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fc-Invariants of knotted 2-spheres

Steven P. Plotnick* and Alexander I. Suciu

§1. Introduction

This paper studies some questions concerning homotopy type invariants of
smooth four-dimensional knot compléments. Higher-dimensional knot theory
diverges sharply from classical knot theory in this respect. It is well known that
classical knot compléments are aspherical - ail higher homotopy groups vanish -
so their homotopy types are determined by fundamental groups. This is far from
the case in higher dimensions. In fact, Dyer and Vasquez [6] proved that for
Sn~2czSn, n&gt;4, Sn-Sn~2 aspherical implies 7r1(Sn»Sn-2)=Z. Well known
theorems of Stallings, Levine, Shaneson, Wall now show the knot is trivial, n &gt;5.

This is now known to be true also for n 4, in the topological category, by
Freedman&apos;s work. Thus, for knotted 2-spheres in S4, one must study higher
homotopy invariants. A knot complément S4-S2 has the homotopy type of a

3-complex, so a natural question is whether the homotopy theory of knot
compléments in S4 can be as complicated as that of arbitrary 3-complexes. The
main resuit of this paper indicates that the answer is yes.

The second homotopy group already provides numerous examples of knots in
S4 which fail to be determined by fundamental groups. Using twist-spun knots,
discovered by Zeeman [30], Gordon [11] produced examples of knots Kt&lt;=S4,

i 1, 2, 3, whose compléments hâve isomorphic fundamental groups but non-
isomorphic second homotopy groups, when viewed as /^-modules. The first
author generalized this to arbitrarily many knots [22], and then infinitely many
[23].

In this work, we study the next higher homotopy invariant, the first
fc-invariant. Defined by Eilenberg, MacLane and Whitehead [7], [19] for a

3-complex X9 this is a class k(X)eH3(ir1X; tt2X) that contains more délicate

information, beyond Trt and ir2, as to how the cells of X are glued together. We
will define fc(X) shortly. For the moment it suffices to know that it is a homotopy

* Partially supportée by NSF grant MCS-82-01045.
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type invariant. Our main resuit is

THEOREM 1.1. Given a positive integer N, there exist N knots in S4 whose

compléments hâve isomorphic 7tx and tt2 (as Zttx-modifies), but distinct fc-

invariants.

The triple (tt^X, tt2X, fc(X)) détermines the &quot;algebraic 3-type&quot; of X [19]. S. J.

Lomonaco, Jr. observed that, with the additional assumption H3(X) 0, the
algebraic 3-type of a 3-complex détermines its homotopy type. In analogy with
the classical case, where knot compléments are determined by their &quot;algebraic

2-type,&quot; i.e. their fundamental groups, knots in S4 whose exteriors X satisfy
H3(X) 0 are called quasi-aspherical. Not ail knots are quasi-aspherical [10],
[25]. The knots we construct are quasi-aspherical, so the fc-invariant may be

regarded as the last obstruction to a homotopy équivalence. Thèse examples
answer Question 16 in [17].

The first person to consider fc-invariants of knot exteriors in S4 was Lomonaco
[17], who gave a procédure for Computing the fc-invariant of a 2-knot from a

motion picture. In [22], the first author tried to find examples of knots which are
distinguished by their fc-invariants. Modulo a difficult algebraic problem, involv-
ing free modules over Z(SL(2, 5)), which arises from the 5-twist spin of the trefoil
(see [22, Section 5]), this seems to be impossible in the realm of fibered knots.
Accordingly, we look hère at non-fibered knots.

Let us describe our examples. Start with two fibered knots in S4, Kt and K2,
with fibers the punctured manifolds tl^Xl~B3 (Xt closed, orientable) and
monodromies or,, î 1, 2. The exteriors of thèse knots are given by X(Kt) - Xt
A x^ S1 zx xl/(y, 0)~(crl(y), 1). Letting tt1X1=A1, we can write tt1X1 as a

semi-direct product

ti^X, =Hl=AlxiZ (A, x | xax&apos;1 at(a), Va e A),

where we write cr, for the map induced on tt^ by (tv The connected sum

again fibered, with fiber ^ fcj 52&gt; monodromy &lt;tx * o-2, and exterior
(Tï#(T2S\ Letting A A1*A2 tt1(51#22), we hâve

Surgery on K yields Y (^1#i;2)xcriîl,ar2S1. Form SxxD3#Y, and let t
represent the generator of Z tt^S1 x D3). Perforai surgery on the curve txt~xx~2
in S1 x D3# Y, and let X be the resuit. We claim X is the exterior of a knot K in
S4. To see this, add D2xS2 to X along S1xdD3. This kills f, so the resulting
space can be described as S4#Y with surgery on x, or just S4 (assuming the



56 STEVEN P PLOTNICK AND ALEXANDER I SUCIU

framing for the surgery is chosen correctly). We write

1x-2) G*z(x)H, where G (f, x \ txt&apos;^

7T2 7r2X.

The same construction, replacing Kx by —Kl9 yields

X(Kf) X&apos; (-^# X2)° x

X&apos; S1 x D3#Y&apos; with surgery on acr^x&quot;&quot;2, the exterior of a knot Kf in S4.

Hère —Si means Xi with the opposite orientation. The following theorem, which
we prove in §7, provides 2 examples for Theorem 1.1.

THEOREM 1.2. Assume Xt is aspherical and admits no orientation reversing

homotopy équivalence, i 1, 2. Then the knots K and Kf hâve isomorphic ttx and

tt2 (as I.tti-modules), but there is no map f \X-^&gt;X&apos; realizing an isomorphism on

There are plenty of Xt which satisfy the above requirements. We give some
examples:

(1) If X is a closed, orientable, aspherical Seifert 3-manifold, then X admits an
orientation reversing homotopy équivalence if, and only if, X fibers over S1 [21].
Thus, no Seifert homology 3-sphere is amphicheiral. The Brieskorn sphères

X(p,q,r), {p, q, r}^{2,3,5} are aspherical, and are the (closed) fibers of twist-
spun torus knots.
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M(F,2)

(2) Given a knot K c= S3, the homology sphère obtained by Dehn surgery of
type 1/b on K, say Mb, is the (closed) fiber of the b-rolled, 1-twist spin of K, and
various generalizations, [15,24]. If the Arf invariant of K is non-zero, and b is

odd, the Rohlin invariant fx(Mb) 1 [9]. Siebenmann [26] showed that, if
fx(Mb) 1 and Mh is géométrie in the sensé of Thurston (Seifert, hyperbolic, or a

sum of such along sphères and tori), Mb does not admit orientation reversing
homotopy équivalences. In gênerai, one expects Mh to be aspherical and geomet-
ric. For instance, if K is a hyperbolic knot, a theorem of Thurston [29] shows that
Mb is hyperbolic if |b| is large enough.

