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A curious remark concerning the geometric transfer map

Joun N. MATHER

Let 9, denote the identity component of the group of C" compactly sup-
ported diffeomorphisms of R". In two papers [10], [11], I proved that 9D}, is
perfect, i.e. equal to its own commutator subgroup, provided r# n+ 1. However,
the case r=n+1 is still open; it is not known whether @2*! is perfect.

In this paper, I will give an elementary example which shows where the proof
breaks down when r = n+ 1. The example is given in §2. A more general form of
this example is given in §5. One has an assertion which is true when r#n+1 and
false when r=n+1. In the version given in §2, the assertion is that a certain
geometric transfer map is surjective. The proof in the case r# n+1 is analogous
to part of the proof which I gave in [10] and [11]. The fact that this result is false
for r=n+1 shows why my method cannot work in that case. However, the
examples given in §2 and §5 of this paper are too special to suggest a proof that
@7*1 is not perfect.

In §1, I define the group &, and some related groups in detail. In §3, I briefly
outline how M. Herman and Thurston proved that &}, is perfect, using K.A.M.
theory. In §4, I discuss the connection of the result of this note with the method of
[10] and [11]. In §5, I give an example of a linear mapping between spaces of C”
vector fields which is surjective when r# n+1 and is not surjective when r=n+1.
This example generalizes the example in §2. The proof of non-surjectivity in the
case r=n+1 is much more difficult than it was for the geometric transfer map
considered in §2. It is given in §6.

In the appendix, I give one of Thurston’s proofs of his result leading to the
perfectness of ;. I believe this proof has not previously been published.

I would like to thank Jurgen Moser for encouraging me to write up these
results.

§1. Definitions

If r is a positive integer of o, a mapping will be said to be C" if it is r times
continuously differentiable. If r is a real number >1, and not an integer, a
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A curious remark concerning the geometric transfer map 87

mapping will be said to be C" if it is C"! (where [r] denotes the greatest integer
<r), and its [r]™ derivative satisfies a Holder condition of order r—[r]. A C’
diffeomorphism is a C" mapping with a C" inverse. The support of a diffeomorph-
ism ¢ of a manifold M onto itself is {x € M: ¢(x) # x}. The support of ¢ will be
denoted supp ¢.

If K is a subset of a manifold M, we let @ (M) denote the group of all C’
diffeomorphisms ¢ of M onto itself such that supp ¢ = K. We let @"(M) denote
the group of all C" diffeomorphisms of M with compact support. We have

D" (M) = U Di(M) = lim D(M),
K K

where K runs over all compact subsets of M. We provide 2% (M) with the C*
topology and @"(M) with the direct limit topology. We let @"(M)" denote the
component of the identity in 2"(M).

It is not difficult to show that an element of & r(M) is in 2"(M)° if and only if
it is C" isotopic to the identity by an isotopy with compact support.

From Smale’s h-cobordism theorem [18], [20] and Cerf’s theorem ‘‘pseudo-
isotopy implies isotopy” [2], it follows that 2" (R")/2"(R")° is isomorphic to the
Kervaire-Milnor group I,.; of homotopy (n+1)-spheres [8], when n=5. For
example [8], 2" (R®)/D"(R%)°~Z/287Z.

The group @7, mentioned in the introduction, is defined to be 9" R™)°.

§2. The geometric transfer map

Let T"={(z4,...,2,)€C":|z4|="+-=]|z,|=1}. Let A>1 be an integer. Let
I':T" — T" be the covering mapping defined by

r'zy,...,z,)=0z%2,...,z9.

Let 0" denote the R vector space of C" vector fields on T,. The geometric transfer
map (associated to I')

Tr:0 — 6"
is defined by

Tr(X)x)= ), T[x(XQ©)),

yel''(x)
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for Xe0', xeT". Note that I'y(X(y)) is well defined because I' is a local
diffeomorphism. The method of [10] and [11] for proving that &}, is perfect when
r=n+1 suggests the following:

Question. Is Tr—id surjective?

How the method of [10] and [11] suggests this question will be explained in
§4. The answer to it is yes if r#n+1 and no if r=n+1. This shows clearly that
the method of [10] and [11] cannot succeed if r=n+1, although it gives no
information on whether the result might still be true. More precise information is
given by the following result:

PROPOSITION 1. If r>n+1, then Tr—id is an isomorphism. If r<n-+1,
then Tr—id is surjective with infinite dimensional kernel. If r=n+1, then Tr—id is
not surjective, but is injective and has dense image.

Proof. Introduce angular coordinates ¢,,..., ¢, on T", defined by the for-
mula z; =exp (2mip;), where expt=e'. Using the trivialization of the tangent
bundle of T" associated to this coordinate system, we may think of a vector field
on T" as a mapping of T" into R". We provide T" with Haar measure. We let 6
denote the set of vector fields on T" whose integral over T" vanishes. We identify
R" with the constant vector fields. Then

0" = 6, PR"

and Tr preserves each summand. It is easily seen that Tr|R" is multiplication by
A" Hence, (Tr—id) |R" is an isomorphism, and the assertions of Proposition 1
are equivalent to the corresponding assertions for 65 in place of 6". Some of the
assertions for 07 are consequences of the following result:

LEMMA. Let T and U be bounded linear mappings of a Banach space E into
itself. Suppose TU =id, |TI|\Ull=1, and T has infinite dimensional kernel. Then
the spectrum of T is the closed ball of radius ||T\|, the mapping T~ A is surjective
with infinite dimensional kernel for |\|<||Tl|, and is not surjective for |\|=||T|.

