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A curious remark concerning the géométrie transfer map

John N. Mather

Let 3)rn dénote the identity component of the group of Cr compactly sup-
ported diffeomorphisms of Un. In two papers [10], [11], I proved that Storn is

perfect, i.e. equal to its own commutator subgroup, provided r=^ n +1. However,
the case r n +1 is still open; it is not known whether 2&gt;£+1 is perfect.

In this paper, I will give an elementary example which shows where the proof
breaks down when r n +1. The example is given in §2. A more gênerai form of
this example is given in §5. One has an assertion which is true when rj= n +1 and

false when r n + l. In the version given in §2, the assertion is that a certain
géométrie transfer map is surjective. The proof in the case r^ n +1 is analogous
to part of the proof which I gave in [10] and [11]. The fact that this resuit is false

for r n +1 shows why my method cannot work in that case. However, the

examples given in §2 and §5 of this paper are too spécial to suggest a proof that
3)n+1 is not perfect.

In §1,1 define the group 3}rn and some related groups in détail. In §3,1 briefly
outline how M. Herman and Thurston proved that 2J~ is perfect, using K.A.M.
theory. In §4,1 discuss the connection of the resuit of this note with the method of
[10] and [11]. In §5,1 give an example of a linear mapping between spaces of Cr
vector fields which is surjective when rj= n +1 and is not surjective when r n +1.
This example generalizes the example in §2. The proof of non-surjectivity in the
case r n 4-1 is much more difficult than it was for the géométrie transfer map
considered in §2. It is given in §6.

In the appendix, I give one of Thurston&apos;s proofs of his resuit leading to the

perfeetness of 2&gt;~. I believe this proof has not previously been published.
I would like to thank Jùrgen Moser for encouraging me to write up thèse

results.

§1. Définitions

If r is a positive integer of &lt;*&gt;, a mapping will be said to be Cr if it is r times

continuously differentiable. If r is a real number &gt;1, and not an integer, a
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A curious remark concerning the géométrie transfer map 87

mapping will be said to be Cr if it is C[r] (where [r] dénotes the greatest integer
&lt;r), and its [r]th derivative satisfies a Hôlder condition of order r-[r]. A Cr
diflfeomorphism is a Cr mapping with a Cr inverse. The support of a diffeomorph-
ism &lt;p of a manifold M onto itself is {xeM:&lt;p(x)^x}. The support of &lt;p will be

denoted supp &lt;p.

If K is a subset of a manifold M, we let 3)rK(M) dénote the group of ail Cr
diffeomorphisms &lt;p of M onto itself such that supp &lt;p &lt;^K. We let 3)r(M) dénote
the group of ail Cr diflfeomorphisms of M with compact support. We hâve

where K runs over ail compact subsets of M. We provide 3)rK{M) with the C1

topology and 3)r(M) with the direct limit topology. We let 2&gt;r(M)° dénote the

component of the identity in 2&gt;r(M).

It is not difficult to show that an élément of 3)r(M) is in 3)r(M)° if and only if
it is Cr isotopic to the identity by an isotopy with compact support.

From Smale&apos;s h-cobordism theorem [18], [20] and Cerfs theorem &quot;pseudo-

isotopy implies isotopy&quot; [2], it follows that 3)r(Mn)/3)r(Mn)0 is isomorphic to the

Kervaire-Milnor group Fn+1 of homotopy (n +1)-sphères [8], when n&gt;5. For

example [8], 2}r(M6)/3}r(M6)0~2/28Z.
The group 3)rn, mentioned in the introduction, is defined to be 3)r(Un)°.

§2. The géométrie transfer map

Let Tn ={(zu zn)eCn:\z1\ - - \zn\ l}. Let A&gt;1 be an integer. Let
F: T™ —&gt; T1 be the covering mapping defined by

Let 6r dénote the IR vector space of Cr vector fields on Tn. The géométrie transfer

map (associated to F)

Trier-*or

is defined by

- I r*(X(y)),
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for XeBr, xeT1. Note that F*(X(y)) is well defined because r is a local
diffeomorphism. The method of [10] and [11] for proving that 3)rn is perfect when

r n +1 suggests the following:
Question. Is Tr—id surjective?
How the method of [10] and [11] suggests this question will be explained in

§4. The answer to it is yes if rf n +1 and no if r n +1. This shows clearly that
the method of [10] and [11] cannot succeed if r n + l, although it gives no
information on whether the resuit might still be true. More précise information is

given by the following resuit:

PROPOSITION 1. If r&gt;n + l, then Tr-id is an isomorphism. If
then Tr- id is surjective with infinité dimensional kernel If r n +1, then Tr—id is

not surjective, but is infective and has dense image.

Proof. Introduce angular coordinates &lt;pu q&gt;n on Tn, defined by the
formula Zj =exp(2iri&lt;pJ), where expt e\ Using the trivialization of the tangent
bundle of Tn associated to this coordinate System, we may think of a vector field
on Tn as a mapping of Tn into Rn. We provide T1 with Haar measure. We let 6r0

dénote the set of vector fields on Tn whose intégral over Tn vanishes. We identify
Un with the constant vector fields. Then

er or0®nn

and Tr préserves each summand. It is easily seen that Tr | IRM is multiplication by
An+1. Hence, (Tr-id) | Un is an isomorphism, and the assertions of Proposition 1

are équivalent to the corresponding assertions for 6r0 in place of 6r. Some of the
assertions for 0q are conséquences of the following resuit:

LEMMA. Let T and U be bounded linear mappings of a Banach space E into

itself. Suppose TU id, ||Tl|||Ul|=l, and T has infinité dimensional kernel Then

the spectrum of T is the closed bail of radius ||T||, the mapping T—À is surjective
with infinité dimensional kernel for |Aj&lt;||Tl|, and is not surjective for |à| ||T1|.

