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An extension of a resuit by Dinaburg and Sinai on quasi-periodic
potentials

JURGEN MOSER and JURGEN POSCHEL

§1. Introduction

Floquet représentations

We consider the diflferential operator

on the real line R, where q is a quasi-periodic real valued function. More
precisely, we define L as the unique self-adjoint extension of the above operator
on Qomp(R), the space of twice continuously differentiable functions on .R with
compact support. Such a self-adjoint extension is unique, since this problem is in
the &quot;limit point case.&quot;

A function f is called quasi-periodic with rationally independent frequencies
((ou &lt;od) a), if it can be written in the form

f(x) F{ù}xx, o)dx) F(o)x),

where F is a continuous function with period 2tt in ail d variables. The space of
ail thèse functions / is denoted by 2,(&lt;o). In â(co) we will distinguish the subspaces
2,a, â°° and 2/ according to whether in the above représentation, F is analytic or of
class C°°, Cr, respectively. Clearly, if for instance fe2La((o), then / is an analytic
function of x and admits a Fourier séries expansion

where

39
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for ail j eZd with some positive constants c, 7. The converse, however, is not true.
It may happen, that / is analytic, while F is only continuous [7].

The space 2,(&lt;o) is contained in the space si of ail uniformly almost periodic
functions in the sensé of Bohr. With any fesîwe can associate a mean value

[/]=lim-J f(t)dt

and a frequency module M M(f), which is the smallest module over Z containing
ail those frequencies v for which

For example, M(f) {(j9w): jeZd} for /&lt;E&amp;(to).

In the case d 1, the functions qe2L(a)) are simply periodic of period
and the operator L gives rise to Hill&apos;s équation with the familiar band spectrum.
Moreover, the difîerential équation

Ly ~v&apos;&apos; + q(x)y Ày (1.1)

has two linearly independent solutions of the form

ewxpu e~wxp2, if 2iw^co1Z

or

ewxp2 e~wxp3, if 2iw€to1Z

where e 0,1 and pl9 p2, p3 are complex valued functions of period 2iïliùx, This is

the content of Roquet theory [12].
The following is motivated by the question for an analogous représentation of

the solutions of (1.1) in the quasi-periodic case. To be précise, let ^ be one of the

subspaces of â(o&gt;) introduced above. Given qe&amp; we say that équation (1.1)
admits a Floquet représentation if it possesses two linearly independent solutions of
the form

ewx*i, e~wxx2, if 2iw£M(q) (1.2)&apos;

or

ewx(Xi + e**2), ew*X2 e~wxX3, if 2iweM(q) (1.2)&quot;

where e =0,1 and Xi&gt; *2&gt;
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Necessary and sufficient for (1.1) to admit a Floquet représentation is that the
first order System

K»-x X.)
can be transformed into a System

z&apos; C(A)z

with constant coefficients by a transformation

where the coefficients of T and T&quot;1 belong to &amp;, and d/dx argdet T has mean
value 0. Then tr C 0, and the eigenvalues of C are of the form ±w mod (iM),
where w is the exponent in (1.2).

In contrast to the periodic case, however, such a Floquet représentation is

generally not possible for ail A for almost periodic potentials, as examples in 2L((o)

with point eigenvalues show [7]. For other examples, see also [6,13,22].

The rotation number

Even if such a Roquet représentation is not available, one can still define the
analogue of the Floquet exponent w w(A) for any almost periodic potential. The
following was shown in [7]. If ImA&gt;0 and G(x, y; A) is the kernel (Green&apos;s

function) of the résolvent (L —A)&quot;1, then G(x, x; A) and G~1(x, x;A) are almost
periodic, and

2G(U;A)

defines a holomorphic function on Im A &gt; 0. This function satisfies

Imw&gt;0, Rew&lt;0.

Moreover, the harmonie function

a(A) Imw(A)
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is continuous in ImÀ^O, which on the real line can also be defined by

a(À) lim - arg (&lt;p&apos;(x, A) + i&lt;p(x, A)), (1.4)
X—ooX

where &lt;p is any real solution of (1.1). This fonction a is called the rotation number
for q, which will play an important rôle in the following.

On the real axis, a is a continuous, monotone increasing function which is

constant precisely on the intervais I of p(L) HR, where p(L) is the résolvent set of
L. Moreover, on any such interval, 2a belongs to the frequency module of q. In
particular, if qe&amp;(co), then

&lt;*(A) |(/,&lt;o) for Ael

for some jeZd. This is the &quot;gap labelling theorem.&quot;

For further interesting properties of the rotation number see also the paper by
Kotani [10]. More références can be found in the review article by Simon [21].

Results

In order to find those A for which (1.1) admits a Floquet représentation, we
require that

laaOr^Ûfl/l), 0^/eZd, (1.5)

where Û is some not too rapidly increasing approximation function. The précise
properties of O are stated in Section 3.1 For instance, almost ail o&gt;e!Rd satisfy
the Diophantine inequalities

Zd (1.6)

with some constants c &gt;0 and /3 &gt; à — 1.

THEOREM 1.1. Ifqe£a((o) and a&gt; satisfies (1.5), then (1.1) admits a Floquet
représentation for every A g p(L), the résolvent set of L. If q g2L°°(ù)), then the same
holds, if a) satisfies (1.6).

This follows from the work of many authors, and one finds références, for
example, in [8,19]. The proof is based on the hyperbolic character of the flow of

1 Note that this function Cl is the inverse of the functions û in [5] and [18].
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(1.3), since Rew^O for kep(L). For the sake of completeness, we include a

proof of Theorem 1.1 in Section 2.

It remains to study the case Àea(L), where cr(L) C\p(L)c:(R îs the spec-
trum of L. The rotation number jul a (A.) is an increasing function of À €|R, which
is constant precisely in the spectral gaps of L. Thus, if jul j= j(j, &lt;o) for ail / € Zd, then
a~~x(ix) is a unique point in the spectrum, and we speak of the non-resonant case.

In the résonant case, we hâve jx=§(fc, o&gt;) for some fceZd. Then oT^jul) is

a-possibly collapsed - interval [À_, À+], whose endpoints belong to cr(L).
Dinaburg and Sinai [5] considered rotation numbers jx, not too close to

résonances |(j, o&gt;). Precisely, they considered the set

where

with positive constants c, e. This is a Cantor set, which leaves out in U a set of
small measure.

THEOREM 1.2 [Dinaburg-Sinai]. Suppose qe2La((o) and o&gt; satisfies (1.5). //
jul€jV(/2) is sufficiently large, then (1.1) admits a Floquet représentation for
À =a~1(/x). Thaf is, (1.1) possesses two linearly independent solutions of the form

In particular, thèse solutions belong to âa(a&gt;, /ul).

This resuit gives rise to a Cantor set contained in the upper part of the

spectrum, in fact, in the absolutely continuous spectrum. This theorem was
sharpened by Rûssmann [18] who also enlarged the class of approximation
functions £1.

