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Une caractérisation des formes exactes de degré 1 sur les espaces
projectifs

JacQuEes Gasqul et HUBERT (GOLDSCHMIDT

Une forme de degré 1 sur une variété riemannienne compacte est a énergie
nulle si son intégrale le long de toute géodésique fermée est nulle. Une question
naturelle qui se pose alors est de savoir si les formes exactes de degré 1 sont les
seules a posséder cette propriété. Elle est particulierement intéressante pour un
espace symétrique compact de rang 1, car les géodésiques de sa métrique
canonique sont toutes fermées et de mé€me longueur. Si 'on exclut les spheres
pour lesquelles les formes ‘‘impaires” fournissent facilement des exemples de
formes de degré 1, a énergie nulle et non exactes, la premiére contribution a cette
question a été obtenue par R. Michel dans [4], ou il donne une réponse positive
pour les espaces projectifs réels. Nous nous proposons ici de régler le cas des
espaces projectifs restants, en prouvant le

THEOREME. Sur un espace projectif complexe ou quaternionien de dimension
=2, ou sur le plan projectif des octaves de Cayley, les formes de degré 1, a énergie
nulle, sont exactes.

Comme les géodésiques de ces espaces sont les droites projectives réelles,
linéairement plongées, notre résultat est en fait de nature topologique.

La preuve de ce théoréme se réduit facilement a I’étude du cas complexe et,
via le résultat de Michel cité plus haut, elle revient a démontrer I’exactitude d’un
complexe d’opérateurs différentiels homogenes sur I’espace symétrique P™(C) =
Um+1)/JUA)XU(m). Ceci est mené a bien en utilisant la théorie des
représentations du groupe unitaire, d’'une maniére tout a fait semblable a ce que
nous avions fait dans [3] pour la conjecture infinitésimale de Blaschke sur P™(C).

1. Soit X un espace projectif dont on note T le fibré tangent et T* le fibré
cotangent. On désigne par A*T* la puissance extérieure k-iéme de T*. Si E est
un fibré vectoriel sur X, on note E le faisceau des sections de E, et C*(E) I’espace
des sections globales de E sur X. On munit X de sa métrique canonique g.

Dans ce paragraphe et le suivant, nous supposons que X est ’espace projectif
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complexe P™(C), avec m=2. On désigne par J: T—T la structure presque-
complexe canonique de X, et si £€T, on convient que C£=REDRIE La
métrique canonique g est dans ce cas la métrique kidhlerienne de Fubini-Study de
P™(C).

Soit E le sous-fibré de A2T* formé des éléments w € A2T* dont les restric-
tions aux sous-variétés totalement géodésiques, isométriques au plan projectif réel
P?(R) muni de sa métrique a courbure constante 1, sont nulles. Puisque ces
sous-variétés sont de la forme Exp, (REPR7), avec xe X et § ne T, —{0}, tels
que C¢ et Crn soient orthogonaux (cf. [2, p. 79]), un élément w de A2T*
appartient a E si et seulement si

(& n)=0,
pour tous & neT tels que C¢ et C¢ soient orthogonaux.

LEMME 1. Soit a une forme de degré 1 sur X. Les conditions suivantes sont
équivalentes:
(i) a est a énergie nulle;
(ii) da est une section de E.

Démonstration. Soient x € X et & m € T, —{0}; supposons que C¢ et Cn soient
orthogonaux. Alors Y =Exp, REDBR~N) est une sous-variété totalement
géodésique de X, isométrique & P*(R) muni de sa métrique a courbure constante
1. Si i: Y — X est I'inclusion naturelle, la condition (i) implique que la forme i*«
sur Y est & énergie nulle; le résultat de Michel (cf. [4, Théoréme 1.7]) pour P*(R)
nous dit que i*a est exacte, et ainsi que (da)(§ m)=0. Inversement, si (ii) est
vraie, alors di*a =0 et i*a est exacte; donc I’intégrale de a sur toute géodésique
de Y est nulle, ce qui entraine (i).

Soit

d:T* — A’T*/E (1)
Popérateur différentiel linéaire d’ordre 1 qui envoie une forme o de degré 1, sur
Bda, ou B est la projection canonique de A2T* sur A*>T*/E. Si 1 désigne le fibré

trivial réel de rang un sur X, le lemme 1 nous dit que le théoréme est vrai pour
X =P™(C) si et seulement si le complexe

() S (™S (A>T E)

est exact.
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Nous supposons connus les résultats des paragraphes 2 et 3 de [3] (qui sont en
fait indépendants du §1 de ce papier); nous nous servirons des notations et de la
terminologie qui y sont introduites.

