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L’invariant de Witt de la forme Tr(x?)

JEAN-PIERRE SERRE

a John C. Moore

Introduction

Soit E une extension finie séparable d’un corps commutatif K de
caractéristique # 2. La forme quadratique x — Trgx(x?) attachée a cette exten-
sion a été souvent étudi€e (cf. par exemple [2], [6], [10]). I1 est naturel de
s’intéresser a son invariant de Witt. Dans ce qui suit, je donne une formule reliant
cet invariant a la seconde classe de Stiefel-Whitney de la représentation de
permutation du groupe de Galois de E (cette classe peut aussi s’interpréter
comme [’obstruction d’un certain ‘“‘probléme de plongement”, cf. n°®3.1).

La formule en question fait I'objet du §2; sa démonstration utilise
I'interprétation spinorielle de I'invariant de Witt et de la seconde classe de
Stiefel-Whitney. Le §1 est consacré a des préliminaires; le §3 donne des exemples
et des applications (notamment aux extensions ayant pour groupe de Galois le
“Monstre” de Griess—Fischer); le §4 étend les résultats du §2 a la forme
x > Trg(ax?), avec a € E*. Les Appendices contiennent divers résultats auxi-
liaires.

§1. Notations

1.1. Cohomologie galoisienne mod 2 ([11],[12], [15])

Dans ce qui suit, K désigne un corps commutatif, K; une cloéture séparable de
K, et I'y le groupe de Galois Gal (K/K). On suppose que la caractéristique de K
est #2 (le cas ou car (K) =2 est traité dans [1]). Si G est un groupe profini, on
note H™(G) les groupes de cohomologie H™(G,Z/2Z); ce sont des espaces
vectoriels sur le corps F,. Ceci s’applique en particulier a G =1 ; pour m =1, 2,
les groupes H™(I'x) ont une interprétation simple, fournie par la théorie de
Kummer:

(i) H'(I'y) =Hom (I', Z/2Z) s’identifie au groupe K*/K™*?; si a appartient 2
K*/K*? (ou a K¥*), on note (a) I’élément correspondant de H'(I'y); c’est 'unique
homomorphisme x:I'x —Z/2Z tel que v(a)=(=1**Va pour tout ye Ig;
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652 ‘ JEAN-PIERRE SERRE

comme on écrit H'(I'x) additivement, on a (xy)=(x)+(y) si x, ye K*;

(i) H*(I'k) s’identifie & Br,(K), noyau de la multiplication par 2 dans le
groupe de Brauer Br(K)= H*(I'y, K*).

Si (ay),...,(a,) appartiennent a3 H'(I'x), on note (a,)...(a,) leur cup-
produit dans H™(I'x). Lorsque m =2, (a,)(a,) coincide avec I’élément (a,, a,) de
Br,(K) = H*(I') défini par I’algébre de quaternions {i*=a,, j*= a,, ij = —ji}. On
a (a;)(a,) =0 si et seulement si la forme Z2—a,X?—a,Y? représente 0.

1.2. Formes quadratiques ([4],[9],[11],[12],[18],[22])

Soit Q= Q(X,, ..., X,) une forme quadratique non dégénérée de rang n sur
K. Soit m un entier =0, et soit w,,(Q)e H"(I'y) la m-iéme classe de Stiefel-
Whitney de Q, au sens de [4]. Rappelons que, si Q~a;X3+...+a,X?, avec
a,€K* ona

wa(@Q= Y (@) --(a,).
1< <im
Si d=d(Q)e K*/K** est le discriminant de Q, on a w,;(Q)=(d). Quant 2
wy(Q) =3, (a)(a;), c’est I'invariant de Witt (appelé aussi ‘‘invariant de Hasse™’)

de la forme Q; il peut s’interpréter en termes d’algebres de Clifford, cf. [9], [18],
[22].

1.3. Extensions étales

Soit E une K-algebre commutative de rang fini n=1. Nous supposerons que
E est étale au sens de Bourbaki A. V. 28, i.e. est produit d’extensions finies
séparables de K; le cas le plus important pour la suite (et auquel on pourrait se
ramener si on le désirait) est celui ou E est un corps.

Soit @ I'’ensemble des K-homomorphismes de E dans K. On a Card (®) = n.
Le groupe 'y opére de fagon évidente sur @, d’oit un homomorphisme continu
e: 'y > Sy, ot &4 est le groupe des permutations de P. En identifiant @ a
[1, n], on transforme e en un homomorphisme continu

eIy —>6,,

défini & conjugaison preés. D’aprés la théorie de Galois (Bourbaki, A. V.
73), E est déterminée a isomorphisme prés par e, et I’on peut se donner e
arbitrairement; dans le langage de [15], ITI, §1, I’algébre E se déduit de ’algebre
déployée K™= K X - -+ X K par torsion au moyen du 1-cocycle

e:I'x >, =Aut(K").



L’invariant de Witt de la forme Tr (x2) 653

On notera Gg le sous-groupe e(I'x) de ©,. Lorsque E = K[X]/(f), ou f est un
polynéme séparable de degré n, le groupe Gg est le “groupe de Galois de f°, vu
comme groupe de permutations des racines de f; il est transitif si et seulement si f
est irréductible, i.e. si E est un corps.

1.4. La forme Qg

Soit E comme ci-dessus. L’application Qg:E — K définie par Qg(x)=
Trgk(x?) est une forme quadratique non dégénérée de rang n. Lorsque E=K",
c’est la forme unité X3+ - - -+ X2 Dans le cas général, Qg se déduit de cette
forme par torsion (cf. [15], III-4, prop. 4) au moyen du 1-cocycle

e:rK—)@nCOn(K)’

ou O, désigne le groupe orthogonal a n variables (relatif a la forme unité).