(3) This example was suggested by D. Ruberman. Start with a knot K in S3

drawn with self-linking number l, thicken it to a band, put m right half-twists in
the band, where 2/ +m n 3 (mod4). Push this non-orientable surface F into
D4, and take the double branched cover of D4 along F, M(F, 2) (see Fig. 2). This
is a 4-manifold built with one 0-handle and one 2-handle, attached along K#K,
with framing n [1].

Then dM(F, 2) X is the double branched cover of S3 along dF. It is also

obtained by n surgery along K#K, hence can be expressed as the union of two
copies of the exterior of K glued along their boundaries [13], so that X is

aspherical.
Now Ht(X) Zn, with linking form À : Zn ® Zn -* Q/Z given by À(l, 1) 1/n. If

X admits an orientation reversing homotopy équivalence inducing multiplication
by r on H^X), we find r2 -l (mod n), an impossibility. Thus, the 2-twist spin of
dF yields a knot in S4 with the required fiber.

We now describe how one finds k(X)€H3(ir1; tt2). Given a 3-complex X, let
X be the universal cover of X, and consider the augmented chain complex for X,
0 -» C3(X) -^-» C2(X) -^-* d(X) -iU C0(X) -* Z -* 0, where Q (X) is a free

e, with a generator for each i-cell of X. This fails to be exact at C2(X).
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Add a free summand C3 and define d3 on C3 so as to kill tt2X:

^ C0(X) &gt; Z &gt; 0.

The chain complex is now exact at C2, and the map fc - pd3 : C3 —» tt2 détermines
a well-defined class {kleti^iir^X; tt2X). An essentially équivalent version of this
is the following: view X as a subcomplex of K^X, 1) by adding cells of
dimension &gt;3 to X. Then [fc] is the obstruction to extending id:X—»X to the
3-skeleton of Ki^X, 1).

The usefulness of the fc-invariant is shown by the following theorem of
MacLane and Whitehead [19]: let X and X&apos; be 3-complexes. A map a rn^X—&gt;

TTiX&apos; and an a-map j3 : 7r2X —» tt2X&apos; are geometrically realizable (induced by

f : X -* X&apos;) if, and only if, a*[kf] 0 JTc] e H^X; (ir2X&apos;)J. If this holds, we say
a and j3 préserve k-invariants.

Given X, X&apos; with ttxX^ttxX&apos;, tt2X ==-n^X&apos;, the fc-invariant represents the
obstruction to realizing thèse maps geometrically. If H3(X) H3(X&apos;) 0, the
Hurewicz and Whitehead theorems show that a map X—»X&apos; realizing thèse

isomorphisms is a homotopy équivalence.
We can regard Theorem 1.2 as a 4-dimensional analogue of the following

spécial case of a theorem of C. B. Thomas [28]: If X3X is aspherical and does not
admit an orientation reversing homotopy équivalence, î 1, 2, then

(-JSi)#22^-Si#22. Thus, we begin in §2 with a proof of this via fc-invariants.
The calculations hère serve as a good warmup for the later sections. In §3 we
compute tt2 of the knot exteriors. Our method, whUe elementary, seems useful in
its own right, and can be used to compute tt2 of a large class of knots, including
spun knots. §4 describes a cell complex for X, computes tt2 in a slightly différent
fashion, and détermines fc(X), fc(X&apos;) on the cochain level. In §5 we compute
enough of H3(7rx; tt2) to locate k-invariants. In §6 we investigate automorphisms
of irl5 and use this in §7 to complète the proof of Theorem 1.2. Finally, §8

contains the straightforward generalization from two examples to arbitrarily
many.

We will always regard ir2 as a left Z7r1-module. If Ztt is a left Ztt-module, a

map j3 :Z7r—*Zir is just right multiplication by (3(1). More generally, vectors in
(Ztt)&quot; are row vectors and matrices with entries in Ztt act on the right. An
excellent référence for cohomology of groups is [5].
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§2. /c-invariants for XX#X2

Let Xl9 i 1, 2, be closed, orientable, aspherical 3-manifolds, ir^ Ar
First consider £t. Since Xt is contractible (presumably IR3), we easily see that

7T2(il) ZAl9 naturally generated by the boundary sphère. We add C3 ZAt to
make C*(Xt) exact:

ZAt &gt; C2(a)

J
Thus, kt is represented by ZAt ~—&gt;ZAt, the natural generator of H3(A,;ZA) —

Z. Of course, this map dépends on the choice of isomorphism 7r2=ZA. Another
choice would give a k -invariant k, with k |3k for some |3€AutZAi (tt2). This
complex is a resolution. In fact, it is precisely C^(Xt), with the map ZA, —»kerd2
corresponding to gluing a 3-ball into î,x. Notice that the augmentation map
ZA —* 2 induces an isomorphism H3(A, ZAt) H3(Xt ; Z), under which kt corresponds

to the orientation class of Xt.

Now consider (Xi#X2)° — txvt2, A=At*A2.

LEMMA 2.1.

Proof. Consider the universal cover (51#X2)°-£»(5i#22)°. Covering space
theory shows that p~1(il) consists of disjoint copies of Xt, indexed by the
cosets A/At. As a left ZA-module, thèse copies are permuted transitively, and the
stabilizer of the copy corresponding to the identity coset is Ar Therefore^i [5, page 67-68]. ¦

The lemma shows that ker 62 ©;U (ZA (gfe^ ker d2)=©f=1 (ZA Sza, 2A),
with natural gênerators given by the two boundary sphères. We make the complex
exact at C2 by adding C3 ©fsal(ZA (^a. ZA) and mapping via k=id:C3-&gt;
ker d2:

(ZA®ZAiZA1)e(ZA®XA2ZA2)

j j
ker d2 (ZA ®ZAl ZAX)0 (ZA (g)^ZA2)

The following well known lemma will be useful hère and later. Let B TT1Mn9

where M is a closed, orientable, aspherical n-manifold. Suppose JBczA.
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LEMMA 2.2.

fZ®ZBZA; k n
Hk(B;ZA)

m

It is useful to interpret this via cosets. Since ZA ©BXA ZB as left ZB-modules,
Hk(B;ZA) Hk(B;©BXA ZB) ©BXAHk(B;ZB) Hk(B;ZB)®zB ZA. Hère
we use that B has a finite K(B, 1) so that cohomology commutes with direct sums.
The right ZA-module structure of H&quot;(B;ZA) Z&lt;8&gt;ZB ZA ©BXA Z is the
natural permutation action of A on the cosets B\A.