Le groupe unitaire G = U(m + 1) agit sur C™*? et transitivement sur (X, g) par
des isométries. Le groupe d’isotropie de I'image canonique x, dans P™(C) du
point (1,0,...,0) de C™*! est égal au sous-groupe K =U(1)Xx U(m) de G. On
identifie X avec G/K; rappelons que (X, g) est un espace hermitien symétrique et
que G agit sur X par des transformations holomorphes. On peut identifier T,_
avec C™ de telle sorte que la structure presque- complexe de T, soit celle de C™,
que l'action de K sur T, soit donnée par

e’ 0) _ _—if
(0 A z=e "YA(z2),

pour 0eR, AeU(m) et zeC™, et que la métrique kihlérienne g en x, soit
déterminée par le produit scalaire hermitien standard de C™ (cf. [2]).
Notons F¢ le complexifié d’un fibré vectoriel réel F sur X. On écrit
Fi=1¢, F,= T?:‘, F3=(A2T*/E)c,
et on note d:F, — F, 'opérateur différentiel induit par (1). Ces fibrés sur G/K,

munis des produits scalaires hermitiens provenant de la métrique g, sont
homogenes et unitaires, et

C(F) > C(Fy S ()

est un complexe d’opérateurs différentiels linéaires homogenes sur G/K.
L’opérateur d :F; — F, étant a symbole injectif, la proposition 2.3 de [3] nous
donne maintenant la

PROPOSITION 1. Le théoreme est vrai pour X =P™(C), avec m=2, si et
seulement si le complexe

d i
CJ(F,) = C(F,) — C(F5)

est exact, pour tout y€ G, avec G=U(m+1).

Soit ¢ = (o, &1 - - - » &m) le systéme de coordonnées standard de C™**. L’espace
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o des fonctions sur C™*!, a valeurs complexes, et dont les restrictions a la sphere
unité S>™*! sont invariantes par U(1), est un U(m + 1)-module; si f € &, on note f
la fonction sur P™(C), obtenue par restriction a $*™*!, puis passage au quotient.
Désignons par #, le sous-U(m+1)-module des polyndmes complexes
bihomogeénes sur C™*!, de degré q en ¢ et de degré q en et qui sont
harmoniques. Tous ces polyndmes sont invariants par U(1); Pespace 3?,1 des
fonctions sur P™(C), déduit de ¥, est isomorphe a ¥, en tant que U(m +1)-
modules. Rappelons que 92; est I’espace propre du laplacien A de (X, g), associé a
la valeur propre 4q(q+m), pour q=0, et que 92’,, est un U(m + 1)-module
irréductible de poids dominant gA,—qA,, (cf. [1, Propositions C.III.1 et C.1.8]).
De plus, (£,.Zo)? est un élément de #H, de poids gro—gA,, et ¥, est stable par la
conjugaison de & qui envoie f sur f (cf. [3, §4]).

On pose f=&nlo et f' = m_1Lo. Rappelons que le sous-U(m +1)-module W,
de ¥,®A*¥,, engendré par f*QfAf, est irréductible et de poids dominant

(q + Z)AO_ ’\m~1 —(q + 1)Am°

Son image W, par la conjugaison de ¥#,®A%%,; est un U(m + 1)-module
irréductible de poids dominant

(@+ DA+ A —(q+2)A,,
(cf. [3, §4)).

Si T® @ désigne le fibré des formes de type (p, q) sur X, on a la décomposition
G-invariante

T =T1Og TOD,

avec TV =109,

Au §2, nous démontrerons les lemmes suivants:
LEMME 2. Pour q=1, on a

dafi+o.

LEMME 3. Pour q=0, on a

d(f*(Fof —f o) #0.

Puisque ¥, = 9?’(, est un U(m + 1)-module irréductible et que f? € ¥,,, il résulte



50 JACQUES GASQUI ET HUBERT GOLDSCHMIDT

du lemme 2 que 9%, (resp. 8 #,) est un sous-U(m + 1)-module irréductible de
Ciroear (TH?) (resp. Co_or (TOV)), pour q=1.
Les applications

n :ARQA A — C(T?),
n": AR A2A — C(TOV),

déterminées par

N @ finfr)= fo(f1 afz"fz 3f1),
N"(fo® finfo) =f0(fl gfz"‘fz 5f1),

avec fo, f1, f» € A, sont des morphismes de U(m + 1)-modules; nous avons aussi

n"(W)=n'(w)

pour we A ®A%H4. Avec le lemme 3, pour q=1, on voit que n'(W,_,) (resp.

n"(Wq_l) =n'(W,_4)) est un sous-U(m + 1)-module irréductible de

Ca-i-l)ko—)\m_l—q:\,"(T(l,O)) (resp. Corg+r,—(a+ 1)M(T(°’1))).

Les K-modules F,, , To? et TP sont irréductibles et leurs poids dominants
sont égaux a 0, Ag—A,, et —Ay+ A4, respectivement. A I'aide de la proposition 3.1
de [3] et du lemme de Schur, on obtient les multiplicités des modules C(F) de la
proposition suivante. On déduit alors la description explicite des sous-modules
C3(F) de cette proposition.