Proof. For |à|&lt;||T1|, the mapping id-XU is invertible, since ||A17||&lt;1, by the

hypothesis that ||T||||17|| 1. Clearly, (T-À)Lr(id-ÀLO~1==id. This shows that

T-A is surjective, when |A|&lt;||T||. It is easily verified that

ker (T- A) (id- ALTp^ker T).

Since ker T is infinité dimensional and id-Al/ is an isomorphism when |A|&lt;||T||,

it follows that ker(T—A) is infinité dimensional, when |A|&lt;||T||.
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Obviously, spec Te the closed bail of radius ||T||. We hâve just shown that

ker(T-A)/0, when |A|&lt;||T||. Hence, spec T the closed bail of radius ||T||. It is

easy to see that for any bounded linear operator T of a Banach space into itself, if
A is in the boundary of spec T, then T- A is not surjective. (The idea of the proof
is that if T-A is surjective, then it has non-trivial kernel, since A g spec T. But,
then any small perturbation of T-A is surjective with non-trivial kernel, and it
follows that A is in the interior of spec T, contrary to hypothesis.) For the operator
T which we are considering hère, we hâve shown that the boundary of spec T is

the set of A satisfying |A| ||Ti|. Hence, T-A is not surjective for such A.

Proof of Proposition 1 (cont.). Let r be an integer and let XeOr. By the rth

total derivative DrX(x) of X at x, we mean the collection of ail partial derivatives
of order r at x, i.e. the numbers

(x),

where a (ax,..., a*) dénotes a multi-index, |a| ax + • • • 4- an, and X
(X1,..., Xn). We set

l|a|!rCXl!- &apos; *«n! d&lt;P°

In the case that r is an integer, we provide 6r0 with the norm

l|r sup||D&apos;X(x)||.

When r is not an integer, we use the norm

l|P&quot;X(x)-PMX(y)||—

where d(x, y) is the distance between x and y associated to the Riemannian

metric d&lt;pl+ • • • + d&lt;pl on Tn. In either case 6r0 is a Banach space, with respect to
the norm || ||r.

For a bounded linear operator L of 0r0 into itself, we will use ||L||r to dénote

the operator norm of L, i.e.

||L||r= sup
11X11=1
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Let Tro Tr | 0r0. We hâve

DM(Tr0X)(x)= £ A^
which implies

Let U: er0 -» e&apos;o be defined by

for X€ 0o, y e T&quot;. Then Tr0 ° U id. We hâve

Dir\UX)(y) A^-^D^Xiry),
which implies

1114= A&apos;&quot;1-.

It is easily seen that ker Tr0 is infinité dimensional.
We hâve just shown that ail hypothèses of the lemma are satisfied, where

E $r0 and T Tr0. From the lemma and our formula for HTro|U we obtain the
conclusion of Proposition 1 for the case r^ n +1 and we obtain that Tr—id is not
surjective in the case r n + l. Since 0r0 is dense in 6q+1 for r&gt;n + l, and
Or (Tr0-id)(Oo)c:(Tro-id)(eS+1), we see that Tro-id has dense image, for the
case r n + l.

If Xe 0S+1 and x e Tn, then Dn+1(TrSX)(x) is the average of Dn+1X(y), where

y ranges over F~k(jc). Since the intégral of X over Tn is zéro, it follows from the
fundamental theorem of Riemann intégration that this average tends to 0,

uniformly in x, so that ||Tro(X)||n+1 —&gt; 0 as fe -&gt;oo. Hence

&gt;X, as N-*œ

and it follows that Tr0—id is injective.

§3. Related results

In the next section, I will explain how my resuit about the géométrie transfer

map is related to the proof that 3)rn is perfect when r^ n 4-1. In this section, I will



A cunous remark concerning the géométrie transfer map 91

discuss how M. Herman and Thurston proved that 2Z is perfect, using K.A.M.
theory.

Let G be a connected topological group. One way to prove that G is perfect
would be to find a single élément feG such that / could be written as a product
of commutators

where [g, h]= ghg&quot;1^&quot;1, and such that for every f near /, we hâve that the
functional équation

f=[gl,hî]---[gm,fc^l (1)

has a solution, where g[ and h[ are éléments of the group. For, then f&apos;f~x could be

written as a product of commutators, so every élément in a sufficiently small
neighborhood of the identity could be written as a product of commutators. Since

G is a connected group, it is generated by any neighborhood of the identity, so
the solvability of (1) for every /&apos; in a neighborhood of / implies that G is perfect.