Using Lemma 2.2, we find

H3(7r1{X1#X2f\ ir2(X1 # X2)°) H3(Al*A2; (ZA)2)

s © H3(Al9 (ZA)2) © (Z ®zA ZA)2.
i=*i i=i

It should be clear that under thèse identifications, the k -invariant corresponds to
(l®zAt 1&gt; 0» 0, l®zA21). This is seen explicitly by restricting the complex to the
resolution 0-^ZA —&gt; C2(tt )—&gt;..., restricting k to this pièce, and using the
discussion for tt.

Now consider 2X # X2. We add a 3-cell to (Xi # X2)° so as to kill the sum of
the natural generators of ker d\ and ker d\, giving d3 : C3 ZA -^» ZA © ZA
kerd2- We make CHs(2i#52) exact at C2 by adding C3 ZA, and defining
ZA C3 &gt; ker d2 ZA © ZA by â3(l) (1,0).

0 &gt; C3@C3 &gt; ZA ®zAl C2(ix) © ZA ®zA2 C2(i2) -^
(â3,a3\ U U

kerd2= (ZA®ZAtZA1)©(ZA(8)ZA2ZA2)

i
ZA©ZA/ima3

(a9b)i—&gt;a-b.

Thus, k(Xx # X2) is represented by C3 ZA -^ ZA tt2.
As above, we hâve H^tt^ # X2) &apos;^2(XX # 22)) H3(At * A2; ZA)

(Z®za1ZA)©(Z®ZA2ZA). To locate fc, first consider At. The naturaHnclusion
C#(ii) c-^ZA®ZAlC9fs(i1) extends to a chain map C*(ÎX)-+C*(XÏWX2)®C3
by defining C3(JS1) ZA1 c—&gt;ZA C3 via the natural inclusion. Thus, fc restricts
to kt:ZAt ^-^ZA, also the natural inclusion. For A2, we extend the natural
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inclusion C*{î2) &lt;-*lA&lt;8&gt;IA2C*(î2) by defining C3(52) ZA2(^^&gt; C30 C3
ZA (B1A, so that fc restricts to fc2:ZA2 ^ ZA. Thus, under the above identifications

H3(tt1(X1 # X2); tt^X, # X2)) -^ (Z&lt;8&gt;ZAlZA) © (Z®ZA2ZA)

Now consider (-£i) # 22. The same discussion applies, modified as follows:

ker a2/im d3 ZA © ZA/im 63 ZA

C3C£2) ZA2 -^l ZA © ZA C3 © C3.

Therefore, the fc-invariant hère is given by

-21 # X2); tt^-X, # JSJ) ^ (Z&lt;g&gt;zAlZA) © (Z®za2ZA)

k»-&gt;(i(g)i, 1(8)1).

We now prove a spécial case of Thomas&apos; theorem [28]:

PROPOSITION 2.3. Let Xx and X2 be closed, oriented, aspherical 3-mani-
folds admitting no orientation reversing homotopy équivalences. Then

Proof. Suppose we are given a &apos;.rr^-Xx^X^ —» tt1(51#22) and an a-map
3 : tt2 —&gt; tt2 which préserve k-invariants. By Bloomberg&apos;s theorem [4], a (/, g) €
Aut Ax©Aut A2, up to an inner automorphism. Both f~x and g&quot;1 are realizable
by homotopy équivalences, and since both préserve orientation, we can realize
(/~~\ g&quot;1) by a homotopy équivalence of XX#X2. Composing this with the map
realized by (a, |3), we can assume a =identity. Therefore, 3*(fc&apos;)= k. The map
j3:ZA-»ZA is right multiplication by |8(1), so that (1(8)/3(1),
(1(8)1,-1(8)1). If /3(l)=X&gt;gg&gt; this gives, in terms of cosets,

(Z *V^ig&gt; Z MgA2g) (Ax • 1, -A2 • 1).
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Let geAt*A2 be a word having maximal length among those with
Since 0 ± 1, g ^ 1, so g ath, with 1 f ax e Al9 say. Since n9A2g £ 0 and A2g î A2,
there exists g&apos; with ng ^0, A2g&apos; A2g. But then g&apos; a2g, so that length g&apos;&gt;

length g, a contradiction. ¦
Notice that we proved a stronger resuit than stated in the proposition. There is

no map (—Xx) # X2 —» Xt # X2 inducing an isomorphism on tt^ In fact, much

more is known. Thomas&apos; theorem says that an orientation-preserving homotopy
équivalence between closed, orientable 3-manifolds exists only if the prime
summands pair off as oriented manifolds. Swarup [27] proved that a map
f:M—*N between connected sums of closed, aspherical n-manifolds, n^3, that
induces an isomorphism on fundamental groups is a homotopy équivalence.

§3. Computation of tt2

Recall that X is obtained by surgery on txt^x&apos;2 in SlxD3#Y. Let M
be the cover of SxxD3#Y corresponding to the kernel of Z*H-*
(Z*H/(txt~lx~2) tt). If we perform equivariant surgery on the lifts of txt~1x~2 in
M, we obtain M X. Since ttiY injects into tt, sitting over Y in M we see copies
of the universal cover Y, indexed by the cosets tt/H. Similarly for S1xD3. A
schematic picture, together with two lifts of the surgery curve, is shown below.

