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Type d&apos;homotopie des treillis et treillis des

sous-groupes d&apos;un groupe fini

Charles Kratzer et Jacques Thévenaz

A tout ensemble (partiellement) ordonné L, on peut associer un complexe
simplicial \L\ dont les n-simplexes sont les chaînes ao&lt;a1&lt;- • -&lt;an dans L. Si L
est un treillis fini avec élément minimal 0 et élément maximal 1, on s&apos;intéresse aux
propriétés homotopiques de complexe \L\ où L L-{0,1}. Notons qu&apos;il est

nécessaire d&apos;enlever 0 et 1 sinon le complexe est un cône, donc contractile. Soit

a g L un point fixé; rappelons qu&apos;un complément de a est un élément c € L tel que
cAa 0 et cva l. On démontre tout d&apos;abord (Proposition 1.8) que s&apos;il existe

un point a sans complément, alors \L\ est contractile. Certains points très

particuliers de L, appelés pivots, permettent de décrire le type d&apos;homotopie de

\L\. Le théorème principal (Théorème 2.4) affirme en effet qu&apos;on peut
entièrement connaître \L\ à homotopie près en fonction de sous-complexes
déterminés par un pivot et ses compléments. On montre alors (Proposition 3.1)

que tout point maximal d&apos;un treillis modulaire est un pivot, et il en résulte
(Théorème 3.4) que le complexe associé à un treillis modulaire a le type
d&apos;homotopie d&apos;un bouquet de sphères de dimension n - 2, où n est la longueur du
treillis. La version homologique de ce résultat est due à Folkman [F] pour les

treillis géométriques. En particulier, on calcule aisément le type d&apos;homotopie du
treillis des sous-espaces d&apos;un espace vectoriel fini et on retrouve ainsi la version

homologique de ce résultat, due à Lusztig [L].
Si maintenant L est le treillis des sous-groupes d&apos;un groupe fini G, on étudie

d&apos;abord quelques conditions pour que \L\ soit contractile. On montre que si N est

un sous-groupe de G normal abélien et semi-simple comme ZG-module (G
agissant par conjugaison sur N), alors N est un pivot (Théorème 4.7). Il en résulte

que si G est résoluble, le complexe associé a le type d&apos;homotopie d&apos;un bouquet de

sphères de dimension n-2, où n est la longueur d&apos;une suite principale de G
(Corollaire 4.10). Le nombre de ces sphères (qui n&apos;est autre que la caractéristique
d&apos;Euler réduite du complexe) est facilement calculable en fonction du nombre de

compléments de chaque sous-groupe normal d&apos;une suite principale. On retrouve
là un résultat de notre article [K-T] où seule la fonction de Môbius du treillis était
étudiée. En effet, il est bien connu [R] que cette fonction coïncide avec la

caractéristique d&apos;Euler réduite du complexe associé.
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86 CHARLES KRATZER ET JACQUES THÉVENAZ

Le premier paragraphe est consacré aux préliminaires et à quelques résultats

généraux. Le théorème principal est démontré au paragraphe 2. Les applications
du théorème aux treillis modulaires font l&apos;objet du troisième paragraphe. Enfin,
dans le dernier paragraphe, nous étudions le complexe associé au treillis des

sous-groupes d&apos;un groupe fini.

1. Préliminaires

Soit E un ensemble (partiellement) ordonné et soit |JE| le complexe simplicial
associé: un n-simplexe de |fi| est une chaîne ao&lt;ai&lt;**#&lt;an dans JE. Une
application croissante / : JE —» F entre ensembles ordonnés induit une application
simpliciale |/|:|jE|-»|F|. Cette construction permet d&apos;appliquer aux ensembles
ordonnés des concepts topologiques. Ainsi on dira par exemple que JE est
contractile si |JEs| l&apos;est et que / est une équivalence d&apos;homotopie si |/| l&apos;est.

Nous allons faire un large usage des résultats suivants [Q, §1]:

1.1. Si E possède un plus grand (ou plus petit) élément a, alors \E\ est un cône

de sommet a. En particulier, JE est contractile.

1.2. Sif, g : JE —» F sont deux applications croissantes telles que f(x) ^ g(x) pour
tout xeE, alors \f\ est homotope à |g|.

Ces deux propriétés impliquent la suivante:

1.3. Soit f:E-^E une application croissante et aef(E). Si x^f(x)^a pour
tout x g JE, alors \E\ a le type d&apos;homotopie d&apos;un cône de sommet a. JEn particulier, E
est contractile.

On a le même résultat en renversant les inégalités.

1.4. THÉORÈME A (Quillen). Soitf.E-&gt;F une application croissante. Pour

y g F, on considère la &quot;fibre&quot; fly ={xe E; f(x) ^ y}. Si //y est contractile pour tout

y €F, alors f est une équivalence d&apos;homotopie.

On a le même résultat en remplaçant dans l&apos;énoncé fly par y\/ {x g JE; y ^ f(x)}.

Remarque 1.5. On utilisera ce théorème dans le cas d&apos;une inclusion i
Pour y eE, \i/y\ est un cône de sommet y, si bien qu&apos;il suffit, pour être dans les

hypothèses du théorème, de montrer que ily est contractile si y g F—E.
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Soit E un ensemble ordonné et a, b € E. On définit les intervalles [a, b]
{xeE; a^x^b} et (a, b)-{xeE; a&lt;x&lt;b}. Si É est un ensemble ordonné
possédant un unique élément minimal 0 et un unique élément maximal 1 (si bien

que JE [0,1]), on s&apos;intéressera à E (0,1). Cela s&apos;applique en particulier aux
treillis finis, car ils ont nécessairement un unique élément minimal et un unique
élément maximal.

PROPOSITION 1.6. Soit Ë [0,1] un ensemble ordonné fini etE (0,1). Soit

A un sous-ensemble de E tel que (0, a) est contractile pour tout aeA. Alors
Vinclusion E — A ^ E est une équivalence d&apos;homotopie.

Preuve. Soit M l&apos;ensemble des éléments maximaux de A. D suffit de montrer
que i:E — M ^ E est une équivalence d&apos;homotopie, puis de répéter l&apos;opération.

Par le Théorème A et la Remarque 1.5, il suffit de montrer que si y eM, i/y est
contractile. Mais comme deux éléments de M ne sont pas comparables, tout x &lt; y
appartient à E — M, si bien que i/y (0, y). Le résultat s&apos;ensuit car (0, y) est
contractile par hypothèse.

Remarque. Dualement, E garde le même type d&apos;homotopie si on lui enlève
des points a pour lesquels (a, 1) est contractile.

Dans la suite, L désignera un treillis fini, c&apos;est-à-dire un ensemble fini
(partiellement) ordonné L tel que toute paire d&apos;éléments a, b possède un

supremum, noté avb et un infimum, noté a/\b\ nous noterons 0 son unique
élément minimal, 1 son unique élément maximal et L (0,1). Rappelons que si

aeL, un complément de a dans L est un élément ceL tel que c a a 0 et

cva 1.

LEMME 1.7. Soit a, xeL tels que avx l. Si c est un complément de ar\x
dans [0, x], alors c est un complément de a dans [0,1] L.

Preuve. On a c v a i= c v (a a x) x, si bien que cva^xva let donc cva
1. Par ailleurs, cAa cAXAa 0.