Proof. For |A|<||T}|, the mapping id— AU is invertible, since ||AUJ|< 1, by the
hypothesis that ||T}|||U||=1. Clearly, (T—A)U®(d—AU) ' =id. This shows that
T~ X is surjective, when |A|<||T}|. It is easily verified that

ker (T—A)=(id- AU}“I(ker T).

Since ker T is infinite dimensional and id— AU is an isomorphism when |A|<||T},
it follows that ker (T —A) is infinite dimensional, when |A|<||T}.
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Obviously, spec T < the closed ball of radius ||T]|. We have just shown that
ker (T—A) #0, when |A|<||T||. Hence, spec T = the closed ball of radius ||T|. It is
easy to see that for any bounded linear operator T of a Banach space into itself, if
A is in the boundary of spec T, then T — X is not surjective. (The idea of the proof
is that if T— A is surjective, then it has non-trivial kernel, since A espec T. But,
then any small perturbation of T— A is surjective with non-trivial kernel, and it
follows that A is in the interior of spec T, contrary to hypothesis.) For the operator
T which we are considering here, we have shown that the boundary of spec T is
the set of A satisfying |A|=||T}|. Hence, T— A is not surjective for such A. O

Proof of Proposition 1 (cont.). Let r be an integer and let X € 6". By the r*
total derivative D"X(x) of X at x, we mean the collection of all partial derivatives
of order r at x, 1.e. the numbers

alalXi '
— (x), i=1,...,n;lal=r,
dp
where «=(ay,...,a,) denotes a multi-index, |a|=a;+- -+, and X=

(X', ..., X"). We set

n al! .
ID"X(x)|I> = z Z !I. l' . ‘aagoi( \ '

i=1|al=r %1

In the case that r is an integer, we provide 6 with the norm

X1, = sup DX (o).

When r is not an integer, we use the norm

D[r]X _ D[r]X
Xl sup ID7X)= DX

xyeT" d(x, y)y !
xF#y

where d(x,y) is the distance between x and y associated to the Riemannian
metric do3+- - - +d¢? on T™. In either case 6j is a Banach space, with respect to
the norm || |-

For a bounded linear operator L of 6j into itself, we will use |IL||, to denote
the operator norm of L, i.e.

L], = Sup. IOl
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Let Tro=Tr| 6;. We have

DI (Tr, X)(x)= Y. AVTIDUIX(y),

yel'(x)
which implies

ITroll, = A",
Let U: 65— 60; be defined by

UX)(y)= AT (X(T(y)),
for Xe6;, ye T". Then Tr, o U=id. We have

DI(UX)(y) = A1 "DI X (I'y),

which implies

10, =A™

It is easily seen that ker Tr, is infinite dimensional.

We have just shown that all hypotheses of the lemma are satisfied, where
E =0, and T =Tr,. From the lemma and our formula for |[Tr,|,, we obtain the
conclusion of Proposition 1 for the case r# n+1 and we obtain that Tr—id is not
surjective in the case r=n+1. Since 0; is dense in 03*' for r>n+1, and
0" = (Tro—id)(05) = (Tr,—id)(65*"), we see that Tro—id has dense image, for the
case r=n+1.

If Xe 63" and x € T™, then D"} (Tr§X)(x) is the average of D"*!X(y), where
y ranges over I'"*(x). Since the integral of X over T" is zero, it follows from the
fundamental theorem of Riemann integration that this average tends to O,
uniformly in x, so that |Tr§(X)|l,.; — 0 as k — . Hence

(id+Tro+- - -+ T —Tro) X) = (d-TY*)(X) > X, as N—ow»

and it follows that Try—id is injective. [J

§3. Related results

In the next section, I will explain how my result about the geometric transfer
map is related to the proof that &, is perfect when r# n+ 1. In this section, I will



A curious remark concerning the geometric transfer map 91

discuss how M. Herman and Thurston proved that @, is perfect, using K.A.M.
theory.
Let G be a connected topological group. One way to prove that G is perfect

would be to find a single element fe G such that f could be written as a product
of commutators

fz[gla hl] Tt [gm’ h’m]’

where [g, h]=ghg 'h™!, and such that for every f near f, we have that the
functional equation

f'=[g1, hil- - - [8m> hnl (1)

has a solution, where g} and h! are elements of the group. For, then f'f ! could be
written as a product of commutators, so every element in a sufficiently small
neighborhood of the identity could be written as a product of commutators. Since
G is a connected group, it is generated by any neighborhood of the identity, so
the solvability of (1) for every f’ in a neighborhood of f implies that G is perfect.

The obvious way to try to solve (1) for every f’ in a neighborhood of f is to
prove an appropriate implicit function theorem. One case in which this can be
done is when G =2*(T")°. Let R,: T" — T" be defined by

R, (2)=(e?™eWyz, .. ., e*™eMmz ),

for a=(ay,...,a,)€eR" and z=(z,,...,2,)€T". We will suppose that a is
Diophantine, i.e. that there exists 8 >0 and N >0 such that

|qo+qro+ - - - +qua,| >8(qol +- - - +la.)™,

for all (qq, ..., q,)€Z™*". It is a consequence of K.A.M. theory that for f € G near
the identity, there exists 8 €R" near a and g€ G near the identity such that

Ryf=gR,g™". 2)

Writing this in the form f=Ra~BR;1gRag"1, we reduce our problem to the
problem of expressing R,_; as a product of commutators. Let v;=
©,....,0,0,—8,0,...,0), where the non-zero term appears in the i™ place.
Then R, s =R,y -+ R, and it is enough to express R,; as a product of
commutators. For this, it is enought to express the rotation of the circle through
o —B; as a product of commutators in the group of orientation preserving
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diffeomorphisms of the circle. But this is easily done: rotations of the circle are in
PSL(2,R), and is easily seen that PSL(2,R) is perfect.

