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An extension of a result by Dinaburg and Sinai on quasi-periodic
potentials

JURGEN MOSER and JURGEN POSCHEL

§1. Introduction

Floquet representations

We consider the differential operator

2

L=-25+a(x)

on the real line R, where q is a quasi-periodic real valued function. More
precisely, we define L as the unique self-adjoint extension of the above operator
on C.omp(R), the space of twice continuously differentiable functions on R with
compact support. Such a self-adjoint extension is unique, since this problem is in
the “limit point case.”

A function f is called quasi-periodic with rationally independent frequencies
(wy, ..., wy) =w, if it can be written in the form

£(x) = Flwyx, . . ., oyx) = F(ax),

where F is a continuous function with period 2+ in all d variables. The space of
all these functions f is denoted by 2(w). In 2(w) we will distinguish the subspaces
2% 9% and 2" according to whether in the above representation, F is analytic or of
class C*, C', respectively. Clearly, if for instance f€2%(w), then f is an analytic
function of x and admits a Fourier series expansion

d
f(x) = z fiei(j,m)x’ (], (L)) = Z jiwi’
i=1

jez?

where
e, 1ji= 3 i

39
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for all j € Z* with some positive constants c, y. The converse, however, is not true.
It may happen, that f is analytic, while F is only continuous [7].

The space 2(w) is contained in the space & of all uniformly almost periodic
functions in the sense of Bohr. With any fe o we can associate a mean value

(1= tim ¢ | ) de

and a frequency module # = M(f), which is the smallest module over Z containing
all those frequencies v for which

[fe™™*1+#0.

For example, M(f) ={(j, w): j €Z?} for feQ(w).

In the case d =1, the functions q € 2(w) are simply periodic of period 27/w,,
and the operator L gives rise to Hill’s equation with the familiar band spectrum.
Moreover, the differential equation

Ly =-y"+q(x)y = Ay (1.1)
has two linearly independent solutions of the form
e" p,, e "p,, if 2iwdw,Z

or

e (p,+expy), e p,=e p;, if 2iwewZ

where £ =0, 1 and p,, p», ps are complex valued functions of period 27/w,. This is
the content of Floquet theory [12].

The following is motivated by the question for an analogous representation of
the solutions of (1.1) in the quasi-periodic case. To be precise, let # be one of the
subspaces of 2(w) introduced above. Given qe & we say that equation (1.1)
admits a Floquet representation if it possesses two linearly independent solutions of
the form

ex1, e xa, if 2iwgM(q) 1.2y

or

eV (x1+ exx2), e x,=e x5, if 2iweM(q) (1.2)"

where € =0,1 and xi, X2, X3€%.
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Necessary and sufficient for (1.1) to admit a Floquet representation is that the
first order system

(;>: (q(x(;—x 3)(:) (1.3)

can be transformed into a system
Z’=C(A\)z

with constant coefficients by a transformation

(;,) =T(x, Az,

where the coefficients of T and T~ ! belong to %, and d/dx argdet T has mean
value 0. Then tr C =0, and the eigenvalues of C are of the form +w mod (i#),
where w is the exponent in (1.2).

In contrast to the periodic case, however, such a Floquet representation is
generally not possible for all A for almost periodic potentials, as examples in 2(w)
with point eigenvalues show [7]. For other examples, see also [6, 13, 22].

The rotation number

Even if such a Floquet representation is not available, one can still define the
analogue of the Floquet exponent w = w(A) for any almost periodic potential. The
following was shown in [7]. If ImA >0 and G(x, y;A) is the kernel (Green’s
function) of the resolvent (L —A)™!, then G(x, x; A) and G !(x, x; A) are almost
periodic, and

) —1]" dt
A=lim— | —/—/—
wid) e x J 2G(t, t; A)

defines a holomorphic function on Im A >0. This function satisfies
Imw>0, Re w<0.
Moreover, the harmonic function

a(A)=Imw(A)
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is continuous in Im A =0, which on the real line can also be defined by
.1 , .
a(A)=lim . (@'(x, M) +ig(x, A)), (1.4)

where ¢ is any real solution of (1.1). This function « is called the rotation number
for g, which will play an important role in the following.

On the real axis, a is a continuous, monotone increasing function which is
constant precisely on the intervals I of p(L) NR, where p(L) is the resolvent set of
L. Moreover, on any such interval, 2a belongs to the frequency module of q. In
particular, if q €2(w), then

a(A)=3(j,w) for Ael

for some jeZ% This is the “gap labelling theorem.”
For further interesting properties of the rotation number see also the paper by
Kotani [10]. More references can be found in the review article by Simon [21].

Results

In order to find those A for which (1.1) admits a Floquet representation, we
require that

G, )" <Q(j), O0#jez, (1.5)

where (2 is some not too rapidly increasing approximation function. The precise
properties of {2 are stated in Section 3.! For instance, almost all w €R? satisfy
the Diophantine inequalities

G, @) <cljl®, 0#jez? (1.6)
with some constants ¢>0 and B >d—1.

THEOREM 1.1. If q €2°%(w) and o satisfies (1.5), then (1.1) admits a Floquet
representation for every A € p(L), the resolvent set of L. If q € 2™(w), then the same
holds, if w satisfies (1.6).

This follows from the work of many authors, and one finds references, for
example, in [8, 19]. The proof is based on the hyperbolic character of the flow of

! Note that this function 2 is the inverse of the functions € in [5] and [18].
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(1.3), since Re w#0 for A € p(L). For the sake of completeness, we include a
proof of Theorem 1.1 in Section 2.

It remains to study the case A € o(L), where o(L)=C\p(L)<R is the spec-
trum of L. The rotation number w = a(A) is an increasing function of A € R, which
is constant precisely in the spectral gaps of L. Thus, if u # 1(j, ») for all j € Z¢, then
a”'(n) is a unique point in the spectrum, and we speak of the non-resonant case.
In the resonant case, we have u=1(k, w) for some keZ? Then a '(u) is
a— possibly collapsed —interval [A_, A, ], whose endpoints belong to o(L).

Dinaburg and Sinai [5] considered rotation numbers p not too close to
resonances 3(j, w). Precisely, they considered the set

N ={p eR:{n —3(j, o) < Qj}), jeZ%,

where

s
Q(s)=cexp (‘0g1+8 s)’ s=g,

with positive constants ¢, €. This is a Cantor set, which leaves out in R a set of
small measure.

THEOREM 1.2 [Dinaburg-Sinai]. Suppose q € 2%(w) and w satisfies (1.5). If
wEeN(Q) is sufficiently large, then (1.1) admits a Floquet representation for
A =a (). That is, (1.1) possesses two linearly independent solutions of the form

e x, e "y, x €2%(w).
In particular, these solutions belong to 2*(w, w).

This result gives rise to a Cantor set contained in the upper part of the
spectrum, in fact, in the absolutely continuous spectrum. This theorem was
sharpened by Riissmann [18] who also enlarged the class of approximation
functions (2.

The purpose of this paper is to derive a similar result in the resonant case, that
is, for rotation numbers p =31(k, w). However, not all those w are accessible to
our technique, and we have to restrict ourselves to the set

R(Q) ={n =3k, 0):|u =33, @) < Q(j]), k#jeZ}. (1.7)

The points in R(2) can be considered as resonances not too close to other
resonances. Note that R () and N¥(L2) are disjoint.