The obvious way to try to solve (1) for every /&apos; in a neighborhood of / is to
prove an appropriate implicit function theorem. One case in which this can be
done is when G Qt^T)0. Let R^: Tn -* Tn be defined by

for a=(a1,...,an)eUn and z =(zu..., zn)eTn. We will suppose that a is

Diophantine, i.e. that there exists ô&gt;0 and N&gt;0 such that

for ail (q0,..., qn) eZn+1. It is a conséquence of K.A.M. theory that for fe G near
the identity, there exists jSgIR&quot; near a and geG near the identity such that

(2)

Writing this in the form / Kt-3JR;1gi^g~1, we reduce our problem to the

problem of expressing R^-p as a product of commutators. Let 7,

(0, 0, at - ft, 0,..., 0), where the non-zero term appears in the ith place.
Then JRot_0 R^ • • • RY(n), and it is enough to express R^ as a product of
commutators. For this, it is enought to express the rotation of the circle through
&lt;*i-ft as a product of commutators in the group of orientation preserving



92 JOHN N MATHER

diffeomorphisms of the circle. But this is easily done: rotations of the circle are in

PSL(2,R), and is easily seen that PSL(2,R) is perfect.
The K.A.M. method of solving (2), for / near the identity, uses an implicit

function theorem. We use &quot;+&quot; for the standard group opération on Tn, i.e. the group
opération defined by coordinatwise multiplication. For / and g near the identity in
G S°°(Tn)0, the mappings f-id, g-id: T&quot; -» Tn are homotopic to the constant
mapping and so can be lifted to mappings fyg&apos;.T*1 -»[Rn, which are near zéro. Let
us write % for the vector space of C°° mappings of Tn into UN. The linearized
form of (2) is

=gK + ct-g- (3)

Given fe &lt;€9 one wishes to solve (3) for (5 eUn and g g c€. This is easily done, by
expanding everything in Fourier séries. Hère, the fact that a is Diophantine is

crucial. Starting from the solvability of the linearized équation (3), Moser proved
[19] an implicit function theorem which shows that (2) has a solution (j3, g), where

g is Cr, provided that / is in a sufficiently small neighborhood of the identity.
Hère, r may be taken to be an arbitrarily large integer, but the neighborhood
dépends on r. M. Herman improved this by showing [5], [6], [7] that g could

actually be taken to be C00, for f in an appropriate neighborhood of the identity. This
resuit showed that 2T(Tn)° is perfect.

Herman&apos;s resuit actually proves a little more: the universal covering group
§°°(Tn)° of arCT&quot;)0 is perfect. More generally, consider a connected topological
group G which admits a universal covering group G. Suppose that for any
neighborhood U of the identity in G there is a neighborhood V of the identity in
G such that whenever ff1 e V, the équation (1) has a solution with g&apos;&amp;ï1 e U and
h&apos;lh~1€ U, for i 1,..., n. Then, it is easy to see that G is perfect. Herman&apos;s

theorem shows that this condition is satisfied for G 2&gt;°°(Tn)°.

It is easily seen that if 3)r(Mn)0 is perfect, then 2T(M)° is perfect for every
n-manifold M, since Ér{M)° is generated by éléments having support in open
balls. More generally, this argument shows that when M is connected, the natural
homomorphism

induced by any Cr embedding of Rn in M, is surjective. Hère Hi(G) dénotes the

first homology group of G in the sensé of Eilenberg and Maclane; this is the same

as the commutator quotient group GI[Gy G]. Note that t is independent of the

embedding of Rn in M, since any two such embeddings are isotopic. Thurston
showed that t is an isomorphism. (We give a proof in the appendix). In particular,
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since H^â^T&quot;)0) 0, by M. Herman&apos;s theorem, it follows that HiCâTflRT) 0,
i.e. 2T(IRn)0 is perfect. This obviously implies that 2)~=2T([Rn)0 is perfect.

Thèse results were extended to the volume perserving case by Thurston [22]
and to the symplectic case by Banyaga [1].

§4. Commutators of Cr diffeomorphisms

For finite r, a différent argument is needed: For feC\ it is not generally
possible to solve (3) with g in Cr. This is the case no matter what a is. If a is

Diophantine and r is large enough, then it is possible to solve (3) with g e Cr~d(a\
where d(a) dépends only on a. But, d(a) is always positive. This state of affairs is

often expressed by saying that the solution of (3) involves loss of derivatives.

Similarly, the solution of (2) involves loss of derivatives. Consequently, it is not
possible to prove that 3)r(Tn)° is perfect by using équation (2). In [10] and [11], I
found another method which works when r^ n +1, and is independent of the very
difficult K.A.M. theory.

Following the method which I used in [10] and [11], we consider fe3)rn. It is

enough to show that if / is sufïiciently close to the identity, then it is in the

commutator subgroup. There is no loss of generality in assuming that the support
of / is in the interior of the cube

Dn={x€Rn:-2&lt;x,&lt;2for l&lt;/&lt;n}.

What I did in [10] can be expressed in ternis of solving the following functional

équation:

/ A-WAxtO • • • (t^tJuà-1 • • • Àl&apos;Âir1, (4)

for / in a sufïiciently small neighborhood of the identity. Hère, Â and the t, are

fixed éléments of 3)rn which will be defined below. Likewise, what I did in [11] can
be expressed in terms of solving a slightly différent functional équation:

f Â(r-l\nrn) • • • (rr1A1r1)uAr1 • • • À^Â&quot;1^1 (5)

for / in a sufïiciently small neighborhood of the identity.
We recall from [10] that Â was an élément of 3)rn whose restriction to Dn was

a multiplication by some large number A. Also, t, was the time-one mapping
associated to the vector field pdl9 where d, denoted the unit vector field on W1 in

the direction of the ith coordinate and p(xl9 ...,*„) Pi(*i) &apos; * &apos; Pi(*n)&gt; where px

was a C°° non-negative function on R, which was identically one on [-2A, 2A],
and which had support in a finite interval.
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The arguments given in [10] show that when r &gt; n 4-1, the équation (4) can be
solved for Àx,..., Àn, and u with support in a fixed compact set, provided that A
is large enough. Moreover, thèse could be chosen to be in prescribed Cr
neighborhood of the identity, provided that / had support in the interior of Dn
and was in an appropriately small neighborhood of the identity to begin with. The

arguments given in [11] show the same resuit for r&lt; n +1, where the équation (4)
is replaced the équation (5).