The K.A.M. method of solving (2), for f near the identity, uses an implicit
function theorem. We use “+” for the standard group operation on T", i.e. the group
operation defined by coordinatwise multiplication. For f and g near the identity in
G =2™(T")°, the mappings f—id, g—id: T" — T" are homotopic to the constant
mapping and so can be lifted to mappings f, g: T" — R", which are near zero. Let
us write € for the vector space of C™ mappings of T" into R". The linearized
form of (2) is

B+f=§R.+a—§. (3)

Given fe %, one wishes to solve (3) for B eR" and § € €. This is easily done, by
expanding everything in Fourier series. Here, the fact that a is Diophantine is
crucial. Starting from the solvability of the linearized equation (3), Moser proved
[19] an implicit function theorem which shows that (2) has a solution (B, g), where
g is C'", provided that f is in a sufficiently small neighborhood of the identity.
Here, r may be taken to be an arbitrarily large integer, but the neighborhood
depends on r. M. Herman improved this by showing [5], [6], [7] that g could
actually be taken to be C, for f in an appropriate neighborhood of the identity. This
result showed that @=(T")° is perfect.

Herman’s result actually proves a little more: the universal covering group
G=(T™)° of D=(T™)° is perfect. More generally, consider a connected topological
group G which admits a universal covering group G. Suppose that for any
neighborhood U of the identity in G there is a neighborhood V of the identity in
G such that whenever f'f '€ V, the equation (1) has a solution with gig; '€ U and
h'hi'eU, for i=1,...,n Then, it is easy to see that G is perfect. Herman’s
theorem shows that this condition is satisfied for G = 2=(T™)°.

It is easily seen that if @"(R")° is perfect, then D" (M)° is perfect for every
n-manifold M, since 9"(M)° is generated by elements having support in open
balls. More generally, this argument shows that when M is connected, the natural
homomorphism

¢ Hy(9"(R™)°) — Hy(FD"(M)),

induced by any C" embedding of R" in M, is surjective. Here H,(G) denotes the
first homology group of G in the sense of Eilenberg and Maclane; this is the same
as the commutator quotient group G/[G, G]. Note that ¢ is independent of the
embedding of R" in M, since any two such embeddings are isotopic. Thurston
showed that ¢ is an isomorphism. (We give a proof in the appendix). In particular,
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since H;(9>(T™)°) =0, by M. Herman’s theorem, it follows that H,($*[R")") =0,
i.e. D°(R")° is perfect. This obviously implies that 9= = $=(R")° is perfect.

These results were extended to the volume perserving case by Thurston [22]
and to the symplectic case by Banyaga [1].

§4. Commutators of C' diffeomorphisms

For finite r, a different argument is needed: For fe C’, it is not generally
possible to solve (3) with g in C". This is the case no matter what « is. If « is
Diophantine and r is large enough, then it is possible to solve (3) with ge C™™4),
where d(a) depends only on a. But, d(a) is always positive. This state of affairs is
often expressed by saying that the solution of (3) involves loss of derivatives.
Similarly, the solution of (2) involves loss of derivatives. Consequently, it is not
possible to prove that @'(T™")° is perfect by using equation (2). In [10] and [11], I
found another method which works when r# n + 1, and is independent of the very
difficult K.A.M. theory.

Following the method which I used in [10] and [11], we consider fe 95, It is
enough to show that if f is sufficiently close to the identity, then it is in the
commutator subgroup. There is no loss of generality in assuming that the support
of f is in the interior of the cube

D,={xeR":-2=x;=<2 for 1 =j=n}.

What I did in [10] can be expressed in terms of solving the following functional
equation:

f= AT s (T AT U AT AT, (4)

for f in a sufficiently small neighborhood of the identity. Here, A and the T, are
fixed elements of &', which will be defined below. Likewise, what I did in [11] can
be expressed in terms of solving a slightly different functional equation:

f=AGEAT) - (e A DU - - ATTA ! )

for f in a sufficiently small neighborhood of the identity.

We recall from [10] that A was an element of &, whose restriction to D,, was
a multiplication by some large number A. Also, 7; was the time-one mapping
associated to the vector field pd,, where 9; denoted the unit vector field on R" in
the direction of the i™ coordinate and p(x,, ..., x,) = p1(x1) - - * p1(x,), where p;
was a C* non-negative function on R, which was identically one on [-2A,2A],
and which had support in a finite interval.
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The arguments given in [10] show that when r>n+ 1, the equation (4) can be
solved for A,, ..., A,, and u with support in a fixed compact set, provided that A
is large enough. Moreover, these could be chosen to be in prescribed C’
neighborhood of the identity, provided that f had support in the interior of D,
and was in an appropriately small neighborhood of the identity to begin with. The
arguments given in [11] show the same result for r <n+ 1, where the equation (4)
is replaced the equation (5).

