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k-Invariants of knotted 2-spheres

SteveEN P. PLotNnick® and ALEXANDER 1. Suciu

§1. Introduction

This paper studies some questions concerning homotopy type invariants of
smooth four-dimensional knot complements. Higher-dimensional knot theory
diverges sharply from classical knot theory in this respect. It is well known that
classical knot complements are aspherical - all higher homotopy groups vanish —
so their homotopy types are determined by fundamental groups. This is far from
the case in higher dimensions. In fact, Dyer and Vasquez [6] proved that for
S"2c=8", n=4, S"—S"? aspherical implies 7,(S"—S""%)=7Z. Well known
theorems of Stallings, Levine, Shaneson, Wall now show the knot is trivial, n =S5.
This is now known to be true also for n =4, in the topological category, by
Freedman’s work. Thus, for knotted 2-spheres in S* one must study higher
homotopy invariants. A knot complement S*—S? has the homotopy type of a
3-complex, so a natural question is whether the homotopy theory of knot
complements in $* can be as complicated as that of arbitrary 3-complexes. The
main result of this paper indicates that the answer is yes.

The second homotopy group already provides numerous examples of knots in
S* which fail to be determined by fundamental groups. Using twist-spun knots,
discovered by Zeeman [30], Gordon [11] produced examples of knots K; < S*,
i=1, 2, 3, whose complements have isomorphic fundamental groups but non-
isomorphic second homotopy groups, when viewed as Zr;-modules. The first
author generalized this to arbitrarily many knots [22], and then infinitely many
[23].

In this work, we study the next higher homotopy invariant, the first
k-invariant. Defined by Eilenberg, MacLane and Whitehead [7], [19] for a
3-complex X, this is a class k(X)e H?*(7,;X; m,X) that contains more delicate
information, beyond m,; and 7r,, as to how the cells of X are glued together. We
will define k(X) shortly. For the moment it suffices to know that it is a homotopy

* Partially supported by NSF grant MCS-82-01045.
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type invariant. Our main result is

THEOREM 1.1. Given a positive integer N, there exist N knots in S* whose

complements have isomorphic m; and w, (as Zw,-modules), but distinct k-
invariants.

The triple (7 X, m,X, k(X)) determines the “‘algebraic 3-type”” of X [19]. S. J.
Lomonaco, Jr. observed that, with the additional assumption H(X)=0, the
algebraic 3-type of a 3-complex determines its homotopy type. In analogy with
the classical case, where knot complements are determined by their ‘“‘algebraic
2-type,” i.e. their fundamental groups, knots in S* whose exteriors X satisfy
H,(X)=0 are called quasi-aspherical. Not all knots are quasi-aspherical [10],
[25]. The knots we construct are quasi-aspherical, so the k-invariant may be
regarded as the last obstruction to a homotopy equivalence. These examples
answer Question 16 in [17].

The first person to consider k-invariants of knot exteriors in S* was Lomonaco
[17], who gave a procedure for computing the k-invariant of a 2-knot from a
motion picture. In [22], the first author tried to find examples of knots which are
distinguished by their k-invariants. Modulo a difficult algebraic problem, involv-
ing free modules over Z(SL(2, 5)), which arises from the 5-twist spin of the trefoil
(see [22, Section 5]), this seems to be impossible in the realm of fibered knots.
Accordingly, we look here at non-fibered knots.

Let us describe our examples. Start with two fibered knots in $*, K, and K,,
with fibers the punctured manifolds 3;=3; — B> (3, closed, orientable) and
monodromies o;, i =1, 2. The exteriors of these knots are given by X(K,)= X, =
3, Xq St = 3. x I/(y, 0)~(o:(y), 1). Letting 7,3, = A, we can write m X, as a
semi-direct product

771& EI_I! = Ai X Z = (Ai’ X l xax*l = ai(a)’ Va € Ai),

where we write o; for the map induced on m,3; by 0. The connected sum
K =K, #K, is again fibered, with fiber = 3,5 3,, monodromy o, * >, and exterior
X(K)=X=(3#3,)"%0su0,S". Letting A=A;*A,=m(3,#23,), we have
T X=H = H; %30 Hy = (A1 XZ(X)) *7(x) (A3 X Z(x)) = A X Z(x).

Surgery on K yields Y=(3,#3,) %o .,S'. Form S'XD?*#Y, and let ¢
represent the generator of Z = m,(S* X D?). Perform surgery on the curve txt™'x >
in S'x D3#Y, and let X be the result. We claim X is the exterior of a knot K in
S%. To see this, add D*x S? to X along S'xaD?>. This kills ¢, so the resulting
space can be described as S*#Y with surgery on x, or just S* (assuming the
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Figure 1

framing for the surgery is chosen correctly). We write

m=mX =Z(t)* Htxt *x"2)= G *,,, H, where G =(t, x | txt ™ = x?)

Ty = 'TTzX
The same construction, replacing K, by —Kj, yields

K'=-K,#K,
X(K)=X'= (=21 #32)°%0,s, S’
Y(K') = (_21 #22) xcl*UZSI

X'=S'x D3>#Y’ with surgery on txt~'x~2, the exterior of a knot K’ in S*.

Here —3, means 3; with the opposite orientation. The following theorem, which
we prove in §7, provides 2 examples for Theorem 1.1.

THEOREM 1.2. Assume 3, is aspherical and admits no orientation reversing
homotopy equivalence, i =1, 2. Then the knots K and K' have isomorphic w, and
1, (as Zmw-modules), but there is no map f:X — X' realizing an isomorphism on
my.

There are plenty of 3, which satisfy the above requirements. We give some
examples:

(1) If 3 is a closed, orientable, aspherical Seifert 3-manifold, then 3 admits an
orientation reversing homotopy equivalence if, and only if, 3 fibers over S* [21].
Thus, no Seifert homology 3-sphere is amphicheiral. The Brieskorn spheres
3@, q1), {p, g, 1} #{2, 3,5} are aspherical, and are the (closed) fibers of twist-
spun torus knots.
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Figure 2

(2) Given a knot K = S3, the homology sphere obtained by Dehn surgery of
type 1/b on K, say M,, is the (closed) fiber of the b-rolled, 1-twist spin of K, and
various generalizations, [15, 24]. If the Arf invariant of K is non-zero, and b is
odd, the Rohlin invariant w(M,)=1 [9]. Siebenmann [26] showed that, if
w(M,) =1 and M, is geometric in the sense of Thurston (Seifert, hyperbolic, or a
sum of such along spheres and tori), M, does not admit orientation reversing
homotopy equivalences. In general, one expects M, to be aspherical and geomet-
ric. For instance, if K is a hyperbolic knot, a theorem of Thurston [29] shows that
M, is hyperbolic if |b]| is large enough.