Dualement, si a a x 0 et si c est un complément de a vx dans [x, 1], alors c

est un complément de a dans L.

PROPOSITION 1.8. Soit L [0,1] un treillis fini etL (0,1). S&apos;il existe aeL
ne possédant pas de complément dans L, alors L est contractile.
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Preuve. Soit X {x€L; avx l}. Par le lemme 1.7, si xgX, alors a ax n&apos;a

pas de complément dans [0, x]. Par induction sur le cardinal de L, on peut
supposer que (0, x) est contractile. Remarquons qu&apos;au départ de l&apos;induction, X est
nécessairement vide. Par la Proposition 1.6, L — X ^ L est alors une équivalence
d&apos;homotopie et il suffit donc de montrer que L — X est contractile. Or pour tout
yeL — X, on a yvaeL-X et y^yva^a. Ainsi par 1.3, L — X est

contractile.

Remarque. La réciproque de la Proposition 1.8 n&apos;est pas vraie. Soit en effet

L (0,1) {a, 6,c, d, e, f) avec a&gt;b&lt;c&gt;d&lt;e&gt;f. Alors L est contractile et
tout point possède un complément dans L. Par ailleurs, Bjôrner démontre dans

[B2] par d&apos;autres méthodes un résultat plus général: pour qu&apos;un treillis soit
non-contractile, il faut qu&apos;il soit fortement complémenté.

2. Pivots et type d&apos;homotopie

Soit L [0,1] un treillis fini, L (0,1) et a € L. L&apos;ensemble des compléments
de a dans L est noté ax. On suppose que ax est non vide sinon L est contractile
(Proposition 1.8). Si c e a\ on note [0, a]c l&apos;image de l&apos;application [c, 1] —» [0, a];
x i-&gt; x a a.

LEMME 2.1. [0,a]c={b€[0,a];(bvc)Aa b}.

Preuve. Si b g [0, a]c, il existe x g [c, 1] tel que x a a b. Comme b ^ x et c ^ x,
fcvc^x et donc (bvc)Aa^xAa b. Par ailleurs, clairement b^(bvc)/\a si

bien que (6vc)Aa 6. Réciproquement, si b (bvc)Aa, alors visiblement be
[09af.

On note aussi (0, a)c [0, a]c -{0, a}. Remarquons que si c € ax, alors a € cx
et donc [0, c]a a un sens. Pour c g a\ on définit encore les sous-ensembles
suivants:

Lc={xeL;x xa vxc, xa g [0, a]c, xc g [0, cf).

;x xa vxc,xag[0, af, xcg[0,c]}.

Rappelons que si X et Y sont deux ensembles ordonnés, alors X x Y l&apos;est aussi
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pour Tordre suivant:

(x,y)S(x&apos;,yO si x^xf et y=Sy&apos;.

LEMME 2.2. a) Si x xavxceL&apos;c, alors xa XAa.
b) Si x xa v xc € Lc, aiors xa x a a ef xc x a c.

c) Lc est isomorphe au produit [0, a]c x[0, c]a.

Preuve, a) Clairement, x^XAa et il s&apos;agit de montrer l&apos;autre inégalité.
Comme xa€[0, a]c, xa zAa où z xavc (Lemme 2.1). Alors x xavxc^
xa\/c z et donc xAa^2Aa xa.

b) Résulte de a) et de l&apos;échange des rôles de a et c.

c) L&apos;application [0, a]c x [0, c]a —? Lc ; (xa, xc) ^xflvxc est croissante et sur-
jective par définition de Lc. Elle est injective car par b), l&apos;écriture x xa vxc est

unique.

Remarque 2.3. Si x xavxceL&apos;c, alors xc n&apos;est pas unique. Le plus grand tel
xc est égal à xac.

Notons encore L&apos;= [Jcea±L&apos;c. On dira que aeL est un pivot si les trois
conditions suivantes sont satisfaites:

(i) [0, a]c ne dépend pas de csa±.
(ii) Deux compléments distincts de a ne sont pas comparables: si c, dea^

avec c ^ d, alors c d.

(iii) Si xt, ...,*„ el! avec x1&lt;jc2&lt;- • &lt;xn, alors il existe cea1^ tel que
xt € Lé pour tout l^ki^-n.

En particulier, si a±=0, alors a est un pivot. Avant d&apos;énoncer le théorème

principal, rappelons quelques concepts topologiques:
Cône: Si X est un espace topologique, Xx[0, l]/Xx{l} est le cône sur X,

noté CX.
Suspension: Si X est un espace topologique, Xx[0, l]/Xx{0}UXx{l} est la

suspension de X, notée X X. Par conséquent, si Y Yx U Y2 est tel que X
Yt n Y2 et si chaque Y, est un cône sur X, alors Y est la suspension de X. En

particulier, si Sn désigne la sphère de dimension n, X Sn Sn+1.

Joint: Si Xi et X2 sont deux espaces topologiques, Y1 - CXt x X2, Y2

X!XCX2, alors Y=Y1UXlXX2Y2 est le joint de Xx et X2, noté Xx*X2. En
particulier, Sn*Sm sn+m+1. n est commode de poser S~1 0 et de définir le
cône sur 0 comme étant un point. Alors X S&quot;1 S0 et la formule du joint des

sphères s&apos;étend à n, m^-1. Finalement, VieI Xt désigne le bouquet des espaces
(pointés) Xr
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THÉORÈME 2.4. Soit L [0,1] un treillis fini, L (0,1) et a un pivot de L.
Alors \L\ a le type d&apos;homotopie de Vceax Œ(|(0, a)c|*|(0,c)a|)).

Le premier ingrédient pour la preuve de ce théorème est la proposition
suivante, qui décrit le type d&apos;homotopie d&apos;un produit:

PROPOSITION 2.5. Soit ÊetF deux ensembles ordonnés possédant chacun un
plus petit élément 0 et un plus grand élément 1. Soit E Ë -{0,1}, F F-{0,1} et
G (JExF)-{(0,0),(l, 1)}. Alors \G\ a le type d&apos;homotopie de £(|JE|*|F|).

Preuve. Soit X {(a, b)e G; a&lt;l} et Y {(a, b)eG; b&lt;l}. Alors |X| a le

type d&apos;homotopie d&apos;un cône de sommet (0,1) sur |X H Y\ car:

(a, b)^(a, 1)^(0,1).

De même, | Y\ a le type d&apos;homotopie d&apos;un cône de sommet (1,0) sur \XH Y\. Non
seulement XU Y=G, mais on a même que |G| |X|U|Y| si bien que \G\ a le

type d&apos;homotopie de la suspension de |X| H | Y\ |XH Y|. H suffit donc de montrer
que \XH Y\ est égal à |E|*|F|.

Soit L/ {(a,f&gt;)eXnY; a&gt;0} et V {(a, b)eXH Y; 6&gt;0}. On a:UUV
XHYet |LT|u|V| |XnY|. De plus, U Ex(F-{l}) et donc \U\ \E\xC\F\.
De même, |V| C|E|x|F|. Finalement, \U\n\V\ \UnV\ \ExF\ \E\x\F\.
Par définition du joint, on a donc \XD Y\ |E|*|F|. D

Remarque. Le fait que |XH Y| |E|*|F| apparaît déjà dans [Q, §1].