An idea of why the results of [10] and [11] might be true may be suggested by
the following considerations. The linearized form of the equation (4) is

Asf =(rTaRi =KD ++ - -+ (1rhh, — X,) + (G — Agid). (6)

Here, we write f=id+f, etc., and think of f, etc. as vector fields on R", so Ay
denotes the action of A on vector fields. Of course, (6) is obtained from (4) by
considering one parameter families A, ..., A, U, satisfying Ajg=--"=A, 0=
u, =id, defining f, by (4), differentiating with respect to s, and evaluating at s =0.
The equation (6) is linear, so it is easier to study than (4). We wish to solve (6) for
every C’ vector field f with support in the interior of D,. Moreover, the solution
(Xl, cees ):,,) is required to be an (n+ 1)-tuple of C" vector fields with compact

support.
The linearized form of equation (5) is

f=GaR = A)+- - -+ (TR, — K) + (At — 1) (7

Since we may obviously write f = Ayf;, with supp (f;) € D,, the solvability of (6),
in the sense we have just discussed, implies the solvability of (7). The solvability
of (6), for r#n+1 and A sufficiently large, will be proved in the next section.
If one had an appropriate implicit function theorem, then the solvability of (6)
would imply the solvability of (4) and the solvability of (7) would imply the
solvability of (5). No implicit function theorem which permits one to make such
deductions is known. Instead, in [10] and [11], I was able to find arguments in the

nonlinear case, analogous to those we use here in the linear case, to prove the
solvability of (4) and (5).

§5. The question of solvability of (6) and a generalization of proposition 1

We begin by considering the following simplified form of equation (6):

f=(Tyhi—R)+- -+ (Togh, — A) + (i — Ageld). (8)

Here, T, :R" —R" is the unit translation in the i"* coordinate, i.e. T;(xy, ... X,) =
(x1,...,%+1,...,x,). Also, A denotes a positive number and A:R" —R"
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denotes multiplication by A. We may pose the question: given a C" vector field f
on R™ with compact support, do there exist C" vector fields Xl, ey ):,,,  on R"
with compact support which satisfy equation (8)?

This is a simplified version of the question we posed in §4 concerning the
solvability of (6), simplified in the sense that 7, and A are replaced by the affine
transformations T; and A. Note that since we are considering arbitrary vector
fields with compact support, replacing A4f (of equation (6)) with f makes no
difference. Also, we can replace T; by T; ' without changing anything. Replacing
. and A with the affine transformations T, and A provides the simplification: it
makes the analysis easier.

Let 6" denote the R vector space of C" compactly supported vector fields on
R". Let

be defined by
ARy, <oy Ky @) = (Tyaky =K+ - -+ (Togek —K) +(li — Ageld).

The question we posed in this section is equivalent to asking whether A is
surjective. We will prove the following result:

PROPOSITION 2. A is surjective if and only if A#1 and r#n+1.

The proof of surjectivity when A# 1 and r#n+1 will be given later in this
section. The fact that A is not surjective when A =1 is obvious. The fact that it is
not surjective when r# n+ 1 is difficult; this will be proved in the next section. It
depends on the fact that A and the T; are affine; we do not know the answer to
the question as to whether (6) is solvable when r=n+1 (and A is large). Quite
possibly, the answer depends on how A and 7, are chosen, since there is some
arbitrariness in the choice. We will prove the solvability of (6) when r#n+1 and
A is large at the end of this section.

First, however, we show how Proposition 2 generalizes the part of Proposition
1 concerning surjectivity. Let

A() :@ 6r —> é’r
be defined by

Ao(Ryy - oK) = (Taghi =K+ -+ (Tsehn = A)
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Let e:R"—T" be the covering mapping defined by e(x,,...,x,)=
(exp 2mix,, . . ., exp 2mwix,). The geometric transfer map (associated to e)

Tr,:6" — 6"
is defined by

Tr. X)(y)= Y ex(X(x)),

xee ! (y)

for Xe6', yeT".
The following sequence is exact:

Tr

- A0 .
Do —50—50"—>0. (*)

It is obvious that Tr, A;=0. To prove that ker Tr, =im A,, we consider the
R-vector space 8™ of C" compactly supported vector fields on T XR"™, and let
Tri*': 0% — 0™'*! be the geometric tranfer map associated to the map

(Zla LR ] zja xj+1a xj+29 [ R xn)—) (le cees 2y exp (277ixi+1)’ x]’+2’ sty xn)
Then

Tr,=Trlo- - oTrl:0=0""— 0" =0""

Let XekerTr, and set X'=Tri 1o 0oTri(X). We have X' =(T,x—id)Y’,
where Y'(x) =Y, <o TE4X'(x). Note that for each x € T" ! XR this is a finite sum,
since X' has compact support. Since X' eker Tr., we have that Y’ has compact
support, i.e. it is in 6"""1. It follows that there exists Y,;€6" such that Y'=

Tr2 ' o---oTri(Y,). Then
X—(T,x—id)Y,eker (Tr2 Yo - - o Trl).

In a similar way, we may prove that there exists Y,€ 8" such that

X—(T—id) Y, —(T,_1x—id) Y, eker (Tr} 2o - - - o Trl).

Continuing in this way, we obtain that X eim A,. This proves exactness of (*).
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Now, suppose A €Z. Then we have a commutative diagram with exact rows:

DI = 0 =59 — 0

leaA.. lA* ln

@O > 6 >0 — 0

where Tr is the geometric transfer map associated to I', which was defined in §2.
It follows that Tr—id is surjective if and only if 6" =im (Ax—id)+im A, ie. if
and only if A is surjective. In other words, for the case A €Z, Proposition 2 is
equivalent to the assertions in Proposition 1 which concern surjectivity.