(3) This example was suggested by D. Ruberman. Start with a knot K in S
drawn with self-linking number [, thicken it to a band, put m right half-twists in
the band, where 21+ m =n=3 (mod 4). Push this non-orientable surface F into
D*, and take the double branched cover of D* along F, M(F, 2) (see Fig. 2). This
is a 4-manifold built with one 0-handle and one 2-handle, attached along K#K,
with framing n [1].

Then dM(F,2)=23 is the double branched cover of S> along dF. It is also
obtained by n surgery along K # K, hence can be expressed as the union of two
copies of the exterior of K glued along their boundaries [13], so that 3 is
aspherical.

Now H,(3)=1Z,, with linking form A :Z,, ® Z,, — Q/Z given by A(1, 1)=1/n. If
3 admits an orientation reversing homotopy equivalence inducing multiplication
by r on H,(Z), we find r*=—1 (mod n), an impossibility. Thus, the 2-twist spin of
oF yields a knot in S* with the required fiber.

We now describe how one finds k(X)e H?(m,; m,). Given a 3-complex X, let
X be the universal cover of X, and consider the augmented chain complex for X,
0— C3(X) 2> CxX) 2 C(X) 2> C(X) >7Z — 0, where G(X) is a free
27-module, with a generator for each i-cell of X. This fails to be exact at C(X).
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Add a free summand C, and define 3; on C; so as to kill m,X:

00— G C(X) — C(X) -2 C(X) = Co(X) — 2 —> 0.

53 J3 /

)

The chain complex is now exact at C,, and the map k = pa;: C; — m, determines
a well-defined class [k]e H?(m, X; m,X). An essentially equivalent version of this
is the following: view X as a subcomplex of K(m;X,1) by adding cells of
dimension =3 to X. Then [k] is the obstruction to extending id: X — X to the
3-skeleton of K(m;X, 1).

The usefulness of the k-invariant is shown by the following theorem of
MacLane and Whitehead [19]: let X and X' be 3-complexes. A map a:m, X —
m X' and an a-map B:mX — w, X' are geometrically realizable (induced by
f: X — X') if, and only if, a*[k']= B.lk]le H*(7, X; (m:X"),). If this holds, we say
a and B preserve k-invariants.

Given X, X' with 7, X=m X', m;X=m,X', the k-invariant represents the
obstruction to realizing these maps geometrically. If Hx(X)= H4(X')=0, the
Hurewicz and Whitehead theorems show that a map X — X' realizing these
isomorphisms is a homotopy equivalence.

We can regard Theorem 1.2 as a 4-dimensional analogue of the following
special case of a theorem of C. B. Thomas [28]: If 37 is aspherical and does not
admit an orientation reversing homotopy equivalence, i=1, 2, then
(=2 ) #23,#3,#23,. Thus, we begin in §2 with a proof of this via k-invariants.
The calculations here serve as a good warmup for the later sections. In §3 we
compute m, of the knot exteriors. Our method, while elementary, seems useful in
its own right, and can be used to compute 7, of a large class of knots, including
spun knots. §4 describes a cell complex for X, computes 7, in a slightly different
fashion, and determines k(X), k(X’) on the cochain level. In §5 we compute
enough of H>(m,; mr,) to locate k-invariants. In §6 we investigate automorphisms
of ,, and use this in §7 to complete the proof of Theorem 1.2. Finally, §8
contains the straightforward generalization from two examples to arbitrarily
many. '

We will always regard 7, as a left Zw-module. If Zr is a left Zw-module, a
map B:Zmw— Z is just right multiplication by B(1). More generally, vectors in
(Zw)* are row vectors and matrices with entries in Z7 act on the right. An
excellent reference for cohomology of groups is [5].
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§2. k-invariants for 3, #3,

Let 3;, i =1, 2, be closed, orientable, aspherical 3-manifolds, m,3; = A,.
First consider fi. Since 3 is contractible (presumably R?), we easily see that

wz(Zoi)EZéi, naturally generated by the boundary sphere. We add C;=ZA, to
make C,(3;) exact:

0 —> ZA, — G3) -2 C,35) 2> 2A, — Z —> 0

N/

ker 95 = 772(Si) =7A.

Thus, k; is represented by 7 A, M, ZA,, the natural generator of H*(A;;ZA,) =
Z. Of course, this map depends on the choice of isomorphism m,=ZA,. Another
choice would give a k-invariant k, with k =Bk for some B € Aut, a, (). This
complex is a resolution. In fact, it is precisely C*(F:i), with the map ZA; — ker 85
corresponding to gluing a 3-ball into 2°i. Notice that the augmentation map
ZA; — 7 induces an isomorphism H3(A,, ZA,)= H*(3;; Z), under which k; corres-
ponds to the orientation class of 3.
Now consider (3, #3,)°=3,v3,, A=A *A,.

LEMMA 2.1. C (5, #5.))= D74 ®ya C4(3).
i=1

Proof. Consider the universal cover (3, #3,)° 2> (3, #3,)°. Covering space
theory shows that p‘l(Eo,-) consists of disjoint copies of Zsi, indexed by the
cosets A/A;. As a left ZA -module, these copies are permuted transitively, and the
stabilizer of the copy corresponding to the identity coset is A;. Therefore
Calp 'S =ZA®,4 C4(3) [5, page 67-68]. W

The lemma shows that ker 3, =@, (ZA ®,, ker ) =D7_; (ZA ;4 ZA),
with natural generators given by the two boundary spheres. We make the complex
exact at C, by adding C;=@?%; (ZA ®,4 ZA,) and mapping via k =id: C; —
ker 9,:

(ZA®pa,ZA)BZARya, ZA;) —> LA®a, Co(3DBLAR,a, Co(3s) —22> .

T~ J J

ker 0= (ZA ®ZA1 ZAI) &b (ZA ®ZA2 ZAz)

The following well known lemma will be useful here and later. Let B = 7, M",
where M is a closed, orientable, aspherical n-manifold. Suppose B < A.
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LEMMA 2.2.

Z®,,7A;: k=n
H*(B: ZA){ 8

0; kf#n. W

It is useful to interpret this via cosets. Since ZA = @g\ ZB as left ZB-modules,
H*(B;ZA)=H"(B;®g\s ZB)= @4 H*(B;ZB)=H"(B;ZB) ®,;5 ZA. Here
we use that B has a finite K(B, 1) so that cohomology commutes with direct sums.
The right ZA-module structure of H"(B;ZA)=7Z®,5 ZA=®g\ 4 Z is the
natural permutation action of A on the cosets B\ A.

