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Une caractérisation des formes exactes de degré 1 sur les espaces
projectifs

Jacques Gasqui et Hubert Goldschmdot

Une forme de degré 1 sur une variété riemannienne compacte est à énergie
nulle si son intégrale le long de toute géodésique fermée est nulle. Une question
naturelle qui se pose alors est de savoir si les formes exactes de degré 1 sont les

seules à posséder cette propriété. Elle est particulièrement intéressante pour un
espace symétrique compact de rang 1, car les géodésiques de sa métrique
canonique sont toutes fermées et de même longueur. Si l&apos;on exclut les sphères

pour lesquelles les formes &quot;impaires&quot; fournissent facilement des exemples de
formes de degré 1, à énergie nulle et non exactes, la première contribution à cette
question a été obtenue par R. Michel dans [4], où il donne une réponse positive
pour les espaces projectifs réels. Nous nous proposons ici de régler le cas des

espaces projectifs restants, en prouvant le

THEOREME. Sur un espace projectif complexe ou quaternionien de dimension

**2, ou sur le plan projectif des octaves de Cayley, les formes de degré 1, à énergie

nulle, sont exactes.

Comme les géodésiques de ces espaces sont les droites projectives réelles,
linéairement plongées, notre résultat est en fait de nature topologique.

La preuve de ce théorème se réduit facilement à l&apos;étude du cas complexe et,
via le résultat de Michel cité plus haut, elle revient à démontrer l&apos;exactitude d&apos;un

complexe d&apos;opérateurs différentiels homogènes sur l&apos;espace symétrique Pm(C)
U(m + 1)/17(1) x C7(m). Ceci est mené à bien en utilisant la théorie des

représentations du groupe unitaire, d&apos;une manière tout à fait semblable à ce que
nous avions fait dans [3] pour la conjecture infinitésimale de Blaschke sur Pm(C).

1. Soit X un espace projectif dont on note T le fibre tangent et T* le fibre

cotangent. On désigne par AkT* la puissance extérieure fc-ième de T*. Si JE est

un fibre vectoriel sur X, on note E le faisceau des sections de E, et C°°(E) l&apos;espace

des sections globales de E sur X. On munit X de sa métrique canonique g.

Dans ce paragraphe et le suivant, nous supposons que X est l&apos;espace projectif
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complexe Pm(C), avec m ^2. On désigne par J:T—&gt;T la structure presque-
complexe canonique de X, et si £eT, on convient que C£ IR£©IRJ£. La
métrique canonique g est dans ce cas la métrique kâhlerienne de Fubini-Study de
Pm(C).

Soit E le sous-fibré de A2T* formé des éléments a)GA2T* dont les restrictions

aux sous-variétés totalement géodésiques, isométriques au plan projectif réel
P2(IR) muni de sa métrique à courbure constante 1, sont nulles. Puisque ces
sous-variétés sont de la forme Expx (R^SIRi]), avec xeXet ÈTjeTx ~{0}, tels

que C£ et Cr\ soient orthogonaux (cf. [2, p. 79]), un élément co de A2T*
appartient à E si et seulement si

pour tous Ç,r)GT tels que C£ et C£ soient orthogonaux.

LEMME 1. Soit a une forme de degré 1 sur X. Les conditions suivantes sont
équivalentes :

(i) a est à énergie nulle;
(ii) da est une section de E.

Démonstration. Soient x e X et £, tj € Tx -{0}; supposons que C£ et Ctj soient
orthogonaux. Alors Y Expx ((R^SIRt)) est une sous-variété totalement
géodésique de X, isométrique à P2(IR) muni de sa métrique à courbure constante
1. Si i : Y—&gt; X est l&apos;inclusion naturelle, la condition (i) implique que la forme i*a
sur Y est à énergie nulle; le résultat de Michel (cf. [4, Théorème 1.7]) pour P2(IR)

nous dit que î*a est exacte, et ainsi que (da)(£, t}) 0. Inversement, si (ii) est

vraie, alors di*a =0 et i*a est exacte; donc l&apos;intégrale de a sur toute géodésique
de Y est nulle, ce qui entraine (i).

Soit

J:T*-&gt;AV/E (1)

l&apos;opérateur différentiel linéaire d&apos;ordre 1 qui envoie une forme a de degré 1, sur
|3da, où (3 est la projection canonique de A2T* sur A2T*/E. Si 1 désigne le fibre
trivial réel de rang un sur X, le lemme 1 nous dit que le théorème est vrai pour
X pm(C) si et seulement si le complexe

C°(A2T*IE)

est exact.
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Nous supposons connus les résultats des paragraphes 2 et 3 de [3] (qui sont en
fait indépendants du §1 de ce papier); nous nous servirons des notations et de la
terminologie qui y sont introduites.