Now do surgery. Let M M0UUsw(llS2xD3), M MQ\JUs^s^\lD2xS2),
with copies of S1xS2, S1xD3, D2xS2 indexed by tt. The Mayer-Vietoris
séquences corresponding to thèse décompositions yield

0 -*BH^S1 x S2) -» H3(M0) -* H3(M)

S1 x S2) -* H2(M0) ^ H2(M) -+ 0

and

1 x S2) -^ H3(M0) -* H3(M) -? ®H2(SX x S2)

» ®H2(D2 x S2)©H2(M0) -* H2(jk) -* eH^S1 x S2) ^ Hr(NQ -&gt; 0.

Now H3(M)=Z7r, generated by the lifts of the &quot;connecter&quot; S3. Also, notice that
we can take the surgery curve disjoint from ail 2-cycles of S1 x D3 # Y, so there is
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s3

S2

s?

S?-,

c3
SHx-i

sï

S3x-1f1
x&apos;1r

D3xR

Sî-i

Figure 3

a natural splitting H2(M0) ^ H2(M). Thèse séquences simplify to give

H3(M) ker(Z it ^&gt;

0

0 &gt; coker &lt;p H2(M0)

I
H2(Ad0

I
ker $

i
0.

H2(M) * 0
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An argument similar to that of Lemma 2.1 shows that
As a ZA-module, tt2Y is just ZA, generated by the 2-sphere along which we take
connectée sum. As a ZH-module, tt2Y is coker (ZH-^^ZH), a resuit of
Andrews/Sumners [3]. Therefore, as a Ztt-module, H2(M) Ztt(8)zh coker
(1H^l 2H) coker (Ztt^ Ztt).

To compute &lt;p, examine the lifts of txt~lx~2 which eut through S3 (Figure 3)
and compute &lt;p(l) l + x&quot;1r1-r1-x&quot;2= l-r1 + r1x~2-x~2 (l-r1)x
(1 —x~~2). The proof of the following lemma is elementary.

LEMMA 3.1. Lef g€G te an élément of infinité order in a group G. Then
ZG(1&quot;g)&gt;ZG is a monomorphism. ¦

Consequently, &lt;p \l_Tt—&gt;Ztt is a monomorphism, and H3(M) 0. Writing
&quot;1r1-r1-x~2) (l-x)(l + x&quot;1-r1), we see that coker &lt;p

To analyze &lt;/r, replace Y for the moment by S1* S3. The same surgery
produces a knot with tt1 G, a one relator group, with the relator not a proper
power. By Lyndon&apos;s theorem [18], the relation module Ht(M) is freely generated
by the lifts of Dcf~1x~2, so that i/rG :ZG -*ZG is an isomorphism. In our situation,
H^M) Ztt®zg ZG, and i^ 1 ® i/*G is again an isomorphism. Hence, ker i/r 0.

Thèse calculations are identical for the exterior X&apos; of K&apos;. We summarize our
calculations:

PROPOSITION 3.2. The knots K, K&apos; are quasi-aspherical, with tt2 given by
the following exact séquence of Zir-modules:

o —-* z^ezi ° (1-&apos;xl+*&quot;-t &apos;&apos;1

z^ezu —-&gt; 7r2 —» o. ¦
Remark. As above, replace Y by S1xS3, giving a knot with tti G. In this

case, H3(M)=ZG, generated by the lifts of the &quot;fiber&quot; S3, and we compute
(PorHaCJVD-^eG^CS^S2) as &lt;pG:ZG-^ZG, &lt;p(l) r1-x&quot;1-l. Therefore,

tr2 ZG/(r1-x&quot;&quot;1-l), a resuit in [17].
More generally, if we replace dcr-1x~2 by a word r(f, x) with exponent sum ±1

in x, we get an arbitrary 1-relator ribbon knot in S4 with ttj (f, x | r) and

7r2 Z7T1/(dr/ax), where dr/dx is the Fox derivative, and (£ ngg) X Wgg&quot;1.

Similarly, if tt (*, xl5..., xn | r1?..., rn) is a Wirtinger présentation of a

classical knot group, we can construct a ribbon 2-knot with this group by adding

#ï S1 x S3 to S1 x D3 and performing surgery on the curves r,. By the asphericity
of knots, i(f is an isomorphism, and we compute &lt;p (drJdXj), so that tt2

For a spun knot, this compléments Andrew&apos;s and Lomonaco&apos;s
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computation (J.ir)nl{drjdx1)t [2, 16]. Abelianizing, we find the classical fact that
the Alexander matrix of a knot in S3 is hermitian, up to trivial units.

§4. A cell complex for X

We start with Figure 4, showing SxxD3#Y9 the surgery curve, and intersections

of the curve with two fibers of Y. We view S1xD3 # Y minus a neighbor-
hood of txt~xx~2 as obtained by gluing (S1xD3)0 and Y0, minus neighborhoods

Figure 5

of arcs, along the four-times punctured &quot;connecter&quot; S3, Figure 5. In Y we hâve
removed ail the neighborhoods of arcs from a B3x S1, pictured as the inner solid
torus. The région between the inner and outer tori is X (21 #X2)0xo-t*o-2S1.
Notice also that (S1 xD3)0- (neighborhoods of arcs) has been deformed to S3

with two 1-handles, plus a 2-dimensional &quot;membrane&quot; Connecting PR to Q&apos;Rr.

Now glue in S2xD2 along the boundary of a neighborhood of m&quot;1*&quot;2.

S2 x D2 déformation retracts onto S2xl via

Q&apos;

R&apos;
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This brings us to Figure 6, where the &quot;membrane&quot; has been stretched out to a

2-cell e2 attachée along rxr~1x~2.

Figure 6

We have that

a1 + a2-P-Q-R (see Figure 7)

Figure 7

Finally, collapse e\ and et, and cancel e|» eî against Q, jR, replacing e\ by e3

This, along with Lemma 2.1, gives

lir(e3 7r&lt;g)raC2X) ¦

X)
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where

From §3, we know e2 does not contribute to kerd2. Since the Xt are
aspherical, §2 gives kerdf =ZH(a1)9ffl(a2), ir2X ZH/(l-x)©ZH/(l-x).
Finally, tt2X is generated by ax and P, subject to the relations: (l-x)a! 0,

1-r1)P 0. Therefore,

tt2X ZirCaO/d - x) 0 Zir(P)/(l - x)(l + x&quot;1 - r1),

in agreement with Proposition 3.2.
We now describe fc(X). Add a free summand C3(X) Z&apos;7r(a1)©Z7r(P) to

C3(X), and extend a3 to C3 so as to kill ir2:â3(a1) a1,â3(P) P. In order to
restrict fc(X)eH3(7r; tt2) to H3(H;&lt;n2), also define C3(X) ZH(ai) ©ZH(a2),
^3(^1)= ar The natural inclusion C*(X) c—» Zir®/HQ(X) extends to a chain map

C3(X) -» Q(X)©C3(X) by defining

C3(X)-&gt;C3(X)©Ztt(63)

We collect this information in Figure 8. The top row will allow us to further
restrict fc(X) to H3(Ht; ir2).