The purpose of this paper is to dérive a similar resuit in the résonant case, that
is, for rotation numbers /ul =|(fe, co). However, not ail those jul are accessible to
our technique, and we hâve to restrict ourselves to the set

^(/2) {iuL=è(fc,û&gt;):|juL-è0»|-1^/2(|/|), fc^/eZd}. (1.7)

The points in @l(£l) can be considered as résonances not too close to other
résonances. Note that &amp;t{û) and Jf{iï) are disjoint.
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THEOREM 1.3. Suppose qe£a(ù)) and &lt;o satisfies (1.5). If ixe0t(O) is

sufficiently large, then the interval

is either collapsed to a point, in which case (1.1) has two linearly independent
solutions

e&apos;^X, e-^x, Xe£a(&lt;»\ (1.8)&apos;

or I(/ul) has positive length, in which case (1.1) has two linearly independent
solutions

eI|UE(xi +J*2), e«~x2, xi, X2eâaM (1.8)&quot;

at each endpoint of I(/ut). Moreover, if jll è(fc, &lt;o), fhen

witfi positive constant c, y, which are independent of k.

Actually we will construct a whole family of Floquet représentations for
À e[À_, à+], thereby continuing the hyperbolic solutions in the interior of the gap
to its endpoints (see Section 3).

Gaps

We will show that the first alternative in Theorem 1.3, where I(jx) dégénérâtes
to a point, is exceptional. In this case, according to (1.8)&apos;, ail solutions are

quasi-periodic, in fact, are in âa(&lt;o/2) since /ut =|(fc, a&gt;). This is analogous to the

periodic case: if À is an endpoint of a spectral gap, then ail solutions are periodic
with twice the period of the potential, if and only if the gap dégénérâtes to a

point. One refers to this as &quot;coexistence of periodic solutions&quot; [12]. Thus, for the

gaps a&quot;1^) with sufficiently large jll in 3l(il) one has the analogous phenomenon
in the quasi-periodic case.

In the case of a collapsed gap, the squares of ail solutions belong to &amp;a(&lt;o) -
and not only to âa(o&gt;/2). To show that the collapse of such a gap is exceptional,
we prove a more gênerai resuit about almost periodic potentials q. If for some
À À0 the squares of ail solutions of (1.1) are almost periodic with frequency
module M, then Ào corresponds to a collapsed gap, which can be opened up by an
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arbitrarily small perturbation in si (M), the space of ail almost periodic functions,
whose frequency module is contained in M.

THEOREM 1.4. Let q be almost periodic with arbitrary frequency module, and

assume that for À Ao the squares of ail solutions of (1.1) are almost periodic with
frequency module M. Then there exists a real trigonométrie polynomial q e st(M)
such that for ail sufficiently small e^O the potential

has a nondegenerate gap a&quot;1^), where /u, a(À0), and à is the rotation numberfor
q. More generally, this holds for ail qesi(M) outside a subspace of codimension 2.

COROLLARY 1.5. In any bail

x) Q(aix): sup |Q(0)|&lt;r)c:att(a&gt;)
|im eî&lt;^ J

the set of those q, for which ail gaps a 1(fx) with jll g 3% and jul ^ ix*(r, 7) are not
collapsed, is generic.

One may expect that generically ail gaps are open. But our technique assures
this only for those gaps corresponding to ja eSÎ(f2) sufficiently large. Actually, in
the class of limit periodic potentials, generically ail gaps are open [2]. But this
situation is easier, since such potentials can be approximated by periodic ones.
Other cases of almost periodic potentials with gaps clustering at inflnity were studied
by Levitan [11],

We remark that by changing the frequency module, every point À ^a&apos;1^),

jx € Jf9 in the spectrum provided by the theorem of Dinaburg-Sinai can become a

nondegenerate gap by a small perturbation qe2La(a), 2jul), that is, by replacing q
by q + eq, where q is a real trigonométrie polynomial in âa(&lt;o, 2/ul). Indeed, this
requires just the observation that according to Theorem 1.2 the squares of ail
solutions of (1.1) belong to &amp;a(co,2|Li).

Extension to the Dinaburg-Sinai set

There is another connection with the Dinaburg-Sinai set Jf. In fact, their
theorem can be obtained from our resuit as a limit case. To explain this, one has

to study the set 91 0t (il) of résonance points more closely. Clearly, none of the
points of @L are cluster points of St. However, we shall show in Theorem 7.1 that
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the set 0tf of cluster points of 01 satisfies

If we consider the solutions described by Theorem 1.3 for a séquence Kve
a~1(fi,v), jxve9ï, for which Àv—?À*, ilv —&gt; ii* a(\,*)eJf, then one vérifies that
they converge to solutions of (1.1) for A À* of just the form given in Theorem
1.2. The détails of this argument, which is based on uniform estimâtes of thèse
solutions on the set &amp;t, will be given in Section 7.

Combining thèse results one sees that the Hoquet représentations for the
solutions of (1.1) are extended from the résolvent set to a closed subset A of the

spectrum, which is characterized by (1.7). This set is of positive measure and
includes the part of the spectrum found by Dinaburg and Sinai.

More importantly, this argument together with Theorem 1.4 shows that for
generic potentials in âa(cu) ail points of the subset of the spectrum provided by
the Dinaburg-Sinai theorem are cluster points of open spectral gaps. One may say
that generically this subset lies in the boundary of the spectrum.

Method of proof

The essential resuit of this paper is Theorem 1.3, which is proven by a

perturbation argument. By an infinité succession of linear transformations, the

System

/yV / 0 l\/y\
\y&apos;/ \q(x)-\ OAyV

is transformed into one with constant coefficients. To control the effect of the
small divisors occurring one uses a rapidly converging itération scheme, as it was
done in [1,9,14,18]. The main différence to the proof of Theorem 1.2 lies in the
différence of the null space of the linear operator

where U is 2 x 2-matrix of trace 0 with real coefficients in Ca(7^), and C C is a

2 x 2-matrix with constant coefficients and eigenvalues ±w, Im w jx. If n ^ §(/, &lt;o)

for ail /, then the null space of A is 1-dimensional, and this 1-dimensional space
can be compensated for by adjusting the parameter À [14,18]. But in the
résonant case, jx |(fc, o&gt;), the null space has dimension 3 and can be
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Figure 1

identified with sI(2,R), the Lie algebra of real matrices with trace 0. This space
can, of course, not any more be compensated for by a single parameter.

The Lie algebra s/(2,R) contains the cône ^ {C:det C 0}, which séparâtes
si (2, R) into two open régions, the stable (det C&gt; 0) and the unstable (det C &lt; 0) one.
The unperturbed System corresponds to a curve C(À) in sI(2,R) for ~8&lt;\-ko&lt;
8 which passes through the vertex of &lt;# for A Ao and otherwise lies in the stable
région. After perturbation, such a curve will generally not any more pass through
the vertex of &lt;£, but will partially lie in the unstable région. This geometrical fact
corresponds to the opening of a gap under perturbation (see Fig. 1). It also
shows the exceptional character of a collapsed gap.

The détails of the proof of Theorem 1.3 will be carried out in Sections 3-5,
after discussing the Floquet représentations on the résolvent set in Section 2. In
Section 6 we prove Theorem 1.4. In Section 7 we finally extend our results

continuously to the Dinaburg-Sinai set.

Open problems

We mention two open problems. Although it is easy to give qeâV) which do
not admit a Floquet représentation for some A. even if (1.6) holds, such an
example in 2,a(eo) is not known to us. In particular, can one hâve point eigen-
values for qe°La((o) with w satisfying (1.6)?

