
simple subgroup is k-isomorphic to Ry, (G), where K is a Galois extension of k
(of degree <2) and G is an absolutely simple K-isotropic group of inner type A.
We know that %, is a direct product of Ag and Gg (and Ag is a factor of 4).
Hence, the natural map H'(k, Ag) — H'(k, ¥g) is injective. Now it is not hard to
see that to prove Theorem B for a group with Tits index different from the 6
indices listed above, it is enough to prove the following:
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3.1. PROPOSITION. Let G be an absolutely simple, simply connected group
of inner type A which is defined and isotropic over a field K. Let S be a maximal
K-split torus of G and H be a connected normal K-simple subgroup of the derived
group of the centralizer of S in G. Then the natural map H'(K, H) - H'(K, G) is
injective.

Proof. There exists a central division algebra D over K such that G is
K-isomorphic to the group SL,, 5, where m = k-rank G+ 1. We identify G with
SL..p and for S take the K-split torus such that

A 0
o
0 "Am

Then the centralizer of S is the diagonal subgroup of SL,, 5, and there is a positive
integer i =m such that H is the subgroup of the diagonal group consisting of the
elements whose j-th diagonal entry is 1 for all j#i; H is clearly k-isomorphic to
SL,p. In the sequel we shall identify SL,; 5 with H.

Now we consider the group GL,,p. We embedd GL,p in GL, p as the
subgroup of the diagonal group consisting of the elements with the j-th diagonal
entry 1 for all j#i. H is now the kernel of the reduced norm map Nrd: GL, , —
Mult. The commutative diagram of K-groups:

AiEKX, I_Il\l 21}

1—>SL,.p—> GL,,, o> Mult—> 1

[ .

s SLI,D — GLl,D -'&) Mult —> 1

gives the following commutative diagram in which the horizontal rows are exact in
view of the vanishing® of H*(K, GL,p) for all n=1:

1—>SL,,.(D)—>GL,.(D) X5 K*— H'(K, SL,,p) —> 1

L

1 SLI(D) ——— GLl(D) o > K> > Hl(K, SLI,D) —> 1.

From the theory of Dieudonné determinants it is obvious that the image of
GL, (D) in K* equals that of GL,(D), from this and the above commutative
diagram we conclude at once that H'(K, SL, p) = H'(K, SL,, o) is injective, i.e., in
the notation of the proposition, the natural map H*(K, H) = H'(K, G) is injective.
This proves the proposition.

! This vanishing is a well-known theorem of Hilbert and Speiser.
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§4

We shall now prove Theorem B for groups with Tits index the first of the six
exceptional ones listed in §3 i.e.,

-'

Let @ be the unique distinguished I'-orbit consisting of 2 simple roots. Then the
Tits index of Y (= Ye) is the following:

om|

Moreover, the Tits index of 4 (= %) is-( . Now let | be the quadratic Galois

extension of k such that %g/l is an inner form of a split group. There is an
anisotropic hermitian form f in 4 variables, defined in terms of the nontrivial
automorphism o of l/k, such that 9 is k-isomorphic to SU(f), whereas %g is
k -isomorphic to SU(f L h), where h is the hyperbolic form in 2 variables. Now we
consider the following commutative diagram in which the horizontal rows are

exact: 1—>SU(fLh)—> U Lh)—> T—>1

I T

|
— SU() — U(f) > J—1;

where J is the torus of dimension 1 defined and anisotropic over k which splits
over I, (then J(k)={xel*|xo(x)=1}) and U(fLh)— 7, as well as U(f)— J,
are the determinant maps. It is obvious that both U(fL h)(k) — (k) and
U(f)(k) — T (k) are surjective. Therefore, the natural morphisms H'(k, SU(f L
h)) — H'(k, U(f L h)) and H'(k, SU(f)) = H'(k, U(f)) are injective. On the other
hand, Witt’s cancellation theorem (for hermitian forms) implies at once that
H(k, U(f)) = H'(k, U(f L h)) is injective. Now it is obvious that H*(k, SU(f)) —
H'(k, SU(f L h)) is injective, i.e., H(k, 9) — H'(k, 9¢) is injective. From this
Theorem B follows for groups of type 2Eg ..