44 JURGEN MOSER AND JURGEN POSCHEL

THEOREM 1.3. Suppose q€2%(w) and w satisfies (1.5). If weR(2) is
sufficiently large, then the interval

I =M, A J=a"'(n)

is either collapsed to a point, in which case (1.1) has two linearly independent
solutions

e x, e ™y,  xe%(w), (1.8)

or I(w) has positive length, in which case (1.1) has two linearly independent
solutions

inx

e (atxxa),  €"x2 X1 X2€2%(w) (1.8)"
at each endpoint of I(n). Moreover, if u =3k, ), then

I(w)<ce™,  |A,—p?<=c
with positive constant c, vy, which are independent of k.

Actually we will construct a whole family of Floquet representations for
A €[A_, A, ], thereby continuing the hyperbolic solutions in the interior of the gap
to its endpoints (see Section 3).

Gaps

We will show that the first alternative in Theorem 1.3, where I(w) degenerates
to a point, is exceptional. In this case, according to (1.8)', all solutions are
quasi-periodic, in fact, are in 2%(w/2) since p =3(k, ). This is analogous to the
periodic case: if A is an endpoint of a spectral gap, then all solutions are periodic
with twice the period of the potential, if and only if the gap degenerates to a
point. One refers to this as ‘“‘coexistence of periodic solutions” [12]. Thus, for the
gaps o~ '(u) with sufficiently large w in &(£2) one has the analogous phenomenon
in the quasi-periodic case.

In the case of a collapsed gap, the squares of all solutions belong to 2%(w) -
and not only to 2%(w/2). To show that the collapse of such a gap is exceptional,
we prove a more general result about almost periodic potentials q. If for some
A =), the squares of all solutions of (1.1) are almost periodic with frequency
module #, then A, corresponds to a collapsed gap, which can be opened up by an
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arbitrarily small perturbation in (), the space of all almost periodic functions,
whose frequency module is contained in /.

THEOREM 1.4. Let q be almost periodic with arbitrary frequency module, and
assume that for A = A, the squares of all solutions of (1.1) are almost periodic with
frequency module M. Then there exists a real trigonometric polynomial 4 € (M)
such that for all sufficiently small € # 0 the potential

has a nondegenerate gap & (), where u = a(A,), and & is the rotation number for
4. More generally, this holds for all G € A (M) outside a subspace of codimension 2.

COROLLARY 1.5. In any ball
B, ={a0=0wn: sup l0@)I<r}carw)
Im 8l<<vy

the set of those q, for which all gaps a () with w e R and w = u4(r, v) are not
collapsed, is generic.

One may expect that generically all gaps are open. But our technique assures
this only for those gaps corresponding to w € R({2) sufficiently large. Actually, in
the class of limit periodic potentials, generically all gaps are open [2]. But this
situation is easier, since such potentials can be approximated by periodic ones.
Other cases of almost periodic potentials with gaps clustering at infinity were studied
by Levitan [11].

We remark that by changing the frequency module, every point A =a ™ '(w),
p € 4, in the spectrum provided by the theorem of Dinaburg-Sinai can become a
nondegenerate gap by a small perturbation 4 €2%(w, 2u), that is, by replacing q
by q+&d, where § is a real trigonometric polynomial in 2°(w, 21). Indeed, this
requires just the observation that according to Theorem 1.2 the squares of all
solutions of (1.1) belong to 2%(w, 2w).

Extension to the Dinaburg-Sinai set

There is another connection with the Dinaburg-Sinai set &. In fact, their
theorem can be obtained from our result as a limit case. To explain this, one has
to study the set R = R(£2) of resonance points more closely. Clearly, none of the
points of R are cluster points of &. However, we shall show in Theorem 7.1 that
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the set R’ of cluster points of R satisfies
N(2/3) = R'(Q) = N (D).

If we consider the solutions described by Theorem 1.3 for a sequence A, €
a ' (u,), p, €R, for which A, — Ay, p, — px=a(Ag) €N, then one verifies that
they converge to solutions of (1.1) for A = A, of just the form given in Theorem
1.2. The details of this argument, which is based on uniform estimates of these
solutions on the set R, will be given in Section 7.

Combining these results one sees that the Floquet representations for the
solutions of (1.1) are extended from the resolvent set to a closed subset A of the
spectrum, which is characterized by (1.7). This set is of positive measure and
includes the part of the spectrum found by Dinaburg and Sinai.

More importantly, this argument together with Theorem 1.4 shows that for
generic potentials in 2°(w) all points of the subset of the spectrum provided by
the Dinaburg-Sinai theorem are cluster points of open spectral gaps. One may say
that generically this subset lies in the boundary of the spectrum.

Method of proof

The essential result of this paper is Theorem 1.3, which is proven by a
perturbation argument. By an infinite succession of linear transformations, the
system

(;)z (q(x())_)\ é)(yy)

is transformed into one with constant coefficients. To control the effect of the
small divisors occurring one uses a rapidly converging iteration scheme, as it was
done in [1, 9, 14, 18]. The main difference to the proof of Theorem 1.2 lies in the
difference of the null space of the linear operator

d
U=U(0) > AU=D,U+[U,Cl, D,= Y o,
i=1

where U is 2 x 2-matrix of trace 0 with real coefficients in C*(T"), and C=C is a
2 X 2-matrix with constant coefficients and eigenvalues +w, Im w = p. If w # 3(j, o)
for all j, then the null space of A is 1-dimensional, and this 1-dimensional space
can be compensated for by adjusting the parameter A [14,18]. But in the
resonant case, p =3(k, ), the null space has dimension 3 and can be
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det C <0

Figure 1

identified with sl(2,R), the Lie algebra of real matrices with trace 0. This space
can, of course, not any more be compensated for by a single parameter.

The Lie algebra sl(2,R) contains the cone € ={C:det C =0}, which separates
sl(2, R) into two open regions, the stable (det C > 0) and the unstable (det C <0) one.
The unperturbed system corresponds to a curve C(A) in sl(2,R) for —§ <A —A,<
& which passes through the vertex of € for A = A, and otherwise lies in the stable
region. After perturbation, such a curve will generally not any more pass through
the vertex of €, but will partially lie in the unstable region. This geometrical fact
corresponds to the opening of a gap under perturbation (see Fig.1). It also
shows the exceptional character of a collapsed gap.

The details of the proof of Theorem 1.3 will be carried out in Sections 3-5,
after discussing the Floquet representations on the resolvent set in Section 2. In
Section 6 we prove Theorem 1.4. In Section 7 we finally extend our results
continuously to the Dinaburg-Sinai set.

Open problems

We mention two open problems. Although it is easy to give q € 2°(w) which do
not admit a Floquet representation for some A even if (1.6) holds, such an
example in 2%(w) is not known to us. In particular, can one have point eigen-
values for q € 2*(w) with w satisfying (1.6)?

Second, it has to be pointed out that our approach may be excessive for
showing that gaps can be opened up by small perturbations, and it is conceivable
that this question can be decided by easier means. We do not know whether
generically for qe2%(w) all gaps are nondegenerate, or at least all gaps with
sufficiently large A.
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§2. Floquet representations on the resolvent set

Smoothness of splitting and integration

For A in the resolvent set, there exist two linearly independent solutions
Y.(x, ) and ¥_(x, A) of (1.1) where ¢, € L*(0, ©) and ¢_e L?*(—, 0). This is well
known for Im A # 0. For real A € p(L) one can choose, for instance,

Y., X>x,
o, x<x’

@L-nf={

where f is any continuous function with compact support in (x_, x,) such that
*» [y dx#0 for every nontrivial solution y of (1.1).