Proof of Proposition 2 in the case r# n+ 1. We identify vector fields on R" with
mappings of R" into itself in the standard way. We let 6}, denote the set of X € 6"
whose integral over R" vanishes. Then 6{, is a vector subspace of é’, whose
codimension in 6" is n. We have the following commutative diagram, with exact
TOWS:

where A, denotes the restriction of A. Since A# 1, multiplicati(_)_n by A—1is an
isomorphism, and it follows that A is surjective if and only if A, is surjective.
We let u be a C~ non-negative function on R with compact support such that

2 u(x+n)=1,

neZ
for any x €R. For any positive number w, we consider the function u,, defined by
u,(x) = o tu(lew x).

Then u, is a C™ non-negative function on R with compact support. If A is a
positive integer, we have

Y u(x+n)=1,

neZ
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for any x eR. We let U, : 8 — 6}, be defined by

U X)Xy, ..., ) = (xy) - - up(x,) Xe(xy, . . ., X,),

for Xe6p and (x,,...,x,)eR" If A is a positive integer, then Tr, U, =id.
To prove surjectivity when r#n+1, we will need:

LEMMA. There exists a constant C, which depends only on n,r and u, such
that

ITr, Ax Ui, =1+ CA DA+ CA H"AYT
for all positive numbers A and all positive integers A.

Here, we continue to use the notation introduced in §2:| ||, denotes both the
norm on 6; which was defined there and the operator norm on the vector space of
bounded linear mappings of 65 into itself. In addition, we let || ||, denote the norm
on 6" which is defined in the same way as the norm on 6, was defined, with the
obvious change: T" should be replaced by R" in the definition. Note that
Tr, AU, is a bounded linear mapping of 65 into itself.

Proof of the lemma. First, we consider the case when r is an integer. We set
U, (X)=u,(x1) - - u,(x,) for x=(xq,...,x,)€R". For Xe0; and x=
(x4,...,x,)€R", the Leibniz formula for the derivative of a product gives

IDU,O@N=0 @ ID'XWI+C1 Y 1D ID™*X (),

O<a=r

where y =e(x) and C, is a constant which depends only on n and r. We have

1XMh = G 11X,

for any integer 0 <k <r and any X € 6;, where C, is a constant which depends
only on n and r. The fact that this is true for k =0 is a consequence of the fact
that the integral of X over T" vanishes. The fact that this is true for other k is a
consequence of the fact that the integral of any derivative of X vanishes.
Combining the two previous inequalities, we obtain

IDU )= (x)+Cs T ID*0, ) X1,

o<a=sr

=)+ CA N Ix1,
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where C; is a constant which depends only on n and r and C, is a constant which
depends only on n, r and u. Then

D" AU, (X)(x)| =A™ |[D"U(X)(A™'x)||
=AW (A7) + CATT) |IX),.
For ye T", we have

D' Tr, AxU,(X)(y) = 2. D'AU\(X)(x+k),

kezZ"

where x is any element of e~ '(y). Note that the support of AU, (X) is contained
in A supp v, = AA(supp u)". Consequently, the sum on the right has at most
(AAL+1)"=(AA+1)"L" non-vanishing terms, where L is the length of the
shortest interval which contains supp u. (Note that L =1.) It follows that

D" Tr, AU, (X)) sA“’( Y. (A7 (x+k)+Cs(Ar + 1)“)\‘"‘1) Xl

keZ"

where Cs is a constant which depends only on n, r, and u.

Moreover,
Y oA ) =] T w(A(x + k)
kez™ i=1keZ
A1 T A (x4 k)
i=1keZ

It is easily verified that there exists a constant Cq, which depends only on u, such
that

Y u,(x+k)<1+Cso"

kez

for all positive numbers w and all x eR. Here is the verification: For o <L, the

sum on the left has only one term, and we obtain that it is =(max u)w ™.

Moreover, we have

Y u,(x+k)— j:o U,(x+y) d}"

keZ

Y u (x+k)—1

kez |

Z [uw(x+k)— Im u,(x+k+vy) dy]\ =3(Lw +2) max u,,

kez 12
=Y Lw +2)(max u)w ?=Cso},
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where the last inequality is valid for @ =L, if C4 is large enough. Hence,

n

Y u(AWx+ k))‘ =A"][]

kez™ i=1

Y ua(x +k)|=AMA+CATTATH,

keZ

It follows that

ID" Tr, Ax Uy (XY= A" (A1 + CA AT + Cs(AX + 1)"A 1) || X],..

Every term in the coefficient of || X]|, has the form const. A°A®, where n+2—r=
a—b=n+1-r, and b=0. Moreover, the coefficient of A"*'™" is 1 and the
coefficients of A"*?”" vanishes. Since a positive integer is =1, we obtain that
there exists a constant C >0, which depends only on n, r, and u, such that

D" Tr, Ax U, (X)(W=A+CA A+ COAH"AT |IX],,

for all positive numbers A and all positive integers A.
Now we consider the case when r is not an integer. For X € 05, x = (x4, . .., X,)
and x'=(x1,..., x,;)€R", we have

"D[r] U, (X)(x) — D™ U, (X)(x,)"
=|vy (x) — va () DX (y)]| + v (x) DX (y) — DX (y)|

+C; Y ID%v, (x)— D%, (x| DT X (y)

O<a=[r]

+[[D0, ()| DX (y) - DX (y),

where y=e(x) and y'=e(x'). Moreover, || X|,;=Cs||Xl|,.,,where Cs=m/n, so
Xl = C,Cs |1X||,, for any integer 0 <k <[r], and