An idea of why the results of [10] and [11] might be true may be suggested by
the following considérations. The linearized form of the équation (4) is

- Àx) + • • • + (t&quot;^ - kn) + (û - Â*Û). (6)

Hère, we write / id+/, etc., and think of /, etc. as vector fields on (Rn, so Â*
dénotes the action of Â on vector fields. Of course, (6) is obtained from (4) by
considering one parameter families Àls,..., A^ us satisfying A10 • • • A^
u0 id, defining /s by (4), differentiating with respect to s, and evaluating at s 0.

The équation (6) is linear, so it is easier to study than (4). We wish to solve (6) for
every Cr vector field / with support in the interior of Dn. Moreover, the solution
(Al9..., Àn) is required to be an (n + l)-tuple of Cr vector fields with compact
support.

The linearized form of équation (5) is

/ (tIJAi ~ Ax) + • • • +(t^ - An) + (Â*Û - û). (7)

Since we may obviously write f Â*fl, with supp (/i)€Dn, the solvability of (6),
in the sensé we hâve just discussed, implies the solvability of (7). The solvability
of (6), for r^ n + 1 and A sufficiently large, will be proved in the next section.

If one had an appropriate implicit function theorem, then the solvability of (6)

would imply the solvability of (4) and the solvability of (7) would imply the

solvability of (5). No implicit function theorem which permits one to make such

déductions is known. Instead, in [10] and [11], I was able to find arguments in the
nonlinear case, analogous to those we use hère in the linear case, to prove the

solvability of (4) and (5).

§5. The question of solvability of (6) and a generalization of proposition 1

We begin by considering the following simplified form of équation (6):

/ (T1HsA1-A1) + - • • + (Tn5|eAn-An) + (Û-AHeÛ). (8)

Hère, Tt :Un -*IRn is the unit translation in the ith coordinate, i.e. Tt(xl9... xn)

(xl9...,xi + l,...,xn). Also, A dénotes a positive number and A:Rn—&gt;IRn
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dénotes multiplication by A. We may pose the question: given a Cr vector field /
on Rn with compact support, do there exist Cr vector fields \u An, û on IRn

with compact support which satisfy équation (8)?
This is a simplified version of the question we posed in §4 concerning the

solvability of (6), simplified in the sensé that t, and A are replaced by the affine
transformations T, and A. Note that since we are considering arbitrary vector
fields with compact support, replacing Â*f (of équation (6)) with / makes no
différence. Also, we can replace Tt by T&quot;1 without changing anything. Replacing

t, and A with the affine transformations T, and A provides the simplification: it
makes the analysis easier.

Let 0r dénote the R vector space of Cr compactly supported vector fields on
Rn. Let

A : © èr -* ër
n + l

be defined by

The question we posed in this section is équivalent to asking whether A is

surjective. We will prove the following resuit:

PROPOSITION 2. A is surjective if and only if A£l and r£n + l.

The proof of surjectivity when A^l and r^n + 1 will be given later in this

section. The fact that A is not surjective when A 1 is obvious. The fact that it is

not surjective when rf n +1 is difficult; this will be proved in the next section. It
dépends on the fact that A and the T, are affine; we do not know the answer to
the question as to whether (6) is solvable when r n + l (and A is large). Quite

possibly, the answer dépends on how A and t, are chosen, since there is some

arbitrariness in the choice. We will prove the solvability of (6) when r/ n +1 and

A is large at the end of this section.

First, however, we show how Proposition 2 generalizes the part of Proposition
1 concerning surjectivity. Let

be defined by

Ao(Âi, \n)
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Let e:Mn-*Tn be the covering mapping defined by e(xu...,xn)
(exp2irix1,... ,exp27rixn). The géométrie transfer map (associated to e)

is defined by

Tr€(X)(y) I e*(X(x)),
xee-&apos;(y)

for Xeêr, yeT&quot;.

The following séquence is exact:

It is obvious that TreAo 0. To prove that ker Tre im Ao, we consider the
R-vector space 0ri of Cr compactly supported vector fields on Tl xRn~l, and let
Tre+1:0ri—» 0rt+1 be the géométrie tranfer map associated to the map

(zl5..., zp x]+l, Xj+2, ...,*„)-* (zi,..., z,, exp

Then

Tr€ =Tr^ o o Tri : 0r= 0rO-&gt; 0r »r-n.