These solutions ¢, ¢_ are unique up to a multiplicative constant. Moreover,
for Im A # 0, they have no roots, and their logarithmic derivatives

Ul YL
mx,AN)=—, m_(x,\)=—

* . -
are uniquely defined. By a theorem of G. Scharf [20], m, are almost periodic
functions whose frequency module is contained in #(q). In particular, if q € 2(w),
there exists a unique continuous function M,=M_,(6,A) on T9, called the
extension of m,, such that

m.(x, A) = M (wx, A). 2.1)
For Im A =0, the roots of = ¢, give rise to singularities of m = m_. But for

real A, the function m is also real, and one avoids such singularities by consider-
ing, for example,

gy oom
y+iy 1+im

m=

instead of m. In other words, we consider the values of m on the projective space
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PL. We say that
me%p,
where F =92%(w) with a =r, x, a, if

am+b
cm+d

ceF

for some complex constants a, b, ¢, d with ad —bc = 1.

We will prove Theorem 1.1 in two steps. The first step consists in showing that
m is of the same regularity as q, in the sense described above, the second in
showing that . can be written in the form (1.2). The latter requires just the
integration of an almost periodic function. Therefore, the first step is the more
important one, and it is worth observing that it does not require any small divisor
conditions, but depends only on the fact that the exponent

wA) =[m,]=-[m_] (2.2)
satisfies

Re w(A) <O, A ep(L).
For Im A # 0 this was established in [7], and the full statement follows from the
maximum principle applied to the harmonic function Re w(A). Since in a spectral

gap I,

1i£r01 Im w(A +ig) = a(A) = n = const.,

the reflection principle shows that w(A) admits an analytic continuation across I
to Im A <0 by setting w(A)—ipn = w(A)—in. We see that Re w()) is one valued
across I and thus harmonic, hence negative, in p(L).

THEOREM 2.1. Let F =2%(w) with a=r,,a. If qge % and A € p(L) then

m=m_,e%p.

Precisely, me % and m = €% for InA#0 and Im A =0, respectively.

1+im
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COROLLARY 2.2. Under the above assumptions there exists a 2X2-matrix
T =T(x, A) such that the elements of T, T~ ' belong to ¥ and the transformation

(yy) = T(x, \)z

takes (1.3) into
z'=D(x, A)z,

where D(x, A) is a diagonal matrix with elements in %. Moreover,

d
[E; log det T(x, )\)]=O. (2.3)

Proof of Corollary 2.2. For Im A # 0 we choose
_ 1/ '1’—)('-{’+ 0 )—1= 1 1 )
T A) (w; AT (m+ m._

0
so that z’ = Dz possesses (l‘lg’), <!Il ) as solutions, that is,

D =diag (m,,m_),  [D]=diag(w,—-w)

by (2.2), hence tr[D]=0.
For real A in a spectral gap I with a(A)=1(k, w) we set

B (1 —im, 1- irﬁw)(e“i"‘"”)" 0)
" m_ 0o 1/

¢+ + "l’g- 0 )(ei(k,w)x

Thenw1thE=( 0 - y+igl 0

h
1) we have

D = E'E '=diag (p. +i(k, ), p_)
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with
pa = i + (= A1t + i) = et S 2.4
Yo+ il
It follows from (1.4) and the asymptotic behaviour of ¢, and ¢_ that
[p-1=w, [p-]1=—w. (2.5)

Hence also in this case
[D]=diag (W +i(k, w), —w) = diag (w, —w)

and tr[D]=0, since Im w = a(A) =3(k, ).
By Theorem 2.1 the coefficients of T so chosen belong to %. Moreover,

detT=m_—m,, (_— 1, )e (ke
respectively, which is bounded away from zero, if A € p(L). Because of

D=T'AT-T'T,

where A is the matrix in (1.3), we conclude from tr[D]=0, tr A =0 that

1
O=[tr T"'T']=lim —

x—0 X

I (det T) dt,
b detT

proving (2.3) and the corollary.

The proof of Theorem 1.1 is now immediate. In order to transform the
diagonal system

into constant coefficients, we merely have to set

Z=esg, 5= | @GO-l4Da

While in general for a quasi-periodic function d; the integral is not bounded, it is
quasi-periodic and of the same class as d;, if d; belongs to 2%(w) or 2™(w) and w
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satisfies (1.5) or (1.6), respectively. The above transformation maps (2.6) into
with [d,]=w = —[d,]. Therefore, equation (1.1) admits a fundamental system of

the form (1.2), and Theorem 1.1 follows.
It remains to prove Theorem 2.1.

Riccati equation

For Im A # 0 the proof of Theorem 2.1 will be based on the fact that m =m, is
a bounded solution of the Riccati equation

m+m?*=q—A.
In the quasi-periodic case, due to the theorem of Scharf mentioned above, m as
well as q admit unique extensions to continuous functions M and Q on T%

Although M is in general not differentiable, it does admit a directional derivative
in the direction w, which we denote by D M. Then the above equation extends to

DM+M?*=Q-A (2.7

on the torus T4,
More generally, we now consider the differential equation

DM+P(A M)=0, P(A,M)=A,+A M+3iA,M? (2.8)
where A,, A;, A, are complex valued functions on T¢. We denote with C2(T¢)
the space of all those M € C%(T?), which admit a continuous directional derivative
in the direction w, and set |M|,,, = |Ml|o+|D ,Mlo.

LEMMA 2.3. Suppose M e C%(T?) and A =(A,, A, A,) satisfy (2.8) and

Re[A;+A,M]#0.

Then there exists a neighbourhood U of A in C°X C°x C° and a unique analytic
map

d:U—-CUTYH, dDA=M

such that N = ®(B) satisfies the equation D,N+ P(B, N)=0 for all B € U.
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Proof. This lemma is a straightforward consequence of the implicit function
theorem. Consider the analytic map from C°XC°xC°x C? into C° given by
(By, Bi, B>, N)— D_N+ P(B, N), which vanishes at (A, M). We show that its
first partial derivative with respect to N at N = M, that is, the linear map taking
X e C? into

D X+(A,+A_MX =G (2.9)

in C°, has a bounded inverse. Then our claim follows.
We abbreviate R = A, + A,M which satisfies Re [R]# 0 by assumption. We
assume that

Re[R]=-6<0,

the other case is handled analogously. Then (2.9) has a unique solution X € C, for
G € C° which can be written in the form

X(O) = KRG(G) = JGOKR(B, S)G(B + S(.l)) dS,

0

where

Kr (6, s) = —exp (J R(0+ow) dcr)
0
Since R is continuous and the flow s — sw ergodic on T¢,

lr R(6+0ow) do —[R]=-3§,
S Jo

and we can choose sy so large that

1(* .
- | R(8+ow) do<—38, S=Sy

§Jdo

holds uniformly in 6 by the compactness of T¢. With ¢, =|R|, it follows that

X1o=(| 1K (6,9) ds) 16l

< (j " eco* ds +I e >/ ds) |Glo=c11Glo,

0 *
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and by the differential equation,
1Xlo.0 <|Xlo+|Glo+|A1+ AM|o [ X o<, |Glo.

Thus, Ky is bounded as a linear map from C° into C2, and the lemma is proven.
COROLLARY 2.4. If A and M satisfy the hypotheses of Lemma 2.3 and
AeC(TY), a=rxa,

then also
Me C*(T?).