Observe now that this discussion applies almost Verbatim for K&apos;. The only
différence is d3e3 -a1 + a2-(l + x~1-t~x)P9 so that

C3(X&apos;)-^C3(X&apos;)©Z7r(e3)

§5. Computation of the fc -invariant

We now identify k(X) as an élément of H3^; tt2). We need the following:
recall ir
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(1) Cohomological dimension G 2 by Lyndon&apos;s theorem (or, more simply, G
is an HNN extension of Z)

(2) Ht At xi Z has Xx x^S1 as a K(Hl91), so Lemma 2.2 applies.
The Mayer-Vietoris séquences for the amalgamations tt G*zH
G*zCHi*zH2), together with Lemma 2.2, yield, for i 3 or 4,

f(Z(8)ZHlZH)e(Z(2)ZH2ZH); i

l 0; i

Also, the long exact séquence for the coefficient séquence

7 a-J, •-.
0

yields

k tr3/ \ * U4/ (-ri \2\ v Jj4(-- (11 \2\* n v*»i&gt; &quot;2/ * *&quot;* v&apos;W» \&amp;-ir) ~~—~~—~ •** l^i v«-&apos;&quot;&quot;/ / ^

k III III

III

*2, (Ztt)2) &gt; H4(Hly (Zir)2) 0 H4(H2, (Ztt)2)

Z^)2 0 (Z (g)zH2 Z-rr)2 &gt; (Z ^Hl Zir)2 0 (Z (S&gt;2h2 Ztt)2

While it would be difficult to détermine H3^; tt2) exactly, we need only identify

First consider H^ From Figure 8, we see that k(X) restricts to kt e ti*(Hx\ tt2)
given by

lHi c &gt; ZH c
&gt; Ztt &lt; ^ Ztt/(1-jc).

From the diagram

kt &gt; fci

0 » C3(Hi; Ztt) -^^ C3(HX, Ztt) &gt; C3(H1? ir2) &gt; 0

Id3 t3 t3

U Irr) ^±+ C4(Hl9 Ztt) &gt; C4(HU tt2) » 0,
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we have d3^!) k^il) k^l-x) 1-x9 so that ô(fci) is the natural inclusion

i &lt;-* Ztt. This means [ôikj] (1 ® 1, 0, 0,0).
Similarly, the restriction of k to H2 is given by

From the diagram

V o
C3(H2,(Ztt)2)

V o a-x)a,x-r-)/
C3(H2j(Z7r)2) _^ c3(H2,tt2)

0 » C4(H2, (Ztt)2) &gt; C4(H2, (Ztt)2) &gt; C\H2i ir2) &gt; 0,

we have d3k2(l) k2â4(l)= k2(l-x) (-(l-x), (l-xKl + x^-r1)), so that
[ô(fc2)] (0,0, -1 (2) 1,1 ® 1). Thus, in (Z&lt;g&gt;ZHJir)2 0 (KS&gt;ZH2Iit)2,

The same arguments applied to X&apos; yield fc(X&apos;) (1 ® 1, 0,1 ® 1,1 ® 1). The
similarity of thèse calculations to those in §2 should now be évident.

§6. Automorphisms of ir

The purpose of this section is to put an élément of Aut ir into a standard form.
We begin with two lemmas in combinatorial group theory.

LEMMA 6.1. Given a free product with amalgamation A*CB, let aeA be

such that there is no de A with âaâ^eC. Then waw~xeA implies weA.

Proof. Recall that each weA*CB has a unique normal form w cd1 • • • d»,

where the dx are chosen alternately from fixed coset représentatives for C\A and

C\B. We say w as above has length n, [20]. Eléments of A and B have length
^1. Suppose waw~1eA. If dn£ A, waw~1 cd1 • • • d^ad&apos;1 • • • d\xc~x has length
2n + l&gt;l, a contradiction. Thus d^eA. Since dnad^^C, waw~x has length
2n-1. Hence, n 1, and w cdneA. ¦
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The next lemma compléments the well-known fact that torsion éléments in a
free product lie in a conjugate of one factor [20, p. 187].

LEMMA 6.2. Given w e A *B with lj=wleAfor some positive integer /, then

weA.

Proof. It suffices to prove: If wl ecAc~x with ce A or ceB, then \vecAc~1.
Write w Ci • • • Cn, with c, alternately in A or B. We induct on n. If n - 1, either
w g A, in which case there is nothing to prove, or w g B. But this is impossible,
since ce A implies wl e A H B, absurd, or c g B and wl e cAc&quot;1 H B, also absurd.

If n&gt;l and Ci, cn are from différent factors, then wl has length ln&gt;A, But
w&apos;gcAc&quot;1 has length &lt;3. Thus, C! and cn are from the same factor, and
w c^wcx c2 • • • cn_1(cnc1) has length &lt;n -1, with w1 g (cï1c)A(cï1c)~1. Since
c and Ct are from the same factor, induction gives Vvg(c71c)A(c71c)~1, hence
\vecAc~1. ¦

Recall 7t G *z H G *2 (Hi *z H2), where Ht A, X Z (At, x\xax~1 arl (a)),
A, tti^, 2t a closed, orientable, aspherical 3-manifold, and G (t,x\ txt&apos;1

x2). Actually, ail we need is that A, is a 3-dimensional Poincaré duality group.
Our resuit concerning Aut u is

PROPOSITION 6.3. Let a e Aut tt. Up to conjugation, a has the form

Hère {i, /} {!, 2} as sets. If AX A2, a. can possibly interchange Ax and A2.