Le discriminant dg de Qg est (par définition) le discriminant de la K-algebre
E. L’élément correspondant (dg) = w;(Qg) du groupe H'(I'y) =Hom (I'g, Z/2Z)
n’est autre que le composé

[k—>6, —=>{+1}=Z/2Z,

ou g, est la signature (cf. Bourbaki, A. V. 57, exemple 6).
L’invariant de Witt w,(Qg) fait 'objet du §2 ci-apres.

1.5. Les groupes H™(&,,) pour m=1,2

Ces groupes sont bien connus ([3],[13]):

0 si n=1
1 =
H'(@,) {Z/ZZ si n=2
0 si n=1
H*(S,)=4Z2Z si n=23

ZRZDPZNRZ si n=4.
L’élément non nul de H(S,)), n=2, est la signature
£,:, = {x1}=Z/2Z.

Les éléments de H*(S,,) sont décrits dans [13] en termes d’extensions de &, par
un groupe a deux éléments {1, w}. Nous aurons surtout besoin de I’élément
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s, € H¥(S,,) correspondant a I’extension
1-{, 056,56, >1

notée (II') dans [13], p. 355. On peut caractériser @n (et s,) par la propriété
suivante: }

(C) Tout élément de ©,, dont ’image dans S,, est une transposition (resp. un
produit de deux transpositions a supports disjoints) est d’ordre 2 (resp. d’ordre 4).

(On peut reformuler (C) en disant que, pour n=2, la restriction de s, au
sous-groupe {1, (12)} de &, est 0, et que, pour n=4, la restriction de s, au
sous-groupe {1, (12)(34)} est #0.)

A la présentation standard de ©,, par n—1 générateurs ¢, (les transpositions
(i, i+1)) soumis aux relations

=1,  (h)’=1, =t si |j—i|=2,

correspond une présentation de &,, par des générateurs t; et w, avec les relations

=1 0’=1, ot=to, ((t.)°=1, GG=oh; si |[j-i=2.

On a s, =0 si et seulement si n <3. Pour n =2, 3 'unique élément non nul de
H?*(®,) est le cup-carré ¢, - €, de la signature &, € H'(S,)). Pour n=4, ¢, - &, et
s, forment une base de H*(&,,); de plus, la restriction de s, au groupe alterné U,
est 'unique élément non nul de H*(Y,).

Une autre fagon de définir s, consiste a utiliser la représentation évidente
S, — 0,(R). A cette représentation est associé un fibré orthogonal 1, sur I’espace
classifiant B&, de &, ; si m=0, la classe de Stiefel-Whitney w,,(l,) est un
élément du groupe

H™(BS,,Z/2Z)=H"(S,).

Pour m =2, on a wy(l,,) =s,: cela se vérifie en utilisant (C). Quant a w,(l,), c’est
bien sir la signature &,,.

§2. Le résultat principal

2.1. Enoncé .

On reprend les notations des n™ 1.3 et 1.4:

E est une K-algébre commutative étale de rang n,
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dp € K*/K*? est le discriminant de E,

Qk est la forme quadratique x — Trg x(x?),

e:I'y — &, est ’homomorphisme (défini & conjugaison pres) qui correspond a
E par la théorie de Galois.

Le groupe H*(I'y) = Br,(K) contient les deux éléments suivants:

(i) w,(Qg), invariant de Witt de la forme quadratique Qg ;

(i) e*s,, image réciproque par e de s, € HX(&,), cf. n°1.5.
(Comme e est défini a conjugaison pres, e*s, est défini sans ambiguité: cela
résulte, par exemple, de [14], p. 124, prop. 3.)

Nous allons comparer ces éléments:

THEOREME 1. On a
w,(Qg) =e*s, +(2)(dg). (1)

La démonstration sera donnée au n° 2.6.

Remarques. 1) Le terme (2)(dg) est égal (cf. n°1.1) & (2,dg), classe dans
Br,(K) de P'algébre de quaternions {i' =2, j> = dg, ij = —ji}. Ce terme est nul si et
seulement si dg est de la forme x*—2y? avec x, ye K.

2) Comme (dg) = e*e,, on peut récrire (1) sous la forme équivalente:

wo(Qg) = €*s, +(2) - e*(&,), (1)
ou encore (cf. n®1.5):
wy(Qg) = e*wy(L,) +(2) - e*wy(L,). (1")

Question.® Y a-t-il une formule analogue a (1”) qui relie les w,,(Qg) aux
e*w, (1), i.e. aux classes de Stiefel-Whitney de la représentation de permutation
de I'y associée a E?

Ainsi, pour m=3, on a

wi(Qg) = e*ws(l,); 2

cela se déduit du th. 1 et du fait que w;=Sq ' w,+w; * w,.

! Cette question vient d’étre résolue affirmativement par B. Kahn (“Classes de Stiefel-Whitney de
formes quadratiques et de représentations galoisiennes réelles”, a paraitre). En particulier, la formule
(3) ci-aprés est valable sans restriction sur n.

(Note ajoutée en mai 1984.)
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D’autre part, on peut vérifier que, pour n<7, on a:

e*w, (1) si m est impair
e*w, (1)+2) e*w, _(l,) si m est pair.

wn(0)={ 3)

[Indiquons briévement comment on démontre (3) pour n <7. Par un argument
élémentaire de restriction, on peut supposer que I'y est un pro-2-groupe. D’autre
part, en utilisant le fait que (2)(2) =0 (cf. n°2.2), on montre que, si (3) est vraie
pour deux algé€bres étales E; et E,, elle est aussi vraie pour leur produit E, X E,.
Cela permet de se ramener au cas ou E est un corps de degré n<7. Comme 'y
est un 2-groupe, on a n=1, 2 ou 4. Les cas n =1 et n =2 sont immédiats. Pour
n=4, on écrit E sous la forme K(VXx, \/;)) avec xe K* et yeK(sf;c)*, et 'on
détermine explicitement les classes de cohomologie w,,(Qg) et e*w,(l,); on

trouve que ces classes sont nulles pour m =3, ce qui démontre (3), compte tenu
du th. 1.]