Using Lemma 2.2, we find

H(my(3,#3,)°% m(Z, # 3,)°) = H¥ (A *A,; (ZA)D)

= EB H3A, ZA)? = EB (Z ®y4 ZA)>.

i=1

It should be clear that under these identifications, the k-invariant corresponds to
(1®z4,1,0,0,1®;,4, 1). This is seen explicitly by restricting the complex to the
resolution 0 > ZA; — C,(3;)— ..., restricting k to this piece, and using the
discussion for fi.

Now consider 3, # 3,. We add a 3-cell to (3, # 3,)° so as to kill the sum of
the natural generators of ker d; and ker 83, giving 95:C;=7A L 7A DZA =
ker 3,. We make C*(E/:#JEZ) exact at C, by adding C;=7ZA, and defining
ZA =C;—>kerd,=ZADZA by 3;(1)=(1, 0).

00— Cs®C; —> ZA @4, Co(3) DZA ®p4, Co(3,) —>

AN U U
ker 62 (ZA ®ZA1 ZAl)@(ZA ®ZA22A2)

l

ZADZA/ImMI=7ZA
(a, b) —> a—b.

Thus, k(3, # 3,) is represented by C;=7ZA —4>7A =1,.

As above, we have H>(m (3, #3,);m(3#3,))=H*A,*A,;ZA)=
(Z®ZA1 ZA)® (Z®74,ZA). To locate k, first consider A,. The natural inclusion
C*(Zl) <———>ZA®M1 C*(El) extends to a chain map C,(3,) — C*(Zl #3,)8C,
by defining C5(3,)=ZA, <> ZA = C; via the natural inclusion. Thus, k restricts
to k:ZA, > ZA, also the natural inclusion. For A,, we extend the natural
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inclusion C*(Esz) SZAQ;4, C*(§f2) by defining C5(3,)=7A,“% C,® C,=
ZA ®DZA, so that k restricts to k,:ZA, 3 ZA. Thus, under the above identifica-
tions

H(m (3, # 32); w31 # 32) > X ®ya, ZA) D (ZR®ya,ZA)
k—-(1®1,-11).

Now consider (—3/,) # 3,. The same discussion applies, modified as follows:

(-1,1)

63:C3=ZA —> ZADZA =ker62
ker d,/imd; =ZA DZA/imd;=7ZA
(a,b)>a+b

(1,1

C:(3)=7A,—57ADIA=C,P C..

Therefore, the k-invariant here is given by

H3(’"’1(—21 # 22); m—2, # 35)) - (Z®zAlZA) Y (Z®ZA21A)
k—(1®1,1Q01).

We now prove a special case of Thomas’ theorem [28]:

PROPOSITION 2.3. Let 3, and 3, be closed, oriented, aspherical 3-mani-
folds admitting no orientation reversing homotopy equivalences. Then

(‘21) # 22%21 # 22-

Proof. Suppose we are given a :m (=3, #3,) = m (3, #2,) and an a-map
B : m, — m, which preserve k-invariants. By Bloomberg’s theorem [4], a = (f, g) €
Aut A;@Aut A,, up to an inner automorphism. Both f~! and g~! are realizable
by homotopy equivalences, and since both preserve orientation, we can realize
(f™', g7") by a homotopy equivalence of 3,#3,. Composing this with the map
realized by (a, B), we can assume a =identity. Therefore, B4(k")= k. The map
B:ZA —-ZA is right multiplication by B(1), so that (1&®p(1),1®(1))=
(1®1,-1Q1). If p(1)=Y n.g, this gives, in terms of cosets,

(L nAg Y nArg)=(A, - 1,-A,- 1).
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Let ge A;*A, be a word having maximal length among those with n,# 0.
Since B# 1, g# 1,50 g=a,h, with 1 # a, € A,, say. Since n,A,g#0 and A,g# A,,
there exists g’ with n,#0, A,g'= A,g. But then g’'=a,g, so that length g’'>
length g, a contradiction. W

Notice that we proved a stronger result than stated in the proposition. There is
no map (-3, #3,— 3, # 3, inducing an isomorphism on ;. In fact, much
more is known. Thomas’ theorem says that an orientation-preserving homotopy
equivalence between closed, orientable 3-manifolds exists only if the prime
summands pair off as oriented manifolds. Swarup [27] proved that a map
f: M — N between connected sums of closed, aspherical n-manifolds, n =3, that
induces an isomorphism on fundamental groups is a homotopy equivalence.

§3. Computation of ,

Recall that X is obtained by surgery on txt 'x 2 in S'XxD3#Y. Let M
be the cover of S'XD?#Y corresponding to the kernel of Z*xH—
(Z*H/{txt *x %)= ). If we perform equivariant surgery on the lifts of txt 'x~2 in
M, we obtain M = X. Since . Y injects into r, sitting over Y in M we see copies
of the universal cover Y, indexed by the cosets n/H. Similarly for S!xD3. A
schematic picture, together with two lifts of the surgery curve, is shown below.

Now do surgery. Let M = MyUjsixs2(1IS?X D3), M = MyUjisixs: (ID*% S?),
with copies of S'x8? S'xD?3 D?xS? indexed by m. The Mayer—Vietoris
sequences corresponding to these decompositions yield

0 — ©H,(S' X §%) — H3(M,) - H3(M)
2> HH,(S' x S?) = H,(M,) = H,(M) — 0

and

0 — ®H,(S* X §2) — H3(M,) — H3(M) — ®H,(S'x §?)

— ®H,(D?x S)@BH,(M,) — H,(M) — ®H,(S* x §?) %> H,(M,) — 0.

Now Hs(M)=1Z1, generated by the lifts of the “connector” S>. Also, notice that
we can take the surgery curve disjoint from all 2-cycles of S' X D? # Y, so there is
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a natural splitting H,(M,) > H,(M). These sequences simplify to give

H,(M) =ker (Zm %> Zw)
0

A 4

0 — coker ¢ —> H,(M,) —Q H,(M) — 0

v

H,(M)




64 STEVEN P. PLOTNICK AND ALEXANDER 1. SUCIU

An argument similar to that of Lemma 2.1 shows that H,(M) =Zn7n @,y m, Y.
As a ZA-module, m,Y is just ZA, generated by the 2-sphere along which we take
connected sum. As a ZH-module, w,Y is coker (ZH 4 ZH), a result of
Andrews/Sumners [3]. Therefore, as a Zw-module, H,(M)=Zm®,; coker
@ZH 223 7ZH) = coker Zm L3 7).