Let XekerTr€ and set X^Tr?&quot;1 &lt;&gt; • • • oTrî(X). We hâve X&apos; (Tn*-id)Y&apos;,

where Y&apos;(x) Sk&lt;0 T^X&apos;(x). Note that for each x e Tnl xR this is a finite sum,
since X&apos; has compact support. Since X&apos;ekerTr&quot;, we hâve that Y&apos; has compact
support, i.e. it is in értn~1. It follows that there exists Y1eër such that Y&apos;

Trr1 o • • • o Tr^Yx). Then

In a similar way, we may prove that there exists Y2 e ër such that

X-(Tn*-id)Y1-(Tn_l3ie-id)Y2€ker(Trr2 o o TrJ).

Continuing in this way, we obtain that XeimA0. This proves exaetness of (*).
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Now, suppose AeZ. Then we hâve a commutative diagram with exact rows:

0 ff J^+ 6r J^ 6r &gt; Q
n

1©A* A* Tr

eêr -^ ëT -^ er —? o
n

where Tr is the géométrie transfer map associated to F, which was defined in §2.

It follows that Tr-id is surjective if and only if 6r im(A^-id) + im Ao, i.e. if
and only if A is surjective. In other words, for the case AeZ, Proposition 2 is

équivalent to the assertions in Proposition 1 which concern surjectivity.

Proof of Proposition 2 in the case rj=n + l. We identify vector fields on Rn with
mappings of IRn into itself in the standard way. We let 6r0 dénote the set of Xe6r
whose intégral over Rn vanishes. Then ër0 is a vector subspace of §r, whose
codimension in 6r is n. We hâve the following commutative diagram, with exact

rows:

&gt; 0 §r » ^ &gt; 0
n + 1

1A h
o &gt; ër0 &gt; ër —&gt; un —&gt; o

where Âo dénotes the restriction of A. Since A ^ 1, multiplication by A -1 is an

isomorphism, and it follows that A is surjective if and only if Âo is surjective.
We let u be a C°° non-negative function on (R with compact support such that

neZ

for any xeR. For any positive number &lt;o, we consider the function u^ defined by

Then uw is a C°° non-negative function on R with compact support. If A is a

positive integer, we hâve

neZ
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for any xeU. We let UK: 6r0-» ër0 be defined by

Uk(X)(xu xj uk(xx) • • • wx(xn)Xe(x1,..., xj,

for Xg Oq and (xl5..., xn)€lRn. If A is a positive integer, then Tre l/x id.
To prove surjectivity when r^ n + 1, we will need:

LEMMA. There exists a constant C, which dépends only on n, r and u, such
that

for ail positive numbers A and ail positive integers A.

Hère, we continue to use the notation introduced in §2 : || ||r dénotes both the
norm on 6r0 which was defined there and the operator norm on the vector space of
bounded linear mappings of 0r0 into itself. In addition, we let || ||r dénote the norm
on 6r which is defined in the same way as the norm on 0rQ was defined, with the
obvious change: Tn should be replaced by Rn in the définition. Note that
Tre A%UK is a bounded linear mapping of 6r0 into itself.

Proof of the lemma. First, we consider the case when r is an integer. We set
u&lt;oW Mw(xi)-&quot;Uû)(xn) for x (xu...,xn)eUn. For Xe6r0 and x
(xu xn)elRn, the Leibniz formula for the derivative of a product gives

0&lt;a=sr

where y e(x) and C! is a constant which dépends only on n and r. We hâve

for any integer 0 ^ k ^ r and any X g 0r0, where C2 is a constant which dépends

only on n and r. The fact that this is true for k 0 is a conséquence of the fact
that the intégral of X over Tn vanishes. The fact that this is true for other k is a

conséquence of the fact that the intégral of any derivative of X vanishes.

Combining the two previous inequalities, we obtain
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where C3 is a constant which dépends only on n and r and C4 is a constant which
dépends only on n, r and u. Then

For y g T&quot;, we hâve

DrA*l7x(X)(x
keZ&quot;

where x is any élément of e~l(y). Note that the support of A*UK(X) is contained
in A suppux AA(supp u)n. Consequently, the sum on the right has at most
(AAX + l)n&lt;(AÀ + l)nLn non-vanishing terms, where L is the length of the
shortest interval which contains supp u. (Note that L&gt;1.) It follows that

||DrTr.A1|1t7x(X)(y)||sA1-r( I i*(A-1(
VeZ&quot;

where C5 is a constant which dépends only on n, r, and u.

Moreover,

keZ&quot; i=lkeZ

It is easily verified that there exists a constant C6, which dépends only on u, such

that

keZ

for ail positive numbers w and ail x€R. Hère is the vérification: For &lt;d^L~\ the

sum on the left has only one term, and we obtain that it is &lt;(max u)ûT\
Moreover, we hâve

keZ

v r
keZ L

KLco + 2)(maxu

keZ

M/2

J-l/2
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where the last inequality is valid for &lt;o&gt;L~\ if C6 is large enough. Hence,

keZ&quot; i=l keZ

It follows that

||Dr Trc ^A&quot;1)&quot; + C5(AA

Every term in the coefficient of ||X||r has the form const. AaÀb, where n+2-r&gt;
a-b&gt;n + l-r, and b&lt;0. Moreover, the coefficient of An+1~r is 1 and the
coefficients of An+2~r vanishes. Since a positive integer is &gt;1, we obtain that
there exists a constant C&gt;0, which dépends only on n, r, and m, such that

||rr Tre A*[
for ail positive numbers A and ail positive integers A.