2.2. Démonstration du théoreme 1 pour n=1,2,3

Dans chacun de ces cas on a s,=0 (Cf n 15) et la formule a démontrer
n
s’écrit:

wy(Qg)=(2)dg) (n=1,2,3). (4)

Vérifions-la:

1) n=1
On a wy(Qg)=0 et (dg)=(1)=0, d’ou (2)(dg)=0.
(i) n=2

On a Qg(1)=n=2, dou Qg ~2X?%+aX?, avec a € K*. En comparant les
discriminants, on voit que (a) =(2dg), d’ou

QE -~ 2X% + ZdEX%’ (5)

et wo(Qg)=2)2dg)=12)2)+(2)(dg). Mais (2)(2)=0 puisque la forme
Z?—2X?-2Y? représente 0 (prendre Z=2, X=7Y =1). On obtient donc bien
wo(Qg) = (2)(dEg).

(iii) n=3

Montrons d’abord que ’on a:

Qe ~ X2+2X3+2deX3. (6)
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Distinguons deux cas:

(a) E se décompose en E, X E,, avec rg(E,) =1, rg(E,) = 2.

On a alors Qg ~ Qg, @ Qg,; la forme Qg, est isomorphe a la forme unité X7;
d’apres (5) et le fait que (dg) = (dg,), la forme Qg, est isomorphe a 2X3+2dgX3;
on obtient bien (6).

(b) E est un corps.

Notons ce corps K'; c’est une extension cubique de K. Soit E'= K'QE
I’algebre déduite de E par extension des scalaires 2 K'; il est clair que E’ posséde
un facteur isomorphe a K’, donc est du type (a) ci-dessus. I en résulte que (6)
devient vraie sur K'. Comme [K': K] est impair, (6) est donc vraie sur K, en vertu
d’un théoréme de Springer [17].

Une fois (6) prouvée, la formule (4) se démontre comme dans le cas n = 2.

Remarques. 1) Supposons n =3, et car (K)#3. La restriction de Qg aux

€léments de trace 0 est non dégénérée; si 'on note cette forme Qf, on a
Qg ~3Xi® Qf, d’oli, en utilisant (6):

QL~6X5+2deX3. (7)

On en conclut qu’il existe x € E tel que Trgx(x) =0 et Trgx(x*) =6. Un tel x
satisfait a une équation de la forme

x>-3x+t=0, avec tek. (8)

On voit ainsi que toute extension cubique de K peut étre obtenue par une
€quation du type (8), si car (K) # 3. (Ce résultat peut aussi se démontrer par un
argument direct, et I’on en déduit alors (7) et (6).)

2) Les formules (5) et (6) sont des cas particuliers de formules valables pour
tout n, cf. Appendices I et II.

2.3. Rappels sur N, et le groupe des spineurs

A partir de maintenant, et jusqu’a la fin du §2, on suppose n=4. On note a,
I’élément non nul de H*Y,,), et A, extension centrale correspondante:

1o {1} >N, > A, — 1. 9)

(I est commode pour la suite d’employer une notation multiplicative, i.e. d’écrire
{1} a la place de Z/2Z.)
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On sait (cf. [3],[13]) que cette extension peut se construire a I’aide du groupe
des spineurs Spin,, (K). Rappelons comment on procéde:

On identifie ¥,, a un sous-groupe de SO, (K) grice au plongement standard
de &,, dans O, (K), et 'on utilise la suite exacte de groupes algébriques:

1 - {*1} — Spin,, —» SO, — 1. (10)
Par passage aux points rationnels, on obtient une suite exacte:

1— {#} — Spin, (K) — SO, (K). (11

LEMME 1. Le groupe 2, est contenu dans I’image de I’homomorphisme
Spin,, (K) — SO, (K),

et son image réciproque dans Spin, (K) est isomorphe a ...

Autrement dit, on a un diagramme commutatif:

1-{x1} — ?1" - A,

I l l

1— {1} — Spin, (K) — SO, (K).

Démonstration. Soit (e;), 1<i=<n, la base canonique de ’espace V = K", muni
de la forme quadratique standard Q:

Q(e!)= 1’ Q(eu ej)=0 Si l#]‘

Soit C lalgébre de Clifford du couple (V, Q), autrement dit I’algébre
engendrée par les e; soumis aux relations

8,2 = 1, €€ = —¢¢e; si l% j.
Le groupe Spin, (K) s’identifie 2 un sous-groupe de C*, le “groupe de Clifford
réduit” au sens de Bourbaki, Alg. IX, §9, n°5 (ensemble des x € C* de degré pair
tels que xVx™'=V et que x - x'=1, ot x = x’ désigne I’anti-involution de C qui
est 'identité sur V); ’homomorphisme Spin,(K)— SO, (K) associe a un tel
élément x la rotation v +—> xvx~ ! de V.

Soient {i, j, k, I} des indices tels que i#j et k#1. On a

Q(ei - ej) = Q(ek - el) =72,
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Si I'on pose
x =3(e; —¢)e. —e),

on vérifie tout de suite que x appartient au groupe de Clifford réduit, i.e. a
Spin, (K); de plus, son image dans SO, (K) est égale a (ij) (kl), produit des
transpositions (ij) et (kl). Comme A, est engendré par de tels produits, cela
montre bien que A, est contenu dans 'image de Spin, (K). Il reste & voir que
I'image réciproque de 2, dans Spin, (K) est une extension non triviale de %U,,. Or,
si ’'on choisit {i, j, k, I} distincts (ce qui est possible puisque n=4), les éléments
e, —e; et ¢ — ¢ sont orthogonaux, donc anticommutent dans C, et I’on en déduit:

x?=—ile;—e) (e —e)’=—3-2-2-=—1.
Il en résulte que x est d’ordre 4 dans Spin, (K), ce qui démontre la non trivialité

de l’extension considérée.