COROLLAIRE 2.6. \LC\ a le type d&apos;homotopie de I(|(0, a)c|*|(0, c)a|).

Preuve. Par le lemme 2.2, Lc =[0, a]c x[0, c]a et la proposition précédente
d&apos;applique.

Ainsi, pour démontrer le Théorème 2.4, il nous reste à voir que dans le cas où a

est un pivot, \L\ a le type d&apos;homotopie de Vceax \LC\.

PROPOSITION 2J. Soit L [0,1] un treillis fini, L (0,l) et aeL. Pour

b,cea±, on définit L&apos;b,c {xeL;x xavxc, xae[0,a]b, xc€[0,c]} et L&apos;b&gt;c

£t&gt;,c ~{0,1}. Alors, Vinclusion Ut&gt;,ceax L&apos;bc ^ L est une équivalence d&apos;homotopie.

Preuve de théorème 2.4. Si a± 0, alors L est contractile (Proposition 1.8).
Par ailleurs, un bouquet indexé par un ensemble vide est un point. On peut donc
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supposer ax f 0. Comme a est un pivot, on a [0, df [0, a]c si fc, c g ax et donc,
L&apos;bjC L&apos;Cc L&apos;c. Par conséquent, l&apos;inclusion L&apos; Uceai^c ^ L est une
équivalence d&apos;homotopie (Proposition 2.7). La troisième condition définissant un
pivot affirme exactement que tout simplexe de |L&apos;| est contenu dans un \L&apos;C\. Donc,
|^1 Ucea l^cl- Ainsi, pour compléter la preuve du théorème, il nous reste,
compte tenu du Corollaire 2.6, à démontrer les deux assertions suivantes:

a) L&apos;inclusion i:Lc ~^&gt;L&apos;C est une équivalence d&apos;homotopie.

b) \L&apos;\ a le type d&apos;homotopie du bouquet Vceax \L&apos;C\.

a) Par le Théorème A et la Remarque 1.5, il suffit de montrer que si

yeL&apos;c-Lc, alors y\i ={xeLc; x^y} est contractile. On a:y yavyc avec yaG
[0, a]c et yc e [0, c]. De plus, par le Lemme 2.2 et la Remarque 2.3, on
a : ya y a a et on peut supposer que yc y a c.

Montrons que yavc^l. Comme yaG[0, a]c, ya zAa avec z^c. Or, z^l
sinon ya a, y ^ a et par conséquent yc y a c g [0, c]a contrairement à

l&apos;hypothèse y£Lc. Ainsi, yavc^z&lt;l. B s&apos;ensuit que yavcey\i.
Finalement, y\i a le type d&apos;homotopie d&apos;un cône de sommet yavc, car pour

x xavxc€y\i,on a:x^yavxc^yavc.A noter que l&apos;application x »-» ya v xc est
bien définie car xc =xac (Lemme 2.2).

b) On a besoin du lemme suivant:

LEMME 2.8. Une réunion finie de complexes simpliciaux LUi^i a &apos;

d&apos;homotopie du bouquet V^jX, si pour tout JczJ avec card(J)^2, on a p\]eJXj
contractile.

Preuve. On procède par induction sur le cardinal de I, le cas card (I) 2 étant
clair. Soit k e I et J I—{k}. Par hypothèse d&apos;induction, {JJGj X, est un bouquet et
donc pour montrer que (IJjej^)U^k est un bouquet, il suffit de montrer que
(UjejX^flXfe est contractile, car C[n&lt;=ju{k}Xn est contractile, donc connexe par
arcs. Or ((JJ€jX,)nXk Ujej(^i HXk) est un bouquet de complexes simpliciaux
contractiles par hypothèse d&apos;induction, donc contractile.

Appliquons ce lemme à \L&apos;\ \Jcea^ \L&apos;C\. Soit J^a^ avec card (J)^2. Il s&apos;agit de

montrer que T Hc€j L&apos;c est contractile. Soit Z {x e T; a v x &lt; 1}. Si x g Z, alors

avxeZ. En effet, il s&apos;agit de voir que avxeL&apos;c pour tout ceJ. Or x xavxc
avec xa €[0, a]c et xc g[0, c] et donc a vx a vxc, ce qui démontre que a vx g

Lé. Maintenant, Z est contractile car pour tout x g Z, on a

a et avx, aeZ
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Ainsi, pour montrer que T est contractile, il suffit de montrer que l&apos;inclusion

i:Z ^ T est une équivalence d&apos;homotopie. A cet effet, il suffit (par 1.4 et 1.5) de

montrer que pour yeT-Z, i/y {xgZ;x^v} est contractile. Comme y£Z,
a v y 1. Si ya a a y 0, alors y est un complément de a, et de plus pour c e /,
y g Lé, c&apos;est-à-dire y ya vyc vcg[0, c]. Par la deuxième condition définissant

un pivot, on a y c et donc J {y} contrairement à l&apos;hypothèse card (J) ^ 2. Ainsi
ya a a y &gt; 0 et donc ya g Z. Finalement, ily est contractile car pour tout x g i/y,

xiyavx^ya et ya v x g i/y comme on le vérifie facilement.

Ceci achève la preuve de l&apos;assertion b) et donc du Théorème 2.4

Preuve de la proposition 2.7.
a) Soit L1 {xeL;xaci possède un complément dans [0,x]}. Alors l&apos;inclusion

Lx ^ L est une équivalence d&apos;homotopie. En effect, si yGL-L1? alors
(0, y) est contractile (Proposition 1.8) et la Proposition 1.6 s&apos;applique.

La suite de la preuve se fait par applications successives du théorème A et de la

remarque 1.5.

b) Soit L2 {xe Lx tel qu&apos;il existe beax avec x a a g [0, a]b}. Alors l&apos;inclusion

i:L2 ^ Lx est une équivalence d&apos;homotopie. La preuve est analogue à celle de
l&apos;assertion a) dans la démonstration du Théorème 2.4. Soit yGLx~L2 et y\i
{xgL2;x^v}. Comme yeLj, y (yAa)vy où y est un complément de yAa
dans y. On montre d&apos;abord que avy^ 1. Si avy 1, y est un complément de a

(car yAa yAyAa 0). Comme y g [y, 1], on en déduit que y Aae[0,a]* et
donc yGL2, une contradiction. Ainsi, avy&lt;l et avyeyV comme on le voit
facilement. Maintenant y\i est contractile car pour xGy\i, on a:

x ^ (x a a) v y £i a v y.