Le groupe unitaire G U(m 4-1) agit sur Cm+1 et transitivement sur (X, g) par
des isométries. Le groupe d&apos;isotropie de l&apos;image canonique x0 dans (Pm(C) du
point (1,0,..., 0) de Cm+1 est égal au sous-groupe K 1/(1) x U(m) de G. On
identifie X avec G/K; rappelons que (X, g) est un espace hermitien symétrique et

que G agit sur X par des transformations holomorphes. On peut identifier TXo

avec Cm de telle sorte que la structure presque- complexe de TXo soit celle de Cm,

que l&apos;action de K sur TXo soit donnée par

(eie 0

\0 A

pour SeU, AeU(m) et z€Cm, et que la métrique kâhlérienne g en x0 soit
déterminée par le produit scalaire hermitien standard de Cm (cf. [2]).

Notons Fc le complexifié d&apos;un fibre vectoriel réel F sur X. On écrit

F! 1C, F2=7?, F3 (A2T*/E)C,

et on note d:F2-*F3 l&apos;opérateur différentiel induit par (1). Ces fibres sur G/K,
munis des produits scalaires hermitiens provenant de la métrique g, sont
homogènes et unitaires, et

est un complexe d&apos;opérateurs différentiels linéaires homogènes sur G/K.
L&apos;opérateur d:¥1-*¥2 étant à symbole injectif, la proposition 2.3 de [3] nous
donne maintenant la

PROPOSITION 1. Le théorème est vrai pour X Pm(C), avec m 5*2, si et

seulement si le complexe

est exact, pour tout yeô, avec G U(m +1).

Soit £ (£o» £i,..., Cm) te système de coordonnées standard de Cm+1. L&apos;espace
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si des fonctions sur Cm+1, à valeurs complexes, et dont les restrictions à la sphère
unité S2m+1 sont invariantes par U(l), est un U(m + l)-module; si fe M, on note /
la fonction sur Pm(C), obtenue par restriction à S2m+1, puis passage au quotient.
Désignons par Xq le sous-LT(m + l)-module des polynômes complexes
bihomogènes sur Cm+1, de degré q en £ et de degré q en £ et qui sont
harmoniques. Tous ces polynômes sont invariants par 1/(1); l&apos;espace Éq des

fonctions sur Pm(C), déduit de %!q, est isomorphe à $?q en tant que £/(m + l)-
modules. Rappelons que Éq est l&apos;espace propre du laplacien A de (X, g), associé à

la valeur propre 4q(q + m), pour q^O, et que Éq est un U(m + l)-module
irréductible de poids dominant qÀ0-qÀm (cf. [1, Propositions C.III.l et C.I.8]).
De plus, (£w£0)q est un élément de &lt;SCq de poids qko-qkm et dftq est stable par la
conjugaison de si qui envoie / sur / (cf. [3, §4]).

On pose f—Cmïo et f Cm-iCo- Rappelons que le sous-l/(m + l)-module Wq
de %!q®A2%Cl9 engendré par /q®/A/&apos;, est irréductible et de poids dominant

Son image Wq par la conjugaison de 9€ti&lt;8)A2%1 est un U(mH-l)-module
irréductible de poids dominant

(cf. [3, §4]).
Si TCpq) désigne le fibre des formes de type (p, q) sur X, on a la décomposition

G-invariante

avec Ti0&apos;1) Til&apos;0\

Au §2, nous démontrerons les lemmes suivants:

LEMME 2. Pour q ^ 1, on a

LEMME 3. Pour q^O, on a

Puisque %eq ffîQ est un U(m + l)-module irréductible et que f1 € 3ifq, il résulte
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du lemme 2 que dÉQ (resp. d$tq) est un sous-l/(m + l)-module irréductible de
C^0_qXm(I&lt;10)) (resp. C^JT»-»)), pour q&gt;l.

Les applications

déterminées par

V&apos;(/o® A a/2) /0(/i 3/2-/2 à/0,

avec fo,f\,f2^si, sont des morphismes de f/(m + l)-modules; nous avons aussi

pour we.9#®A2.s£ Avec le lemme 3, pour qs*l, on voit que ri&apos;(W,_i) (resp.
_1) t7&apos;(W&lt;,_1)) est un sous- U(m + l)-module irréductible de

CTq+1,x0-xm_1-&lt;,xm(T(1-°&gt;) (resp. C^.^
Les K-modules FljXo, T^&apos;o) et T1^1) sont irréductibles et leurs poids dominants

sont égaux à 0, A0-Àm et — Ào+Àl5 respectivement. A l&apos;aide de la proposition 3.1
de [3] et du lemme de Schur, on obtient les multiplicités des modules C^(F) de la
proposition suivante. On déduit alors la description explicite des sous-modules
C™(F) de cette proposition.