PROPOSITION 2. Si F est l’un des fibrés homogenes 1c, T ou TP, pour
v e G, le sous-G-module C3(F) de C™(F) est ou bien nul ou bien irréductible. Les
sous-G-modules irréductibles de C*(F) sont donnés par le tableau:

A

ve G C$(1C) C:(T(I.O)) C:’(’I”(O,l))
_ " q=0 3?0 0 0
Aro—aA,, q=1 %, %k, 3%,
(@+DAg=An_1—qr, a=1 0 MWy 0
Ao tA —(@+ 1A, =1 0 0 n"(Wo-1)

Le noyau Kerd de d:C>(F,) — C(F,) est égal i I'espace ¥, des fonctions
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constantes sur X, et on a donc
Kerd=C7(1c), avec y=0.

A partir de ceci, de la proposition 2.3 de [3] et des propositions 2 et 3, on voit
que le théoréme est vrai pour X =P™(C) si et seulement si

dCz(F,) #0,

pour ¥ = qAo—qAm (@ +DAg—A_1—qA,, €t QAo+ A —(q+ 1A, avec g =1. Cette
derniére condition est équivalente a

d" ag?q#o’ &n'(wq—l) '_Iéos

pour tout g=1. Les lemmes 2 et 3 nous donnent ces deux relations, et ainsi nous
avons donc démontré le théoréme pour P™(C).

2. Nous démontrons maintenant les lemmes 2 et 3. Soit p:C™*'—{0}—
P™(C) la projection naturelle et U 'ouvert de P™(C) égal a

pC**xC™) =p{(L, .- -, Ln) €C™ [ Lo # OD).

On note z=(zy,...,2,) la coordonnée holomorphe sur U, donnée par les
coordonnées homogénes; on a donc

Zj = ﬁo»

pour j=1,...,m. On pose z;=x;+v—1y, avec x; et y; a valeurs réelles. On
écrit

|z} =1z +- - - + |z )"

Un potential kdhlérien de g sur U est $log (1+]z[»), ce qui fait que

__lazlog(1+|z|2)__1_( &  Ziz )
& 73 dz; 9Z; 2\1+|z)> (1+|zP)*/)
On a
Z L Zpe
f= f :

1+|zP T 14|z

sur U,
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Sur u et v sont deux fonctions sur U, a valeurs complexes, on écrit
u=v+9(2),

lorsque u—v s’annule sur la courbe complexe Z de U, d’équations z,=-:-=
Zm—1=0. On pose

0
E=VIF|P—+——, =i P————.
axm axm~1 aym aYm—l

Puisque

o

sur Z, les droites complexes C¢ et C¢ sont orthogonales de long de Z. On vérifie
facilement que

2q*f°
1+|z?

%(d FyEm=-—3L 1 gz).

Ceci prouve que d 3f1#0, pour q=1, d’ou le lemme 2.
Par ailleurs, si i # j, les droites C(d/dx;) et C(8/dx;) sont orthogonales le long de
Z. 11 est alors facile de voir que

9 )= (g +2)f
1 ax,/  (A+|zP?

(e of ~ F af"))(axi (22~ 1)+T(2),

pour q=0, d’ou le lemme 3.

3. Supposons que X soit I’espace projectif quaternionien P™(H), avec m =2,
ou le plan projectif des octaves de Cayley P*(Cao). Soient xe X et & m des
vecteurs unitaires et orthogonaux de T,. Dans le premier cas, considérons le
sous-espace & - K de T, de dimension 4 défini dans [2, p. 74]. Dans le second,
notons ¢ - K le sous-espace de T, engendré par £ et I'espace propre de dimension
7 correspondant a la valeur propre 4 de ’endomorphisme auto-adjoint

(>R €)¢

de T,, oit R est la courbure de (X, g) section de A2T*@T*®T, telle qu’elle est
définie dans [3,§1]. Si m est orthogonal a ¢:K, alors Y =Exp, (RE®RM) est
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dans les deux cas une sous-vari€té totalement géodésique de X, isométrique a
P2(R) muni de sa métrique & courbure constante 1; notons i: Y — X l’inclusion
naturelle. Si n € § - K, soient { un vecteur unitaire de Ty orthogonal a £ - K, et
{4, {, deux vecteurs orthogonaux appartenant a { - K. Alors

Z = Exp, REDRN BRE BRE,)

est une sous-variété totalement géodésique de X, isométrique a P*(C) équipé de
sa métrique canonique; notons j: Z — X linclusion naturelle (cf. [2, Chapitre 3]).

Soit a une forme de degré 1 sur X a énergie nulle. Si n est orthogonal a ¢ - K,
alors i*a est & énergie nulle sur Y, et d’aprés le résultat de Michel [4] pour P%(R),
on a (da)(§,,m)=0. Si neé-K, alors j*a est & énergie nulle sur Z, et d’apres le
théoréme pour P*(C), on voit que (da)(£, n)=0. Ainsi a est fermée; puisque X
est simplement connexe, a est donc exacte, et nous avons démontré le théoréme
pour X.
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