Remarque. Le fait que 2, soit contenu dans I’image de Spin, (K) peut aussi
se déduire de ce que A, est engendré par des carrés, donc a une image triviale par
la norme spinorielle SO, (K) — K*/K*2.

2.4. Démonstration du théoreme 1 dans le cas alterné

Revenons 2 la situation du th. 1, et supposons que e:I'y — &, applique Ik
dans ., ou ce qui revient au méme que (dg) =0. La formule & démontrer s’écrit
alors:

WZ(QE) = e*aru (12)

ol e est maintenant considéré comme un homomorphisme de I'y dans 2A,.

La forme Qg se déduit de la forme unité Q(X)= X3+ ---+ X2 par torsion
galoisienne au moyen du 1-cocycle e:I'x — U, =80, (K). Soit € la classe de e
dans I’ensemble de cohomologie

H'(K,S0,) = H'(I';, SO, (K,)).

(Il s’agit ici de cohomologie non abélienne, cf. par exemple, [15], chap. I, §5 et
chap. III, §1.)
Soit d’autre part

5:H'(K, SO,) — HX(K,{1})=H*(I'y)
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I’opérateur cobord associ€ a la suite exacte

1 — {+1}— Spin, —» SO, — 1, (10)
cf. [15], p. I-69. D’apres Springer ([18], formule (4.6)), on a

w(Qg) = 8(8). (13)

On obtient un 2-cocycle d(a, B) appartenant a la classe 8(€) par la construc-
tion suivante: _

Pour tout o €,,, on choisit un représentant ¢’ de o dans U, < Spin, (K), cf.
lemme 1. Si a €lk, I’élément x, = e(a)’ de Spin, (K,) a pour image e(a) dans
SO, (K); si 'on pose

d(a, B)=x,a(xg)xas (o, BeTlk), (14)

on obtient un 2-cocycle sur I'g, a valeurs dans {+1}, dont la classe de cohomologie
est 8(e), cf. [18], loc. cit. Comme les x, sont rationnels sur K, la formule (14) se
simplifie en

d(a, B) = XoXgXop- (15)
Le 2-cocycle d est donc simplement 'image réciproque par e du systeme de
facteurs de Pextension A, — A, (relativement aux représentants choisis). On a
donc:

8(&)=e*a,, (16)

ce qui démontre (12), compte tenu de (13).

2.5. Un résultat auxiliaire

Soient E,; et E, deux algebres étales, et soit E;= E; X E, leur produit.

LEMME 2. Si la formule (1) du th. 1 est vraie pour deux des trois algébres E,, E,,
E,, elle est vraie pour la troisieme.

Soit n; le rang de E,, et soit ¢; ’homomorphisme de I'x dans &, associé a E;
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(i=1,2,3). On a n3 = n,; + n,, et ’homomorphisme e;: 'y — &, se factorise en:

(ey,e3) j
FK%@nlxgnz_])@n:;’

ou j est I'injection naturelle de ©, X&, dans &, =6, ., .
Posons:

w(E)=wx(Qg) et w(E)=eTs,+(2)(dg),

de sorte que (1) équivaut a w(E;) = w'(E,).
Comme Qg,~ Qg, @D Qg, on a (dg) =(dg,) +(dg) et

w(E3) = w(E) + w(E,)+ (dE,)(dEQ)- (17)

D’autre part, I'image de s,, par ’homomorphisme de restriction
j* : H2(6n3) —> Hz(@n, X @nz)

est donnée par la formule

* 3K — ok * * *
) sn3*p18n1+p28n2+p18n1 ' p28n2’

ou p; désigne la projection de &, X©, sur son i-eme facteur (cela se voit, par
exemple, en appliquant & ’espace classifiant B(©, X &, ) la formule donnant la
classe de Stiefel-Whitney d’une somme directe).

On déduit de la:

e%s,, = (e,, ex)*j*s,, = (ey, €)*[p¥is,, + p3s,, + pie,, - Pie,,]

=els, +e%s, +eie, - eje, =eTs, te3s, +(dg)(dg).
En ajoutant (2)(dg,) = (2)(dg,) +(2)(dg,) aux deux membres, on obtient
w'(E3) = w'(Ey) + w'(E) + (dg,)(dg)). (18)
En comparant (17) et (18) on voit que, si w(E;) = w'(E;) pour deux des trois

indices {1, 2, 3}, 1a méme formule vaut pour le troisi€me indice. Le lemme en
résulte.



662 JEAN-PIERRE SERRE

2.6. Fin de la démonstration du théoréeme 1

Soit E, = K[X]/(X*—dg); c’est une K-algébre étale de rang 2 ayant méme
discriminant que ’algebre E donnée. La formule (1) est vraie pour E,, cf. n®2.2;
elle est vraie pour E X E, puisque le discriminant de E X E, est 1, cf. n® 2.4; d’apres
le lemme 2, elle est donc vraie pour E, cqfd.

Remarques. 1) D’un point de vue ‘“galoisien”, la construction précédente
revient a utiliser le plongement évident de ©,, dans U, .

2) Le détour par le groupe alterné n’est pas indispensable. On peut faire des
calculs analogues a ceux du n°2.4 pour le groupe &, tout entier, a condition
d’élargir le groupe Spin,, en un groupe 0, “deux fois plus grand”, se projetant sur
0,. Le groupe &, se réalise alors comme un sous-groupe de O, (K,) formé de
points rationnels sur K(~/2), mais pas sur K (sauf si 2 est un carré). La formule (14)
ne se réduit plus a (15), mais a:

d(a, B) = (xaXgXap)a(xg)x5"); (15')

le terme (x,XxgX.s) donne e*s, et le terme (a(xg)xz') donne (2)(dg).