Proof. From the structure theorem for subgroups of amalgamated products
[20, p. 243] a(At) is a free product of subgroups of conjugates of H, or G,

amalgamated along conjugates of subgroups of Z. We claim that aiA^ is

contained in either Ht or G. Otherwise, a(A1) B1*cB2, with C {1} or Z,

B1±CîB2. The Mayer-Vietoris séquence for this décomposition, with Z2-

coefficients, yields 0-&gt;H3(B1)©H3(B2)-^Z2-&gt;0. This forces one of the B, to
hâve a Z2-fundamental class, hence hâve finite index in a(Ax), contradicting the

non-triviality of the splitting. (Alternatively, such a décomposition of a{A^) would
give rise to an incompressible annulus or 2-sphere in lx [14], a contradiction.)

If a(Aj)c G, then a(At) c [G, G], since Ax c [tt, tt] and ir/[&gt;, tt]
G/[G, G]=Z(f). But [G, G]&lt;8&gt;Q=Z[è]&lt;8&gt;Q=Q, so the only non-trivial, finitely
generated subgroup of [G, G] is Z, a contradiction.
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Thus a(A1)cfl; AlxiZ. Now a(At)jkZ, so «(A^nA^U}, say ae
a(A1)nAl. If y eHl5 then yay-1€ A,. Also, since x normalizes Al5 a(x)aa(x)~1€
Hr Applying Lemma 6.1, we see that a(x)eHl9 so «(H^czH,. Since Ai and A,
are the commutator subgroups of Hx and H, respectively, a(Aa)c= Ar

We claim that a(At) A,. Otherwise, let [A, :aCA^] I &gt; 1. Since the At are
Poincaré duality groups, /&lt;&lt;». Thus, there exists a^A^aiA^^leaiAx).
Then a a&quot;1!^) i Al9 but a1 € At.

Let (A!) be the normal closure of Aj in ir. The map tt^&gt;ttI{A^)- G*zH2
takes a to à. If a^A^, then âf 1. But âl 1, contradicting the fact that G*zJFf2
is torsion free. So a €&lt;Ax). Now &lt;AX) is a free product of conjugates of A, since
the only possible amalgamating subgroups are conjugates of subgroups of 2, but 1

maps monomorphically to ttI{A^). Thus, ae(A1) A1*B, a£Al9 aleAx. This
contradicts Lemma 6.2 and therefore proves our claim: a(Ax) Al.

Similarly, a(A2) zAjZ&quot;1 for some z. We must hâve {i, /} {1, 2} as sets, since

a(A2) zAlz~1 gives A1 a~1(Al) a~1(z)~1A2a~1(z), an absurdity.
Notice also that Lemma 6.1 implies N^iA^^H^ Since xeN7r(A1), a(x)e

Nïr(Al) Hl, so a(x) xkyl5 yt€A, If |fc|&gt;l, alH^^-^JFt has index |fc|, so

x^aCHx). But then a~1(A) A1, xeN^iA,) implies a~l(x)eN7r(A1) H1, a

contradiction. Thus, a(x) x±1yl. Similarly, x€iyn.(A2), so that a(x) x±1ylG
N^izAjZ&apos;1), so z^x^y.zeN^CA,), hence z^x^y.z xkyp y,eA,. Let julz i de-
note conjugation by z&quot;1. Then

so as above, k ±1.

LEMMA 6.4. There is no z e G (t, x | txt&quot;1 x2) such that zxz&quot;1 x&quot;1.

/. G [G, G]XZ with [G, G] Z[|] generated by rkxtk, k&gt;0. Write
wrn, wg[G, G]. If n&gt;0, zxz~1 wtnxrnw&quot;1 wx2nw~1 x2n^x~1. If n&lt;0,

zxz~x w^xf&apos;w&quot;&quot;1 tnxf~n ^ x&quot;1.

Lemma 6.4 implies, via projection to G, that z~1x=fclylz x±1yp with corres-
ponding exponents for x. We now hâve a in the form
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LEMMA 6.5. Assume that a eAutir satisfies

A2-&gt; zAz&quot;1

Then a can be conjugated to the form

Î 21
1, with r

Assuming the lemma, we finish the proof. Let a be as in the conclusion of the
lemma. Then conjugation by z\x puts a in the form

z1x±1yJz71

Reversing the rôles of Ax and A2, we apply the lemma again, conjugating a to

Conjugation by z2
x now puts a in its final form, and proves the proposition. ¦

Proof of Lemma 6.5. If y, 1, there is nothing to prove. If y,^ 1, there are
two cases:

CASE 1. There exists y € A, such that y, aT\y-1)y.
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In this case, yx^y.y&quot;1 x^1crf1(y)yly~1 x*1. Hence

x -* x*1, Zi yz, and

CASE 2. There does not exist y g Ax such that y, of 1(y&quot;&quot;1)y.

Write z-^x^i • • • d», d.eZXG.ZXHi, or Z\H2 alternately. If d,^^, then
z&apos;^^y.z xkdx • • • d^y.C1 • • • d71x~k has length 2n H-1. But length x^y, &lt;

1. Thus, either n 0, i.e. z&quot;1 xk, in which case the lemma is trivial, or d^eHl?
dn=xry, y € Ar Then

z~1x:fclylz dn_1xryx±1yly~1x~rd~i1

which has length 2n-l, since o^
But this forces y, 1, and now

ly~1 f 1. This forces n l, so that zeHt.

x —&gt; x*1 is in the required form. ¦
The proof of Lemma 6.5 indicates how to find complicated éléments of Aut tt.

Suppose cr1(y1) yl9 so that xyx yxx. For instance, if at : 2X —&gt; 2X fixes a circle,
let y! be the class of the circle in tt^Xi). We can define an élément of Aut tr by

a: &lt;

z

X

L t-

There is also considérable freedom in the choice of a(t), so long as a(t) has
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exponent sum ±1 in t. It is easy to verify that the map

is an automorphism, with a 1(t) t 1x 1t2. Composition of thèse and similar a
give éléments of Aut tt with both z and a(t) rather complicated.

§7. Proof of the Theorem

We now prove Theorem 1.2. Assume there is a map /:X—»X&apos; inducing an
isomorphism a : ttxX —&gt; ti^X&apos; and an a-map 0 :tt2X—&gt;tt2X&apos;. Then a and |3

préserve k-invariants. The guiding principle hère is that if we précède / by a map
X —» X, or follow / by a map X&apos; —&gt; X&apos;, the composed maps on irx and tt2, being
geometrically realizable, préserve k-invariants.