Now we consider the case when r is not an integer. For Xe 6r0, x (x^ ,xn)
and x&apos; (x[,..., x^) eiRn, we hâve

kM - v, (x&apos;)| ||D[r]X(y)|| + vK (xf

+ \\DavK (x&apos;

where y e(x) and y&apos; e(x&apos;). Moreover, ||X)|[r] &lt; C5 ||X]|r,,where

||Xl|fc^C2C5||XlU for any integer 0&lt;k&lt;[r], and
so

so we obtain

where C7 is a constant which dépends only on n, r and u. Then

||DCr]A!l!l7x(X)(x) - DwA*L
A^w ||D[r] UK (X)(A &quot;1x) - £&gt;w Ux (X)(A -xx&apos;)

Q-&quot;-1) ||X||r HA^x-A-
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The rest of the proof may be done in exactly the same way as in the case when r is

an integer.

Proof of Proposition 2 in the case r^n + 1 (conclusion). In either the case
r&gt;n + l,A&gt;lor the case r&lt;n + l,A&lt;l, the lemma shows that there exists an
integer À so large that

||TreA*Ux||r&lt;l.

Since 6r0 is a Banach space, it follows that id-Tre A*Uk is an invertible linear
mapping of 6r0 onto itself. Let XeOr0. There exists Ye6r0 such that

Hence, X-(id-A*)l/x(Y)€kerTre =im(T1Hc-id) + - • •4-im(Tn4:-id), by the
exactness of * It follows that X e im (id -A*) 4- im T^- id) 4- • • • 4- im
(Tn^.-id) imÂ0. Since X is an arbitrary élément of ër0, this proves that Âo is

surjective.
Since A^-id= -(A^1-id)A^c and A* is an isomorphism, we hâve im(A^.-

id) im (A*1 - id). Consequently, the case r &gt; n +1, A &lt; 1 and the case r &lt; n +1,
A &gt; 1 may be reduced to the case already considered.

Solvability of (6).

We begin with the following observation. Let YeOr and suppose Y has

support in A.Dn. Then

YekerTre O Yeim(T1Hc-id) + • • • +im(Tn*-id)
1Hc-id) + - • • 4-im (rnHc - id)

The équivalence of the first two conditions is the same as the exaetness of the

séquence (*). The fact that the second condition implies the third may be seen in
the same was as the exaetness of (*) was proved, since that proof showed the
existence of solutions having support in [-2A, 2A]n and t, T, on
[-2A, 2A - l]n.

In what follows, we let u be as in the preceding discussion, but suppose in
addition that supp u &lt;= (-2,2).

Previously, we remarked that the solvability of (6) implies the solvability of
(7). But also, the solvability of (7) implies the solvability of (6). For, let fe ër and

suppose that the support of / is in the interior of Dn. Then the support of
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Y Âf-Ut Tre Âf is in the interior of A • Dn and Tre Y 0, since Tr€ Ux id.
Hence, Ye im (t1Hc- id) + • • • + im (rn*- id). But the support of Ux Tr€ Âf is in the
interior of £&gt;n, so in discussing the solvability of (6), we may replace Âf with
something having support in the interior of Dn, which is what we mean by saying
that the solvability of (6) follows from the solvability of (7).

Next, we show that it is enough to consider the case when the intégral of /
vanishes. For, consider an arbitrary /. Let gedr satisfy J g (An+1- l)~l J/ and

supp gc A~xDn. Then the intégral of /—(A# — id)g vanishes, and it is enough to
solve (7) for / replaced by this élément.

So, consider fe ër0 with support in the interior of Dn. Suppose r &gt; n +1. By the
lemma, we may choose A so large that ||Tre A^l/J^l. Then id-Tre A#Ui is an

isomorphism of 0r0 onto itself, so there exists Ye0o such that

Tr€ (/) (id-Tr€ A#l/1)(Y) Tr€(id-A*)t71(Y).

Let û -U1(Y). Then /-Â^û + ûeKerTre. Since f-Â*û + û has support in
A • Dn, it follows that f-Â^û + ûeimir^—id)+- • • + im(Tnîie-id). This proves
the solvability of (7) when r&gt;n + l.

Now suppose r&lt;n + l. Let À=[A&quot;1] and choose A&gt;0 so small that
||Trc A*UK\\&lt; 1. This is possible by the lemma. Now we use the same reasoning as

in the case r&gt;n + l, using the fact that id—Tre A*Uk is an isomorphism.

§6. Proof of proposition 2 when r n +1.

In the case that r n +1, Proposition 2 says that A is not surjective. The proof
of non-surjectivity of A is based on an idea différent from that in §2. I hâve been
unable to find a functional analytic proof, analogous to that in §2. Instead, I will
give a proof based on the Fourier transform.

We will suppose that A is surjective and show that this leads to a contradiction.

It will be convenient to use complex valued vector fields and the corres-
ponding complex vector spaces, in order to make the application of the Fourier
transform easier. In this section, 6r will mean complex valued Cr vector fields on
T&quot;, ër will mean complex valued, compactly supported Cr vector fields on Rn, the

mapping A: ©n+i 0r-&gt;0r will mean the complex linear mapping of complex
vector spaces, defined by the same formula as previously, and so on. Obviously,
thèse are harmless changes, since the old A is surjective if and only if the new A is

surjective. We will suppose A &gt; 1, since the case A &lt; 1 reduces to this case.