DM X (y) = D" X (y ) =<1 X111 Ix = 1l
sO we obtain
ID"IU, (X)) = DU (O = (00 () + CA ) X, = w1,
where C; is a constant which depends only on n, r and u. Then
D™ AU, (X)(x) — DAL U, (X)(x)|
= A"ID"UL(X)(A™x) - DM IU(X)(A ™)

=AM AT+ CATT) XL AT - AT
=A"T (A7) +CAT T X, e — 2.
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The rest of the proof may be done in exactly the same way as in the case when r is
an integer. O

Proof of Proposition 2 in the case r#n+1 (conclusion). In either the case
r>n+1, A>1orthecase r<n+1, A <1, the lemma shows that there exists an
integer A so large that

ITre As Uyl <1.

Since 6; is a Banach space, it follows that id—Tr, A,U, is an invertible linear
mapping of 6} onto itself. Let X € 8. There exists Y € 6} such that

Tr, (X) = (id—Tr. Ax U )(Y) = Tr.(id — Ap U,(Y).

Hence, X—-(d—AxU,(Y)eker Tr, =im (Tyx—id)+- - - +im (T, 4 —id), by the
exactness of (*). It follows that Xeim(id—Ag) +im (Tix—id)+- - -+im
(T,%—id) =im A,. Since X is an arbitrary element of 8}, this proves that A, is
surjective.

Since Agx—id= —(Ax'—id)Ay4 and Ay is an isomorphism, we have im (Ayx—
id) =im (A ' —id). Consequently, the case r>n+1, A <1 and the case r<n+1,
A >1 may be reduced to the case already considered. [

Solvability of (6).

We begin with the following observation. Let Ye 6" and suppose Y has
support in A.D,. Then

Y ekerTr, © Y eim (Ty—id)+ - - - +im (T, —id)
= Yeim (t14—id)+ - - - +im (T, —id)

The equivalence of the first two conditions is the same as the exactness of the
sequence (*). The fact that the second condition implies the third may be seen in
the same was as the exactness of (*) was proved, since that proof showed the
existence of solutions having support in [-2A,2A]" and 7,=T, on
[-2A,2A —-1]"

In what follows, we let u be as in the preceding discussion, but suppose in
addition that supp u < (-2, 2).

Previously, we remarked that the solvability of (6) implies the solvability of
(7). But also, the solvability of (7) implies the solvability of (6). For, let f € 6" and
suppose that the support of f is in the interior of D,. Then the support of
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Y = Af- U, Tr, Af is in the interior of A - D, and Tr, Y =0, since Tr, U, =id.
Hence, Y €im (1;5—id) + - - - +im (7,4 —id). But the support of U; Tr, Af is in the
interior of D,, so in discussing the solvability of (6), we may replace Af with
something having support in the interior of D,, which is what we mean by saying
that the solvability of (6) follows from the solvability of (7).

Next, we show that it is enough to consider the case when the integral of f
vanishes. For, consider an arbitrary f. Let ge 6" satisfy [ § =(A"*'—1)"' [ f and
supp § = A™'D,. Then the integral of f—(Ay~id)g vanishes, and it is enough to
solve (7) for f replaced by this element.

So, consider f € 8}, with support in the interior of D,. Suppose r>n + 1. By the
lemma, we may choose A so large that ||Tr, A4U;||<1. Then id—Tr, ALU, is an
isomorphism of 6y onto itself, so there exists Y € 6 such that

Tr, (f) = (d—Tr, AxU;)(Y) =Tr.(id— Ay) Uy(Y).

Let @i =—U,(Y). Then f— Agii+ieKerTr,. Since f—Ayli+@ has support in
A - D,, it follows that f— Ayfi+ i €im (1.54—id)+- - - +im (1,5 —id). This proves
the solvability of (7) when r>n+1.

Now suppose r<n+1. Let A=[A"'] and choose A>0 so small that
|ITr. ALU,||< 1. This is possible by the lemma. Now we use the same reasoning as
in the case r>n+1, using the fact that id—Tr, A4 U, is an isomorphism. [

§6. Proof of proposition 2 when r=n+1.

In the case that r = n+1, Proposition 2 says that A is not surjective. The proof
of non-surjectivity of A is based on an idea different from that in §2. I have been
unable to find a functional analytic proof, analogous to that in §2. Instead, I will
give a proof based on the Fourier transform.

We will suppose that A is surjective and show that this leads to a contradic-
tion. It will be convenient to use complex valued vector fields and the corres-
ponding complex vector spaces, in order to make the application of the Fourier
transform easier. In this section, " will mean complex valued C™ vector fields on
T", 6" will mean complex valued, compactly supported C" vector fields on R", the
mapping A: D, ., 6" — 6" will mean the complex linear mapping of complex
vector spaces, defined by the same formula as previously, and so on. Obviously,
these are harmless changes, since the old A is surjective if and only if the new A is
surjective. We will suppose A > 1, since the case A <1 reduces to this case.

From the hypothesis that A is surjective, it follows that

Tr, (Ax—id):0"— 0"
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is surjective. It follows that for some m €Z, the image of
Tr, (Ax—id): 6, — 0

has a second category in 0', where 6, denotes the space of C" vector fields on R"
having support in a ball of radius m. This is because

6=U 6,

meZ

and the Baire category theorems apply to 6", since it is a complete metric space.
From now on, we fix a value of m for which this image has second category in 6".