§3. Applications

3.1. Le probléme de plongement associé a e*s,

Soit E, la sous-extension de K engendrée par les corps ¢(E), ou ¢ parcourt
I’ensemble @ des K-homomorphismes de E dans K,, cf. n°1.3. Cest une
extension galoisienne de K de groupe de Galois Gg = ©,,.

Notons xg I'image de s, par Res: H%(S,) — H?(Gyg), et notons Gg I'extension
centrale correspondante; le groupe G sidentifie a I'image réciproque de Gg
dans @n, cf. n°1.5. Si = désigne la projection I'y — Gg, on a

e*s,=n*xg dans H?*(I'y)=Br,(K). (19)
En d’autres termes, e*s, est ’obstruction au probléme de plongement associé a
I’extension Gg — Gg. Les deux propriétés suivantes sont équivalentes:

3.1.1. e*s,=0.

3.1.2. L’homomorphisme w :I'y — Gg se reléeve en un homomorphisme continu
T :FK g GE'
Lorsque xg#0, i.e. lorsque Gg est une extension non triviale de Gg, tout
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homomorphisme 7 satisfaisant a 3.1.2 est surjectif. Cela permet de reformuler
3.1.2 de la maniére suivante:

3.1.3. Il existe une sous-extension galoisienne E, de K, contenant E,, et un
isomorphisme Gg = Gal (E,/K) tels que le diagramme

Gg =Gal (E,/K)

L

Gg =Gal (E,/K)
soit commutatif.

Le th. 1 rameéne le calcul de e*s, 2 celui de I'invariant de Witt de la forme Q.
Il permet, dans certains cas, de décider si les propriétés 3.1.1, 3.1.2 et 3.1.3 sont
vraies ou non. Nous allons en voir quelques exemples.

3.2. Extensions de degré 4 ou 5

PROPOSITION 1. Supposons n =4 ou 5. Pour que e*s, =0, il faut et il suffit
que Qg soit isomorphe:

a la forme X3+ X3+2X2+2d:X% si n=4,

a la forme X2+ X3+ X3%2+2X2%2+2d:X2 si n=5.

Supposons d’abord n=4. Si Qg ~X3i+X5+2X3+2dgX3, on a wy(Qg)=
(2)2dg)=2)2)+(2)(dg) =(2)(dg) et le théoréme 1 montre que e*s, =0.
Réciproquement, supposons que e*s, =0, i.e. que w,(Qg)=(2)(dg). D’aprés la
prop. 4 de ’App. I, on peut écrire Qg sous la forme X3 + g(X,, X;, X,), ou g est
une forme ternaire. On a d(g) = dg et w,(g) = w,(Qg) = (2)(dg). 1l en résulte que
g a méme discriminant et méme invariant de Witt que X3+2X32+2d.X3.
D’aprés [22], Satz 11, cela entraine g~ X3+2X3+2dgX3, d’ou le résultat
cherché.

Le méme argument s’applique a n =35, compte tenu de ce que

Qs "’X%‘*‘X% + g(X5, X4, Xs)

d’apres la prop. 4 de ’App. L. (On peut aussi ramener le cas n =5 au cas n =4 par
une extension convenable de degré impair du corps de base.)

EXEMPLE. Supposons que E soit une extension biquadratique de K, autre-
ment dit un corps de degré 4, composé de trois extensions quadratiques K(v/x),
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K(\/y) et K(+/2) avec xyz = 1. Le groupe G est un groupe abélien élémentaire de
type (2,2), et 'on vérifie facilement que Gg est isomorphe au groupe H des
quaternions. Si 'on prend {1, Vx, vy, ¥z} pour base de E, on voit que la forme Qg
est isomorphe a T?+ xX?+yY?+2Z2, et 'on a dg = 1. En appliquant la prop. 1,
on en déduit que e*s, est nul (i.e. que E peut étre plongée dans une extension
galoisienne E de groupe de Galois H) si et seulement si les formes xX2+yY?+
zZ? et X>+ Y?+ Z? sont isomorphes (noter en effet que 2Y?+22Z? est isomorphe
a Y2+ Z?. On retrouve ainsi un résultat de Witt [21].

Remarque. Witt démontre davantage. Il donne un procédé permettant de
construire E 2 partir d’un isomorphisme de la forme X2+ Y2+ Z2 sur la forme
xX2+yY?+2zZ? 11 serait intéressant d’étendre sa construction a d’autres cas.
(Signalons une faute d’impression dans [21], Satz, p. 244: le terme r(p,;;&,+
P22£€2+ P33és) doit étre remplacé par r(1+py1€;+paoés+pasés).)

Extensions icosaédriques du type de Klein

PROPOSITION 2. Supposons que n=>5, dg =1, et que 5 soit un carré dans
K*. Les propriétés suivantes sont alors équivalentes:

(@) e*s,=(-1(-1);

(b) Qe ~X3+X3+X%2-X3-X2;

(c) Il existe xe E, x#0, tel que Trgx(x)=Trg;(x* =0;

(d) L’extension E,/K peut étre construite par le procédé de Klein (cf. [16]).

D’aprés le th. 1, (a) équivaut a w,(Qg)=(—1)(—1). Notons Qg la forme
quadratique de rang 4 obtenue en restreignant Qg aux éléments x € E tels que
Trgx(x)=0. On a:

Qe ~5X1® Qp~X1® Qp, (20)

puisque 5 est un carré dans K*. Cela permet de récrire (a), (b) et (c) en termes de

Qkg:

@) w(Qp)=(=1(-1);
b) Qe~X3+X3-X3—X5;

(¢) Q% représente 0.
D’autre part, la prop. 4 de I’App. I montre que

QE NX% +X%+ g(X3’ X4’ XS)’ (21)
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ou g est une forme ternaire de discriminant 1. En comparant (20) et (21) on
obtient:

Qr~ X3+ g(Xs, X4, X5), (22)
et (a'), (b"), (c) se récrivent a leur tour:

(@") wy(g)=(=1D(-1);
(") g~X3-X3-X%
(¢") g représente 0.