By Proposition 6.3, we may conjugate a by an élément of tt into the form

A fl
&gt; A

X &gt;X*\

where {i,j} {1,2}, the ft are isomorphisms, and zx xz. Conjugations are

geometrically realizable. Thus, we may assume a has the above form.

Applying a to the relations xal =o&lt;l(al)x, and using zx xz9 we find

f2 o-r1of2o(T2. (1)

Since %x K(At, 1), we may find homotopy équivalences

Assume i 1, / 2. Then, since the 2X do not admit orientation reversing homotopy

équivalences, we may assume there are small balls Bf pointwise fixed by F£8], so
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that the Fi fit together to give a homotopy équivalence F \X\# X2-*XX# X2&gt;

with F*|Ai /l5 F*|A2 /2. K i 2, j l, a similar argument yields a homotopy
équivalence F\XX#X2-*X2#Si- In either case, we see from (1) that F*
cr*loF*°cr, where ar o^ *cr2, cr a-, *crr This is precisely the compatibility condition

we require to construct a fiber-preserving homotopy équivalence

We may assume F préserves a D3xS1, in which we take connectée sum with
S1 xD3 and do surgery, so that F extends to a homotopy équivalence H.X-+X.
Finally, replacing the map f :X-&gt;X&apos; by /&quot;H&quot;1 enables us to assume that a has

the form

a: A2-

X -

Now examine k -invariants. From a|Hl id we find

i; tt2)

so that ki. Similarly, id yields

fc2eH3(H2;-n-2)

1 I
H2;ir2) &lt; !i-^« H3(H2; irj) 3 k2
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The a-map |3 lifts to an a-map $ : (Ztt)2 -&gt; (Itt)2 which restricts to 6:

^ \ o (î-xxi+x^-r)/
0 1tt®1tt -* -4 Z-n-eZTr tt2

tt2 &gt; 0,

a, fc, c, d, â, fc, c, JgZtt. From the commutativity of the diagram we find

â(l-x) (2a)

(1 - x)b b(l - x)(l + x&quot;1 - r1) (2b)

(l-x)(l + x-1-a(r1))c c(l-x) (2c)

(1 - x)(l + x1 - a {rx))d J(l - x)(l + x&quot;1 - r1). (2d)

Recall that we identify H3^; ir2) with its image in H4(tt; (Ztt)2), and that the
action of 6 hère is given by right multiplication on the cosets H^tt. In particular,

\Hx\tt

fci, K &gt; (Ht • 1,0),

so |3Hcfc1 k[ gives

^•0 ^-1 (3a)

H!-b 0. (3b)

Also,

H\H2; tt2) «-»• H4(H2; (Zir)2)

k2

fc2

so (z&quot;1 • p)!!tfc2 fc2 gives

H2 • 2-ac - H2 • z&quot;^ H2 • 1 (4a)

H2-z-1d-H2-z-1b H2-l. (4b)
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Equations (2), (3), (4) are the condition that a and ^ préserve fc-invariants,
and we see that the question of whether a map X —&gt; %&apos; inducing a exists has been
reduced to a question of whether thèse équations over Ztt hâve solutions. We

daim that (2), (3), (4) hâve no solutions.

To see this, consider the projection tt G*zH-&gt;G-^&gt;D3

(t, x | txt&quot;1 x2, t2 1) onto the dihedral group of order 6, say A : ir —» D3. This
induces a ring homomorphism A :Ztt-»ZD3. Notice that (x) Z3&lt;=D3, Z3\D3
Z2. Let p, rZir-^ZCUX^r] be the (abelian group) homomorphism induced by
7T—?H1\tt, and p:Z£&gt;3—»Z[Z3\D3] the (ring) homomorphism induced by D3—&gt;

Z2. Since A(Hl) &lt;x)c:D3, there are maps À, :Hl\7r-*Z3\D3 which induce
(abelian group) homomorphisms A, :Z[Hl\&apos;n&apos;]-^Z[Z3\D3]. Thèse yield a com-
mutative diagram

&gt;

^~I_y3

Z[HAtt] -^ Z[Z3\D3].

Since zx xz, k(z)e (x)&lt;= D3. Therefore, projecting (3a), (4a) to Z[Z3\D3], we
find

2(Z3-l). (5)

Also, since t générâtes H^rr)^!, a(t) must also, and thus ka(t) t9 tx, or De&quot;1.

Write à(c) £ n^g, A(c) Xngg. Equations (2c) followed by A, and (5), yield

/ -0,1,-1 (6a)

(6b)

(6c)

For the reader&apos;s convenience, we write out (6a) when / 0. Keeping in mind
that y • (S ngg) £ ny-lgg and d nzg) • y =1 ngy-ig, and writing

(1 - x)(l + x&quot;1 - r1) x&quot;1 - x -1 + tx&quot;1,
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we find

n* - r^-i- ^ + n^-i nx - n^-i

Wl - Wx - Ht** + ^tx ^x1 ~

- n^-x - n* + nx-i n^ - n,

Hence,

Combining thèse with (6b), (6c) leads to 3n1-2 —3ntx9 a contradiction.
The cases / ±1 are similar. For j l, (l-x)(l + x~1-tx) x~1

(6a) reduces to nx - r^-i n^ — n^-i, ûx — nx n^-i - Ht, which combine with (6b),
(6c) to give 3nx — 2 3^ + 3^. When j — 1, (6a) becomes n! - r^-i n^-i - r^,

nx - nx ^ - n^, which, together with (6b), (6c), give 3n1 — 2 —3nt. Thus, équations

(2), (3), (4), when projected to ZD3, hâve no solutions, hence hâve no
solutions in Ztt. This complètes the proof of Theorem 1.2. ¦

There are several aspects of the proof which deserve further comment. First
why pick such complicated examples? Why not just consider the knots K
KX#K2 and K&apos;^-K^K* with exterior (±52#X2)oxarS1? Notice that this is

the same as performing surgery on the curve tx in S1xD3#((±2i#-S2)x&lt;tS1).
Why use the more complicated ta*&quot;1*&quot;2?