To compute ¢, examine the lifts of txt"*x ™2 which cut through S; (Figure 3)
and compute o@(1)=1+x"'t'—t1—x?=1-t"T+x2—x2=(1-t"Y)x
(1—x72%). The proof of the following lemma is elementary.

LEMMA 3.1. Let ge G be an element of infinite order in a group G. Then
2G =2, 7G is a monomorphism. WA

Consequently, ¢:Zm —Zw is a monomorphism, and H;(M)=0. Writing
—x(1+x U =t '—x)=1-x)1+x'=1t"1), we see that coker ¢=
Zm/(1—x)Q+x—¢t ).

To analyze y, replace Y for the moment by S'x S>3 The same surgery
produces a knot with 7, = G, a one relator group, with the relator not a proper
power. By Lyndon’s theorem [18], the relation module H,(M) is freely generated
by the lifts of txt 'x "2, so that Y5 :ZG — ZG is an isomorphism. In our situation,
H (M) =7Z71®;5 ZG, and ¢ = 1 @ 5 is again an isomorphism. Hence, ker ¢ = 0.

These calculations are identical for the exterior X’ of K'. We summarize our
calculations:

PROPOSITION 3.2. The knots K, K’ are quasi-aspherical, with 1, given by
the following exact sequence of Zw-modules:

1-x 0
0— ZW@Z'n‘( 0 ammarx ¢ ))¢ In®Im — 7 — 0. N

Remark. As above, replace Y by S'x §>, giving a knot with 7, = G. In this
case, Hy(M)=ZG, generated by the lifts of the “fiber” S>, and we compute
oc : Ha(M) > @D Hy(S' X S?) as ¢g:ZG —>7ZG, ¢(1)=t"'—x"'—1. Therefore,
m,=2G/(t"'—x"1—1), a result in [17].

More generally, if we replace txt™'x 2 by a word r(t, x) with exponent sum =1
in x, we get an arbitrary 1-relator ribbon knot in S* with 7, =(t,x|r) and
1, =2 ,/(3r/dx), where dr/ax is the Fox derivative, and (m)= Y n.g .

Similarly, if #=( xy,...,%,|71,...,1,) is a Wirtinger presentation of a
classical knot group, we can construct a ribbon 2-knot with this group by adding
#7 81 x 8% to S X D? and performing surgery on the curves r. By the asphericity
of knots, ¢ is an isomorphism, and we compute ¢ = (W), so that m,=
(z w)“/(M). For a spun knot, this complements Andrew’s and Lomonaco’s
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computation (Zw)"/(dr/dx;)' [2, 16]. Abelianizing, we find the classical fact that
the Alexander matrix of a knot in S> is hermitian, up to trivial units.

§4. A cell complex for X

We start with Figure 4, showing S' x D3#Y, the surgery curve, and intersec-
tions of the curve with two fibers of Y. We view S' X D? # Y minus a neighbor-
hood of txt~'x ™2 as obtained by gluing (S*x D?° and Y°, minus neighborhoods

Figure 5

of arcs, along the four-times punctured ‘‘connector” S3, Figure 5. In Y we have
removed all the neighborhoods of arcs from a B>x S, pictured as the inner solid
torus. The region between the inner and outer tori is X = (3 # 3,)° X4 40, S
Notice also that (S!x D3)°—(neighborhoods of arcs) has been deformed to S*
with two 1-handles, plus a 2-dimensional ‘“‘membrane’ connecting PR to Q'R’.

Now glue in S?x D? along the boundary of a neighborhood of txt™'x~2.
$?x D? deformation retracts onto S2x I via
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This brings us to Figure 6, where the “membrane” has been stretched out to a
2-cell e? attached along txt *x 2.

Figure 6

We have that

de1=a,+a,—P—-Q—-R (see Figure 7)
9e3=Q+xtx 'R=Q+x 4R
d;e3=P—xQ.

Finally, collapse e} and e3, and cancel e3, e3 against Q, R, replacing e; by e’.
This, along with Lemma 2.1, gives Cy(X):

Z7(€®) ® (2 ®1y CsX) ——> Zm(P) B L7 () ® @ @1 CrX) ——

27(6)® (T ®ypp C, X) —>
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where

3 zm@mcatn =1 @ &%
ie)=a;+a,—1+x 11—t HP

3,(P)=0.

From §3, we know e? does not contribute to kerd,. Since the 3, are
aspherical, §2 gives ker 8% =ZH(a,)®ZH(a,), mX=7H/(1-x)® ZH/(1-x).
Finally, mX is generated by a, and P, subject to the relations: (1—x)a,=0,
(1-x)Q1+x"1—¢t"1)P=0. Therefore,

mX =2m(a)/(1-x)®Zw(P)/(1—x)1+x"1—t7Y),

in agreement with Proposition 3.2.

V’Ye now describe k(X). Add a free summand Cs(X)=Zn(a) ®DZ=(P) to
C5(X), and extend 95 to C; so as to kill m,:35(a,)=ay, 3;(P)=P. In order to
restrict k(X)e H*(m; m,) to H*(H;w,), also define C5(X)=7ZH(a,) ®7ZH(a,),
d5(a;) = a;. The natural iPclusion C(X) <> Z7®, C(X) extends to a chain map
C4(X) ® C3(X) = Co(X)D C5(X) by defining

(_33(X) - 63()2)69277@3)

a, — a,

a,—>—a;+(1+x 1=t HP+e3.
We collect this information in Figure 8. The top row will allow us to further
restrict k(X) to H>(H,; ).

Observe now that this discussion applies almost verbatim for K'. The only
difference is 9;¢>=—a;+a,— (1+x" 1=t 1P, so that

Ci(X) = Co(X) B Z7(e?)

a,—a,

a,—>a,+1+x 1=t HP+e>.

§5. Computation of the k-invariant

We now identify k(X) as an element of H>(sr,; m,). We need the following:
recall w =G*, H
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(1) Cohomological dimension G =2 by Lyndon’s theorem (or, more simply, G
is an HNN extension of Z)

(2) H,= A, ¥Z has 3, X, S" as a K(H,, 1), so Lemma 2.2 applies.
The Mayer—Vietoris sequences for the amalgamations #=G*,H=
G *; (H,*z H,), together with Lemma 2.2, yield, for i =3 or 4,

H (m;Zn)=H'H;Zm)=H'(H,; Zw) ® H (H,; Z)
_ { (Z®ZH,ZH) @ (Z®1H2ZH), i=4
0; i=3.
Also, the long exact sequence for the coefficient sequence

1-x 0

0 — Zn®Zn ( 0 “""’(“"“""“)> In®Ir —> m —> 0

yields

0— H3(7$;1T2) > H*(m; (Zn)?) - H'(m; (Zm)) —>

k 0 [l
i
0 — H3(H,; m) ® H*(H,; m) —> H*(H,; Z7)%) ® H*H,; (Zw)?) — H*(H,; (Zm)?) ® H*(H,; @)
w il i
(ky, ko) Z @, IV BT @y, I — (L By, L)’ B (Z Ry, 7).