Pour rendre ce raisonnement licite, il reste à montrer que z (x Aa)vy Gy\i.
D&apos;une part, xAa^yAa, et donc z (xAa)vy^(yAa)vy y et d&apos;autre part,
zgL2 car z Aa XAae[0, a]b pour un bea1^ vu que xeL2. En effet, x/\a^
z a a car XAaiz, et xAa^zAa car x ^ z.

c) Soit E {xGL2;xAa 0 et pour tout cGax, x$É[O, c]}. Alors l&apos;inclusion

i:L3 L2-JB C^L2 est une équivalence d&apos;homotopie. Soit y g JE et y\i {xG
L3;x^y}. On a:avy^l, sinon yGax et yG[0, y] contrairement au fait que
y eE. Maintenant, y\i est contractile car pour XGy\i, on a:

x ^ (x a a) v y ^ a v y.
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Ceci est licite, car (x a a) v y g y\i. En effet, si x a a 0, x g [0, c] pour un ceax
car xgL3 et y^x^c ce qui est contraire à yeE. Donc xAa^O et (xAa)vy g
L3.

d) Soit L4 Ub,ceax^b,c- Alors l&apos;inclusion i:L4 ^£3 est une équivalence
d&apos;homotopie. Soit yeL3 — L4 et soit y un complément de yAa dans y. Si

y Aa 0, y y €[0, c] pour uncea1 (car y gL3 L2-jE) et donc y 0vyeLfcc
contrairement au fait que y£L4. Ainsi, y a a &gt; 0 et y a a g ily {x g L4; x ^ y}. On
notera en effet que yAae[0,af pour un bea1^ car yeL2. Maintenant, ily est
contractile car pour XGi/y, on a:

et il reste à montrer que z (y a a) v x g i/y. Clairement, y a a ^ z a a car y a a ^
z, et yAa^zAa car y ^ z. Donc, z a a y a a. Par ailleurs comme x g L4,
x xa v xc avec xa^aetxci c. Comme xa ^ x a a ^ y a a, on a : z (y a a) v xc g

Lbc. Ainsi, z gL4 et donc z g i/y.

3. Treillis semi-modulaires et modulaires

Afin de pouvoir appliquer le Théorème 2.4, il est nécessaire de mettre d&apos;abord

la main sur un pivot dans le treillis qui nous intéresse. La proposition ci-dessous

fait un pas dans cette direction pour les treillis semi-modulaires et résout la

question pour les treillis modulaires. Auparavant, rappelons qu&apos;un treillis L est

semi-modulaire (supérieurement) si:

pour a,beL avec a a b maximal dans a, alors b est maximal dans a v b.

Dans un treillis semi-modulaire fini, la longueur de toutes les chaînes entre 0 et x

est constante, et on la note r(x). De plus, la fonction r satisfait:

r(x v y) 4- r(x a y) ^ r(x) + r(y).

Un treillis est modulaire si à la fois L et le treillis avec ordre opposé sont
semi-modulaires. Dans ce cas, l&apos;inégalité satisfaite par la fonction r devient une
égalité. Notons que la définition usuelle de treillis modulaire est la suivante:

pour a, fc, ceL, si c^a, alors aa(5vc) (aAb)va

Enfin, un treillis fini L est dit géométrique s&apos;il est semi-modulaire et si tout point
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de £-{0} est le supremum d&apos;une famille d&apos;éléments minimaux (non nuls) de L.
Pour plus de détails sur ces définitions, voir [A, chap. II].

PROPOSITION 3.1. Soit L=[0,1] un treillis semi-modulaire fini et a et.
a) Si ceax satisfait r(a) + r(c) r(l), alors [0, c]a [0, c] et [0, af [0, a].
b) Si r(a) 4- r(c) r(l) pour tout c e a\ alors deux compléments distincts de a ne

sont pas comparables.
c) Si a est maximal et si r(a) + r(c) r(l) pour tout cea^, alors a est un pivot
d) Si L est modulaire et si a est maximal, alors a est un pivot

COROLLAIRE 3.2. Dans les hypothèses c) ou d) de la proposition 3.1, et si

L (0,1) on a:

\L\ a le type d&apos;homotopie de VCGa± (Z 1(0, a)|).

Preuve. Par la partie a) de la proposition, (0, a)c (0, a). De plus, (0, c) 0
car la condition r(a) + r(c) r(l) implique que c est minimal. Ainsi,

et on conclut par le Théorème 2.4.

Preuve de la Proposition 3.1. a) Si y g [0, c], il est clair que (y v a) a c ^ y. Par

ailleurs, r((y v a) a c) + r(l) i r(y v a) 4- r(c) par semi-modularité et le fait que
(yva)vc avc l. De plus, r(y va)^r(y) + r(a) par semi-modularité et le fait
que yAa 0. On en déduit r((y v a) a c) + r(l) ^ r(y) + r(a) + r(c) et donc

grâce à l&apos;hypothèse. Cela force alors l&apos;égalité (y v a) a c y. La deuxième assertion

résulte de l&apos;échange des rôles de a et c.

b) L&apos;hypothèse implique que r(c) est constant pour ceax. Donc, si b, ceax
et b ^ c, alors b c.

c) Les deux premières conditions de la définition d&apos;un pivot résultent de a) et
b). Compte tenu de a), et du Lemme 2.2, on a:

Lc L&apos;c {xeL;x xavxc, xa XAa, xc=xac}.

Comme a est maximal et r(a) + r(c) r(l), on a r(c) 1, et donc xc ne peut valoir
que 0 ou c. Les éléments x tels que xc 0 appartiennent à tous les Lc et ne jouent
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donc aucun rôle pour la vérification de la troisième condition de la définition d&apos;un

pivot. En fait, pour vérifier cette condition, il suffit de montrer que si x g Lc avec
xc c, y g Ld avec yd d et x ^ y, alors y g Lc.

Comme c^x^y, on a: yavc^y et il suffit de montrer l&apos;égalité. Comme
ya

&lt; ya v c ^ y, il suffit de voir que ya est maximal dans y. Or cela est immédiat par
semi-modularité car 0 est maximal dans d, ya a d 0 et ya v d y.

d) Si L est modulaire, la condition r(a) + r(c) r(l) est toujours satisfaite pour
c g ax. On conclut donc à l&apos;aide de c).

Remarque, Si a est minimal, alors par semi-modularité, tout c g ax est maximal.

La condition r(a) + r(c) r(l) est donc automatique. Pour que a soit un
pivot, il faudrait encore que la troisième condition soit satisfaite, ce qui n&apos;est pas
clair en général.

PROBLÈME 3.3. Dans un treillis semi-modulaire, existe-t-il toujours un
élément minimal qui soit un pivot?

THÉORÈME 3.4. Soit L [0,1] un treillis modulaire fini et L (0,1). Soit
0 ao&lt;a1&lt;- • •&lt;an_1&lt;an 1 une chaîne maximale dansL. Soit mx le nombre de

compléments de a^ dans [0, a,+1] et m =0^0 &quot;V Alors L a le type d&apos;homotopie

d&apos;un bouquet de m sphères de dimension n — 2.

Preuve, Par induction sur n. Si n 1, m m0 1, L 0 et \L\ S&quot;1. Si n &gt; 1,

on applique le Corollaire 3.2 avec a a^^ et on conclut en appliquant
l&apos;hypothèse d&apos;induction à (0, a^^).

Remarques. 1) En renversant l&apos;ordre du treillis, on voit que L a aussi le type
d&apos;homotopie d&apos;un bouquet de s =nr=i s, sphères de dimension n-2 où st est le
nombre de compléments de a, dans [Oj-x, 1]. On a donc: m s.