§5

In this section we shall complete the proof of Theorem B by proving it for the
groups of the remaining five exceptional types. We begin with the following two
lemmas.
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5.1. LEMMA. Let P be a parabolic k-subgroup of a connected reductive

k-group G, and M be a maximal reductive k-subgroup of P. Then the natural
morphism

H'(k, M) > H'(k, G)

is injective.

Proof. Since the natural map G(k)— (G/P)(k) is surjective (Botel-Tits [1:
4.13(a)]), the morphism

H'(k,P) — H'(k, G)

is injective. Therefore, to prove the lemma, it suffices to observe that if U is the
unipotent radical of P, then U is defined over k and P=MXU (a semi-direct
product), and hence the natural morphism

H'(k, M) —> H'(k, P)

is injective.

5.2. LEMMA. Let G and M be as in the preceding lemma. Let § be the
derived subgroup of M and S be the central torus of M. Let 4, and %, be two
connected normal k—subgroups of 4 such that § is an almost direct product of %4,
and 4,. Let € be the finite group scheme 4, NS%Y,. Then the kernel of the natural
morphism

H'(k, %,) — H'(k, G)

is contained in the image of
H(k, €) — H(k, %,).

Proof. Since the morphism H'(k, M) — H'(k, G) is injective (Lemma 5.1), the
kernel of H(k, 4,) — H'(k,G) coincides with the kernel of H'(k, %4, —
H'(k, M). But C:=Ker (H'(k, %,) — H'(k, M)) is clearly contained in the kernel
of the morphism H'(k, 4,) — H'(k, M/S%,) induced by the k-homomorphism
% — M/S%,. Now as the natural homomorphism ¥,/€ —M/SY, is a k-
isomorphism, we conclude that C is contained in the kernel of H'(k, %,)—
H'(k, 4,/%€), and from this the lemma is obvious.

Before proceeding further with the proof of Theorem B in the remaining
exceptional cases, we shall recall some of the basic notions of the theory of
quadratic forms.

5.3. Let p be the characteristic of k. If p =2, let p(k)={x +x2%| xek}; p(k) is
a subgroup of k.
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A quadratic form is said to be nondefective if the associated bilinear form is
nondegenerate.

The rank (or the dimension) of a nondefective quadratic form is by definition
the dimension of the underlying k-vector space, and the Witt index (over k) is the
dimension of a maximal isotropic k-vector subspace.

For a quadratic form f{/k, the discriminant (when p = 2, it is also called the Arf
invariant) d(f) will have the usual meaning. We recall that if p#2, d(f) is an
element of k*/k>?, and if p=2, d(f) is an element of k/p(k). We shall say that a
quadratic form | of rank 2n has trivial signed discriminant if its discriminant
equals that of the hyperbolic form of rank 2n, or, equivalently, if the special
orthogonal group SO(f) is of inner type over k.

Let q be a nondefective anisotropic quadratic form over k, of rank 2, and K be
the quadratic Galois extension of k over which it is hyperbolic, then d(q) is the
image (in k*/k>*? if p# 2 and in k/p(k) if p =2) of the norm of any element of K*
of trace zero if p# 2 and of trace 1 if p = 2. Since q is a multiple of the norm-form
of K/k, we conclude that the discriminant d(q) determines q up to a scalar
multiple.

If over k, f is an orthogonal direct sum of the nondefective quadratic forms q;,
1=<i=n, of rank 2, then d(f) is the product of the d(q;) (1=<i=<n)if p#2,and itis
the sum of the d(q;)’s if p=2.