While it would be difficult to determine H>(7r,; 7,) exactly, we need only identify
8(k,), 8(k,).

First consider H;. From Figure 8, we see that k(X) restricts to k, € H*(H,; m,)
given by

ZH, ~— 7ZH —— 77w — Zn/(1—x).
\__’/’
ky
k,

From the diagram

El _— kl

0— C3*(H,;Zm) RSN C3*(H,, Zw) —— C*(H;, m;) ——> 0

0 —— CYH,, Zm) 25 CYH,, Zw) —> C*(H,, m,) ——> 0,
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we have d3k,(1) = k,9,(1) = k,(1—x)=1—x, so that 8(k,) is the natural inclusion
ZH, “—> Z . This means [6(k))]=(1® 1,0, 0, 0).
Similarly, the restriction of k to H, is given by

L1+x =Y

ZHzL_"> IH ey ZW@Z'TT—)'TT2.

’Z2 kz

From the diagram

-~

(1~x 0 ) kz > k2

0 —> C(H,, @m)?) ~— 2200, C3H,, (Zw)) —> C(Hy, ) — 0
ld3 ld3 lda

O Ea— C4(H23 (Zﬂ-)z) > C4(H2a (Z'Tr)z) B C4(H2a 772) I Oa

we have dk,(1) =k, (D)=k,(1-x)=(-(1-x), 1=x)1+x"'=t"Y), so that
[6(k;)]=(0,0,-1®1,1®1). Thus, in (Z@ZHIZ’IT)z &3] (Z®ZH227T)2,

k(X)=(101,0,-101,1®1).

The same arguments applied to X’ yield k(X)=(1®1,0,1®1,1®1). The
similarity of these calculations to those in §2 should now be evident.

§6. Automorphisms of 7

The purpose of this section is to put an element of Aut 7 into a standard form.
We begin with two lemmas in combinatorial group theory.

LEMMA 6.1. Given a free product with amalgamation A *-B, let ae A be
such that there is no a € A with aaa '€ C. Then waw '€ A implies w € A.

Proof. Recall that each we A #-B has a unique normal form w=cd, - - - d,,
where the d; are chosen alternately from fixed coset representatives for C\ A and
C\B. We say w as above has length n, [20]. Elements of A and B have length
=<1. Suppose waw 'c A. If d,¢ A, waw '=cd, - - - d,ad;' - - di'c”! has length
2n+1>1, a contradiction. Thus d, € A. Since d,ad;'¢ C, waw™' has length
2n—1. Hence, n=1, and w=cd, € A. B
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The next lemma complements the well-known fact that torsion elements in a
free product lie in a conjugate of one factor [20, p. 187].

LEMMA 6.2. Given we A *B with 1# w'e A for some positive integer 1, then
weA.

Proof. It suffices to prove: If w' e cAc™! with ce A or ce B, then wecAc™t.
Write w=c¢, - - - ¢,, wWith ¢; alternately in A or B. We induct on n. If n =1, either
we A, in which case there is nothing to prove, or w € B. But this is impossible,
since c € A implies w' € A N B, absurd, or c € B and w' e cAc !N B, also absurd.

If n>1 and c,, ¢, are from different factors, then w' has length In =4. But
w'ecAc™! has length <3. Thus, ¢; and ¢, are from the same factor, and
W=cC1'We;=¢Cy* " * Cy_1(C,cy) has length =n—1, with w' € (c7'c)A(c7'c)™?. Since
¢ and c, are from the same factor, induction gives we(c7'c)A(c;'c)™?, hence
wecAc™'. B

Recall w= G*, H= G *,(H,*; H,), where H, = A, XZ = (A,, x | xax ' = g,(a)),
A, =3, 3 a closed, orientable, aspherical 3-manifold, and G=(t, x | txt ' =
x?). Actually, all we need is that A, is a 3-dimensional Poincaré duality group.
Our result concerning Aut 7 is

PROPOSITION 6.3. Let o € Aut 7. Up to conjugation, a has the form

A= A
a:{A,—> zA;z7!

x — x*!, where zx = xz.

Here {i, j}={1, 2} as sets. If A,=A,, a can possibly interchange A, and A,.

Proof. From the structure theorem for subgroups of amalgamated products
[20, p. 243] a(A,) is a free product of subgroups of conjugates of H; or G,
amalgamated along conjugates of subgroups of Z. We claim that a(A,) is
contained in either H, or G. Otherwise, a(A,)=B;*cB,, with C={1} or Z,
B, # C# B,. The Mayer-Vietoris sequence for this decomposition, with Z,-
coefficients, yields 0 — H,(B,) @ H,(B,) = Z, — 0. This forces one of the B; to
have a Z,-fundamental class, hence have finite index in a(A,), contradicting the
non-triviality of the splitting. (Alternatively, such a decomposition of a(A,) would
give rise to an incompressible annulus or 2-sphere in 3, [14], a contradiction.)

If a(A)<G, then «a(A,)<[G,G], since A,c[m w] and a/[w, w]=
G/[G, G]=Z(1). But [G, G]®Q=Z[]1®Q=Q, so the only non-trivial, finitely
generated subgroup of [G, G] is Z, a contradiction.
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Thus a(A)<=H,=A;XZ. Now a(A,)#Z, so a(A)NA;#{1}, say ae
a(A) NA,. If ye H, then yay '€ A,. Also, since x normalizes A,, a(x)aa(x) ‘e
H;. Applying Lemma 6.1, we see that a(x)e H;, so a(H;)< H,. Since A, and A,
are the commutator subgroups of H; and H, respectively, a(A;) < A,.

We claim that a(A,) = A,. Otherwise, let [A;:a(A,)]=1>1. Since the A, are
Poincaré duality groups, l<o. Thus, there exists a;€A;—a(A,),ale a(A,).
Then a=a Y(a)¢ A,,but a'e A,.