2) Le nombre m est égal (au signe près) à la caractéristique d&apos;Euler réduite
x(L) x(L)~ 1. Or il est bien connu [R, thm 3] que £(L) fx(0,1) où jul est la
fonction de Môbius de L. Une formule due à Crapo (voir [A, p. 170]) exprime
jul(O, 1) en termes de jul(O, c) et jul(c, 1) (égal ici à /x(0, a)). Une application répétée
de cette formule donne aisément £(L) (~l)n Flr=o mr

3) Si la solution du Problème 3.3 est positive, on montre de manière analogue

que si L est semi-modulaire, alors \L\ a le type d&apos;homotopie d&apos;un bouquet de

sphères de dimension n -2 où n r(l). De toute façon, ce dernier résultat semble

problable car Folkman [F] a montré qu&apos;un treillis géométrique a le type
d&apos;homologie d&apos;un bouquet de sphères de dimension n-2. Or tout treillis fini
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semi-modulaire a le type d&apos;homotopie d&apos;un treillis géométrique. En effet:

PROPOSITION 3.5. Soit L= [0,1] un treillis fini semi-modulaire etL (0,1).
Soit i/&gt;: L-» £ défini par: t/f(x) est le supremum de tous les éléments minimaux de

[0, x]. Alors:
a) Ë iML) est un treillis géométrique.
b) Si E iKL), alors i(f:L-&gt;E est une équivalence d&apos;homotopie.

Preuve, a) Si a,beÊ, avbeÉ. Par ailleurs, on définit anb ^(aAb). On
vérifie aisément que E est un treillis pour vet H. (En fait, on peut montrer que
a H b a a b, mais cela ne joue pas de rôle ici). Par construction, tout point de É
est le supremum d&apos;éléments minimaux. H reste donc à montrer que jB est
semi-modulaire. Si, a, b e JE et si a H b est maximal dans a (dans Ë), alors il existe

m minimal avec m^a et m£b (sinon, a^b et af)b aAb a). Donc (af)b)&lt;
(aDb)vm^a et par conséquent (adtyvm^a. Maintenant m est minimal,
b a m 0 et donc par semi-modularité de £, b est maximal dans m v b. Or
mvb^avb car m^a et mvb^avb car mvb^b et mvb^mv(anb) a.
Ainsi b est maximal dans avb mvb.

b) est clair, car si i:E-*L est l&apos;inclusion, alors i^oi idE et i°\\? est

homotope à idL car i/r(x) x pour tout xeL.

Comme application du Théorème 3.4, voici la version homotopique d&apos;un résultat
homologique dû à Lusztig [L, chap. 1]:

PROPOSITION 3.6. Soit V un espace vectoriel de dimension n sur un corps fini
à q éléments. Soit L le treillis des sous-espaces de V et L (0, V). Alors L aie type
d&apos;homotopie d&apos;un bouquet de q® sphères de dimension n — 2.

Preuve. En vertu du Théorème 3.4, il suffit de calculer le nombre m, de

compléments d&apos;un sous-espace Wt de dimension i dans un espace de dimension
i + 1. Or le nombre de sous-espaces de dimension 1 de Wl+1 est égal à s

(ql+1 — l)/(q — 1) et le nombre de ces sous-espaces qui sont contenus dans Wt est
X (ql~l)/(q-l). Donc le nombre de compléments de Wt dans Wl+1 est m,
s _ t q\ Par conséquent, le nombre de sphères du bouquet est

n-1
m — ± i mt — q i ° — q 2. lj

1=0
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4. Le treillis des sous-groupes d&apos;un groupe fini

Soit G un groupe fini, L(G) le treillis des sous-groupes de G et L(G) (1, G).
On s&apos;intéresse d&apos;abord à trouver des conditions pour que L(G), ou plus
généralement (H, G) soit contractile (H étant un sous-groupe de G).

Si N est un sous-groupe normal de G, la notion de complément de N en
théorie des groupes coïncide avec celle introduite pour les treillis. Ainsi, par la
proposition 1.8, L(G) est contractile s&apos;il existe un sous-groupe normal sans

complément. Un exemple typique d&apos;un tel sous-groupe est le sous-groupe de
Frattini &lt;f&gt;(G), s&apos;il est non trivial. Plus généralement, soit &lt;1&gt;(H, G) l&apos;intersection

de tous les sous-groupes maximaux de G contenant H. Ainsi &lt;P(G) &lt;f&gt;(l, G).

LEMME 4.1. Si &lt;P(H, G) f H, alors (H, G) est contractile.

Preuve. Si Kg (H, G), $vK&lt;G où &lt;PvK désigne le sous-groupe engendré

par &lt;P &lt;P(H, G) et K. Par conséquent,

PROPOSITION 4.2. Soit N un sous-groupe normal de G, H un sous-groupe de

G et X N • H. Si (X, G) est contractile, alors (H, G) Vest aussi. En particulier,
L(G) est contractile si L(G/N) Vest.

Remarque. Dans le même ordre d&apos;idée, on démontre aisément que si Me
(X, G) n&apos;a pas de complément dans (X, G), alors il n&apos;en a pas dans (H, G).

Preuve. On procède par induction sur l&apos;ordre de G. Soit A
{Z g (H, G); Z • N G}. Soit Z € A et X&apos; (Z ON) • H. Montrons tout d&apos;abord

que [X,G]-»[X&apos;,Z]; U^UHZ et [X&apos;, Z]-»[X, G]; V-&gt;V-N sont des

bijections réciproques. D&apos;une part (UHZ)* N=Un(Z - N) car C/^Net donc

(UnZ)-N=UnG=U. D&apos;autre part, ZH(V • N)=V • (ZHN) car V^Z et
donc Zn(V-N)=V car ZHN^X&apos;^V.

Par hypothèse (X, G) est contractile et donc (X&apos;, Z) l&apos;est aussi. L&apos;hypothèse

d&apos;induction appliquée à Z implique que (H, Z) est contractile. A noter qu&apos;au

départ de l&apos;induction, l&apos;ensemble A est nécessairement vide. Par la Proposition
1.6, (H, G)-A &lt;h&gt; (H, G) est une équivalence d&apos;homotopie. Or (H, G)-A est

contractile, car pour Te (H, G) —A, on a:

Ainsi (H, G) est contractile. Le cas particulier résulte du cas H= 1.



98 CHARLES KRATZER ET JACQUES THÉVENAZ

COROLLAIRE 4.3. Soit N et M deux sous-groupes normaux de G avec
N&lt;M. Si &lt;P(N,M)ïN, alors L(G) est contractile.

Preuve. Soit Ze(N, G) maximal et posons &lt;i&gt; &lt;f&gt;(N, M). Si &lt;i&gt; • Z G, alors
&lt;î&gt; &apos;(ZDM) M et donc ZHM M. Par conséquent, Z^M^&lt;f&gt; et G &lt;P • Z
Z, ce qui est impossible. Donc 4&gt; • Z Z par maximalité de Z et $^Z.
Finalement, &lt;P^&lt;P(N, G) ce qui montre que #(N, G)j=N. Par le Lemme 4.1,
(N, G) est contractile et par la Proposition 4.2, L(G) l&apos;est aussi.

Nous allons étudier L(G) pour G nilpotent, puis résoluble. Mais auparavant,
notons encore ce cas particulier de la Proposition 2.5:

PROPOSITION 4.4. Soit G et H deux groupes d&apos;ordres premiers entre eux.

Alors, |L(GxH)| a le type d&apos;homotopie de I(|L(G)|*|L(H)|).