Proof. This regularity result follows easily from Lemm'c} 2.3, since @ is analytic
in a neighbourhood of A. For instance, if A €C?, and 6, denotes the kth unit
vector, then

M(0+1t6,)=D(A0+16,))

is well defined for small ¢t and continuously differentiable,

d A 0
- + a = ! —
o M(0+1t6,)|,—o=DP'(A) 20, A(6),

showing that M e C'. Similarly, one shows that Me C" if AeC".
If A is analytic, we can extend M to a complex neighbourhood of T¢ by
setting

M(0+i) = D(A(.+iL))(6)

for small |£|. Then M is continuously differentiable in 6 and {. With & = 6, + il
we find

a_

N oy O o
YA M(0+id)=D'(A(.+il)) YA A(0+i&)=0.

Hence M satisfies the Cauchy Riemann equations and is an analytic function of

gl""’gd'
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Proof of Theorem 2.1

For Im A #0 the extension M =M, of m =m, is a solution of the Riccati
equation (2.7) which corresponds to the choice

AOZQ‘A, Al’:O, A2=2
in (2.8). By the ergodicity of the flow s — sw on T¢,
[A,+ A M]=2[M]=2[m]=+2w

has a non-vanishing real part for Im A # 0. We conclude from Corollary 2.4 that
M is as regular as Q, that is,

m,.e2%(w) for qe2%(w).

This proves Theorem 2.1 for Im A #0.
For Im A =0 we consider

¢y om
g+iy 1+im’

m=

One readily checks that 1 satisfies the Riccati equation
m'+(ap+a,;m+3ia,m?) =0

with
a,=—(q—A\), a;=2i(q—A\), a,=2(q—A)+2.

Moreover, m € 9(w) by the same arguments as for Im A # 0. Hence m extends to a
function M e C%(T¢) which satisfies

DM+ (A,+AM+1A,M?) =0,

where A, are the extensions of a,, v=1,2, 3.
In order to apply Corollary 2.4 we have to check the average

[Al + AzM] - [a1 + azm].
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For this purpose we notice that
(i)

g+

a,+a,m=2

It therefore follows from (2.4) and (2.5) that [a,+a,m]==+2[w] has a non-
vanishing real part. Now again Corollary 2.4 applies, and Theorem 2.1 is proven.

§3. Quasi-periodic solutions at resonances

Preliminary transformations

For a quasi-periodic potential g with basic frequencies w, the second order
equation

y'=(q(x)—A)y

can be written as the autonomous first order equation

(yy'),z(o(e(;-x (1))(;) b'=0,

where 0=(0,,...,0,) are coordinates on the torus T¢ and Q is the unique
extension of q to T such that Q(wx) = q(x).
In complex coordinates

(;) N (1\1/2\” —ileii)“’ “= (Z:)

this system becomes

For large A, this can be viewed as a perturbation of a family of rotations with
angular velocity vA. We consider this family in a neighbourhood of a resonance
p =3k, w).

It is convenient to introduce rotating coordinates v, setting

i(k,0)/2
0 ) : (3.2)

e
u = Mi(0)v, M(0) = ( 0 o—ik.0)2
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We also write VA = u +¢. Then the equations become

ic O )
’— + g
v (0 i v+ R(6, o)v, 0=w (3.3)

with

R(6, o) =

Qw)(~4 —wﬁmj_ (3.4)

2(p+o)\iefk®

Our aim is to construct an interval [o_,o.] and a continuous family of
coordinate changes

v=T(6, o)z, o.<o<o,,
which takes this system into a system
z'=C(0)z, 0 =w

with constant coefficients such that

tr C(o) =0, det C(o) {: 0, =0
<0, o_<o<o,

(3.5)

but C=0 if and only if o_=0,. This means in particular that C is similar to
0 1
(0 O) at the endpoints of the interval [o_, 0.], if 0_<o,. A suitable basis of

solutions of z' = C(o )z will then transform into the desired Floquet solutions for
A.=(w+0.)* with rotation number wu.
We note that the above will imply that

(A, )\+] = a—l(l-‘f)-

For the Liapunov number v—det C has to be strictly positive in the interior of
a”'(u), so [A_, A,] cannot be properly contained in a*(r). On the other hand,
the rotation number is clearly constant in [A_, A. ], so that this interval agrees with
o).
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The main result

We have to make some definitions. The matrix R is analytic and bounded in
some complex domain

9 :|Im 6| <r, lo| < 1.
On such a domain, we introduce the weighted matrix norm

IRl x =IMRM™|g = Sup IMRM~'(6, o)), (3.6)

where M =M(6) as in (3.2), and |.| denotes the maximum of the moduli of the
matrix elements. Thus, ||.|lg  is the usual sup-norm in non-rotating coordinates. In
this norm,

IRlox <—1Qla (3.7)
I

is small for large w independently of k.
The non-resonance conditions of Theorem 1.3 can be combined to the
assumption

0, 3(k, ) € R(Q).

2 is supposed to be a continuous, monotone increasing function [0, ) — [1, «)
such that

1
-S—log.(l(s)\O, O0ss—>w
and
1
] -s-ilog.(l(s)ds<oo, £>0.

In addition, we impose the growth condition

Q(s)=s?"1, s=0. (3.8)
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This is reasonable in view of Dirichlet’s theorem which states that

min _|(j, )| <|w| m'™
o<ljlsm

for all w. Functions {2 with these properties are called approximation functions
[18].

It is clear that with {2 also any power of (2 is an approximation function. It
therefore follows from [18] that for p >0,

@(p)=j nlﬁ(—s-)e—s ds (3.9)
0 P
and
¥(p)= inf 0H<D(pv)2""" (3.10)
PoZP =0 > »=0
Yo, <p

are finite, monotone decreasing functions of p. We will see later that @ measures
the influence of the resonances in the linearized problem, while ¥ measures their
influence in the nonlinear problem. The exponent of (2, however, is chosen to
obtain convenient estimates —see (4.21) — and is in no way optimal.

For the following to be true, the matrix R need not be of the special form
(3.4). It suffices that R has trace 0 and is real analytic on & in the sense that all
coefficients are analytic on 9 and have the form

R R
R(6,0)= (._‘_ __2)
R, K

for real (0, o). This is precisely the condition in order that the system (3.3) gives
rise to a real system. We refer to this notion of real analyticity of matrices in the
following two sections.

Finally, we may assume |w|=<1 without loss of generality.

THEOREM 3.1. Suppose 0,3(k, w)e R(2) and |w|=<1. Suppose the matrix R
is real analytic on @ and has trace 0. If

IRl =8 <44"2¥2p),  0<p<1,z,

then there exists a — possibly collapsed - interval J =[o_,o.] and a coordinate
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transformation
v=T(6,0)z, detT=1,

which takes for o € J the system (3.1) into a system z' = C(0)z, 8' = w with constant
coefficients such that (3.5) holds.

On the domain D4 :|Im 8| <r—2p, o€, the transformation T is analytic in 6,
both T and C are continuous in o, and we have the estimates

-t Je-(5 0 <a2wer-s (3.11)
0 —iog/lg,,
Furthermore,

where b is an off diagonal element of C.

We will prove this theorem in Sections 4 and 5. Actually we will show that the
dependence on o is C! in J. After a slight modification in the definition of @, one
can in fact prove that this dependence is C~.

Consequences

Theorem 1.3 follows immediately from Theorem 3.1. We already noted that a
suitable basis of solutions of z'=C(o,)z transforms into the desired Floquet
solutions of (3.1). Also, with & =|Q|g/p, the estimates (3.11), (3.12) yield

c c
=S e ko205 1<

from which the corresponding estimates for the A-interval I(w) of Theorem 1.3
follow.