L’équivalence de ces propriétés est maintenant immédiate (cf. par exemple [22],
Satz 11). Le fait que (a) et (c) soient équivalents a (d) est démontré dans [16].

3.3. Extensions définies par une équation X" +aX+b=0

Supposons que E=K[X /(X" +aX+b), avec n=2, a, be K, le discriminant d
du polyndme X" +aX+b étant #0. On peut alors déterminer Qg, w,(Qg) et
e*s, en termes du couple (n, d), cf. App. II. On trouve (cor. a la prop. 7):

e*s, = (=2)(d)+(-1(-1)=(-2)(-d) si n=45,
=3)(—d)+(=1)(-1) si car(K)#3 et n=6,7,
=(-1)(d) si n=8)9,
=(5)(—d) si car(K)#5 et n=10,11,

=0 si n=18,19,50,51,98,...

EXEMPLES. a) Supposons que n=7 et d=1, de sorte que Gg est un
sous-groupe de A,. On a e*s;=(-3)(—1). Il en résulte que le probleme de
plongement est résoluble si et seulement si —3 est somme de 2 carrés dans K.

Exemple numérique: a =—154, b =99, et [K: Q]=2. Le groupe Gg est alors
un groupe simple d’ordre 168, isomorphe a PSL,(F,), cf. [5]; le groupe Gg est
isomorphe a SL,(F;). On en conclut que, pour que E,/K se plonge dans une
extension galoisienne a groupe de Galois SL,(F), il faut et il suffit que K soit
imaginaire et que 3 soit inerte ou ramifié dans K/Q: en effet, on sait que ces
conditions équivalent a dire que (—3)(—1) =0 dans Br,(K).

b) Supposons que n=18 et Gg=G,. Comme e*s, =0, le probleme de
plongement a une solution: il existe une extension quadratique de E, dont le
groupe de Galois sur K est ©,. (Comment construire effectivement une telle
extension?)

Pour d’autres exemples du méme genre, voir [20].
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3.4. Exemples ou K=Q et e*s, =0

Supposons que K =Q, et définissons des entiers ry, r,=0 par la relation
habituelle:

RRE=R"xC" (23)

On a r;+2r,=n. La signature de la forme Qg est (r,+r,, ry). Notons Q,, . la
forme quadratique a coefficients +1 ayant cette signature:

er,r2~X%+ e +X$,+r2_.(X31+r2+1+ Tt +X12\)' (24)

Nous allons comparer Qg et Q, . :

PROPOSITION 3. Les deux propriétés suivantes sont équivalentes:

(@) dg=1 et e*s,=0;
(b) r,=0 (mod4) et Qg~Q,,,.

Le discriminant de Q,_,, est (—1), et son invariant de Witt est O (sur Q, ou sur
R) si et seulement si r,=0,1 (mod4). Si (b) est vérifi€, on a donc dg=1 et
w,o(Qg)=0, d’ou e*s, =0, ce qui prouve (a). Inversement, si (a) est vrai, r, est
pair. De plus, Qg est R-isomorphe a Q, ,,, donc a méme invariant de Witt sur R;
comme cet invariant est 0 (vu les hypothéses faites), cela montre que r,=0
(mod 4). 11 en résulte que les formes Qg et Q, ,, ont méme discriminant, méme
invariant de Witt, et méme signature. Elles sont donc isomorphes, ce qui achéve
de prouver (b).

Exemples d’extensions satisfaisant a (a) et (b)

1) La propriété (a) est notamment vérifiée lorsque le groupe Gg est tel que
H'(Gg) = H*(Gg) =0. Clest le cas, par exemple, lorsque G est un groupe simple
non abélien dont le multiplicateur de Schur est d’ordre impair. On trouvera la
liste de ces groupes dans [7]; parmi les 26 groupes sporadiques, il y en a 17 qui
conviennent: M;;, M,;, ..., et parmi eux le groupe de Griess-Fischer F;,.
Comme Thompson a construit des extension de Q a groupe de Galois F; (cf.
[19]), on peut leur appliquer la prop. 3: la forme Qg correspondante est isomorphe
a la forme standard Q, ,,. Signalons a ce sujet la question suivante: peut-on
choisir E totalement réelle (i.e. r,=0) telle que Gg =F,;? (Noter que la méthode
de Thompson fournit uniquement des extensions imaginaires.)
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2) La propriété (a) est également vérifiée (sur un corps de base K quelconque)
lorsque E est un corps, extension galoisienne de K, et que le groupe de Galois
Gg =Gal (E/K) est tel que les deux premiéres classes de Stiefel-Whitney de sa
représentation réguliere sont nulles. Les groupes finis satisfaisant a cette condition
ont été déterminés par B. Kahn [8]. Il en est ainsi par exemple de:

a) tout groupe ayant un 2-groupe de Sylow non métacyclique,

b) tout groupe simple non abélien et non isomorphe a PSL,(F,), q=+3
(mod 8).

On peut donc appliquer la prop. 3 a toute extension galoisienne de Q ayant
pour groupe de Galois I'un de ces groupes.

§4. Une généralisation: la forme Tr (ax?)

4.1. Enoncé du résultat

Soit a un élément inversible de I’algebre étale E. Si x € E, posons
Qg (x) = Trg/glax 2.