Let (A,) be the normal closure of A, in 7. The map m — w/(A;)=G*, H,
takes a to @. If a¢ (A,), then @# 1. But @' = 1, contradicting the fact that G *;, H,
is torsion free. So a € (A;). Now (A,) is a free product of conjugates of A, since
the only possible amalgamating subgroups are conjugates of subgroups of Z, but Z
maps monomorphically to #/{A,). Thus, ac{(A,)=A,*B, a¢ A,, a'€ A,. This
contradicts Lemma 6.2 and therefore proves our claim: a(A;) = A,.

Similarly, a(A,) =zA;z"" for some z. We must have {i, j} ={1, 2} as sets, since
a(Ay))=zA;z7" gives A, =a (A)=a ' (z) 'A,a }(z), an absurdity.

Notice also that Lemma 6.1 implies N_(A,)=H,. Since xe N_(A)), a(x)e
N.(A)=H, so a(x)=x"y, y,€ A. If |k|>1, a|g,:H,— H; has index |k|, so
x¢ a(H,;). But then a '(A;))=A,, xeN_(A,) implies a '(x)e N, (A,)=H,, a
contradiction. Thus, a(x)=x*'y, Similarly, x€ N_(A,), so that a(x)=x*'y,e
N.(zA;z™"), so z7'x*'y;ze N, (A)), hence z 'x*'y;z=x"y, y,€ A, Let p, de-
note conjugation by z~'. Then

A,— A,

“’z'loalHZ: { k..
X —>XYy;,

so as above, k ==+1.
LEMMA 6.4. There is no ze G=(t, x | txt ' = x?) such that zxz '=x"".

Proof. G =[G, G]xZ with [G, G]=Z[3] generated by t *xt*, k=0. Write
z=wt", we[G,G]. If n=0, zxz '=wt"xt "w ' =wx¥w l=x"#x"1 If n<0,
zxz l=wt'xtT"wli=t"xt "#x . W

Lemma 6.4 implies, via projection to G, that z7'x*'y,z = x*'y,, with corres-
ponding exponents for x. We now have a in the form

A= A
a:{A,—> zAz7!

X — x*lyi, z——lx:tlyiz = x:t:lyj.
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LEMMA 6.5. Assume that « € Aut m satisfies

A, — A

a:{A,—> zA;z7!

-1 1 1
x — x*ty, z x*lyz = x*ly,.

Then a can be conjugated to the form

Al—)Ai
a:qA,—>z,A;z7"
x —>x*, with z7'x*'z;=x*y.

Assuming the lemma, we finish the proof. Let a be as in the conclusion of the
lemma. Then conjugation by z;! puts a in the form

Az"’Aj

alA,—z7'Az,

— 1
x — x*ly, zyx*ly izt =x*

Reversing the roles of A; and A,, we apply the lemma again, conjugating a to

A—A;
(8 24 Al - ZZAiZEI

x —x*, z7lWx*lz,=x*

Conjugation by z5' now puts « in its final form, and proves the proposition. W

Proof of Lemma 6.5. If y, =1, there is nothing to prove. If y;# 1, there are
two cases:

CASE 1. There exists y € A, such that y; = o7 '(y™!)y.
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In this case, yx*'y,y ' = x*'o7 (y)y;y ' = x*'. Hence

A, — A
Mmy oo Az"‘) ZlA,-ZII

x —> x*1, z,=yz, and
Z;lxﬁ:lzl — Z—ly—lxd:lyz — Z~1x:f:10_4=1(y—1)yz —_ Z—lxilyiz — x:tly]_.

CASE 2. There does not exist y € A; such that y, = o (y V)y.

Write z~ -*x -d,, d; eZ\G Z\Hl, or Z\H, alternately. If d,¢ H,, then
z7 Ix*yz=x* d,,x*ly,d 1...d7'x7* has length 2n + 1. But length x*'y, <
1. Thus, elther n=0, i.e. z71=x*, in which case the lemma is trivial, or d, € H,,
d,=x"y, ye A;.. Then

27 Wx*Flyz=x%d, - - dp_ X" yx*y,y Ixd - d xR

=x*d; - - - duyx o0 (Y)yiy DL - dTxT,

which has length 2n—1, since o; '(y)y;y ' # 1. This forces n=1, so that z € H,.
But this forces y; =1, and now

A1_>Ai
po-1oa:d Ay — A;

x — x*' is in the required form. W

The proof of Lemma 6.5 indicates how to find complicated elements of Aut .
Suppose o;(y;) = y;, so that xy, = y;x. For instance, if o,:3, — 3, fixes a circle,
let y, be the class of the circle in 7,(3,). We can define an element of Aut 7 by

(A ——> A,

g =1 — +—1
<A2——-—->2A22 s Z=1 "yt

X —>X

. t——>1.

There is also considerable freedom in the choice of a(t), so long as a(t) has
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exponent sum =1 in t. It is easy to verify that the map

|JHS>H

4
t — t xt?

is an automorphism, with a~*(t) =t 'x't>. Composition of these and similar «
give elements of Aut 7 with both z and a(t) rather complicated.

§7. Proof of the Theorem

We now prove Theorem 1.2. Assume there is a map f:X — X’ inducing an
isomorphism «:m X — m,X' and an a-map B:w,X — mX'. Then a and B
preserve k-invariants. The guiding principle here is that if we precede f by a map
X — X, or follow f by a map X’ — X', the composed maps on 7, and 1r,, being
geometrically realizable, preserve k-invariants.

By Proposition 6.3, we may conjugate a by an element of = into the form

.
f
Al——l—->Ai

< f2 K, —
A,— A >zA;z7"

X —> x:t:l’

\

where {i,j}={1,2}, the f; are isomorphisms, and zx =xz. Conjugations are
geometrically realizable. Thus, we may assume a has the above form.
Applying o to the relations xa; = o;(a;)x, and using zx = xz, we find

f1=0'iﬂ°f1°0'1

f2=0';n°f2°0'2- (1)
Since 3, = K(A,, 1), we may find homotopy equivalences

Fy:3,—3, (F1)*=f1
F,:3,— Z,', (Fz)* =f,.

Assume i =1, j = 2. Then, since the 3; do not admit orientation reversing homotopy
equivalences, we may assume there are small balls B} pointwise fixed by F[8], so
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that the F, fit together to give a homotopy equivalence F:3, # 3,—> 3, # 3,
with Fyla, =f1, Fyla,=fo. If i=2, j=1, a similar argument yields a homotopy
equivalence F:3, # 3,— 3, # 3,. In either case, we see from (1) that F,=
6" 'oF, o0, where o = 0, *0,, & = 0; *0;. This is precisely the compatibility condi-
tion we require to construct a fiber-preserving homotopy equivalence

F: Zl #szasl__) Ei # Ej Xa‘-sla
F|21#22=F
F(x) = x*".