In rotating coordinates, we are able to transform into a system with constant
coefficients, but have to deal with a weighted norm, which depends on the
resonance. It is useful to free ourselves from this weighted norm and return to
estimates in a fixed norm by looking at the transformation S = MTM~'. Now the
final system will no longer have constant coefficients, but will nevertheless be of
an equally simple form. -

The following corollary will be used in Section 7 to recover the results of
Dinaburg and Sinai.
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COROLLARY 3.2. For 0, u =3(k, w)e R(2) and pn sufficiently large, there
exists on the interval

I(w)=[A_, A )=a"(p)

a continuous family of real analytic coordinate transformations S =S(8, A) with
determinant 1, which takes (3.1) into the differential equation

{=i(B+m)+be'“Y  0=w

and its complex conjugate. Here 3 €R, b € C depend continuously on A and satisfy
|B|=<|b|. Moreover, for any £ >0, we have for u > u4(e) the uniform estimates

sup |S—Il<e, |bl<ee ™ |B+p—vAl<e (3.13)

Im 61<<vy
with some constant y >0, which is independent of €.

The proof is immediate. The transformation S =MTM ! takes (3.1) into a
system with coefficient matrix

1 0
MCM“‘—M(M‘l)':MCM‘1+iu<0 _1>.

) a b ) . . .
With C=(5 d) and a=iB purely imaginary, equation (3.13) follows. The

inequality |B|=<|b| is equivalent with det C <0 and the estimates follow from (3.6)
and (3.11) for sufficiently small §.

§4. Proof of Theorem 3.1

Theorem 3.1 is proven by a rapidly converging iteration process. The trans-
formation T is obtained as an infinite product of transformations T,, where each
T, provides a better approximation to some hyperbolic or parabolic system

z2'=C,(0)z, oel,.
The 6- and o-variables remain unchanged during this process, but have to be

restricted to shrinking domains. In our estimates we use the approximation
function technique introduced by Riissmann [18].
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Set up

To define the iteration process we need to introduce some sequences of real
numbers. The function ¥(p) defined in (3.10) is lower semicontinuous on the
space of all non-increasing, positive sequences p, with sum not greater than p,
endowed with the topology of pointwise convergence. Therefore, there exists a
sequence po=p, = -+ >0 such that

v)=[1®>", & =)
v=0

Clearly, ) p, =p, for otherwise ¥(p) is not minimal. We fix such a sequence and
set

n—1
r,=r—2 va, n=0.

v=0

If we assume p<r/2, then r=ry>r,>--->r, >r.,=r—2p>0.
Next, we set for n=0

n—1

S,=c " [l #2275  c=4%, (4.1)

v=0

Then § =8,<8,<---<8, = &.=c¥3(p)- 8, and we require that § is chosen so
small that

8, <8.=c¥3(p) - 6<472 (4.2)
This agrees with the smallness condition in Theorem 3.1. The product in the
definition of §, will turn out to be the accumulated effect of the small divisors
during the first n—1 steps of the iteration. In particular, the factor 3 appears
because the third power of the small divisors enters at each step —see (4.30).

Finally, we define ¢, by

€. =82, n=0, (4.3)

and m,, s, by

e P =g2 n=0, (4.4)
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and
=420 %(m,), n=0. 4.5)
Then ¢, 0 and m, 1, s, |0.

Induction step

Suppose we are given a closed interval J,, =[£,, n,.] and a system of differential
equations

z'=C,(0)z+R,(6, 0)z, 0’ = o, (4.6)

where the 2 X 2-matrices C,, R, have trace 0 and are real analytic on the complex
domain

9D, :|Imé|<r,, lo—J.|<s,,

such that for real o,

det C..(o) {: 0,  o=&m. (4.7)
<0, &L<o<n,

Suppose that

”Rn“@n = €n (48)
and
”Cn - CO"@"’ \/S_OO ”Cn - CO"@" = 800(2 - 21—n) s%9 (4'9)
where |||, =l and Cy= (lg O ) The dot indicates differentiation with
—io

respect to o.
Our aim is to transform this system into a new system

{'=Coi1(0)+R,1(6,0),, 0'=o, (4.10)

such that the new error term R, ., is roughly of order &2. Precisely, we will
construct below a new closed interval J, ., =[&,41, T+1] and a transformation

z2=T,(06, 0)¢, detT, =1,



64 JURGEN MOSER AND JURGEN POSCHEL
which is real analytic on the smaller domain
@n+1: !Im 0l<rn+19 |0~Jn+ll<sn+l

and takes (4.6) into (4.10) such that the same properties as before hold, when n is
replaced by n+1.
In this section, we will obtain the estimates

1T~ Tha,.., < 2% B, <%, 4.11)

ICi= Gl 2 NCnii=Clla,., < (4.12)
and

|&ns1 = &al 11— M| < 4e,,, (4.13)

2 Wnial <|bpsaly ., <2 Wil (4.14)

where b, is any off diagonal element of C, ;.
Theorem 3.1 follows from this construction. With

ROZR’ JO:'{O}

and s, =<1 the system considered in Theorem 3.1 satisfies our set up for n =0. In
particular,

IRl <[IRllg = 8 <477 ¥3(p)

is sufficiently small. So the iteration scheme applies.
The intervals converge to some interval J=[§ n]=[o_, o.], and

TO°’°‘°Tn—)T3 Cn—éc’ Rn-—)O

uniformly on

De= (9D, :|Imo|<r—2p, ogel

v=0
It follows that T takes the initial system into
z'=C(0o)z, 0=w .

for o €J. The remaining statements of Theorem 3.1 follow easily.
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The iterative construction

We describe the construction of T,, and C,.;, R, ;. Suppose we are at the nth
step of the iteration. Then set

Con=Ci+[R],  [R]=(2m)* L R.(6,.) do. (4.15)

C..1 is clearly real analytic and has trace 0. The new interval J, ., will be uniquely
determined by C,.,, and we will see that 9,,,<9%,.
To define the transformation T,, we will solve the linearized matrix equation

LU, =D,U,+[U, C.]= R, —[R}], (4.16)

where D, =) w; 3, and R;, is a suitable truncation of the Fourier series of R,.
We pick a solution U, with trace and mean value 0; it is real analytic. We then set

T,=1+U,+u,l, u,=1-+v(1-det U,), 4.17)

where the small correction term u,I is added to achieve det T,, = 1.
The change of coordinates z = T, takes (4.6) into (4.10), where

R, =T,'(-D,T, - T,C,.1+(C, +R,)T,).

R, ., is real analytic and has trace 0, since tr C,,; =0, tr (C,+R,) =0, and
tr T,'"D,T, = D,(det T,) =0.

Inserting the definition of C,,,; we obtain
R,.,=T,'(-D,T,~[T, C.]- T.[R.]+R,T,),

and using (4.16), (4.17),

R..,=T.'(-DuJ+((R,—[R,D—(R,~[R.]) + (R, T, — T,[R.D),
(4.18)

where T, = T, — I = U, + u,I. Below we will use this form to estimate R, ;.
We now provide the necessary estimates.
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Auxiliary inequalities

We first establish some inequalities among the sequences defined at the
beginning, which will be used repeatedly.
Since @, increases with v,

il —v=-1 2" = n—v—1 n—1 n—v—1
o(Tle77) =M o7 T o2
v=0 v=n v=0

/I\

o
Z(p),

which leads together with (4.1)-(4.3) to
D3, = D82 <(c8)* (W(p))* ¥ =82, (4.19)
Furthermore, a straightforward calculation shows that

q)nen ~ En+1- (4.20)

To estimate derivatives with respect to o using the Cauchy inequality, we need
an estimate for &,/s,. This requires a bound on (m,,) in terms of @, and ¢,. By
the definition of @ in (3.9) and the monotonicity of (2,

b, = J (2‘6(1)(" ds =0'%m,) j e ds
m,pn p" myo,
=0"%(m,)e ",
or with (4.4),

2'%m,) <P, e™=D,e,>. (4.21)

By the choice of the exponent 16 this yields an estimate of 2(m,) in terms of a
sufficiently small power of €', as is needed in the following.