Preuve. Par la Proposition 2.5, il suffit de montrer que L(GxH)
L(G)xL(H). Mais ceci est clair pour des groupes d&apos;ordres premiers entre
eux. D

PROPOSITION 4.5. Soit G un groupe nilpotent et H un sous-groupe.
a) Si H n&apos;est pas normal dans G, (H, G) est contractile.
b) Si H&lt;3 G et G/H n&apos;est pas un produit de groupes abéliens élémentaires, alors

(H, G) L(G/H) est contractile.
c) Si H&lt;Get G/H=IÏ=i Q, alors |(H, G)\ \L(G/H)\ a le type d&apos;homotopie

d&apos;un bouquet de m sphères de dimension n — 2 où m =11=î P?l) et n Zt-i *V (C£
désigne le produit de n copies du groupe cyclique d&apos;ordre premier p).

Preuve, a) Comme G est nilpotent, tout sous-groupe maximal de G est
normal et par conséquent &lt;P(H, G) &lt; G. Donc &lt;t&gt;(H, G) + H et (H, G) est contractile

par le Lemme 4.1.
b) Comme G est nilpotent, G/&lt;P(H, G) est un produit de groupes abéliens

élémentaires. Donc &lt;f&gt;(H, G) f H et (H, G) est contractile.
c) On peut supposer H= 1. Soit Pl C1£ le pt-sous-groupe de Sylow de G. Par

la Proposition 3.6, 11.(^)1 a le type d&apos;homotopie d&apos;un bouquet de pf^ sphères de

dimension n, — 2. Conlme les Pt sont d&apos;ordres deux à deux premiers entre eux, la
Proposition 4.4 donne la recette du calcul de |L(G)|.

Le problème étant résolu pour les groupes nilpotents, on va s&apos;intéresser aux

groupes résolubles. Tout d&apos;abord, le lemme suivant justifie la notation [1, N]H
introduite pour des treillis quelconques.
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LEMME 4.6. Soit N un sous-groupe normal de G et H un complément de N.
a) [1, N]H est le treillis des sous-groupes de N qui sont invariants par H.
b) Si N est abélien, [1,N]H est le treillis des sous-groupes de N qui sont

normaux dans G.
c) L&apos;application [H, G]—»[1, N]H, X»-&gt;XnN est un isomorphisme de treillis.

En particulier, un complément d&apos;un sous-groupe normal abélien minimal est

maximal.
d) Uapplication [N, G] —» [1, H], X*-*XnHest un isomorphisme de treillis et

donc [1,H]N [1,H].
e) Si N est un sous-groupe normal abélien minimal et si N • K=G avec K^G,

alors K est un complément de N.

Preuve. Soit T le treillis des sous-groupes de N qui sont invariants par H. Si

Xe[H,G], alors XDNeT car XHN est normalisé par X, donc par H.
Considérons les applications &lt;£ : [H, G] -» T, X »-&gt; X n N et $ : T -» [H, G], Y ¦-»

Y • H. Comme H normalise Y g T, Y -H est bien un sous-groupe. Ces applications

sont inverses l&apos;une de l&apos;autre car:

comme H^X, (XHN) • H XHN • H

comme Y^N, Y - HHN=Y - (HHN)=Y - 1= Y.

Par définition, [1, N]H est l&apos;image de &lt;£ et donc [1, N]H T, ce qui démontre a) et
c). Si N est abélien et Ye[l, N]H, alors N normalise Y et donc Y est normal
dans N - H~ G, ce qui prouve b). Le cas particulier de c) en résulte car alors

{H,G)-0. Pour montrer d), considérons les applications a :[N, G]—&gt;[1, H],
X^XHH, |3:[1,H]-*[1,G/N], Y^+Y-N/N et y:{N9 G]-h&gt;[1, Q/N], X-&gt;

X/N. Clairement, |3 et y sont des isomorphismes de treillis et donc a en sera un si
l&apos;on montre que j3°a y. Mais ceci est clair car pour X^N, on a:

Pour montrer e), on remarque que K C\N est normalisé par K et par N, donc par
G. Comme KJ=G, KCiN^N et donc K H N 1 par minimalité de N.

La technique des pivots mise en place au paragraphe 2 va s&apos;appliquer au cas des

groupes résolubles grâce au résultat suivant:

THÉORÈME 4.7. Soif N un sous-groupe normal abélien de G. On suppose que
Nest semi-simple comme ZG-module (G agissant par conjugaison surN). Alors N
est un pivot de L(G).
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Preuve. H n&apos;y a rien à vérifier si N n&apos;a pas de complément. Sinon, par le
Lemme 4.6b), [1, N]H est indépendant de HeN1^, ce qui montre la condition (i)
de la définition d&apos;un pivot. La condition (ii) est claire, car si deux compléments H
et K sont tels que H^K, alors H K vu qu&apos;ils ont le même ordre. Pour la
condition (iii), rappelons que Li={X M-K;MG[l,N]H, Kg[1,H]} et L^
Lu~{l9 G}. Soit Hl9 ...,Hn des compléments de N et X.eL^ (l^i^n). Il
s&apos;agit de montrer que si Xn ^Xn_x ^ • • • ^Xl9 alors tous les X, appartiennent à un
même L^. C&apos;est trivial si n 1, et par induction, on peut supposer que Xn,

Xn_j,... 9X2eL^. Disons que XxeL^, ce qui permet d&apos;écrire X1 M1 • Kx et
Xx =Mt • K[ avec K^H et K[^H&apos; (2^i^n). Notons que Mn^Mn_x^- • -^
Mx et que K^lC-i^&apos; • -^K2.

Tout élément de H&apos; s&apos;écrit fi&apos; c(ft)-ft avec fie H et c(h)eN. En fait,
l&apos;application c:H^&gt;N est un 1-cocycle [H, 17.3]. Au sous-groupe K[ de H&apos;

correspond un sous-groupe Kt de H en sorte que K[ {c(h) • h; he Kt}. Montrons
tout d&apos;abord que c(K2)^M^SiheK2, c(h) - heK2^Ml- Kt et donc c(h)eMx.
Maintenant Mte[l,N]H, donc Mx est un sous-groupe normal de G, en d&apos;autres

termes Mx est un sous-ZG-module de N. Comme N est semi-simple, N M1 x F
où P est aussi un sous-ZG-module de N. On peut donc écrire c c1xc2 avec

c1:H-*M1 et c2:H-*P des 1-cocycles. Comme c(K2)c=M1, on a c2|k2 0 et
Ci|k2 cIk2- Soit alors H// {c!(h) • h; h g H}. Comme cx est un cocyle, H&quot; est un

sous-groupe de G, complément de N. Alors pour i^2, K&apos;^ic^h) • h;heKl}
{c(h)-h;heKl} K[ car ct et c coïncident sur Kt^K2. Donc, X, M, • 1T,

MrK&apos;ltLlr. De plus M1-K1 M1-KÏ où KJ {ct(h) • h ; fi g Kt} car Kï^
Mx • Kx vu que cx est à valeurs dans Mx. Donc Xt Mx • K&quot; e L^. Cela démontre
la condition (iii) de la définition d&apos;un pivot et achève la preuve du théorème.