LEMMA 1. There exists C>0, such that the following holds. For any Y €0",
there exists X € 0, such that

Tr, (Ax—id)(X) = Y,
and

Ix1l <ClIY.

Proof. 6, is a Banach space with respect to the norm || ||, and the usual proof
of the open mapping theorem only requires the hypothesis that the image be of
the second category, nor surjectivity. [

We will construct a Ye@" for which there is no Xe @', satisfying the
conclusions of Lemma 1. This will give a contradiction. For the construction of Y,
we need the following result.

LEMMA 2. Let € >0 and let N be a positive integer. Then there exist positive
integers p_n, . - . , Pn Such that

|Api‘Pi+1|<8
fori=—N,... ,N—1.
Proof. Let 0<8<eg/(A+1). Let x, =e(p, Ap, ..., A*N"'p), where e :R*N*! —

T?N+1 js the standard covering map of the (2N + 1)-torus. Then x;, x,, . . . is an
infinite sequence in the compact space T", so we can find positive integers q <q'
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such that d(x, x,)<8. Let p_x=q'—q and let p, denote a closest integral
approximation to AN*'p_y for i=—N, ..., N. Then |AN*"p_n—p:| <8 and

|Ap; = pia| <A |ANYp_n—p|HAN M p_y—pal<(A+1)8<e O

For Xe 5’, let X denote the Fourier transform of X’, 1.e.
X<§>=L X(x)e > dx,

Where £=(§1’°"s§n)€Rn7 x=(x1’°":xn)€Rn’ x-£=2xi§i7 and dx:
dx, - - - dx,. Here, we identify complex valued vector fields with C" valued
functions, so the above integral makes sense.

LEMMA 3. There exists C,>0 which depends only on m, n, and r, such that

IX@l<c, X, (1 +llgn—
IDX(©ll< G, Il 1+l

for all £eR™ and all X €67,
This is a standard estimate in the theory of the Fourier transform. One has this

estimate for the total derivative of any order, but the above is all we need. []
For Ye @', let Y denote the Fourier transform of Y, i.e.

Y= L Y(z)z ¢ dz,

where &=(&,,...,8)eZ", z=(24,...,2,)€T", z¢=27¢V ... z-¢0 and dz
denotes Haar measure on T", normalized so that the total measure of T is one.
The equation Tr, (Ax—id)(X) =Y is equivalent to

AMIX(AH-X(H)=Y(©), (9)
for all £eZ™.

LEMMA 4. Let €¢>0 and let N be a positive integer. Then there exist
E.ny .., EnEZ™\{0} such that

& — A'g||<e, ~N=<i=<N
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and such that if Y = Y(&,)z¢® and X € 67, satisfies the conclusions of Lemma 1 in
relation to Y, then

IBr1X(&) - A" X(A&)<e |Y (&), 1=i=N,
IBF X&) - XEM<e Y (&), -N=i=0,

where B; =||&|/|&ll

Proof. We will suppose that ¢ <A ™/4. Obviously, there is no loss of general-
ity in supposing this. Let 8 be a positive number which satisfies

8 <min (C3'N7'[BAN2)" " +(n+ 1BAN2)"T, (A-1)A™N e,

where C,=CC,AN" (4. Let p_n, . .., pn be positive integers which satisfy the
conclusion of Lemma 2, with ¢ replaced by 8. We set & =(p;,0,...,0). Since
\pis1— Apil <8 <(A—-1)A™N"'g, we obtain the first inequality of Lemma 4.

Since Y(z) = Y(&)z¢?, we obtain || Y], = Qn) | Y& &I Since X satisfies
the conclusions of Lemma 1 with relation to Y, we then obtain

IX1l, = C@m) | Y (€&

From Lemma 3, we obtain that if ||&]|> A ™ ||&l|/2 then

IX(@l < C: Y&, IDX (@)l < C, I Y (&
By the first inequality of Lemma 4 and the fact that e <A™"/4, the condition

léll> AN ||&ll/2 is satisfied on the line segment joining A¢ and &.,, for i=
—N, ..., N—1. By the mean value theorem, we then obtain

1X(&41) ~ XAEN=C |61~ A&N Y ()l = C28 | Y (o).
Clearly, B,<A'+e=<3A/2,for i=—N,...,N and B,,;—AB; <§, so
ntl_ A"MIBMl <(n+1)(3A™1/2)"S, i=—N,...,N—1.
We have, by (9):

A™IR(AL) - R(&)=P(&)=0, i#0.
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Hence

1B X (&) — B X () = 1B X (&) — BF A X (Ag))|
=B X (&)~ X(AL)|+|Bi =B A" | X (A8
=GB+ (n+1DBA™2)"8 || V(&)
=C(BAN2)"  +(n+ 1(3AN2)" 8 | V(&)
=e||[Y(&I/N,

if i#0 and ~N=i=N-—1. A similar argument implies
IBT ' X(&) - A" X (A&l <e [ V(&N

Combining these inequalities, we get the second and third inequalities of Lemma

4. O

End of the proof that A is not surjective.
We define a norm || |,, on 6}, by

IXE2= | ID"XGolP d

and a pseudonorm || ||, on 8" by the same formula with the domain of integration
changed to T" from R". We have

1X>= C5 11X,
ITre Xll,2= C; 1 X]l..o,

for X € 6", where Cs is a constant which depends only on n and m. Moreover, for
Z €0", we have

1ZI72 = § e 1Z@)IP,

by Parseval’s equation.
Let £n,...,60 X, and Y be as in Lemma 4. Let Z=Tr, X. We have that
Z(&)=X(¢), for £€7™. Then

N

|lZ||3,2=§\|§H2' IX©IF= 2 l&lP 1X@lP

i=—N

=[(N+ D)X (& — & [ Y (&> + NA ' X (A& — & [| Y (&)DT &l
=2NG— &) | Y(&IP &l = N(1—2¢)? || YIR/2(2m)™,
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where the second inequality is a consequence of Lemma 4, the fact that r=n+1,
and the definition of B;; the third inequality is a consequence of (9); and the last
equation is a consequence of Y(z) = Y(&,)z*?. Taking € <3, we then have

1X1, = C52 |12l = VNC52 | Y], /22 ).