Using again (4.4) and p.<1 we see that e ™ <g2= Sﬁm which leads to the
first half of

4" <my<0*(m,),



An extension of a result by Dinaburg and Sinai on quasi-periodic potentials

while the second half follows from (3.8). Therefore we obtain

Lo 4202 (m,) < 2m,) < Do

n
and

£ n-1
25n< (cd2e,) 2 < 57
S

n

by (4.19). Finally, &, <82 <§..- 4" by (4.2), so we get
€, <8,°27", 2&<\/—<§;'2"".
Sn

Proof of the estimates (4.8-11) for n+1
The difference C,,,— C, is easy to bound. On

@ :|\Im6|<r,, lo—1T.|<s,/2

we have by (4.15), (4.8) and the Cauchy inequality
Sn . .
nCn+l_Cn"@,’,’ —Z-I‘Cn-i—l—cnllgr"sen'

It follows from (4.22) and assumption (4.9) that

"C"H - CO"‘-’BL’ JS: ”Cn+1 - C.'o".@;,\<~ 8.(2—27") é%-

67

(4.22)

(4.23)

(4.24)

These estimates suffice to show —see the end of this section —that 2, 29,2 9,4,

so that (4.12) and (4.9) for n+1 will follow from them.

The truncation R, of R,, and the solution U, of the linearized equation (4.16)

will be constructed in the next section. On the domain
D Iml|<r—p, |o—J|<s,
we will obtain the estimates (Section 5)

|lUn"@ﬁS2d+8¢n8n3
IR, — Rilp; <2°®P,e2.
n nlD ntn

(4.25)
(4.26)
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Accepting these estimates for now, the remaining estimates are straight-
forward. Then

|det Uplay <2||U,[l; <4 ®rer<1, (4.27)
hence u, =1—+/(1—det U,) is analytic on 9" with

o = lunla: <|det U, |a:. (4.28)
It follows that

IT,. — Nlo; </ Uplla; + lunlllp; <21y, (4.29)

by (4.19) and (4.27). This gives (4.11) once we have 9,29, ,,.
The estimate of R, consists of three pieces —see (4.18). First,

IR.T, — T.[R.Jlg,.,<2%" D¢,
by (4.29) and (4.8). Second,

IR, —[R.D— (R~ [R}Dlla,., <2%"' Dyei;
by (4.26). And third, with 9,,,, < 9D},

nD,,,u.,nLoﬂms‘;‘;’n—'uu,,rngxsv%iez (4.30)

by (4.28), (4.27) and

@(p)?J Seras=1,
o P P

which follows from (3.8) and (3.9). Finally, || T, }a
from (4.18), (4.20) and &, =1 that

<2 by (4.29). It thus follows

n+1

“Rn+1“93"+1 $4d+11¢,.3 %: cd)ig% = €p+1-

This proves (4.8) for n+1 in place of n.
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Position of the new interval J, .,

We define J,.; =[£,, n.] as the interval where det C,. (o) =<0, and estimate
its position as given in (4.13), (4.14).
For real o,

o3 2

where a, a are purely imaginary, since C, . has trace 0. We write its determinant
in the form

det C,.,(0)=fg, f=—ia+|b|, g=-ia—|b|,
so that £,, m, appear as roots of f and g, respectively.

We determine these roots. On the real interval J,:lo—J,|<s,/2, c€R, we
have |a —i|, |b| <V8.. =<2 by (4.24), hence the functions f, g are strictly increasing
with

f-1l,1g-1<3 (4.31)
on J,. The determinant of C, vanishes at ¢, and m,, which implies

lf(gn)‘a |g(nn)' <2 ”Cn+1 - Cn“‘.’b,"s 2811

by (4.23). Since 2¢, <s, /8 by (4.22), we see that f and g each have a unique root
é,.<mn, in J,, with

|§+ - gn" "n+ - ﬂn! <4e,<s,/4.
This defines J,.,; uniquely and proves (4.13). Moreover, since §,.;=<s,/4, the
interval |o-—J,.1| <s,.; is contained in the interval |o—J,|<s,/2, hence @, ;<
D, DD,

We estimate the length of J,. ;. Since f(£.)=0=g(n,),

lf(§+) _f(n+)‘ = |f(’ﬂ+) - g(n+)‘ =2 \b(n+)|,

which with (4.31) gives

% l§+" 'n+| <2 Ib(n+)l <2 |‘f+_ "1+\-
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Also,
Ib(@) b <Ibllo—nd<.l, oel
by (4.24), so we have |b|; <2 |J|. From this, (4.14) follows.

Infinite differentiability in o

We finally indicate how to obtain infinite differentiability in o. Define the
function @ by

@(p)=j m‘S’(-S—)e—Sds, 0>0,
0 P

where a=16 is a monotone increasing, unbounded function, chosen so that
02>9)(s) is still an approximation function. An example is given below.
All the preceding estimates remain valid. In addition,

05", < De™ = P2

replaces (4.21). Given an integer [=1 and an arbitrary constant ¢, >0, this
subsequently leads, for sufficiently large n, to

Clsr-;l < ﬂ4l+1(m") < (pnerllm/a(m") < (an;l/z

and

€n 2 \1/2 v g
cl-s—TS(cCDnen) 2<8Z .
n

This and the Cauchy inequalities imply that all derivatives of T,, C,, R, with
respect to o converge on Py as n tends to infinity. ‘
The function a can be obtained as follows. For s = sy sufficiently large,

a,(s) =—log (—} log .Q(s)), a,(s) =—log Jm% log €2(t) dt

define monotone increasing, unbounded functions, such that 2 and 2*: satisfy
the monotonicity and intégrability condition for approximation functions, respec-
tively. We obtain a from «; by inserting intervals of constancy into a,, if
necessary, such that a« <a,. Then ° is an approximation function.
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§5. Solution of linearized equation

To complete the proof of Theorem 3.1, we have to construct a truncation R},
of the Fourier series of R, and a solution U, of the linearized equation

LU, =D,U,+[U, C.]= R, -[R}],

such that the estimates (4.25), (4.26) hold.

In the following, we usually drop the index n and write R for R,, & for 9,
and so on.

Truncation of Fourier series

We first derive an estimate for the Fourier coefficients of
R, R

R= ( ! 2).
R; R,

The weighted norm ||R|lg =||Rl| can be written

“R“@ = 11;1)?';(4 \R)\e_i(k“e)lga kl = 0 = k49 k2 = “k = _.k3' (5°1)

It follows from the Bessel inequality (see [16]) that the Fourier coefficients of
R, =Y R,;e'"? satisfy

Y |R[3 ekl <24 ||R|3, (5.2)

jez?

where §:lo—J|<s.
R' is obtained by truncating the Fourier series of R,e
where m, was defined in (4.4):

~ika® at order m =m,,

t __ 5 ,i(j,0)
R = X R,;e"™"™.
li—kyl=m

R' is real analytic and has trace 0.
We estimate the cut off error |R— R'|| on 2”:|Im 8| <r—p, |oc—J|<s. By the
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Schwarz inequality and (5.2),

2
(R, — R)e *®)2, < ( Z IR, e~ (r—p))

i—kyl>m

<29|RB. T e

lil>m

Using that mp =d by (4.4), the sum can be bounded by 2¢ times

Y 14 le s mie e < (02 (m)e* < Pe?
I>m

by (3.8), (4.4) and (4.21). Since ||R|lp <¢ it follows that

IR — R||g»<24Pe?.
This proves (4.26).