Second, it has to be pointed out that our approach may be excessive for
showing that gaps can be opened up by small perturbations, and it is conceivable
that this question can be decided by easier means. We do not know whether
generically for qe&amp;a(co) ail gaps are nondegenerate, or at least ail gaps with
sufficiently large A.
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§2. Hoquet représentations on the résolvent set

Smoothness of splitting and intégration

For A in the résolvent set, there exist two linearly independent solutions
«Mx, A) and t/r_(x, A) of (1.1) where *K € L2(0, ») and ^ e L2(-oo, 0). This is well
known for ïm A^O. For real A sp(L) one can choose, for instance,

x&lt;x_

where / is any continuous function with compact support in (x_, x+) such that
j°laofydx^0 for every nontrivial solution y of (1.1).

Thèse solutions i/r+, t/r_ are unique up to a multiplicative constant. Moreover,
for Im À i=- 0, they hâve no roots, and their logarithmic derivatives

m+(x, À) —t, m_(x, A) —I

are uniquely defined. By a theorem of G. Scharf [20], m^ are almost periodic
functions whose frequency module is contained in M(q). In particular, if q eâ,(w),
there exists a unique continuous function M± M±(^, A) on Td, called the
extension of m^, such that

m±(x,A) M±(o&gt;x,A). (2.1)

For Im A 0, the roots of i^ i^± give rise to singularities of m m±. But for
real A, the function m is also real, and one avoids such singularities by consider-

ing, for example,

V m
m=- 1 + im

instead of m. In other words, we consider the values of m on the projective space
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Pc. We say that

where 9 &amp;&quot;(û&gt;) with a r, &lt;», a, if

am

cm + d

for some complex constants a, b, c, d with ad - bc 1.

We will prove Theorem 1.1 in two steps. The first step consists in showing that
m is of the same regularity as q, in the sensé described above, the second in
showing that i^± can be written in the form (1.2). The latter requires just the

intégration of an almost periodic function. Therefore, the first step is the more
important one, and it is worth observing that it does not require any small divisor
conditions, but dépends only on the fact that the exponent

satisfies

Rew(A)&lt;0, AGp(L).

For Im A ^ 0 this was established in [7], and the full statement follows from the
maximum principle applied to the harmonie function Re w(A). Since in a spectral
gap I,

lim Im w(A + ie) a(A) jul const.,

the reflection principle shows that w(A) admits an analytic continuation across I
to Im A &lt;0 by setting w(Â)-éjui w(A)-ifx. We see that Re w(A) is one valued
across I and thus harmonie, hence négative, in p(L).

THEOREM 2.1. Let 9 aa(co) with a r, oo, a. // q g 9 and A g p(L) then

Precisely, me&amp; and rh= :—e&amp; for ImA^O and ImA=0, respectively.
1 + im
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COROLLARY 2.2. Under the above assumptions there exists a 2x2-matrix
T= T(x, À) such that the éléments of T, T&quot;1 belong to &amp; and the transformation

takes (1.3) into

z&apos; D(x,\)z,

where D(x,K) is a diagonal matrix with éléments in &amp;&gt;. Moreover,

(2.3)

Proof of Corollary 2.2. For Im À ^ 0 we choose

so that z&apos; Dz possesses +j, | as solutions, that is,

D diag (m+, m_), [D] diag (w, -w)

by (2.2), hence tr[D] 0.

For real À in a spectral gap / with a(k) \(k, oy) we set

/l-im+ 1-im \/e~l(k&lt;o)x 0\
~\ m+ m_ À 0 1/&apos;

TT.cn with B (ft\ 0 I//_ + n/»&apos;_/\ 0

D E&apos;E-1 diag (p+ + i(k, a»), p_)
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with

(2.4)

It follows from (1.4) and the asymptotic behaviour of «K and i/r_ that

[p+] w, [p_] -w. (2.5)

Hence also in this case

[D] diag (w + i(fc, o&gt;), -w) diag (w, -w)

and tr [D] 0, since Imw a(\) |(fc, o&gt;).

By Theorem 2.1 the coefficients of T so chosen belong to 8F. Moreover,

det T m_- m+, (m_-m+)e-l(k&lt;u)x,

respectively, which is bounded away from zéro, if A ep(L). Because of

where A is the matrix in (1.3), we conclude from tr[D] 0, tr A =0 that

L J x-xJo detT

proving (2.3) and the corollary.
The proof of Theorem 1.1 is now immédiate. In order to transform the

diagonal System

z; 4(x)z,, j l,2, (2.6)

into constant coefficients, we merely hâve to set

While in gênerai for a quasi-periodic function d, the intégral is not bounded, it is

quasi-periodic and of the same class as dv if d, belongs to &amp;a(o&gt;) or &amp;°°(g&gt;) and o&gt;
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satisfies (1.5) or (1.6), respectively. The above transformation maps (2.6) into

with [di] w =-[d2]- Therefore, équation (1.1) admits a fondamental System of
the form (1.2), and Theorem 1.1 follows.

It remains to prove Theorem 2.1.

Riccati équation

For Im A ^ 0 the proof of Theorem 2.1 will be based on the fact that m m± is

a bounded solution of the Riccati équation

In the quasi-periodic case, due to the theorem of Scharf mentioned above, m as

well as q admit unique extensions to continuous functions M and Q on T*.
Although M is in gênerai not differentiable, it does admit a directional derivative
in the direction cù, which we dénote by DJVf. Then the above équation extends to

Q-k (2.7)

on the torus T&quot;*.

More generally, we now consider the differential équation

M) 0, P(A, M) Ao + AlM+\A2M2, (2.8)

where Ao, Au A2 are complex valued functions on Td. We dénote with
the space of ail those Me C°(Td), which admit a continuous directional derivative
in the direction o&gt;, and set |Af|0,« |Àf|0 + |D«M|0.

LEMMA 2.3. Suppose MeC^iT1) and A (A0,AuA2) satisfy (2.8) and

Then there exists a neighbourhood U of A in C°xC°x C° and a unique analytic
map

4&gt;(A) M

such that N=&lt;P(B) satisfies the équation D^N+PiB, N) 0 for ail BeU.
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Proof. This lemma is a straightforward conséquence of the implicit function
theorem. Consider the analytic map from C°xC°xC°xCZ into C° given by
(Bo,Bi,B2,N)-&gt;DJV + P(B,N), which vanishes at (A, M). We show that its
first partial derivative with respect toNatN M, that is, the linear map taking
XgCZ into

DttiX + {Al + A2M)X G (2.9)

in C°, has a bounded inverse. Then our claim follows.
We abbreviate R=AV + A2M which satisfies Re[K]^0 by assumption. We

assume that

Re[JR] -ô&lt;0,

the other case is handled analogously. Then (2.9) has a unique solution Xe C° for
G eC° which can be written in the form

-oc

X(0) KRG(0) KR(0, s)G(6 + soi) ds,

where

KR(6, s) -expU jR(0 + aco)dorV

Since R is continuous and the flow s —&gt; sco ergodic on Td,

s Jo

and we can choose s* so large that

s Jo

holds uniformly in 0 by the compactness of Td. With co |i?|o it follows that

s ds +1 e&quot;ôs/2 ds) |G|o ex |G|0,
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and by the differential équation,

|X|o,&lt;o ^1X10 + 1010 +^ + A2M|o|X|o^c2|G|o.

Thus, KR is bounded as a linear map from C° into C°, and the lemma is proven.

COROLLARY 2.4. If A and M satisfy the hypothèses of Lemma 2.3 and

then also

Proof. This regularity resuit follows easily from Lemma 2.3, since &lt;2&gt; is analytic
in a neighbourhood of A. For instance, if AeC1, and êk dénotes the fcth unit
vector, then

is well defined for small t and continuously differentiable,

showing that MeC1. Similarly, one shows that MeCr if A e Cr.