We may assume F preserves a D?X S! -in which we take connected sum with
S!x D? and do surgery, so that F extends to a homotopy equivalence H : X->X
Finally, replacing the map f X->X by foH ! enables us to assume that a has
the form

(A — Ay

®, -
a:ﬁ Az“—"—> ZAzz !

X —>X.

“~
Now examine k-invariants. From a |y, =id we find

k'€ H3(my; ) =<5 H(1ry; (12)s) < H3(mry; m,) 2k

l 1 l

ki€ H3(H,; ) —=— H(Hy; m) «—— H(Hy; m) ok,
so that B4(k,)=ki. Similarly, u,-:ca |y, =id yields

(27,

k'€ H(my; my) —s H3(my; (1)) =25 H3(my; (M) 1) o2 H3 (33 (10)a) —— H(my; ) €

l l l

k€ H(H,; ;) = > H(H,; w,) < 2 H3(Hy; w,) 3k,

so that (z7'B),k, = k5.
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The a-map B lifts to an a-map 0 :(Zw)> — (Z)? which restricts to 6:

1—x 0
0 (A-x)Q+x"'-¢™h

0 — ZnPZn ( )> ZwDZw -> T, > 0

¢ b-c |

0 —>ZanDZnw > I DIw > T, — 0,

a, b, c, d, a, b, ¢, deZw. From the commutativity of the diagram we find

(1-x)a=a(l1—x) (2a)
1-x)b=b(1—x)(1+x" 1=t (2b)
A-x)1+x1—a(t H)c=¢1-x) (2¢)
A-x)A+x'—a))d=d(1-x)A+x1—t7). (2d)

Recall that we identify H>(7r,; m,) with its image in H*(7; (Z)?), and that the
action of 6 here is given by right multiplication on the cosets H,\ . In particular,

H3(H,; m,)— H*(H,; @ 7)) = ( QY Z) @ ( & z)

H-l\’Tl' H1\1'r

kb ki =¥ (Hl * 1’ 0)’

so Bk, =k gives

H1'6=Hl'l (3a)
H,-b=0. (3b)
Also,
H(Hy; m) — H'(Hy: @) = (@ 2) 0 (@ 2)
H\ H\ 7
k2 ~» (‘Hz * 1, H2 * 1)
k> > (H,-1,H,-1),
s0 (271 B)y ko= k3 gives
H2'Z‘16_H2' Z~1d=H2' 1 (4a)

Hz’ Z_la-‘Hz' Z—]'l;:Hz‘ 1. (4b)
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Equations (2), (3), (4) are the condition that « and B preserve k-invariants,
and we see that the question of whether a map X->X inducing a exists has been
reduced to a question of whether these equations over Z7 have solutions. We
claim that (2), (3), (4) have no solutions.

To see this, consider the projection =7w=G*H—>G—>D;=
(t, x | txt "' =x2,t*=1) onto the dihedral group of order 6, say A : 7 — D;. This
induces a ring homomorphism A :Zw — ZD;5. Notice that (x)=7Z5< D;, Z;\D5=
Z,. Let p,:Zw — Z[H\w] be the (abelian group) homomorphism induced by
7w —> H\w, and p:ZD;— Z[Z,\D;s] the (ring) homomorphism induced by D; —
Z,. Since A(H;)=(x)< D;, there are maps A,:H\w—Z;\D; which induce
(abelian group) homomorphisms A; :Z[H,\w]— Z[Z;\Ds]. These yield a com-
mutative diagram

Im —2— ZD,

ml l”

Z[H\w] > Z[Z;\D;].

Since zx = xz, A(z) e (x) < D;. Therefore, projecting (3a), (4a) to Z[Z;\Ds], we
find

pA(E)=2(Z5 - 1). (5)

Also, since t generates H,(w)=Z, a(t) must also, and thus Aa(t)=1t, tx, or tx~ .
Write A(c)=) n.g, A(C) =} fi,g. Equations (2c) followed by A, and (5), yield

A-x)A+x1-o)(E ng) = (L Agg)1-x), j=0,1,-1 (62)
g+, +A- =2 (6b)
A, + Fiy, + i1 = 0. (6¢)

For the reader’s convenience, we write out (6a) when j=0. Keeping in mind
that y - X n,g) =% ny-,g and ¢ n.g) - y =Y n,,g, and writing

A—-x)A+x 1=t HY=xt—x—t+tx",
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we find

M = M1 =~ Mg+ Ayt = Fly — Tl
N1 =Ny~ N tn=n,— 1y

Ny — Ny — Nyt Ry = A1 — R,
Nyt~ R — Ry + A, = 7 — A

N — N1 — N+ N1 = Ay — 1,

51

My =M~ A1+ 1y = Flge1 —

Hence,

fiy = s = Fiy =~ Py

n, — Ny = =Ry + A,

Combining these with (6b), (6¢) leads to 37, —2 =—3#,, a contradiction.

The cases j==1 are similar. For j=1, (1—-x)1+x'—tx)=x"1—x+t—tx,
(6a) reduces to i, — -1 = A, — A1, A, — Ay = A, — 1, Which combine with (6b),
(6¢) to give 3na,—2=3n,+3n,. When j=—1, (6a) becomes i, —fi, 1= A1 — iy,
n, — n, = A, — i, which, together with (6b), (6¢), give 37, —2 = —3n,. Thus, equa-
tions (2), (3), (4), when projected to ZD;, have no solutions, hence have no
solutions in Zar. This completes the proof of Theorem 1.2. W

There are several aspects of the proof which deserve further comment. First
why pick such complicated examples? Why not just consider the knots K=
K, #K, and K'=-K, #K,, with exterior (£3,#3,) X,S8'? Notice that this is
the same as performing surgery on the curve tx in S'XD3#((£3,#3,) X,Sh).
Why use the more complicated txt™'x™2?

Consider (3, #3,)° X, S*. This deforms to (3 v3I?)x_S?, where 3 is the
2-skeleton of 3;. The orientation information is lost, and the complements are
homotopy equivalent. Indeed, they push back to identical 3-complexes. (Notice
that they cannot be homotopy equivalent (rel 9) since the fibers are not homotopy
equivalent (rel 8). Similar examples, using lens spaces, are in [22].)