Construction of U

We solve D,U+[U, C]= R*'—[R']. The right hand side has trace and mean
value 0. So we can normalize the solution by

tr U=0, [U]=0,

and write

U, Uz) N
U= ( , U= 2 Uyeld®.
U3 - Ul * ]';0 N

If C= (a£2 _Z / 2), we then have to solve the system of linear equations
1(15 0)) C —b 01]- Rli
2b l(j, (.l))“a 0 Uzj = sz (5.3)
-2c 0 i(], w) +a ﬁ3j R:;j

for the Fourier coefficients of U. Here, j can be restricted to the set
3
2= U {i#0:li~kil=<m),

since the other coefficients of R* vanish by truncation.
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The determinant of the 3 X 3-matrix is

Ai = _i(j’ w)((]a (.0)2-‘4 det C)

This determinant does not vanish for j# 0 and o € J, for then det C<0. We show
that A4;# 0 also for o € ¥, if we restrict ourselves to je Z%.
On one hand, our assumption 0, 3(k, w) € R({2) implies

|G, )| =27, 27'(j k),  j#0, (5.4)
hence
(j, 0)*=07*(m)

for all je%. On the other hand, (4.9) implies |(det C)|<1 on $, and since
det C=<0 on J, we must have

Redet Clo)<|o—-J|<s

on $. By definition and the above estimate, s <420 *(m)<4"%(j, w)*, and we
see that

|(j, )*— 4 det C|=|(j, w)*>*— 4 Re det C(o)|
=(j, w)*—4s
=3(J, 0)?,
hence

14;|=21(j, @)*>0 (5.5)

on ¥ for all jeZ.
Thus, we can solve (5.3) and find

Ui = A;Ri
where U, R; stand for the column vectors in (5.3), and
&—a® —c(§+a) b(¢—a)
2c(§j _a) *2C2 §]'(£j ~‘a)—2bc

is the inverse matrix to that of (5.3).
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Estimate in the weighted norm

It remains to estimate U in the weighted norm. By comparison with (5.2), this
requires that we estimate |U,;| e"™!", or, equivalently,

IMU,l, M, =diag (" "), _; 5.

We recall that k;, =0 and k,=—k = —k;.
The crucial observation is that we have a bound on |M;A;M;"| which only
depends on the small divisors & =i(j, ). Indeed, we have

lal<1,  |bl,|c|<e”™"

uniformly on ¥ by (4.9), hence the Anth coefficient of the matrix A; is bounded
by

8 gkl

—e
&1°
by (5.5) if |&|=<1. For |&|>1 we can replace |&|> by |&|. Since

eli~kale Ttk lo=li—k,l < 1

by the triangle inequality, we conclude that

8
‘MAiMfl‘ $B: D; = min (létiP, l§j|)

]

uniformly on $. Consequently

IMU;| <3 |MA;M; | |MR1'|<B‘ IMR|

i

on $.

The remaining estimates follow the usual lines. We have

[Ue™ 5 gr T MO}l 77517

jeZ®
< _2_5_ IMﬁII} e~li-—k,\lp
iei’tDi .
MR,
=95 Z Vle-—lp’ V,= Z l___l_"? (5.6)
leZ Ij—_k,\l=l Di

jieZ®
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By the Schwarz inequality,

p 2
(Ev)<ZmrE- T b

jez? li—kal=p
jeZX

The first factor is bounded by 2?*?||R|3 by (5.2), while the second factor is
bounded by

. . 6\ -1
9d+3 (1;3211;,‘(]’ w)| ) $2d+3ﬂ6(p)

i#*0

by [17] and (5.4). It follows that

Vi=220%(p) |Rlle. (5.7)

I

Applying Abel’s partial summation formula to (5.6) and (5.7) (see [16]) we finally
obtain

|Ullg- = max |Uye™ g

<248 |R|lp J 03(§)e_‘ ds

0

<2"®(p) | Rllp-

Since ||R|lz <& we have proven the desired estimate (4.25).

§6. Coexistence of almost periodic solutions

The proof of Theorem 1.4 is based on a simple perturbation argument. We
replace q by q+¢&§ and study the effect on the solutions by a ‘‘variations of
constants” formula — see (6.1). Applying the averaging method we will show that 4
can be chosen as to make the resulting system hyperbolic. This is the adaption of
an argument given in [15], where it was used to construct limit periodic potentials
with a Cantor set spectrum.

Suppose q is almost periodic with an arbitrary frequency module, and the
squares of all solutions of

Y =(q(x)— o)y
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Y1 Y2
yi Y2

) =l o)

Replacing q by q+ &4 and introducing the new vector ¢ by

(2)-Fos.  6=(3).

we obtain the differential equation

_ 2
(b!: qn( y;Y2 YZ)¢. (6.1)
Y1 Yiy2

are in o = A (M). Let F(t) = ( ), det F(t) =1, be a fundamental solution of

Our assumption means that each element of the two by two matrix is in &/. We
are now going to choose ¢ in & in such a way that this system becomes
hyperbolic.

We apply the method of averaging. Taking mean values in the coefficient
matrix in (6.1) and disregarding &, we obtain a constant matrix with trace 0 and
determinant

D(§) =[yigyidl—[y1y.4F
= [Ylé]z‘“ [Y2Q]2“[Y3Q]2,

where
Y:i=3(yi+y3d), Yo=3(yi—-y3), Yi=yy.

The functions Y;, Y,, Y; are in &, so D(§) is a quadratic form of type (1, 2) on
A. We can choose ¢ in & such that

D(4) <0,

which makes the averaged system hyperbolic. We may even choose § to be a
trigonometric polynomial and normalize it by
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Calling the averaged matrix J, we thus obtain a system

d'=e(J+V()s, [V]=0,

_(1)) and Ved.

The above first order system is not yet in a suitable form to prove it to be
hyperbolic. To improve on this we write

where J is similar to (

=Ty, TH)=I+T().
Then
W =(eT UT+eT (V-T +eVD)).

Given any >0 we can approximate V by a trigonometric (matrix valued)
polynomial V, in & such that

sup[(V=-V,)0|<8,  [V,]=0.

Then we define T by the conditions
T=V,@), [T]=0,

which have a unique bounded solution. Choosing ¢ sufficiently small, the trans-
formation T is invertible, and we have

¢ =e(J+ W)y, sup |W(x)|<28.

It is well known-see [4,19]-that this system admits an exponential
dichotomy for £#0, if 8 is sufficiently small. That is, there are two linearly
independent solutions ¢, and ¢_ which decay exponentially as t— -+ and
t — —oo, respectively. Thus for the potential g+ &g the value A, belongs to the
resolvent set, that is, we have an open spectral gap near A, for all sufficiently small
g #0. Its rotation number w is independent of ¢ since w is a continuous function
of £ and takes the values in a countable set.

It remains to prove the last statement of Theorem 1.4. The conclusion of the
theorem is not affected if a constant c is added to g, since this amounts only to a
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shift of the spectral gap on the A-axis. We choose ¢ so that
[Yi(G+c)]=[Y:14]+c[Y,]=0.

This is possible, since Y, is positive. It follows that D(§) <0 unless 4+ c lies in
the orthogonal complement N of Y;, Y,, Ys. Equivalently, § must not lie in the span
{1, N}, a subspace of & of codimension 2. This completes the proof of Theorem
1.4.