If A is analytic, we can extend M to a complex neighbourhood of Td by
setiing

M(0 + if) #(A(.+ £))(»)

for small |f |. Then M is continuously differentiable in 6 and f. With ^k 0k + ifk
we find

-t M(« + if) 4&gt;&apos;(A(. + îf -t A(0 + îf 0.

Hence M satisfies the Cauchy Riemann équations and is an analytic function of
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Proof of Theorem 2.1

For Im À ^ 0 the extension M M± of m m± is a solution of the Riccati
équation (2.7) which corresjibnds to the choice

A0 Q-k, A!=0, A2 2

in (2.8). By the ergodicity of the flow s —&gt; sa) on T*,

[Ax 4- A2M] 2[M] 2[m] ±2w

has a non-vanishing real part for Im À / 0. We conclude from Corollary 2.4 that
M is as regular as Q, that is,

m±eaŒ(a&gt;) for q6âa(a)).

This proves Theorem 2.1 for ImÀ^O.
For Im À 0 we consider

V m
m =-

1 + im
&apos;

One readily checks that m satisfies the Riccati équation

with

a0 ~(q - A), ax 2i(q - À), a2 2(q - A) 4- 2.

Moreover, m€i(w) by the same arguments as for Im A ^ 0. Hence m extends to a

function MeC°(Td) which satisfies

where Av are the extensions of av, v 1, 2, 3.

In order to apply Corollary 2.4 we hâve to check the average

[Ax + A2M] [a! 4- a2m].
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For this purpose we notice that

2

It therefore follows from (2.4) and (2.5) that [a1 + a2m&apos;] ±2[w] has a non-
vanishing real part. Now again Corollary 2.4 applies, and Theorem 2.1 is proven.

§3. Quasi-periodic solutions at résonances

Preliminary transformations

For a quasi-periodic potential q with basic frequencies to, the second order
équation

y&quot;=(q(x)-A)y

can be written as the autonomous first order équation

where 0 (6U 6d) are coordinates on the torus T*, and O is the unique
extension of q to Td such that Q((ox) q(x).

In complex coordinates

this System becomes

fx 0

For large À, this can be viewed as a perturbation of a family of rotations with
angular velocity vX. We consider this family in a neighbourhood of a résonance

It is convenient to introduce rotating coordinates v, setting

i(M»)/2 q
(3.2)
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We also write Va ja + a. Then the équations become

(3.3)

with

_,&apos;e-i(k«)&apos;

Our aim is to construct an interval [cr_, cr+] and a continuous family of
coordinate changes

v T(0, cr)z, cr_

which takes this System into a System

z&apos; C(&lt;t)z, 0&apos; cd

with constant coefficients such that

trC(a) O, detC(a){
&quot;&apos; &quot; &quot;*

(3.5)
0, cr_&quot;

but C 0 if and only if cr_ ov This means in particular that C is similar to

J at the endpoints of the interval [cr_,a+], if a_&lt;a+. A suitable basis of

solutions of z&apos; C(&lt;r±)z will then transform into the desired Floquet solutions for
^± (m- + or±)2 with rotation number jul.

We note that the above will imply that

For the Liapunov number V-det C has to be strictly positive in the interior of
oT1^), so [à_, A+] cannot be properly contained in a~l(ti). On the other hand,
the rotation number is clearly constant in [À_, À+], so that this interval agrées with
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The main resuit

We hâve to make some définitions. The matrix jR is analytic and bounded in
some complex domain

2&gt;:|Im0|&lt;r, M&lt;1.

On such a domain, we introduce the weighted matrix norm

\\R\\aèk \MRM-%= sup \MRM-\0, cr)\, (3.6)
(6,(r)eS

where M M($) as in (3.2), and |.| dénotes the maximum of the moduli of the
matrix éléments. Thus, ||.||2,,k is the usual sup-norm in non-rotating coordinates. In
this norm,

-lQU (3.7)

is small for large jx independently of k.

The non-résonance conditions of Theorem 1.3 can be combined to the
assumption

O is supposed to be a continuous, monotone increasing function [0, °°)—»[1,°°)
such that

-Iog/2(s)\i0,
s

and

f °° 1
J —Iogf2(s)ds&lt;oo, e&gt;0.

In addition, we impose the growth condition

n(s)^sd~\ s^O. (3.8)
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This is reasonable in view of Dirichlet&apos;s theorem which states that

min |(/, û))|=ss|û)| ml~d
0&lt;|j|*£m

for ail a). Functions O with thèse properties are called approximation functions
[18].

It is clear that with 13 also any power of il is an approximation function. It
therefore follows from [18] that for p&gt;0,

&lt;P(p)= f n16(^)e-*ds (3.9)

and

inf fl^(Pv)2&quot;Vl (3.10)

are finite, monotone decreasing functions of p. We will see later that &lt;f&gt; measures
the influence of the résonances in the linearized problem, while *P measures their
influence in the nonlinear problem. The exponent of Q, however, is chosen to
obtain convenient estimâtes - see (4.21)-and is in no way optimal.

For the following to be true, the matrix R need not be of the spécial form
(3.4). It suffices that R has trace 0 and is real analytic on 3) in the sensé that ail
coefficients are analytic on SD and hâve the form

R2 Rt

for real (0, a). This is precisely the condition in order that the System (3.3) gives
rise to a real System. We refer to this notion of real analyticity of matrices in the
following two sections.

Finally, we may assume |a&gt;|^l without loss of generality.

THEOREM 3.1. Suppose 09&amp;k,ù))e9t(n) and |o&gt;|^l. Suppose the matrix R
is real analytic on 3) and has trace 0. If

then there exists a-possibly collapsed - interval / [cr_, cr+] and a coordinate
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transformation

v T(0,&lt;r)z, detT=l,

which takes foraeJ the System (3.1) into a System z&apos; C(a)z, 0&apos; -où with constant
coefficients such that (3.5) holds.

On the domain 3}*:\lmd\&lt;r — 2p, (tgJ, the transformation T is analytic in 6,

both T and C are continuons in o-, and we hâve the estimâtes

|(£ _^)|3 12*3(p)-ô. (3.11)

Furthermore,

(3.12)

where b is an off diagonal élément of C.

We will prove this theorem in Sections 4 and 5. Actually we will show that the

dependence on a is C1 in /. After a slight modification in the définition of &lt;P, one
can in fact prove that this dependence is C°°.

Conséquences

Theorem 1.3 follows immediately from Theorem 3.1. We already noted that a

suitable basis of solutions of zf C(a:Jz transforms into the desired Floquet
solutions of (3.1). Also, with 8 \Q\gJn9 the estimâtes (3.11), (3.12) yield

|j|^e-!M(r-2p)5 |&lt;rj*s-,
^ M-

from which the corresponding estimâtes for the À-interval I(fx) of Theorem 1.3

follow.
In rotating coordinates, we are able to transform into a System with constant

coefficients, but hâve to deal with a weighted norm, which dépends on the

résonance. It is useful to free ourselves from this weighted norm and return to
estimâtes in a fixed norm by looking at the transformation S MTM1. Now the
final System will no longer hâve constant coefficients, but will nevertheless be of
an equally simple form.