5.4. The Witt invariant w(f) of a nondefective quadratic form {/k of even rank
is by definition the class of the Clifford algebra of § in the Brauer group of k; it is
an element of order 2 in the Brauer group. We recall that if § is a quadratic form
of rank 2n, with trivial signed discriminant, then the Witt invariant of | has the
following useful description: Let h be the hyperbolic form of rank 2n and let
Spin (k) and SO(h) be respectively the spin group and the special orthogonal
group of h. Then since the discriminant of { equals that of h, the quadratic form f{
is obtained from h by twisting by a Galois cocycle with values in SO(h). Let ¢
denote the cohomology class in H'(k, SO(h)) determined by the cocycle. Now
consider the natural central isogeny:

1— p,— Spin (h) - SO(h)—> 1,

where p, is the kernel of the endomorphism x > x? of GL, (it is a finite group
scheme defined over k). It gives rise to the following exact sequence:

Hl(k9 Spin (h)) - Hl(k’ SO(h)) “6‘) Hz(k’ "'2)’

then w(f) = 8(c) in the natural identification of H?*(k, p.,) with the subgroup of the
Brauer group of k consisting of the elements of order 2.
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Now we observe that if § is an anisotropic quadratic form of rank 6 which has
trivial signed discriminant, then its Witt invariant is the class of a division algebra
of degree 4 (i.e. of dimension 16). This follows immediately from the fact that
Spin (h), where h is the hyperbolic form of rank 6, is isomorphic to SL, over the
base field, and the only anisotropic inner twists of SL, are of the form SL, ,, D a
central division algebra of dimension 16 over the base field.

5.5. Now we assume that G is an absolutely simple, simply connected
algebraic group of type one of the remaining five: 'EZ%, E3}, E7%, E3%, ESS,. Let
% be (as in §1) the semi-simple anistropic kernel of G. Let 4, be the unique
connected normal k-subgroup of ¢ of type D, (n=4 or 6) and in case G is of
type E3}, let 4, be the connected normal k-subgroup of 4 of type A, in all the
other cases let 4, be trivial. Then 4 is a direct product of 4, and ¥4,.

5.6. Let a be the simple root corresponding to the vertex in the Tits index
marked with a cross (in §3) and let @ be the set of distinguished simple roots # a.
To establish Theorem B in the cases under consideration, it clearly suffices to
prove that the natural morphism

H'(k, 4,) — H'(k, G,)) X H'(k, Gg)
is injective.

Let S, (resp. Sg) be the maximal k-split torus of Gy, (resp. Gg) contained in
S, and let Z=%,N S, =9 NSe¥%,. Then it is easily seen, using the Tits
indices, that both Z and ¥ are k-isomorphic to the group scheme p,. Moreover,
the center of ¥4, is a direct sum of Z and %.

Now we observe that there is a nondefective, anisotropic quadratic form {/k
with trivial discriminant, { of rank 12 in case G is of type E$%, and of rank 8 in all
the other cases, such that ¥4, is k-isomorphic to Spin (f) and the kernel of the
natural central isogeny r : Spin (f) = SO(J) is Z (= 9, N Sy,y)- This follows from the
fact that ¥, is the semi-simple anisotropic kernel of the simply connected,
absolutely simple group Gy,, and G, is the spin group of a nondefective

quadratic form, of Witt index 1, which has trivial signed discriminant, since its Tits
index is

c}eaa/
N



118 G. PRASAD AND M. S. RAGHUNATHAN

in case G is of type E$%, and

c

in all the other cases. We shall identify 4§, with Spin (f) in the sequel.

5.7. LEMMA. If G is of type E$5, then the Witt invariant of f over k is trivial.

Proof. Any connected absolutely simple algebraic group of type Eg is simply
connected and is isomorphic to its automorphism group. Therefore, as the
semi-simple anisotropic kernel of a k-form of type E§5 is an absolutely simple,
simply connected group of type D, it is obtained from the split group of type Eg
by twisting by a Galois cocycle with values in the spin group of the hyperbolic
form h of rank 12 (the spin group embedded as a maximal semi-simple k-
subgroup of a parabolic k-subgroup of the split group of type Eg). Hence, { is
obtained from h by twisting by a cocycle whose cohomology class lies in the image
of the natural morphism.

H'(k, Spin (h)) — H'(k, SO(h)).