This may be seen algebraically as follows. We have the following picture for
(£3,#3,)°, where +3,#3, gives P==*a,+a,. Deforming to 2-skeleta gives a
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homotopy equivalence (3,#2X3,)°— (—3,#23,)° inducing a =id on r;, which
takes a; — a;. Hence, P— 2a,+ P, so we can write it, in the basis {a,, P}, as

G 1)

For the knot exteriors, 7, and B :m, — m, are given by

1-x 0
0 1-x

0 —ZInDPZn InDZn —> mp, —> 0
lé la lB
0 —Zn®Zn — IvDZw > 7, —> 0.
. a b\ - (a b e —
Writing 0 = c d) 6= : d as before, the conditions imposed on 6, @ are
now

(1-x)a=a(l-x)
(1-x)b=b(1-x)
1-x)c=¢c(1-x)
(1-x)d=d(1-x).

. - (1 0 o
In particular, we can choose 6=0= ( ’ 1), and now it is easy to see the

k-invariants correspond, i.e. (3) and (4) are satisfied.
In our examples, however, with the more complicated module structure on r,,

1 0
the map ( 2 1) is not available—the generator P coming from the puncture

cannot be combined so freely with the generator a coming from the separating
2-sphere in 3; # 3,. Notice that, of conditions (2), (3), (4), we only used (2¢), (3a),
(4a). We can still pick a=da=1, b=b=0, d=d = 1, satisfying (2a), (2b), (2d),
(3), (4b). But we cannot simultaneously satisfy (2c) and (4a). We cannot choose
¢ €Z. It must involve t, and thus (4a) will not hold. It seems clear that in trying to
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satisfy these equations one should only look inside ZG < Zr. Possibly one could
show directly that there are no solutions here. It seems miraculous, however, that
even in ZD; there are no solutions. We regard this as clear evidence of a guiding
moral force behind our examples.

We earlier mentioned the difference between homotopy equivalences and
those rel boundary. Consider, for example, the square knot versus the granny
knot. Spinning these two knots yields the same knot [12]. If we 7-twist-spin them,
we obtain fibered knots, with fibers (+3(2, 3, 7) #3(2, 3, 7))°. The exteriors are
homotopy equivalent, but not rel boundary. Using these in our construction
essentially fixes the boundary, so the resulting knots are no longer homotopy
equivalent.

Finally, we point out two ways in which these examples can be generalized.
First, notice that S'x D3 #Y is the connected sum of the trivial knot exterior with
Y. If we replace S'x D? by the exterior of some more interesting knot K, and
again perform surgery on txt 'x 2, we obtain a knot in S* with group
711K %z, G *3., H, and one still expects Theorem 1.2 to be true. Secondly, there is
nothing sacred about txt 'x 2, other than the exponent sum of x is +1. For
instance, we could replace this by tx"t 'x ™}, replacing G by the Baumslag-
Solitar group (t, x | tx"t ™' = x"**), and one still expects Theorem 1.2 to hold, with
computations in ZD,, ., instead of ZD;.

§8. Generalizations

This section generalizes Theorem 1.2 from two knots to arbitrarily many:

THEOREM 8.1. There are arbitrarily many knots in S* with isomorphic
and 1, but with distinct k-invariants.

Proof (sketch). We start with n fibered knots K, with fiber 3,. As usual, we
assume 3; are aspherical and admit no orientation reversing homotopy equival-
ences. To avoid certain technical difficulties involving interchanging factors, we
further assume that all 7,3, are distinct.

Given an (n—1)-tuple I=(gy,...,€,-1), &=%x1, form K;=
e K #: - #e,_1K,_1#K,. Surgery on K; yields Yj, fibered over S' with fiber=

" . 3. Construct X; by performing surgery on txt x2 in S'xD3#Y,. As
before, X; is the exterior of a knot K; in S*. We claim these 2"! knots have
distinct k-invariants.

Write 7= mX; = G*, Hy*, H, % - - - %, H,

H; =A;X1Z, A =m 3
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As before, we compute m,=mX;=EZn/1-x)""'®Zw/(1-x)A+x"1=tD).

Further, Cy(X)=®/-,ZH(a), C3(X))=B}Z}Zn(a)@Zw(P), and Ca(X;)—
C5(X;) is given by

> Cs(X,). See §4.

1, 0
1] 0
—€1° " T En-1 l 1+x71-¢7!

The exact sequence

Ca(Xy)

a

.1—-x 0
0 -+ 0a-naFx =t
00— Zn)" > Za)* —> m, —> 0

yields

H3(77'1§ """2)%'%"91 H3(I'Ii; ™) — éH4(PIi; Z7)")= é ( D Z)n

i=1 H\m
k1—>((k1)i)=((H1' 1,09-- "O)a(O:HZ' 190a'~°70)’
ey (0, L] 0’ Hn—l ) 1’ 0):- (—'SlHl : 17 st sy _En—lHn—l ) 1’ Hn ) 1))°

Now suppose we have distinct (n — 1)-tuples I, J. We can assume g]=1=—¢7.
Given an isomorphism a and an a-map 3, we can arrange, as in §6, that a |y =id,
a(A)=2zAz7", zx=xz, i=2,...,n Lifting B to maps 6,0:Zm)" = Z=)",
0 = (a;), 6= (a;), we find

(1-x)a; = d;(1—x) 1=ij=n-1

(1-x)ai, = a@,(1-x)(1+x71=t7"

(1—x>(1+x‘1-a(r1))a,,,-=am-(1-x)} 1=i=n-1

A-x)A+x'—at WVa, =a,Q1—x)Q+x"1—¢?).

Assuming B,(k;) = a*(k;), we find, as in §7, that (z;'B),(k;); = (k;);, 2<i=<n,
and B,(k;); = (k;),- This yields equations over Zm. As before, we apply the
projection A : w — D; to give equations over ZD;. Since xz; = z;x, we can ignore
the z;. The relevant equations which must be satisfied if the k-invariants are to be
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preserved are:
Z3A (@) =273 and —Z3A(a1,)+Z3A(Gyq) =Zs,

or Z3A(d,,)=2Z,, the analogue of (5) of §7. But this equation, together with

1-x)1+x—a())A(a,)=A(a,)(1—x), are (6) of §7, and lead to the same
contradiction. This completes the proof. W

We mention here two obvious questions raised by these results. First, are
there infinitely many knots in S* distinguished by their k-invariants? Secondly,
does the algebraic 3-type of a knot exterior determine its homotopy type, or are
still higher invariants necessary (Question 1 of [17])?

(Added in proof.) Theorem 8.1 has been proven by the second author in his
1984 Columbia Univ. Ph.D. Thesis — using 2-twist spun 2-bridge knots K, ,, with
fiber L(p, q). The surgery construction in §1 yields knots K p.q With isomorphic 7,
and m,. If L(p,q)#L(p,q’), then IZ’M and I%p,q, have distinct k-invariants.
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