From the hypothesis that A is surjective, it follows that

Tre(A*-id):0r-»0r
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is surjective. It follows that for some meZ, the image of

Trc (A*-id) :&amp;-&gt;«&apos;

has a second category in 6r, where 6rm dénotes the space of Cr vector fields on lRn

having support in a bail of radius m. This is because

ër= U ërm

meZ

and the Baire category theorems apply to 0r, since it is a complète metric space.
From now on, we fix a value of m for which this image has second category in 6r.

LEMMA 1. There exists C&gt;0, such that the following holds. For any YeOr,
there exists Xe$rm such that

and

m, &lt; an.
Proof. 6rm is a Banach space with respect to the norm || ||r and the usual proof

of the open mapping theorem only requires the hypothesis that the image be of
the second category, nor surjectivity.

We will construct a YeOr for which there is no Xeërm satisfying the
conclusions of Lemma 1. This will give a contradiction. For the construction of Y,
we need the following resuit.

LEMMA 2. Let e &gt;0 and let N be a positive integer. Then there exist positive
integers p_N,..., pN such that

|AA-pl+1|&lt;e

Proof. Let 0 &lt; 8 &lt; e/(A +1). Let xv e(p, Ap,..., A2N+1p), where e : R2N+1 -&gt;

T2N+1 js tjie steward covering map of the (2N+ l)-torus. Then xu x2,... is an
infinité séquence in the compact space Tn, so we can find positive integers q &lt;qr
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such that d(xqy xq)&lt;8. Let p_N q&apos;-q and let p, dénote a closest intégral
approximation to AN+lp-N for î -N,..., N. Then |AN+Ip_N - p,| &lt; 8 and

D

For Xe §r, let X dénote the Fourier transform of X, i.e.

=f X(x)e~2rnx € dx,

where £ (&amp;,..., &amp;)€Rn, x (xx,... ,Xn)eRn, x-^Ix.È, and dx
dxx • • • dx,». Hère, we identify complex valued vector fields with Cn valued
fonctions, so the above intégral makes sensé.

LEMMA 3. There exists Ci &gt;0 which dépends only on m, n, and r, such that

for ail £eRn and ail Xe ërm.

This is a standard estimate in the theory of the Fourier transform. One has this
estimate for the total derivative of any order, but the above is ail we need.

For Yg6t, let Y dénote the Fourier transform of Y, i.e.

f Y(z)z-*dz,

where * (&amp;,..., è,)eZ&quot;, z (zu ,zn)eTn, z~( zl€(1) • • • z~iM, and dz
dénotes Haar measure on T&quot;, normalized so that the total measure of T&quot; is one.
The équation Tre (A*-id)(X)= Y is équivalent to

(9)

for ail |eZn.

LEMMA 4. Let e &gt; 0 and let N be a positive integer. Then there exist
£_N,...,£NeZ&quot;\{0} such that
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and such that ifY= Y(£0)z€(0) and Xe$rm satisfies the conclusions of Lemma 1 in
relation to Y, then

wher* B, H

/. We will suppose that e &lt;A~~N/4. Obviously, there is no loss of general-
ity in supposing this. Let ôbea positive number which satisfies

8 &lt;min (Cï1N~1[(3AN/2)n+1 + (n + l)(3AN/2)n]-S (A -

where C2 CCxANr(4ir)r. Let p_N&gt; • • •, Pn be positive integers which satisfy the
conclusion of Lemma 2, with e replaced by 8. We set 4 (p,, 0,..., 0). Since
|pl+i~Apl|&lt;ô&lt;(A-l)A&quot;N~1e, we obtain the first inequality of Lemma 4.

Since Y(z) Y(^0)z€(0), we obtain ||Yl|r (27r)r ||Y(êo)ililloHr. Since X satisfies
the conclusions of Lemma 1 with relation to Y, we then obtain

From Lemma 3, we obtain that if ||£||&gt; A~N ||£0||/2 then

\\X(€)\\ &lt; C2 \\Y(èo)l \\DX(Ç)\\ &lt; C2 \\Y(Q\\.

By the first inequality of Lemma 4 and the fact that e&lt;A&quot;N/4, the condition
||£||&gt;A~N||£oll/2 is satisfied on the Une segment joining A4 and &amp;+i&gt; for i

-N,..., N-1. By the mean value theorem, we then obtain

|o)|| &lt; C28 |

Clearly, B,isA&apos; + e^3A&apos;/2, for i -N,..., N and Bl+1 -AB,&lt;5, so

B^1-An+1Br+1s(n + l)(3Al+1/2)&quot;«, i -N,..., N-l.