This implies the lemma (see 5.4).

5.8. We now note, for future use, that the Witt index of the quadratic form f
is even over any extension of k: this is seen easily from the classification of inner
k-forms of types E4, E; and Eg in terms of the Tits indices given in Tits [7].

5.9. Now let ¢ be an element of the kernel of the natural morphism
H'(k, %,) — H'(k, G(a)) X H'(k, Ge).

We shall prove that c is trivial, this will establish Theorem B (see 5.6).

Let Z and & be as in 5.6. From Lemma 5.2 applied in turn to G= Gy, and
G = Gg, we conclude that c lies in the intersection of the images of the following
natural morphisms:

H'(k, %) — H'(k, 9,)
and
H'(k,Z) — H(k, 4,).

Hence, in particular ¢ is mapped onto the trivial element of H'(k, SO(f)) under
the central isogeny (9, =) Spin (f) = SO(f) (whose kernel is Z).

We fix an element ce H'(k, %) which is mapped onto ¢ € H'(k, %,). Since ¥ is
k -isomorphic to p,, there is a natural identification of H'(k, %) with k*/k™2. Let
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s € k™ be such that, in the identification of H'(k, %) with k™/k*?, ¢ corresponds to
s. Now we observe that under the central isogeny Spin (f) — SO(f), Z is mapped
onto the center of SO(f) and from this we conclude that the image of the
cohomology class ¢ in H'(k, SO(f)) corresponds to the quadratic form sf. But
since the image of ¢ in H'(k, SO(f)) is trivial, sf is equivalent to § over k.

5.10. LEMMA. Let ¢ be a nondefective anisotropic quadratic form such that ¢

is equivalent to s (s € k™). Then there is a nondefective subform qof ¢ of rank 2
such that q is equivalent to sq.

Proof. If s is a square in k™, the lemma is obvious, so we shall assume that s is
not a square.

Let V be the k-vector space underlying ¢ and (,) be the bilinear form
associated with ¢. We fix a v € V such that ¢(v) # 0. Then since ¢ = s, there is a
v’ € V such that ¢(v") =s¢(v). Now if (v, v") #0, let w=20"; if (v, v")=0, choose a
vo€ V such that (v, v) - (vg, V') #0, and let

,_{vo, v")

W=7 0.
¢(vo)

Then @(w) = ¢(v") = s¢(v) and (v, w) # 0. Also since s is not a square, w is not a
scalar multiple of v. Let q be the restriction of the quadratic form ¢ to the
2-dimensional subspace X spanned by v and w. It is easily seen that q is a
nondefective quadratic form. The k-linear automorphism of the vector subspace

X defined by v—>w, w+>sv provides an equivalence of the quadratic form sq
with q.

5.11. PROPOSITION. There exist nondefective subforms q;,q! (i=1,2 if G is
not of type ESS, and i = 1,2, 3 if G is of type ESS) of f, of rank 2, such that { is the
orthogonal direct sum of the q;’s and q!’s, and for each i

(1) q;=saq;, o/=sq]

(2) o is a scalar multiple of q;; in particular SO(g;) is k-isomorphic to SO(q;).

Proof. According to the preceding lemma, there is a nondefective subform q,
of f of rank 2 such that q,=sq,. Now let K be the quadratic Galois extension of k
over which g, is hyperbolic, then q, is a multiple of the norm-form of K/k. Let g1
be the orthogonal complement of g, in f. Then since the Witt index of f over K is
even (5.8), qi is isotropic over K. Therefore, there exist vectors v, w in the
subspace corresponding to q; and a € K—k such that

ar(v+aw) =fv+aw) =) +alv, w)+a§(w)=0.

Now since a is separable, we easily conclude that the restriction q; of qi to the
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2-dimensional subspace spanned by v and w is a nondefective quadratic form of
rank 2 which is isotropic (and hence hyperbolic) over K. Therefore, q; is a
multiple of the norm-form of K/k. As q, is also a multiple of the norm-form of
K/k and q,=sq,, we conclude that g} is a multiple of q; and q} = sqj.