The following corollary will be used in Section 7 to recover the results of
Dinaburg and Sinai.
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COROLLARY 3.2. For 0, |x =è(fc, o))e0t(n) and ix sufficiently large, there
exists on the interval

a continuous family of real analytic coordinate transformations S S(6, A) with
déterminant 1, which takes (3.1) into the differential équation

and its complex conjugate. Hère (3eM, beC dépend continuously on A and satisfy
|j3|=^|b|. Moreover, for any e&gt;0, we hâve for ix&gt;yi^(e) the uniform estimâtes

tsup |S-Z|&lt;e, \b\&lt;ee&apos;y]k\ |0 + |ui-VÂ|&lt;e (3.13)

with some constant y&gt;0, which is independent of e.

The proof is immédiate. The transformation S MTM~1 takes (3.1) into a

System with coefficient matrix

MCM1 - M{M~X)&apos; MCM1 + i^ _? J.

With C=(r _) and a i/3 purely imaginary, équation (3.13) follows. The
\b aJ

inequality |/3| ^\b\ is équivalent with det C^O and the estimâtes follow from (3.6)
and (3.11) for sufficiently small 8.

§4. Proof of Theorem 3.1

Theorem 3.1 is proven by a rapidly converging itération process. The
transformation T is obtained as an infinité product of transformations Tn, where each
Tn provides a better approximation to some hyperbolic or parabolic System

z&apos; Cn(a)z, aeJn.

The 6- and a-variables remain unchanged during this process, but hâve to be
restricted to shrinking domains. In our estimâtes we use the approximation
function technique introduced by Rûssmann [18].
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Set up

To define the itération process we need to introduce some séquences of real
numbers. The function ^(p) defined in (3.10) is lower semicontinuous on the

space of ail non-increasing, positive séquences pv with sum not greater than p,

endowed with the topology of pointwise convergence. Therefore, there exists a

séquence p0 ^Pi ^ • • • &gt; 0 such that

Clearly, Y,pv p, for otherwise ^(p) is not minimal. We fix such a séquence and
set

v=0

If we assume p &lt; r/2, then r r0 &gt; rx &gt; • • • &gt; rn —» r^ r- 2p &gt; 0.

Next, we set for

11 ®l 2
&quot;&quot;&apos;

•«, c 4d+11. (4.1)

Then ô 80 &lt; ôi &lt; • • • &lt; ôn -» ôoo c1fr3(p) • ô, and we require that 8 is chosen so

small that

8n&lt;Ôoo cW3(p)Ô&lt;4-2. (4.2)

This agrées with the smallness condition in Theorem 3.1. The product in the
définition of 8n will turn out to be the accumulated eflfect of the small divisors

during the first n-l steps of the itération. In particular, the factor 3 appears
because the third power of the small divisors enters at each step-see (4.30).

Finally, we define en by

(4.3)

and mn, sn by

2 (4.4)
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and

sn 4-&quot;-2rr2(mn), n^O. (4.5)

Then enl0 and mnt°°, sn|0.

Induction step

Suppose we are given a closed interval Jn [£n, r\n] and a System of differential
équations

z&apos; Cn(v)z + Rn(B, (r)z, 0&apos; a), (4.6)

where the 2 x 2-matnces Cn, JRn hâve trace 0 and are real analytic on the complex
domain

3)n:\Im6\&lt;rn, \cr-Jn\&lt;sn,

such that for real cr,

^&apos; a=J^ (4.7)
&lt;0, ^n&lt;O-&lt;Tîn

Suppose that

and

IIC - Qlk, Vô. \\Cn - C0|k ^8M- 21&quot;&quot;) &lt;i (4.9)

where \\.\\q =||.||a k and Co=( The dot indicates differentiation with
m Vu —icr/

respect to a.
Our aim is to transform this System into a new System

f&apos; Cn+1(a)C + Kn+1(0, a)C, 0&apos;
o&gt;, (4.10)

such that the new error term jRn+1 is roughly of order e2. Precisely, we will
construct below a new closed interval Jn+1 [^n+i, ^+1] and a transformation

2 Tn(0, &lt;r)fc det Tn 1,
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which is real analytic on the smaller domain

9B+1:|Imfl|&lt;rn+1, |&lt;r- Jn+1\&lt;sn+l

and takes (4.6) into (4.10) such that the same properties as before hold, when n is

replaced by n + 1.

In this section, we will obtain the estimâtes

(4.11)

| n+l ^ en (4.12)

and

l&amp;
+ l-£nl&gt;hn + l-&apos;nnl3SS4en, (4.13)

||Jn+1|^|ftn+1|Jn+i^2|Jn+1|, (4.14)

where bn+1 is any off diagonal élément of Cn+1.

Theorem 3.1 follows from this construction. With

and so=^ 1 the System considered in Theorem 3.1 satisfies our set up for n 0. In
particular,

is sufficiently small. So the itération scheme applies.
The intervais converge to some interval / [£, tî] [ct_, &lt;t+], and

uniformly on

®*= fl 2v:\Im0\&lt;r-2p, aeJ.
v3*0

It follows that T takes the initial System into

for creJ. The remaining statements of Theorem 3.1 follow easily.
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The itérative construction

We describe the construction of Tn and Cn+1, Rn+i. Suppose we are at the nth
step of the itération. Then set

1 (4.15)

Cn+i is clearly real analytic and has trace 0. The new interval /n+1 will be uniquely
determined by Cn+1, and we will see that 3)n+1&lt;^3)n.

To define the transformation Tn we will solve the linearized matrix équation

Ll/n=Dajl/n+[l/n,Cn] K-[K], (4.16)

where 0^=^, d0i and JR^ is a suitable truncation of the Fourier séries of JRn.

We pick a solution Un with trace and mean value 0; it is real analytic. We then set

T^I+Un + Unl un l-V(l-detl/n), (4.17)

where the small correction term i^I is added to achieve det Tn 1.

The change of coordinates z Tn£ takes (4.6) into (4.10), where

K+i T-\-DwTn - TnCn+l + (Cn + RJTn).

n+1 is real analytic and has trace 0, since trCn+1 0, tr (Cn + jRn) 0, and

Inserting the définition of Cn+1 we obtain

and using (4.16), (4.17),

(4.18)

where Tn Tn -1= Un + uJL Below we will use this form to estimate Rn+1.
We now provide the necessary estimâtes.



66 JURGEN MOSER AND JURGEN POSCHEL

Auxiliary inequalities

We first establish some inequalities among the séquences defined at the
beginning, which will be used repeatedly.

Since &lt;PV increases with v,

V=O
&apos;

v n v=O

v=0

which leads together with (4.1)-(4.3) to

c&lt;P3nen c&lt;t&gt;i8Î ^ {côf (V(p))3 r Si&quot;. (4.19)

Furthermore, a straightforward calculation shows that

c03ne2n=en+l. (4.20)

To estimate derivatives with respect to a using the Cauchy inequality, we need

an estimate for ejsn. This requires a bound on O(mn\ in terms of &lt;Pn and en. By
the définition of &lt;f&gt; in (3.9) and the monotonicity of il,

&lt;Pn^ f n16(—)e-sds^nl6(mn) f e~sds

or with (4.4),

m»p» &lt;Pnen2- (4.21)

By the choice of the exponent 16 this yields an estimate of fl (mn) in terms of a

sufficiently small power of e~\ as is needed in the following.
Using again (4.4) and pn^l we see that e~m«^e^ ôf+ which leads to the

first half of
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while the second half follows from (3.8). Therefore we obtain

and

by (4.19). Finally, en ^ ô2&quot; ^ Ôoo • 4~n by (4.2), so we get

6^000-2&quot;&quot;, 2~^VôI-2-n. (4.22)

Proof of the estimâtes (4.8-11) for n -f 1

The différence Cn+1-Cn is easy to bound. On

2J^:|ImO|&lt;rn, |&lt;r-Jn|&lt;sn/2

we hâve by (4.15), (4.8) and the Cauchy inequality

HCn+1-Cj3;, |||Q+i-CnLA^6n. (4.23)

It follows from (4.22) and assumption (4.9) that

HCn+1-C0|U;,Vâ;||Cn+1-CoL;^ô00(2-2-n)^è. (4.24)

Thèse estimâtes suffice to show - see the end of this section - that 3n3â^3n+1)
so that (4.12) and (4.9) for n + 1 will follow from them.