Consider (±21#22)°x(rS\ This deforms to (S^vXf^x^S1, where S\2) is the
2-skeleton of Xv. The orientation information is lost, and the compléments are
homotopy équivalent. Indeed, they push back to identical 3-complexes. (Notice
that they cannot be homotopy équivalent (rel d) since the fibers are not homotopy
équivalent (rel 5). Similar examples, using lens spaces, are in [22].)

This may be seen algebraically as follows. We hâve the following picture for
°, where ±Xi#X2 gives P ±a1 + a2. Deforming to 2-skeleta gives a



80 STEVEN P PLOTNICK AND ALEXANDER I SUCIU

homotopy équivalence (21#X2)° -* (-X1^S2)°, inducing a id on irl9 which
takes a,—xv Hence, P-*2at + P, so we can write it, in the basis {auP}9 as

1 °\
2 1/

For the knot exteriors, ir2 and p : ir2 —* ir2 are given by

7 M
&gt;&gt; Z7T0Z7T

Z1T0Z7T * TT2 &gt; 0.

Writing 6 \ 0 T as before, the conditions imposed on 6, $
\c a/ \c a/

are

now

In particular, we can choose ô=i I, and now it is easy to see the

k -invariants correspond, i.e. (3) and (4) are satisfied.
In our examples, however, with the more complicated module structure on tt2,

the map J is not available—the generator P coming from the puncture

cannot be combined so freely with the generator a coming from the separating
2-sphere in %x#%2. Notice that, of conditions (2), (3), (4), we only used (2c), (3a),
(4a). We can still pick a â l, b b O, d J=l, satisfying (2a), (2b), (2d),
(3), (4b). But we cannot sknultaneously satisfy (2c) and (4a). We cannot choose

c € Z. It must involve t, and thus (4a) will not hold. It seems clear that in trying to
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satisfy thèse équations one should only look inside ZGczZtt. Possibly one could
show directly that there are no solutions hère. It seems miraculous, however, that
even in ZD3 there are no solutions. We regard this as clear évidence of a guiding
moral force behind our examples.

We earlier mentioned the différence between homotopy équivalences and
those rel boundary. Consider, for example, the square knot versus the granny
knot. Spinning thèse two knots yields the same knot [12]. If we 7-twist-spin them,
we obtain fibered knots, with fibers (±£(2, 3,7) #2(2, 3,7))°. The exteriors are
homotopy équivalent, but not rel boundary. Using thèse in our construction
essentially fixes the boundary, so the resulting knots are no longer homotopy
équivalent.

Finally, we point out two ways in which thèse examples can be generalized.
First, notice that S1 x D3# Y is the connected sum of the trivial knot exterior with
Y. If we replace SxxD3 by the exterior of some more interesting knot K, and

again perforai surgery on txt~xx~2, we obtain a knot in S4 with group
Tr1X*Z(t)G*z(x)H, and one still expects Theorem 1.2 to be true. Secondly, there is

nothing sacred about txt~1x~2, other than the exponent sum of x is ±1. For
instance, we could replace this by txtlt~1x~n~1, replacing G by the Baumslag-
Solitar group (t, x | txnt~x xM+1), and one still expects Theorem 1.2 to hold, with
computations in ZD2n+1 instead of ZD3.

§8. Generalizations

This section generalizes Theorem 1.2 from two knots to arbitrarily many:

THEOREM 8.1. There are arbitrarily many knots in S4 with isomorphic tt1
and 7r2 but with distinct k-invariants.

Proof (sketch). We start with n fibered knots Kl9 with fiber Èt. As usual, we
assume Xt are aspherical and admit no orientation reversing homotopy équivalences.

To avoid certain technical difficulties involving interchanging factors, we
further assume that ail tt^ are distinct.

Given an (n-l)-tuple I (ei,..., en_i), el ±li form Kt
exKx#&apos; • •#en_1Kn_1#Kn. Surgery on KT yields Yr, fibered over S1 with fiber
#r=i ^- Construct Xx by performing surgery on txt~xx~2 in S1xD3#YI. As
before, Xr is the exterior of a knot Kt in S4. We claim thèse 2n-1 knots hâve
distinct fc-invariants.

Write tt ttxXj G^H^zHa?•••*zflB
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As before, we compute 7r2 7r2XI
Further, C3(XI)=©T-iZH(fll), C3(XI)= 0^
C3(Xr) is given by

tt(F), and C3(X,)

C3(Xr)

\-El ~«n 1 1 + X ~t /

The exact séquence

» C3(Xr). See §4.

0 »

yields

/

z
,&gt;

7T)

l-x
0

\

(1-xXl + x l~t l) J
7T)n &gt; 7T2 &gt; 0

H4(Hi; 0

Now suppose we hâve distinct (n - l)-tuples I, J. We can assume e[ 1 —ei.

Given an isomorphism a and an a-map |3, we can arrange, as in §6, that a \Hi id,

«(A^zA^rS 2,x x2,, i 2, ...,n. Lifting 0 to maps 0, 0:(Z7r)n -&gt;(Z7r)n,

« (!!„), Ô (ÔIJ), wefind

Assuming |3îJc(fer) «*(fej), we find, as in §7, that (zr^W**), (kj)
and j8îH(kI)1 (kJ)1. This yields équations over Ztt. As before, we apply the

projection k:Tr-*D3 to give équations over ZD3. Since xzx ztx, we can ignore
the z,. The relevant équations which must be satisfied if the k -invariants are to be
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préservée! are:

Z3À(ân) Z3 and -Z3A(âu) + Z3k{ânl) Z3,

or Z3A(ônl) 2Z3, the analogue of (5) of §7. But this équation, together with
(l-x)(l + x~1-a(f))À(onl) À(ônl)(l-x), are (6) of §7, and lead to the same
contradiction. This complètes the proof. ¦

We mention hère two obvious questions raised by thèse results. First, are
there infinitely many knots in S4 distinguished by their k-invariants? Secondly,
does the algebraic 3-type of a knot exterior détermine its homotopy type, or are
still higher invariants necessary (Question 1 of [17])?

(Added in proof.) Theorem 8.1 has been proven by the second author in his
1984 Columbia Univ. Ph.D. Thesis-using 2-twist spun 2-bridge knots Kpq, with
fiber L(p, q). The surgery construction in §1 yields knots Kpq with isomorphic ttx
and tt2. If L(p,q)j*L(p,q&apos;), then Kpq and Kpq&gt; hâve distinct k-invariants.
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