Now let f,=q,1q}. Then the discriminant of {, is trivial. Let {, be the
orthogonal complement of f, in f. Then the discriminant of f, is trivial and as
f1=sf;, by Witt’s cancellation theorem f{,=sf,. We shall now consider the cases
where { is of rank 8. Let g, be a nondefective subform of f, of rank 2 such that
g,=5q, (Lemma 5.10) and g5 be its orthogonal complement in {,. Then the
discriminant of g, equals that of g5 and hence g5 is a scalar multiple of g, (5.3), in
particular q5==sq5.

Now we consider the case where { is of rank 12, then G is of type E$5, {, is an
anisotropic form of rank 8 and trivial discriminant. We claim that the Witt index
of {, over any quadratic Galois extension of k is even. To prove this we consider a
quadratic Galois extension [ of k such that {, is isotropic over I. Then as the
discriminant of {, is trivial, the Witt index of {, over | can not be 3; assume, if
possible, that it is 1. Then since the Witt invariant of f/k is zero (Lemma 5.7), the
Witt invariant of {,/l equals that of {,/l. Now since by hypothesis {,/l is of Witt
index 1, over [ it is an orthogonal direct sum of the hyperbolic form of rank 2 and
an anisotropic form of rank 6. Therefore, the Witt invariant of {,/! is the class of a
division algebra of degree 4 in the Brauer group of [ (5.4). But since f,/k is an
anisotropic form of rank 4 of trivial discriminant, it is a multiple of the norm-form
of a quaternion division algebra D, and its Witt invariant is the class of D in the
Brauer group of k. Therefore, the Witt invariant of f,/I is the class of D ®, . We
conclude thus that the class of a division algebra of degree 4 (in the Brauer group
of 1) contains D ®, l. This is absurd, and hence the Witt index of {, over | can not
be 1. This proves that the Witt index of {, over [ is even. Now since f, is of rank 8,
we can prove, as before, that there exist 4 nondefective quadratic forms q,, g5, g3
and q5 of rank 2 such that {, is an orthogonal direct sum of these; q; = sq;, g/ = sq]
and ¢! is a scalar multiple of q; (i =2, 3). This proves the proposition.

5.12. We fix a set of nondefective subforms g;, g/, of {, of rank 2, as in the
preceding proposition. Let T; = SO(q,)(=SO(f)) and T! = SO(q})(=SO(f)). Then
(for all i) T, and T! are isomorphic k-tori of dimension 1. Let #r : Spin (f) = SO(f)
be the usual central isogeny and let T, = =~ (T}) and T!= =" (T?). Then for all i,
T. and T! are isomorphic k-tori.

[1: (T, X T} is a maximal torus of SO(f) and there is a unique k-embedding of
i, into T;, as well as in T;. The center C of SO(f) is the “diagonally” embedded
w in [T (T x T, L

Let 0, be a fixed k-isomorphism of T; onto T} (note that there are exactly two
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distinct k-isomorphisms of T, onto T!), we shall let 6, also denote the induced
k-isomorphism of T; onto T;. Let J,={x-6,(x)|xeT}, J,={x- 6,(x)| xe T},
andlet T =19, T=[L 7. Itis easily seen that Vi, the restriction of 7 to J; is
an isomorphism onto J; and hence the restriction of 7 to J is an isomorphism
onto J. Also, if necessary after changing the isomorphism 6, for any one i, we can
ensure that Z < J. We shall assume in the sequel that this is the case. Now we
assert that c(eH'(k, %)) is mapped onto the trivial element of H'(k, 7) under the
morphism induced by the inclusion Z — 7. To see this, we observe that the
image of ¢ in H'(k, J) is trivial: this is a simple consequence of the fact that for
Vi, q; = sq;. Now since 7 |4 : T — T is a k-isomorphism which maps # onto C, our
assertion follows. It is obvious now that c, being the image of ¢ in H(k, 4,), is
trivial because Z < J < %,. This completes the proof of Theorem B.
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