The truncation Rln of Rn and the solution Un of the linearized équation (4.16)
will be constructed in the next section. On the domain

Se&apos;;: \lm6\&lt;r-pn, \a-Jn\&lt;sn,

we will obtain the estimâtes (Section 5)

8^en) (4.25)

el (4.26)
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Accepting thèse estimâtes for now, the remaining estimâtes are straight-
forward. Then

|det t/J9ï&lt;2\\Un\^4d+9&lt;P2ne2n&lt; 1, (4.27)

hence i^ 1 — V(l-det Un) is analytic on 3)^ with

lkI|k |MnUs^|detC7n|a:. (4.28)

It follows that

10^nen (4.29)

by (4.19) and (4.27). This gives (4.11) once we hâve 3^3n+1.
The estimate of Kn+1 consists of three pièces-see (4.18). First,

by (4.29) and (4.8). Second,

by (4.26). And third, with 2&gt;n+1 &lt;= Çb&quot;n,

^^lel (4.30)
Pn

by (4.28), (4.27) and

f °° s 1
#(p)H -e~sds=-,

h 9 9

which follows from (3.8) and (3.9). Finally, ||T^1||S)n+1^2 by (4.29). It thus follows
from (4.18), (4.20) and 4&gt;n2*l that

*„€„- C&lt;Pnen- 6n+1.

This proves (4.8) for n +1 in place of n.
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Position of the new interval Jn+l

We define /n+1 [£+, 17+] as the interval where det Cn+1(&lt;r)=^0, and estimate
its position as given in (4.13), (4.14).

For real a,

- %
b a)

where a, a are purely imaginary, since Cn+1 has trace 0. We write its déterminant
in the form

detCn+1(cr) /g, / -ia + |6|, g -ia-\b\y

so that £+, r)+ appear as roots of / and g, respectively.
We détermine thèse roots. On the real interval J&apos;n:\cr-Jn\&lt;sJ2, creR, we

hâve \à — i\, |6|^VôZ^4 by (4.24), hence the fonctions /, g are strictly increasing
with

|/-l|,|g-l|^è (4.31)

on J&apos;n. The déterminant of Cn vanishes at £n and T)n, which implies

by (4.23). Since 2en^sJS by (4.22), we see that / and g each hâve a unique root
Ç+^r)+ in j;, with

This defines /n+1 uniquely and proves (4.13). Moreover, since sn+l^sj4, the
interval |cr-Jn+1|&lt;sn+1 is contained in the interval \&lt;r-Jn\&lt;sJ2, hence 3)n+i&lt;^

We estimate the length of /M+1. Since /(£+) 0 g(rî+),

\f(U -/(tï+)| |/(tj+) - g(tï+)| 2 |

which with (4.31) gives
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Also,

\b(ar) - b(r?+)| ^ \b\ \&lt;r- v+\ ^IJn+il, cr e /n+1

by (4.24), so we hâve |6|j^2|J|. From this, (4.14) follows.

Infinité differentiability in a

We finally indicate how to obtain infinité diflferentiability in cr. Define the
function &lt;P by

f fla(s)(-V&quot;&lt;fe,

where a ^ 16 is a monotone increasing, unbounded function, chosen so that
Oa(s)(s) is still an approximation function. An example is given below.

Ail the preceding estimâtes remain valid. In addition,

replaces (4.21). Given an integer 1^1 and an arbitrary constant Ci&gt;0, this

subsequently leads, for sufficiently large n, to

and

This and the Cauchy inequalities imply that ail derivatives of Tn, Cn, JRn with
respect to a converge on S* as n tends to infinity.

The function a can be obtained as follows. For s^s* sufficiently large,

ax(s) -log (- log n(s)), a2(s) -log f ^ log û(t) dr
\s / Js t

define monotone increasing, unbounded functions, such that il&quot;1 and Q™2 satisfy
the monotonicity and integrability condition for approximation functions, respec-
tively. We obtain a from ax by inserting intervais of constancy into al9 if
necessary, such that a^a2. Then 17&quot; is an approximation function.
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§5. Solution of linearized équation

To complète the proof of Theorem 3.1, we hâve to construct a truncation Rln

of the Fourier séries of Rn and a solution Un of the linearized équation

such that the estimâtes (4.25), (4.26) hold.
In the following, we usually drop the index n and write R for Rn, 3) for 2&gt;n,

and so on.

Truncation of Fourier séries

We first dérive an estimate for the Fourier coefficients of

/ ~D ~D \
~~

\ I? T? 1 *

\i\3 K4/

The weighted norm \\R\\g, =\\R\\®,k can be written

SI I?ll — mnV D s»~i(fc.JQ)\ I_ — f\ — I_ K — l,. — K ^^^1^||x\.||ç2) — IIldA [XV^c |2), /v\ — \J — »v4) »v2 — *^ — ^3 * V.&quot;^*A/

It follows from the Bessel inequality (see [16]) that the Fourier coefficients of

(5.2)

where $:\cr-J\&lt;s.
R* is obtained by truncating the Fourier séries of JRAe~l(k*&apos;0) at order m mn,

where mn was defined in (4.4):

R* is real analytic and has trace 0.

We estimate the eut off error ||JR —JRe|| on 3)&quot;:\ïm 6\&lt;r-p, |o— J\&lt;s. By the



72 JURGEN MOSER AND JURGEN POSCHEL

Schwarz inequality and (5.2),

Using that mp^d by (4.4), the sum can be bounded by 2d times

by (3.8), (4.4) and (4.21). Since HJRlU^e it follows that

This proves (4.26).

Construction of U

We solve DJJ+[U, C] Rl -[JRf]. The right hand side has trace and mean
value 0. So we can normalize the solution by

trl/ O, [LT] O,

and write

u=(u1 -u)&apos; ^=I^lOe)-

If C= ^ we then hâve to solve the System of linear équations\ c —a/2/

/«/,«) c -b Wûa /rxa
2b i(j,«)-a 0 172, R2J (5.3)

-2c 0 i(i,a&gt;) + al \Û3J \R3J

for the Fourier coefficients of 17. Hère, / can be restricted to the set

%= Û{j¥0:|j-fcJ^m},
X l

since the other coefficients of R* vanish by truncation.
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The déterminant of the 3 x 3-matrix is

This déterminant does not vanish for /^0 and aeJ, for then det C^O. We show
that âj j= 0 also for ael, if we restrict ourselves to /g2£.

On one hand, our assumption 0, |(fc, ù))g01((2) implies

U&lt;o)\*a-\\j\)9n-1&lt;\j±k\)9 /^o, (5.4)

hence

for ail je2t. On the other hand, (4.9) implies |(detC)&quot;|=^l on $, and since
det C^O on J, we must hâve

Re det C(a) ^ |cr - J\ &lt; s

on $. By définition and the above estimate, s^4~2/2~2(m)^4&quot;2(/, co)2, and we
see that

|(/, a))2- 4 det C\ s* |(/, a))2 - 4 Re det C(a)\

^(/, &lt;o)2-4s

hence

(5.5)

on $ for ail / g 2T.