On obtient ainsi une forme quadratique Qg,, qui est non dégénérée de rang
n=rg(E); pour a =1, on retrouve Qg. On peut se poser les mémes questions
pour Qg, que pour Qg. Les résultats sont tout a fait semblables, comme on
va le voir.

Tout d’abord, si ¢4, . . ., ¢, sont les différents homomorphismes de E dans K,
et si £8,,..., B, sont les racines carrées de ¢;(a),..., ¢,.(a), le groupe Ik

opére sur les +B; par permutations et changements de signes. Cela conduit a
introduire, a la place du groupe &, du n° 1.3, le groupe

S, ={=1}" - &,

d’ordre 2"n!, produit semi-direct de {+1}" et de &, (ce dernier opérant sur {+1}"
de fagon évidente). Une autre fagon de définir &, est de dire que c’est le groupe
de Weyl d’un systéme de racines de type B,, ou C,, cf. Bourbaki LIE. VI.

L’action de I'x sur les ¢; et les £8; définit un homomorphisme

e : Ix =&y,

qui caractérise le couple (E, ), a la multiplication prés de a par un carré. Ici
encore, ©/ s’identifie 2 un sous-groupe du groupe orthogonal O,,(K), et la forme
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Qg se déduit de la forme standard Y X? par torsion au moyen du 1-cocycle
e, 'y =S, <0,(K).

Le discriminant de Qg, est donné par:
d(Qg.) =dg * Na,

ou Na = Ngx(a) est la norme de a; cela se vérifie, soit par un calcul direct, soit
en explicitant ’homomorphisme det: S, — {+1}.

En ce qui concerne !’invariant de Witt de Qg_,, on procéde comme pour Q.
On définit d’abord un élément canonique s, de H*(S)) par la méthode de la fin
du n°1.5, ie.

Sn=wa(l,),

ou I, est le fibré orthogonal sur B®), associé a la représentation évidente
S, — 0,.(R). L’extension centrale @; correspondant a s, est décrite par
générateurs et relations dans [3], p. 619 (prendre y = A = u = —1). L’analogue du
théoréme 1 est:

THEOREME 1'. On a
wa(Qg) = efsn+ (2)(dg). (25)
Noter que, dans le terme (2)(dg), c’est bien dg qui intervient, et non d(Qg,).

4.2. Démonstration du théoreme 1’

On peut procéder de diverses maniéres. J'en indique deux, sans entrer dans les
détails:
Premiére démonstration

Elle consiste a se ramener au th. 1, grace a ’algebre de rang 2n:
E' =E[X]/(X*—a).

Notons Ej I'ensemble des x € E’ tels que Trg (x)=0. L’espace vectoriel E’ est
somme directe de E et de E;. De plus, ces sous-espaces sont orthogonaux pour la
forme Qg, et la restriction de Qg 3 E (resp. E{) est 2Qg (resp. 2Qg,). On a
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donc:
QE' -~ 2QE @ ZQE,Q . (26)

En appliquant le th. 1 a2 E et E’, on obtient les valeurs de w,(Qg/) et w,(2Qg),
d’ou, grace a (26), la valeur de w,(Qg, ). La formule (25) s’en déduit par un calcul
sans difficulté (remarquer que la représentation I'y — &,,, = 0,, (R) associée a E’
est somme directe de [y > &, < O, (R) et ['x - &, <O0,(R)).

Seconde démonstration

Elle imite la démonstration du th. 1. On traite d’abord le cas ou I'image de I'
dans &, est contenue dans le sous-groupe A, entendré par A, et par les éléments
(g;)e{£1}" tels que[]e =1 (cela revient a supposer (dg) = (Na) = 0). Notons a;, la
restriction de s, a A/, et soit A, I'extension centrale correspondante. Comme au
n® 2.3, on a un diagramme commutatif:

1-{x1}— §l,’1 - A

T

1— {x1} — Spin, (K) — SO, (K).

La démonstration du n°2.4 s’applique alors sans changement, et montre que
wo(Qg.) =ekal, d’ot le th. 1’ dans le cas considéré.

Le cas général se raméne au précédent par un procédé analogue a celui du
n° 2.6. On utilise les couples (E;, a;) et (E,, a,) suivants:

ElzK, a1=N0£
E2=K[X]/(X2_dE)s a,=1.

Le th. 1’ se vérifie immédiatement pour ces couples, ainsi que pour leur produit
(E, X E,, (a;, a)). D’autre part, le produit

(E X El X EZ’ (a’ aq, (12))

est du type ci-dessus (i.e. correspond a un homomorphisme de I'y dans %,,.5). On
peut donc lui appliquer le th. 1’. On passe de 1a a (E, a) par un lemme analogue
au lemme 2 du n°2.5.
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Appendice 1. Une décomposition de Q.
Ecrivons le rang n de E sous forme dyadique:
n=2M+.--4+2™ avec 0=m,<m,<--:-<m,.
PROPOSITION 4. (a) Si Y. m, est pair, on a
Qe ~Xi+ + X5+ 2(Xnsrs - - -» X0,

ou g est une forme quadratique de rang n—h et de discriminant dg.
(b) Si )} m; est impair, on a

QE~2X%+X%+ e +Xﬁ+g(Xh+ls LEERREY Xn)7
ou g est une forme quadratique de rang n—h et de discriminant 2dg.

EXEMPLES. Si n=3, ona m;=0, my=1, h=2, et g est une forme a 1
variable de discriminant 2dg; on retrouve le fait que Qg est isomorphe a
2X3+ X3+2deX3, cf. n°2.2.

Sin=5,onam;=0, my,=2, h=2, et I'on voit que

QE~X%+X%+g(X3, X4, Xs),

ou g est une forme a 3 variables de discriminant dg. I1 en résulte ([22], Satz 11)
que Qg est bien déterminé par ses deux invariants dg et w,(Qg).