PROPOSITION 2. Si F est Vun des fibres homogènes 1C, T*10* ou T(ol), pour
7 g G, le sous-G-module C^(F) de C°°(F) est ou bien nul ou bien irréductible. Les
sous-G-modules irréductibles de C°°(F) sont donnés par le tableau:

yeÔ C?(1C) C-CT&apos;1-0&apos;)

4 0 ft0 O O

(q + l)A0-Am_1-qAm q^l 0 nïW^!) 0

0 0 tî&quot;(VS

Le noyau Ker d de d : CTiFJ -&gt; C°°(F2) est égal à l&apos;espace S^o des fonctions
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constantes sur X, et on a donc

Ker d C?(1 c), avec 7 0.

A partir de ceci, de la proposition 2.3 de [3] et des propositions 2 et 3, on voit
que le théorème est vrai pour X Pm(C) si et seulement si

pour 7 qA0-qAm, (q + l)A0-Am_1-qAm et qA0 + A!-(q +l)Am, avec q 2*1. Cette
dernière condition est équivalente à

pour tout q ^ 1. Les lemmes 2 et 3 nous donnent ces deux relations, et ainsi nous
avons donc démontré le théorème pour Pm(C).

2. Nous démontrons maintenant les lemmes 2 et 3. Soit p:Cm+1—{0}-»
Pm(C) la projection naturelle et U l&apos;ouvert de P&gt;m(C) égal à

On note z (zl5..., zm) la coordonnée holomorphe sur 17, donnée par les

coordonnées homogènes; on a donc

h CJCo,

pour / 1,..., m. On pose z} x, + V^T y,, avec x, et y, à valeurs réelles. On
écrit

Un potential kâhlérien de g sur 17 est |log(l + |z|2), ce qui fait que

On a

2)^l/ 6, zlZj
2 bzxbz, 2\l + |z|2 (l + |z|2)2

\

T
1 + |2|2&apos;

; l + |z|2

sur U.
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Sur u et u sont deux fonctions sur 17, à valeurs complexes, on écrit

u v + ST(Z),

lorsque u — v s&apos;annule sur la courbe complexe Z de 17, d&apos;équations zx • • •

zm_! 0. On pose

Puisque

sur Z, les droites complexes C£ et C£ sont orthogonales de long de Z. On vérifie
facilement que

Ceci prouve que d dfq ^ 0, pour q ^ 1, d&apos;où le lemme 2.

Par ailleurs, si i£ /, les droites C(d/dXj) et C(ô/dXj) sont orthogonales le long de

Z. Il est alors facile de voir que

pour q^O, d&apos;où le lemme 3.

3. Supposons que X soit l&apos;espace projectif quaternionien Pm(H), avec m ^2,
ou le plan projectif des octaves de Cayley P2(Ca). Soient xeX et Ç9r\ des

vecteurs unitaires et orthogonaux de Tx. Dans le premier cas, considérons le

sous-espace $ - K de Tx de dimension 4 défini dans [2, p. 74]. Dans le second,
notons | • IK le sous-espace de Tx engendré par £ et l&apos;espace propre de dimension
7 correspondant à la valeur propre 4 de l&apos;endomorphisme auto-adjoint

de Tx, où R est la courbure de (X, g) section de A2T*&lt;8&gt;T*&lt;8)T, telle qu&apos;elle est

définie dans [3, §1]. Si 17 est orthogonal à f-K, alors Y Expx (R£®Rt|) est
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dans les deux cas une sous-variété totalement géodésique de X, isométrique à

P2(IR) muni de sa métrique à courbure constante 1; notons i:Y-&gt;X l&apos;inclusion

naturelle. Si r\ e£ * IK, soient £ un vecteur unitaire de Tx orthogonal à | • IK, et
£i&gt; £2 deux vecteurs orthogonaux appartenant à £ • IK. Alors

Z= Expx (!R£®IR&lt;nœiR£iœ[R£2)

est une sous-variété totalement géodésique de X, isométrique à P2(C) équipé de

sa métrique canonique; notons / : Z -* X l&apos;inclusion naturelle (cf. [2, Chapitre 3]).
Soit a une forme de degré 1 sur X à énergie nulle. Si r\ est orthogonal à £ • K,

alors i*a est à énergie nulle sur Y, et d&apos;après le résultat de Michel [4] pour P2(R),

on a (da)(4 t}) 0. Si tj € £ • K, alors j*a est à énergie nulle sur Z, et d&apos;après le
théorème pour P2(C), on voit que (da)(£, t}) 0. Ainsi a est fermée; puisque X
est simplement connexe, a est donc exacte, et nous avons démontré le théorème

pour X.
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