Thus, we can solve (5.3) and find

where Û,, R, stand for the column vectors in (5.3), and

+a)-2bc -2b2
-2c2

is the inverse matrix to that of (5.3).



74 JURGEN MOSER AND JURGEN POSCHEL

Estimate in the weighted norm

It remains to estimate U in the weighted norm. By comparison with (5.2), this
requires that we estimate |ÛXj| elj~kxlr, or, equivalently,

We recall that kx 0 and fc2 -fc -fc3.
The crucial observation is that we hâve a bound on IMjAjM&quot;1! which only

dépends on the small divisors g, î(/, co). Indeed, we hâve

uniformly on $ by (4.9), hence the Àjutth coefficient of the matrix A, is bounded
by

by (5.5) if fôl^l. For |f,|&gt;l we can replace |^|3 by |^|. Since

by the triangle inequality, we conclude that

IMAM,&quot;1!^, D, min (|^|3, |

uniformly on ^. Consequently

on ^.
The remaining estimâtes follow the usual lines. We hâve

V,= I !^. (5.6)
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By the Schwarz inequality,

jeZd Ij-fcJ^P

The first factor is bounded by 2d+2||i?||| by (5.2), while the second factor is

bounded by

by [17] and (5.4). It follows that

(5.7)
t=o

Applying Abel&apos;s partial summation formula to (5.6) and (5.7) (see [16]) we finally
obtain

max,

Since ||jR||g,^8 we hâve proven the desired estimate (4.25).

§6. Coexistence of almost periodic solutions

The proof of Theorem 1.4 is based on a simple perturbation argument. We
replace q by q + eq and study the effect on the solutions by a &quot;variations of
constants&quot; formula - see (6.1). Applying the averaging method we will show that q
can be chosen as to make the resulting System hyperbolic. This is the adaption of
an argument given in [15], where it was used to construct limit periodic potentials
with a Cantor set spectrum.

Suppose q is almost periodic with an arbitrary frequency module, and the

squares of ail solutions of

y&quot; (q(x)-À0)y
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are in si sî(,M). Let F(t) (y) y2,), detF(t) 1, be a fondamental solution of
\yi yy

(yY=( ° &apos;V)
\y&apos;) \q(x)-À0 oAy&apos;/&apos;

Replacing q by q + eq and introducing the new vector &lt;fr by

we obtain the difïerential équation

2 )&lt;^. (6.1)
y? yy/

Our assumption means that each élément of the two by two matrix is in M. We
are now going to choose q in M in such a way that this System becomes

hyperbolic.
We apply the method of averaging. Taking mean values in the coefficient

matrix in (6.1) and disregarding e, we obtain a constant matrix with trace 0 and
déterminant

D(q) [yfq][y?q]-[y1y2q]2

[Y1q]2-[y2q]2-[Y3q]2,

where

Y2=è(y?-yl),

The functions Yl9 Y2, Y3 are in si, so D(q) is a quadratic form of type (1, 2) on
si. We can choose q in si such that

D(4)&lt;0,

which makes the averaged System hyperbolic. We may even choose q to be a

trigonométrie polynomial and normalize it by
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Calling the averaged matrix J, we thus obtain a System

\o -1/
where J is similar to J and Vesi.

The above first order System is not yet in a suitable form to prove it to be

hyperbolic. To improve on this we write

Then

tf (eT^JT+eTW-T + eVf))i//.

Given any ô&gt;0 we can approximate V by a trigonométrie (matrix valued)
polynomial Vp in sd such that

sup|(V-Vp)(x)|&lt;ô, [Vp] 0.

Then we define T by the conditions

f&apos;=Vp(r), [f] 0,

which hâve a unique bounded solution. Choosing e sufficiently small, the
transformation T is invertible, and we hâve

i// e(J+ W(t))h sup | W(x)|&lt;2&amp;
X

It is well known-see [4,19]-that this System admits an exponential
dichotomy for e^O, if 8 is sufficiently small. That is, there are two linearly
independent solutions i/f+ and i£_ which decay exponentially as t—&gt;+œ and
t —&gt; -œ, respectively. Thus for the potential q + eq the value Ào belongs to the
résolvent set, that is, we hâve an open spectral gap near Ao for ail sufficiently small
e ^ 0. Its rotation number jll is independent of e since |x is a continuous function
of e and takes the values in a countable set.

It remains to prove the last statement of Theorem 1.4. The conclusion of the
theorem is not aflfected if a constant c is added to q, since this amounts only to a
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shift of the spectral gap on the À-axis. We choose c so that

This is possible, since Yt is positive. It follows that D(q)&lt;0 unless q + c lies in
the orthogonal complément N of Yl5 Y2, Y3. Equivalently, q must not lie in the span
{1, N}, a subspace of si of codimension 2. This complètes the proof of Theorem
1.4.

We conclude with the remark that the fundamental solution F can be chosen

so that

This was proven in [15] for the periodic case, but the proof applies to the almost

periodic case as well. In this représentation we may choose

§7. The set 0l(£2)

Distribution of 0t({l)

We show that for suitable &lt;o and £2 the set 0t (O) not only is not empty, but
that its set of cluster points

mf{O) (clos »(fl))\»(û)

contains the set Jf(O/3). For the following arguments we are indebted to Peter
Sarnak and Walter Craig.

We recall that

Mn) {$eM:\t-l(j,o&gt;Tl^n(\j\\ jeld}

and

is a Cantor set, while every point in @t(O) is isolated.
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Suppose (o satisfies

and also |co|^l. Let fl be another approximation function somewhat larger than
O0, namely

n(s)^2no(3s), s 5*0. (7.2)

In view of the natural growth condition (3.5) it is no restriction to require that fl
satisfies

(7.3)

For example, if OQ(s) co(l + s)3° and j30&gt; d -1 ^ 1, then

satisfies our assumptions with s* (21/3-1)/(2-21/3).

THEOREM 7.1. Under the preceding assumptions,

Moreover, for ail large T,

m([T, oo)\jV(/2/3))^2d+3f t^fl-HO dt.

The second statement is straightforward. For |(j, o&gt;) to lie in [T,oo) it is

necessary that

2T^|(/,a&gt;)|^|/|M^|j|.

Therefore,
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and the measure of the union is bounded by

for ail sufficiently large T.

The inclusion â&amp;&apos;c X is also easy to see. For, if £ is a cluster point of £%, then
in the defining inequality of 91 we can go to the limit to obtain

hence £eJ{. Since every point in 01 is isolated, £^9fc. This shows that 9t&apos;

To prove the inclusion J{(il/3) c: âîX^)» we need the following lemma. With
à}, j € Zd, we dénote the closed intervais

A {x : \x -Kl o&gt;)\ ^ r,}, r} 2«-l(|/|).

LEMMA 7.2. If jul =|(fc,w)^3î(/2), then ffiere cxisrs an integer vector leZd
such that

Moreover, if è|k|^s*, then 4fc c A(.