Remarque. Des exemples montrent que la condition (iii) de la définition d&apos;un

pivot n&apos;est en général pas satisfaite si N n&apos;est pas semi-simple comme ZG-
module.

COROLLAIRE 4.8. Soit N un sous-groupe normal abélien de G. Alors \L(G)\
a le type d&apos;homotopie de VHeNx(X(|(l,N)H|*|L(G/N)|)). De plus L(G) est
contractile si N n&apos;est pas semi-simple comme ZG-module.

Preuve. Si N est semi-simple ou si N n&apos;a pas de complément, N est un pivot et
le Théorème 2.4 s&apos;applique. On conclut en constatant que (1,H)N (1, H)
L(G/N) en vertu du Lemme 4.6d).

Si N n&apos;est pas semi-simple, on va montrer que L(G) et (1, N)H sont contractiles,

ce qui permet de conclure. Soit J le radical du ZG-module N, donc J^ 1.

Comme [1, N]H est le treillis des sous-ZG-modules de N, un argument identique
à celui du Lemme 4.1 montre que (1, N)H est contractile.
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Par ailleurs, J est caractéristique dans N, donc normal dans G. Comme N
possède un complément, N/J aussi. Par conséquent, si / possède un complément
C, alors C G// et donc C contient un complément H de N. Donc H normalise

CHNetCnN€[l, N]H. Mais il est clair que C H N est alors un complément de
J dans [1, N]H, ce qui est absurde. Donc, J ne possède pas de complément dans

[1, G], et donc L(G) est contractile (Proposition 1.8).

Si G est résoluble, nous allons déterminer le type d&apos;homotopie d&apos;un intervalle
(H, K) de L(G). Comme tout sous-groupe de G est résoluble, il suffit de traiter le

cas K G.

Rappelons qu&apos;une suite croissante de sous-groupes de G est dite principale
(respectivement caractéristique maximale) si chaque sous-groupe de la suite est
normal (respectivement caractéristique) dans G et si la suite ne peut être raffinée

en une suite ayant la même propriété.
Soit 1 NO&lt;\N1&lt; • • •&lt; Ns G une suite principale de G. Pour un sous-

groupe H fixé, soit H H0&lt;Hl&lt; • &lt;Hn G les termes distincts de la suite
des H • Nr Soit Rt - Nr le plus grand des N, tels que H • Nj^Q et L, le plus
petit des Nt tels que H • N, Hx (0 ^ i ^ n). Ainsi, Lo 1, Nr+1 L,+1 et Rn G.

THÉORÈME 4.9. Soit H un sous-groupe propre d&apos;un groupe résoluble G.

Dans les notations ci-dessus, soit m, le nombre de compléments de L^IR^x dans

G/R^ qui contiennent Hl-1 H-Rt-1 (l^i^n). Alors \(H, G)\ a le type
d&apos;homotopie d&apos;un bouquet demx% m2 mn sphères de dimension n — 2. De plus

mn 1.

Preuve. Comme jR0 cz H, quitte à passer au quotient par JR0, on peut supposer
Ro 1 si bien que Lx est un sous-groupe normal minimal de G, en particulier
abélien. On procède par induction sur n. Si n 1, H • Lx G. Par le Lemme
4.6e), H est un complément de Lx. Par le Lemme 4.6c), H est maximal et donc
\(H, G)\ 0 S&quot;1. Par ailleurs mt 1 (car H est l&apos;unique complément de Lx
contenant H) et ceci prouve que mn 1 en général.

Si n &gt; 1, par hypothèse d&apos;induction, \(Hl9 G)\ est homotope à un bouquet de

m2 mn sphères de dimension n — 3.

ASSERTION 1. Cest un complément de Hx dans [H, G] si et seulement si C
est un complément de Lt dans [1, G] et C^H.

ASSERTION 2. Hx est un pivot de [H, G].
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H résulte de l&apos;Assertion 1 que mx est le nombre de compléments de H1 dans

[H, G] et que chacun de ces compléments est maximal dans G (Lemme 4.6c)).
Par ailleurs en vertu de l&apos;Assertion 2, le Théorème 2.4 s&apos;applique:

Maintenant, (H, Hx)c est l&apos;image de (C, G) par intersection avec Hl9 donc vide
car C est maximal. De plus (H, C)Hi (H, C) (Ht, G) en restreignant aux
intervalles au dessus de H et de Ht l&apos;isomorphisme du Lemme 4.6d):

(1,C)L&gt; (1,02(1, G).

Ainsi, \(H, G)\ est homotope à un bouquet, indexé par les mx compléments de Hx
dans [H, G], de suspensions de \(Hl9 G)\. Le théorème en découle.

Preuve de Vassertion 1. Si C est un complément de Lt contenant H, alors

CH^CHL^G et CnH^CHH• LX H• (CnL1) H.
Réciproquement, si C est un complément de Ht dans [H, G], alors C • Lt C • H - Lx
C • H1 G et donc C est un complément de Lt en vertu du lemme 4.6e).

Preuve de Vassertion 2. On a vu ci-dessus que {H,H^)C est vide, donc

indépendant de C. Comme les compléments de H1 sont des compléments de Lt
dans [1, G], ils ne peuvent être comparables vu que les compléments d&apos;un

sous-groupe normal ont tous le même ordre. Il reste donc à montrer la condition
(iii) de la définition d&apos;un pivot. Soit Z1^-Z2^*- - &apos;=2^ avec Z,=
(Z, H Ht) • (Z; H Ç) pour un Q g Hi et Z, H Ht g [H, HJ0. Comme (H, H^ est

vide, Zj nHx ne peut prendre que les valeurs H ou Ht. Soit r le plus grand indice
i tel que ^(1^ 11 si bien que Zl=ZinCl^Cl pour l^i^r est Z,

^•(ZtnCJ pour r + l^i^m. Posons C Cr (si r n&apos;existe pas, on choisit
n&apos;importe quel CeHi). La condition (iii) de la définition d&apos;un pivot sera
satisfaite si on montre que

Zl=(ZinH1)-(ZinC) pour tout 1 ^i^m.

Si i^r, ^^Z;âÇ donc Z^Z^HC. Si i&gt;r, Z^^H, Or on a vu ci-dessus qu&apos;on

a un isomorphisme [H, GJ-^fH, C] résultant du Lemme 4.6d). En appliquant à

Zx l&apos;aller et retour par cet isomorphisme, on obtient Zl=H1&apos; (2^D C), comme
désiré.

Remarque. Si l&apos;on prend H 1 et donc Ht Lt dans l&apos;Assertion 2 ci-dessus,
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on retrouve un cas particulier du Théorème 4.7, à savoir le cas où le sous-groupe
normal est minimal, c&apos;est-à-dire simple comme ZG-module. Le Théorème 4.7 en
tant que tel ne sera utilisé que dans la Proposition 4.12.

Il est utile d&apos;énoncer le cas particulier H= 1 dans le Théorème 4.9:

COROLLAIRE 4.10. Soit 1 N0&lt;N1&lt;&apos; • -&lt;NS G une suite principale
d&apos;un groupe résoluble G. Soit ml le nombre de compléments de NJNX^X dans GIN^
(l^i^s-1). Alors |L(G)| a le type d&apos;homotopie d&apos;un bouquet de

mt- m2 ms_! sphères de dimension s-2.