Since C; is a constant which depends only on n and m, and N may be taken to be
arbitrarily large, this contradicts Lemma 1. This contradiction proves that A is not
surjective when r=n+1. O

Appendix: Proof that . is an isomorphism
This refers to the natural homomorphism
L Hl(@r(R")O) - Hl(@r(M)O),

defined in §3, where Hy denotes Eilenberg-MacL.ane homology. Thurston gave
two proofs that ¢ is an isomorphism. One relies on the theory of Haefliger’s
classifying space. The other, which is elementary, but very clever, was generalized
to the case of symplectic diffeomorphisms by Banyaga [1]. Here, we explain the
proof which relies on the theory of Haefliger’s classifying space. This proof
generalizes my earlier proof, valid for the case n =1 [cf. 12, Corollary 4].

The homomorphism ¢ is surjective since @'(M)° is generated by elements
having support in open balls.

We may use the theory of Haefliger’s classifying space to construct a
homomorphism j - Hy (9" (M)°) — H, (9" (R™)°), such that ju = identity, as follows.
An element of @"(M)° consists of a pair (f,y), where fe @' (M)° and v is a
homotopy class (rel. endpoints) of curves connecting the identity to f in @"(M)°.
Let (f,v) be such a pair and let {f}evy, so f,e D (M) for each te[0,1],
fo=identity, and f, =f. Since any such curve may be smoothed we may suppose
that f, is a C" function on M €[0, 1], that f, = identity for ¢ near 0 and that f, =f
for t near 1.

For each point x e M, we have the curve {(f,(x), t):t€[0, 1]}. This defines a
family of curves in M X [0, 1], which may be pushed down into M X T' by means
of the mapping t+~> e®>™ of [0,1] onto T'. The resulting family of curves in
MXT" is a C" foliation of M X T! by curves. Since this is a codimension n
foliation (n = dim M), the theory of Haefliger’s classifying space [3], [4] associates
to it a fiber homotopy class of mappings I'=T;,,: MXT"' — BT}, such that the
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diagram

MxT' L5 BI,

1proj. l

M —5 BGl(n)

commutes. Here 7, is a mapping associated to the tangent bundle of M,
according to the classical theory of classifying spaces [21], and v is a mapping
associated to the normal bundle of the canonical Haefliger structure on BIj,. We
may think of I' as a homotopy class of sections of

(Tag © proj.)*BI,

which is a bundle over M X T™. The fiber of this bundle is the same as the fiber of
v, i.e. BI'.. According to obstruction theory [21], homotopy classes of sections of
this bundle are in 1—1 correspondence with elements of H"*'(MXxT?,
m.+1(BI™Y)), since BI, is n-connected, by Haefliger’s theory [3], [4]. (Here, H*
means singular cohomology). In order to define this 1—1 correspondence, it is
necessary to choose a basepoint in the space of sections which corresponds to the
zero element of H**'(Mx T", m, .1(BI',)); we let the basepoint be I';y;q, Where
(id, id) denotes the identity element of 9"(M)°. Since H**'(M x T, ., (BI"")) =
m,.1(BI"), we have defined a mapping

9?"’(M)O - Wn+1(BI::1)-

It is easily verified that this mapping is a homomorphism of groups.
Thurston proved that there is a mapping

B%., — Q"BI™,

which induces isomorphism in (singular) homology. Here, 2"X denotes the n™
loop space of X and B, denotes the homotopy theoretic fiber of the identity
mapping

B%;;*— B,

where 7% denotes 9., provided with the discrete topology. Peviously, I had
proved this theorem for the case n=1 ([12],[13]). A proof of the result for
general n (due to Thurston) may be found in [16]. A short outline of another
proof (also due to Thurston) may be found in [14]. (See also [15]). A later proof
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by another method may be found in [17]. The latter paper contains the first
published proof for the case r=0.
Obviously, we have

1 (B = m,(Q"BI) = H,(Q"BI™),

and, by Thurston’s theorem, this is the same as H,;(BP?.). It is easily seen that
B9, is the homotopy theoretic fiber of the identity mapping B@.> — BY',, where
P72 denotes D7, with the discrete topology. Since 9, is simply connected, the first
and second homology groups of B, vanish, and it follows that H,(BJ.)=
H,(B%"®). Hence

or =T 9?:1
Tn1(BI) = Hy(BD;?) = 5. 5]

and the homomorphism we constructed above has the form

~

T 0 gb:l
PM g g

Obviously, the commutator subgroup of 9"(M)° goes to zero under this
homomorphism. Consequently, we have an induced homomorphism

__drouy
[2"(M)°, <" (M)°]

j: Hy(@"(M)°) = — H(97)

where, now, Hy means Eilenberg-MacLane homology. It is easily checked that
ju =1dentity. Consequently ¢ is injective. [
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