Plroo/. By the définition of 9l(fï) there exists ieZd such that

|*i.-èa,&lt;o)l-1&gt;/2(|fj). (7.4)

However, if |I|&gt;||k|, then

hence, by (7.1),
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and by (7.2),

Hence we must hâve |I|&lt;5|fc|.
To prove the second statement of the lemma, we hâve to show that

By (7.4), it suffices to show

12 2
-4- r—¦&lt;-

n(\i\) flfliti) n(\i\)9

or

m(\i\)&lt;a(\k\).

But this clearly holds, since il is monotone increasing, |I|&lt;2 |fc|, and (7.3) applies

The above shows that a résonance jul =|(k, &lt;o) fails to be in 31 only because it
is too close to a résonance \(l, co) of lower order |l|&lt;|fc| and therefore contained
in A{.

We can now finish the proof of Theorem 7.1. Clearly, the set

jeZd je;

contains jV(/3/3). We will show that any point £ e 3if(/2/2) is the limit of a séquence
iu,n in 9t(Q). Since 3î(f2) and Jf(O/3) are disjoint, this will prove that Jf(ÛI3) &lt;=

9L\O).
We construct the jutn as follows. For

^ JJn4

is a closed set not containing £ Hence
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On the other hand, {|(k, a))} is dense in (R, so ÔN —? 0 monotonically. We define
the séquence Nn —&gt; «&gt; by requiring that

for n&gt;0, and No 0. Then there exists £ne%Nn with

dist (è &amp;) ÔNn &lt;dist (fc %Nn_x). (7.5)

Hence |n belongs to some interval AK with 1^1 ^. We set

and show that jutn belongs to &amp;t(O), if Nn^2s^. Indeed, if we had iin£@l, then by
Lemma 7.2 there would exist an ^ with |ln|&lt;2|kn|&lt;Nn so that

which contradicts (7.5). Hence fins0l. The /utn converge to £, since

and Theorem 7.1 is proven.

Continuous extension to the Dinaburgh-Sinai set

Finally, we want to show that Theorem 1.2 of Dinaburg and Sinai is obtained
as a limit case of Theorem 1.3. For this purpose, we recall Corollary 3.2,

according to which there exists a real analytic matrix S S(0, À) for

tion u S(-jsuch that the transformation u S(-j takes the System (3.1) into

0&apos; co. (7.6)

Moreover, S — lis uniformly bounded in a fixed strip |Im0|&lt;Y.
In order to extend S and the System (7.6) to the closure Â or A, it is useful to
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normalize S (stJ) by the condition

(7.7)

This is obviously possible by replacing Ç by eI&lt;p£ with a real constant &lt;p.

THEOREM 7.3. If the transformation

satisfies (7.7), then it extends continuously to A, remaining analytic in |Im0|&lt;Y.
For A gÂ\A, one has (3 b 0 in (7.6), so that the transformée system becomes

(7.8)

This theorem clearly implies Theorem 1.2, since Â
For the proof, we consider any converging séquence Àv e A with limit À* ^ A,

and note that |fcj —&gt;°°. On account of the uniform estimate in (3.13), there exists
a subsequence k&apos;v such that the matrix functions

converge uniformly to a real analytic S^d) in a substrip |Im0|&lt;Yr, 0&lt;7;&lt;7.
Since

by (3.13) and |kv|-&gt;oo? We conclude that j3v, bv-&gt;0. Hence in the limit the
transformed System has the form (7.8).

It remains to show that the sélection of a subsequence is unnecessary, if we
impose the condition (7.7). Indeed, otherwise there exists another subsequence \v
with a différent limit SL ^ S^. But it is easily seen that the most gênerai mapping
in our class taking (7.8) into itself is a rotation £ —&gt; el&lt;p£, &lt;p real constant, from
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which it follows that

The normalization (7.7) forces el&lt;p 1, hence Soo Soo, a contradiction.
We see that the limit S^ is unique. This implies that the extension of S(6, A) to

À is continuous.
Combining this resuit with Corollary 1.5 we see that any sufficiently large

point in the spectrum, which corresponds to a rotation number in Jf(O/3), is the
cluster point of spectral gaps, which, in the sensé of Corollary 1.5, are generically

open. In other words, the subset of the spectrum constructed by Dinaburg and

Sinai generically lies in the boundary of the spectrum.

REFERENCES

[1] Arnold, V I, Proof of a theorem by A N Kolmogorov on the invariance of quasi-penodic
motions under small perturbations of the Hamiltoman Russ Math Surveys 18 (1963), No 5,

9-36
[2] Avron, J and Simon, B Almost penodic Schrodinger operators I Limit penodic potentials

Commun Math Phys 82 (1981), 101-120
[3] Avron, J and Simon, B Almost penodic Schrodinger operators II The integrated density of

states Duke Math J To appear
[4] Coppel, W A, Dichotomies in Stabihty Theory Lecture Notes m Mathematics 629 (1978)
[5] Dinaburg, E I and Sinai, Ya G, The one-dimenswnal Schrodinger équation with a quasi-

penodic potential Functional Anal Appl 9 (1975), 279-289
[6] Johnson, R A On almost-penodic hnear differential Systems of Milhonscikov and Vinograd J

Anal Appl 85 (1982), 452-460
[7] Johnson, R A and Moser, J The rotation number for almost penodic potentials Commun

Math Phys 84 (1982), 403-438
[8] Johnson, R A and Sell, G R, Smoothness of spectral subbundles and reducibihty of quasi-

penodic hnear differential Systems J Difï Eq 41 (1981), 262-288
[9] Kolmogorov, A N On the conservation of conditionally penodic motions under small perturba¬

tions of the Hamiltoman Dokl Akad Nauk SSSR 98 (1954), 527-530 [In Russian]
[10] Kotani, S Lyapunov indices détermine absolutely continuous spectra of stationary random

one-dimensional Schrodinger operators Prepnnt Kyoto University, 1982
[11] Levitan, B M, Almost penodicity of infinite-zone potentials Math USSR Izv 18 (1982),

249-273
[12] Magnus, W and Winkler, S HilVs équation Interscience, 1966
[13] Millionscikov, V M Proof of the existence of irregular Systems of hnear differential équations

with quasipenodic coefficients Diflf Equ 5 (1969), 1475-1478
[14] Moser, J, Convergent senes expansions for quasi-penodic motions Math Ann 169 (1967),

136-176
[15] Moser, J An example of a Schrodinger équation with almost penodic potential and nowhere dense

spectrum Comment Math Helv 56 (1981), 198-224
[16] Russmann, H On optimal estimâtes for the solutions of hnear partial differential équations of first

order with constant coefficients on the tonis Lecture Notes in Physics 38 (1975), 598-624



An extension of a resuit by Dinaburg and Sinai on quasi-penodic potentials 85

[17] Russmann, H Note on sums containing small dwisors Comra Pure Appl Math 29 (1976),
755-758

[18] Russmann, H, On the one-dimensional Schrodinger équation with a quasi -penodic potential
Annals of the New York Acad Sci 357 (1980), 90-107

[19] Sacker, R J and Sell, G R A spectral theory for hnear differential Systems J Diflf Equ 27
(1978), 320-358

[20] Scharf, G Fastpenodische Potentiale Helv Phys Acta 24 (1965), 573-605
[21] Simon, B Almost penodic Schrodinger operators areview Adv Appl Math 3 (1982), 463-490
[22] Vinograd, R E, A problem suggested by N P Erugin Diff Equ 11 (1975), 474-478

ETH-Zentrum
Dept of Mathematics
CH-8092 Zurich

Received July 29, 1983


	An extension of a result by Dinaburg and Sinai on quasi-periodic potentials.