We hâve, by (9):

t 0, iY 0.
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Hence

WX-Br&apos;A-^l ||X(Aê)||

C^B^1 + (n + 1)(3A1+1/2)&quot;S || Y(&amp;)||

C2((3AN/2)&quot;+1 + (n + l)(3AN/2)&quot; Ô |

if i^O and —N&lt;i&lt;N—1. A similar argument implies

I|BÏ+^«0 - A&quot;+1

Combining thèse inequalities, we get the second and third inequalities of Lemma
4. n

End of the proof that A is not surjective.
We define a norm || ||r&gt;2 on 0rm by

\\DrX(x)\\2 dx

and a pseudonorm || ||r&gt;2 on 6r by the same formula with the domain of intégration
changed to T1 from IRn. We hâve

||TreX||r,2&lt;C3||XlU

for Xe ërm, where C3 is a constant which dépends only on n and m. Moreover, for
Z g 0r, we hâve

by Parseval&apos;s équation.
Let £_N,..., Êsr, X, and Y be as in Lemma 4. Let Z Tre X. We hâve that

for £eZn. Then

-e ||Y(|o)ll)2 + N(||A&quot;+1X(A|0)||-e

N(l-2e)21| Y||2/2(27r)2r,
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where the second inequality is a conséquence of Lemma 4, the fact that r n +1,
and the définition of B,; the third inequality is a conséquence of (9); and the last
équation is a conséquence of Y(z)= Y(Ç0)zi(0\ Taking e&lt;|, we then hâve

Since C3 is a constant which dépends only on n and m, and N may be taken to be

arbitrarily large, this contradicts Lemma 1. This contradiction proves that A is not
surjective when r n +1.

Appendix: Proof that i is an isomorphism

This refers to the natural homomorphism

defined in §3, where H* dénotes Eilenberg-MacLane homology. Thurston gave
two proofs that i is an isomorphism. One relies on the theory of Haefliger&apos;s

classifying space. The other, which is elementary, but very clever, was generalized
to the case of symplectic diffeomorphisms by Banyaga [1]. Hère, we explain the
proof which relies on the theory of Haefliger&apos;s classifying space. This proof
generalizes my earlier proof, valid for the case n 1 [cf. 12, Corollary 4].

The homomorphism i is surjective since 2Jr(M)° is générâted by éléments
having support in open balls.

We may use the theory of Haefliger&apos;s classifying space to construct a

homomorphism /:H1(Sr(M)°)-^H1(Sr([Rn)0), such that /t=identity, as follows.
An élément of ®r(M)° consists of a pair (/, 7), where /eâr(M)° and 7 is a

homotopy class (rel. endpoints) of curves Connecting the identity to / in 3)r(M)°.
Let (/, 7) be such a pair and let {/t}e7, so fte3)r(M) for each te[0,1],
/o identity, and fx f. Since any such curve may be smoothed we may suppose
that ft is a Cr function on Me[0,1], that ft identity for t near 0 and that f\=f
for t near 1.

For each point xeM, we hâve the curve {(/t(x), t):te[0,1]}. This defines a

family of curves in Mx[0,1], which may be pushed down into MxT1 by means
of the mapping t*-*e2mt of [0,1] onto T1. The resulting family of curves in
MxT1 is a Cr foliation of MxT1 by curves. Since this is a codimension n
foliation (n dim M), the theory of Haefliger&apos;s classifying space [3], [4] associâtes

to it a fiber homotopy class of mappings F rtfi&lt;Y):MxT1 —»BFrn such that the
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diagram

MxT1 -£¦* Brn

M -2*-&gt; BGI(n)

commutes. Hère tm is a mapping associated to the tangent bundle of M,
according to the classical theory of classifying spaces [21], and v is a mapping
associated to the normal bundle of the canonical Haefliger structure on BFrn. We

may think of F as a homotopy class of sections of

(&lt;rMoproj.)*Brrn,

which is a bundle over M x T&quot;. The fiber of this bundle is the same as the fiber of
v, i.e. BFTn. According to obstruction theory [21], homotopy classes of sections of
this bundle are in 1-1 correspondence with éléments of Hn+1(MxTl,
7rn+i(Bf^), since BPrn is rc-connected, by Haefliger&apos;s theory [3], [4]. (Hère, H*
means singular cohomology). In order to define this 1 — 1 correspondence, it is

necessary to choose a basepoint in the space of sections which corresponds to the
zéro élément of fP+HAf x T\ irn+1(Bf£)); we let the basepoint be F(ldjld), where
(id, id) dénotes the identity élément of 2T(M)°. Since tT^iMxT1, 7rn+1(Brrn))

TTn+1(Brrn), we hâve defined a mapping

It is easily verified that this mapping is a homomorphism of groups.
Thurston proved that there is a mapping

Bâ)rn-* nnBrn

which induces isomorphism in (singular) homology. Hère, QnX dénotes the nth

loop space of X and BÔ)rn dénotes the homotopy theoretic fiber of the identity
mapping

where 2&gt;£8 dénotes 3)rn provided with the discrète topology. Peviously, I had

proved this theorem for the case n 1 ([12], [13]). A proof of the resuit for
gênerai n (due to Thurston) may be found in [16]. A short outline of another

proof (also due to Thurston) may be found in [14]. (See also [15]). A later proof
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by another method may be found in [17]. The latter paper contains the first
published proof for the case r 0.

Obviously, we hâve

and, by Thurston&apos;s theorem, this is the same as H^BSi^). It is easily seen that
B2rn is the homotopy theoretic fiber of the identity mapping BQ)^6 -&gt; B3)rn, where
3)rn8 dénotes 3)rn with the discrète topology. Since 3)rn is simply connected, the first
and second homology groups of B3)rn vanish, and it follows that H1(B2)rn)

Hence

and the homomorphism we constructed above has the form

âr(M)°-»-~f*r

Obviously, the commutator subgroup of 3)r(M)° goes to zéro under this
homomorphism. Consequently, we hâve an induced homomorphism

where, now, H* means Eilenberg-MacLane homology. It is easily checked that
je identity. Consequently t is injective. D
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