Remarque. Ce résultat généralise la Proposition 2.6 de [K-T] où seule la

caractéristique d&apos;Euler réduite x(L(G)) jx(l, G) était calculée.

COROLLAIRE 4.11. Soit 1 NO&lt;N1 &lt; • -&lt;N8 G une suite principale
d&apos;un groupe résoluble G et H un sous-groupe de G. S&apos;il existe j tel que NJ_1&lt;

H • Nj_! HNj &lt;NP alors (H, G) est contractile. En particulier, (H, G) est contractile
si H est compris (proprement) entre deux termes consécutifs d&apos;une suite principale.

Preuve. Si H - Nj-i H - Np alors H • NJ^1nNJ=Np contrairement à

l&apos;hypothèse. Par conséquent, H • N,_1&lt;H • N, et dans les notations du Théorème
4.9, NJ_1 jRl_1 et N, =£, pour un i. Si C est un complément de I^IR^ dans

GARt_1? et si C contient Hx^ H - Rl-1 H • N^l9 alors N^X&lt;H • N^DN^
00^ 0(11^ £,_! N,_!, ce qui est absurde. Cela signifie que m, 0. Ainsi,
\(H, G)\ est homotope à un bouquet de zéro sphères, donc est contractile.

Remarques. 1) II est clair que la situation décrite dans ce corollaire ne peut
arriver que si H n&apos;est pas normal dans G.

2) Si H-Nj-iHNj^Nj-x et si NJ/NJ_1 LI/,Rl_1 possède des compléments
dans G/N^x G/R^x, cela ne signifie pas encore que ml est non nul. En effet, il
peut arriver que H • N^JNj^ ne soit contenu dans aucun complément de

j^, quand bien même il intersecte trivialement

Pour terminer, on cherche des conditions pour que L(G) soit contractile, toujours
sous l&apos;hypothèse que G est résoluble.

PROPOSITION 4.12. Soit 1 MO&lt;M1&lt;3 •• &lt;JMr G une suite de sous-

groupes normaux de G. Pour 1 ^ ii =j r, on suppose que MJM^i est abélien (donc G
est résoluble), et de plus que MJMl^1 est semi-simple comme ZiG/M^^-module et

que MJMl-1 possède un complément dans GIMX^X. Alors L(G) n&apos;est pas contractile.
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Preuve. On procède par induction sur r. Si r 1, G doit être un /-module
semi-simple (car G agit trivialement), donc un produit de groupes abéliens
élémentaires. Par la Proposition 4.5, L(G) n&apos;est pas contractile.

Si r &gt; 1, Mx est un pivot en vertu du Théorème 4.7. Par hypothèse d&apos;induction,

LiG/M^^iM^G) n&apos;est pas contractile et par le Corollaire 4.8, il suffit de

montrer que (1, M^)M ne l&apos;est pas non plus pour JFf€ M\. Or par le Lemme 4.6b),
(1, MX)H est le treillis des sous-ZG-modules de Mx. Comme Mx est semi-simple

par hypothèse, ce treillis est égal au produit des treillis des composantes isotypiques

de Mt. Par la Proposition 2.5, il suffit de montrer que chacun de ces treillis
n&apos;est pas contractile. Or, si M=S(B- • &apos;(BS (fc facteurs) est un ZG-module
semi-simple isotypique et si EndZG(S) F, alors F est un corps fini (commutatif

par le théorème de Wedderburn), et par équivalence de Morita, le treillis des

sous-modules de M est isomorphe au treillis des sous-espaces d&apos;un F-espace
vectoriel de dimension fc. Ce dernier n&apos;est pas contractile par la Proposition
3.6.

Remarquons que la preuve donne en fait une méthode explicite pour calculer le

type d&apos;homotopie de L(G) à l&apos;aide de la suite donnée, ceci de manière analogue
au Corollaire 4.10. On trouve bien sûr un bouquet de sphères de même dimension,

mais leur nombre et la dimension sont décrits par des formules différentes de

celles du Corollaire 4.10.
Finalement, voici une proposition qui généralise le Corollaire 2.7 de [K-T]:

PROPOSITION 4.13. Soit G un groupe résoluble, 1 NO&lt;N1&lt; --&lt;NB G
une suite principale de G et 1 Mo&lt; Mx &lt;3 • • • &lt; Mr G une suite caractéristique
maximale de G. Les conditions suivantes sont équivalentes:

(i) L(G) est contractile.
(H) x(L(G)) x(L(G))-1 0.

(iii) II existe 1 ^ i ^ s — 1 tel que NJN^ ne possède pas de complément dans

(iv) H existe l==i^r — 1 tel que MJMl^1 ne possède pas de complément dans

(v) II existe un sous-groupe caractéristique de G sans complément dans G.

(vi) II existe un sous-groupe normal de G sans complément dans G.

(vii) U existe un sous-groupe de G sans complément dans G (au sens des

treillis).

Preuve. Il est clair que (v)=£&gt;(vi)=S&gt;(vii) et (vii)=^(i) par la Proposition 1.8.

De plus, |L(G)| est homotope à un bouquet de x(L(G)) sphères, ce qui montre
l&apos;équivalence de (i) et (ii). Par le Corollaire 4.10, (i) est équivalent à (iii). Par la
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Proposition 4.12, (i) implique (iv). En effet, MJMl^.1 est un sous-groupe
caractéristique minimal de GIM^U donc semi-simple comme /[G/M^J-module
car le radical de MJM^x est un sous-groupe caractéristique. Finalement, (iv)
implique (v) car si MJMl^1 n&apos;a pas de complément dans G/M^, alors M, n&apos;en a

pas dans G.

Remarques. 1) |L(G)| est homotope à un bouquet de sphères de même
dimension si G est résoluble. La réciproque n&apos;est en général pas vraie, car |L(A5)|
a le type d&apos;homotopie d&apos;un bouquet de 60 cercles. Par ailleurs, si G FSL2(F7), le

groupe simple d&apos;ordre 168, on a: HiflLCOI; Z) f 0 et H2(|L(G)|; Z) f 0 et de plus
x(L(G)) 0. Donc, non seulement |L(G)| n&apos;est pas un bouquet de sphères

équidimensionnelles, mais l&apos;équivalence de (i) et (ii) dans la Proposition 4.13 n&apos;a

plus lieu pour G non résoluble.
2) Même si, pour G résoluble, tous les intervalles (H, K) ont l&apos;homologie d&apos;un

bouquet de sphères équidimensionnelles, L(G) n&apos;est pas nécessairement Cohen-
Macaulay. En fait, L(G) est Cohen-Macaulay si et seulement si G est

hyperrésoluble [Bx, p. 167]. Rappelons qu&apos;un treillis est Cohen-Macaulay si pour
tout intervalle (a, b), toute chaîne maximale dans (a, b) a la même longueur d, et
si (a, b) a l&apos;homologie d&apos;un bouquet de sphères de dimension d-2.

3) Dans une autre direction, mentionnons le travail de Suzuki [S] sur le treillis
L(G) des sous-groupes d&apos;un groupe, étudié du point de vue combinatoire. On y
trouve par exemple des conditions pour que L(G) soit modulaire, semi-
modulaire, etc.
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