We conclude with the remark that the fundamental solution F can be chosen
so that

[Y.Y;]= 8.

This was proven in [15] for the periodic case, but the proof applies to the almost
periodic case as well. In this representation we may choose

q‘ =a2Y2+a3Y3% 0.

§7. The set R(2)

Distribution of R({2)

We show that for suitable @ and 2 the set R({2) not only is not empty, but
that its set of cluster points

R'(2) = (clos R\ R(Q2)
contains the set #(£2/3). For the following arguments we are indebted to Peter
Sarnak and Walter Craig.

We recall that

N(2) ={£eR:|E—3(j, o) < Q(j]), jeZ?}
and

R(Q) ={n =3k, w):|n =33, @) <Q(jl), k#jez%}.

N(Q) is a Cantor set, while every point in R({2) is isolated.
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Suppose o satisfies
G, )P =<Q(jl), O0#jeZd, (7.1)

and also |w|=<1. Let £ be another approximation function somewhat larger than
,, namely

0(s)=20,(3s), S

v

0. (7.2)

In view of the natural growth condition (3.5) it is no restriction to require that (2
satisfies

02s)=20(s), §=54>0. (7.3)
For example, if 24(s) = co(1+5s)? and By>d—1=1, then

Q(s)=c(1+5)", c=2- 3Poc,, B=P,
satisfies our assumptions with sy = (2"/8—1)/(2—2'%).

THEOREM 7.1. Under the preceding assumptions,

N(Q3) =R (2) =N (D).

Moreover, for all large T,
m([T, ©)\ N(£2/3)) s2‘“3L t4107(e) dt.

The second statement is straightforward. For i(j, w) to lie in [T, ) it is
necessary that

2T <|(j, o)l <ljl lo|<ljl.

Therefore,

[T, o \N(3)= U {x:x—3(, @)| <327(iD},

lil=2T
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and the measure of the union is bounded by

Y 607'(jh=24? Y k07 (K)

lil=2T k=2T

sz"“L t47107Y (1) dt

for all sufficiently large T.

The inclusion R' < W is also easy to see. For, if £ is a cluster point of R, then
in the defining inequality of ® we can go to the limit to obtain

€23, )" <2(jD, jeZd,

hence £ € . Since every point in R is isolated, £¢ R. This shows that R < .
To prove the inclusion ¥ (£/3) = R'(12), we need the following lemma. With
4,, j€Z¢, we denote the closed intervals

A ={x:Ix-3G, w)<r}, r=207"(j).

LEMMA 7.2. If p =3k, w) ¢ R(Q), then there exists an integer vector l €7
such that

<3k,  le=30 o) >0(1).
Moreover, if 3 |k|=s4, then A, < A,.

Proof. By the definition of R(2) there exists [ €Z* such that

I =3(1, 0)| 7' >Q(1). (7.4)
However, if |l|=1 |k|, then

|k —l|<|k|+|l|=<3|l],
hence, by (7.1),

(k — 1, )| < Qo((k — 1)) < 26(3 1)),
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and by (7.2),
I —3(1, )|t <202, |I) < (1))

Hence we must have |I| <2 |k|.
To prove the second statement of the lemma, we have to show that

Ak -1 w)|+n<n.
By (7.4), it suffices to show

1,2 _ 2
Ql) - 2(k) e’

or

20(1) < 2(k)).

But this clearly holds, since £ is monotone increasing, |I| <3 |k|, and (7.3) applies
for 3 |k|= sg.

The above shows that a resonance w =3(k, w) fails to be in & only because it
is too close to a resonance 3(I, w) of lower order |l|<|k| and therefore contained
in A,

We can now finish the proof of Theorem 7.1. Clearly, the set

H(Y2)=R\ U 4;= {Xle—%(j, w)|‘1<9m}

jez? jez? 2
contains N'(£%/3). We will show that any point ¢ € X(£2/2) is the limit of a sequence
M, in R(N2). Since R(N2) and N(/3) are disjoint, this will prove that ¥ (2/3)<

R'(D).
We construct the w, as follows. For N=0,

lil=N
is a closed set not containing ¢ Hence
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On the other hand, {3(k, w)} is dense in R, so 8y — 0 monotonically. We define
the sequence N, — ®© by requiring that

SN,, <8Nn—-1 — s e = SN,._l
for n>0, and Ny=0. Then there exists £, € Uy with
dlSt (g’ gn) = SNn <diSt (gs ouNn——l)' (7'5)

Hence £, belongs to some interval A, with |k,| = N,. We set

e = 3(ky, @),

and show that u, belongs to R(£2), if N,, = 2s4. Indeed, if we had u, ¢ R, then by
Lemma 7.2 there would exist an [, with |l,|<2|k,|<N, so that

§n EAk,, CA!,, = %N"—ly

which contradicts (7.5). Hence w, € R. The w, converge to &, since
1€ — pnl <|E— &l + 1y = 8n, + 1, =0,
and Theorem 7.1 is proven.

Continuous extension to the Dinaburgh-Sinai set

Finally, we want to show that Theorem 1.2 of Dinaburg and Sinai is obtained
as a limit case of Theorem 1.3. For this purpose, we recall Corollary 3.2,
according to which there exists a real analytic matrix S =S(6, A) for

AeA =a Y (R)N(Ag, ),
such that the transformation u = S(g-) takes the system (3.1) into

' =i(B+p)+be'®®¢ 0' = w. (7.6)

Moreover, S—1I is uniformly bounded in a fixed strip |{Im 6| <.
In order to extend S and the system (7.6) to the closure A or A, it is useful to
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normalize S = (s;) by the condition
[s11]>0. (7.7)
This is obviously possible by replacing ¢ by e**¢ with a real constant ¢.

THEOREM 7.3. If the transformation
4

u==S(, A)(—)
4

satisfies (7.7), then it extends continuously to A, remaining analytic in |Im 0]<1.
For A € A\A, one has B =b=0 in (7.6), so that the transformed system becomes

{'=ind. (7.8)

This theorem clearly implies Theorem 1.2, since A > N(£2/3).
For the proof, we consider any converging sequence A, € A with limit Ay # A,

a(AV) = l‘LV = %(kll’ w) e %’

and note that |k,| — . On account of the uniform estimate in (3.13), there exists
a subsequence A, such that the matrix functions

5.(0)=S(6,1,)

converge uniformly to a real analytic S.(8) in a substrip |Im 6|<vy', 0<vy'<+.
Since

IB.I<|b|<e™™,  B,=BA,), b,=b]A,)

by (3.13) and |k,|—®, we conclude that B,, b, — 0. Hence in the limit the
transformed system has the form (7.8).

It remains to show that the selection of a subsequence is unnecessary, if we
impose the condition (7.7). Indeed, otherwise there exists another subsequence A,
with a different limit S, # S... But it is easily seen that the most general mapping
in our class taking (7.8) into itself is a rotation { — e*°{, ¢ real constant, from
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which it follows that

= o [e€ O )
s 0)

The normalization (7.7) forces e =1, hence S..=S.., a contradiction.

We see that the limit S, is unique. This implies that the extension of S(6, A) to
A is continuous.

Combining this result with Corollary 1.5 we see that any sufficiently large
point in the spectrum, which corresponds to a rotation number in ¥ (£2/3), is the
cluster point of spectral gaps, which, in the sense of Corollary 1.5, are generically
open. In other words, the subset of the spectrum constructed by Dinaburg and
Sinai generically lies in the boundary of the spectrum.
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