LEMME 3. Il existe une extension finie K' de K, de degré impair, telle que la
K'-algébre E'=K'QE se décompose en produit d’algébres E. (1<i<h) de
rangs 2™.

Soit Gg = e(I'k) le groupe de Galois de E, considéré comme sous-groupe de ©,,
(n°®1.3). Soit P un 2-sous-groupe de Sylow de Gg, et soit K’ I'extension de K
correspondant 2 P. Le degré de K’ sur K est égal a (Gg:P), qui est impair.
Comme e(I'x/) = P, les orbites de e(I'x) dans [1, n] ont pour ordres des puissances
de 2. Il en résulte une décomposition de E’ en produit

E'=[1E; (@1s=j=k),

ou le rang n; de chaque E; est une puissance de 2. Choisissons une telle
décomposition avec le moins de facteurs possible, i.e. avec k minimum. Les n;
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sont alors distincts: en effet, si I'on avait n; = n; pour j# [, on pourrait regrouper
E; et E|, et remplacer k par k —1. Comme n =} n, ceci entraine que les n; sont
égaux aux 2™, a l'ordre pres; d’ou le lemme.

LEMME 4. Soient ¢ et ¢ des formes quadratiques sur K. Soit K' une extension
finie de K de degré impair, et soit g’ une forme quadratique sur K' telle que
¢~y D g’ sur K'. Il existe alors une forme quadratique g sur K telle que ¢ ~ ¢ D g.

Soit k le rang de . Pour qu’il existe g avec ¢ ~ ¢ @D g, il faut et il suffit que

I’indice sur K de la forme ¢ @ (—¢) soit =k (cf. [22]). Or, d’aprés un théoreme de
Springer [17], cet indice est le méme sur K et sur K'. D’ou le résultat.

LEMME 5. La forme quadratique 2™X3+ - - - +2™X7 est isomorphe:

a la forme X3+ ---+X; si Y m; est pair,

a la forme 2X3+ X2+ -+ -+ X}? si Y m, est impair.

On peut évidemment remplacer le coefficient 2™ par 1 si m; est pair, et par 2
si m; est impair. Cela montre que la forme considérée est isomorphe a:

2X3+ -+ XH+H X2+ X

ou r est le nombre des indices i tels que m; soit impair. Le lemme en résulte,
compte tenu de ce que 2X%+2Y%~ X>+ Y2,

Démonstration de la prop. 4

Vu les lemmes 3 et 4, on peut supposer que E se décompose en produit:
E=11E, avec rg(E)=2", 1=<i<h.

On a Qg~Qg,® -+ ®Qg,. Comme Qg(1)=Trg(l)=2", la forme Of, se
décompose en:

Qg ~ 2™ X*@ g, avec rg(g)=2"—1.
On en déduit une décomposition de Qg:
Qp~2™X3+ - +2™ X+ g(Xui1, - - - X)),

et I’on conclut en appliquant le lemme 5.
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Appendice II. Détermination de Qg lorsque E est définie par une équation de la
forme X"+aX+b=0

Soient a et b deux éléments de K, et soit n un entier =2. Posons
fX)=X"+aX+b.
Le discriminant d de f est donné par la formule:

d= (_1)N(n—1)/2nnbn—-1 +(— 1)(n——l)(n’2)/2(n _ 1)n—1an. (27

Supposons d# 0. L’algébre E = K[X]/(X™ 4+ aX +b) est alors étale, et (dg) =
(d). Nous allons voir que I’on peut expliciter la forme quadratique Qg en fonction
seulement de n et de d (cf. prop. 5 et 6 ci-dessous). Ce résultat m’a été signalé
par P. E. Conner, pour n impair (le cas n pair est d’ailleurs plus facile); on
trouvera dans la thése de N. Vila [20] des résultats analogues pour certaines
équations du type X" +aX?+bX+c=0.

Il est commode de séparer les cas suivant la parité de n:

PROPOSITION 5. Supposons n pair. On a alors:

Qe ~ XX+ XX+ +X,.,X, si car(K) divisen, (28)
et

Qg ~nX?—(-1D)"*ndX3+ XX+ -+ - + X,,_1X,, sinon. (29)

Soit x I'image de X dans E. Les x' (0<i<n-—1) forment une base de E.
D’aprés les formules de Newton, on a

TrE/K(l) =n et TI'E/K(xi) =0 pour I<sisn-2. (30)

Si la caractéristique de K divise n, le sous-espace de E engendré par 1,
X, ..., x" 22 est totalement isotrope de dimension n/2; la forme Qg est donc
hyperbolique, d’ou (28).

Supposons maintenant que car (K) ne divise pas n, et décomposons E en
somme orthogonale

E=K-1®FE/

ol E' est 'hyperplan des éléments de trace 0. On en déduit Qg ~nX3:® Qpg, ol
QL est la restriction de Qg a E’. D’aprés (30) les vecteurs x, x7,...,x""2"2
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engendrent un sous-espace totalement isotrope de E’ de dimension (n—2)/2. On
a donc

Qe~cX3+X;X,+ - +X,_, X, avec ceK*™
Comme d =d(Qg) = nd(Q.) = nc(—1)""?"2 (dans K*/K*?), on a
¢ =—(—1)"?nd,

d’ou (29).
PROPOSITION 6. Supposons n impair. On a alors

Qr ~ X3+ X, X3+ X Xs+ - +X, ,X, si car(K) divisen—1, (31)
et

Q~Xi+(n-DX3+(-1D)"2(n-1) dX3+ X, Xs+ - - + X,_1 X, sinon.
(32)

On définit comme ci-dessus les x’, 'hyperplan E’ et la forme Q. Si car (K)
divise n—1, on a n=1 dans K, dou Qg ~ Xi® Q%. De plus, les vecteurs X,
x2,...,x" Y2 engendrent un sous-espace totalement isotrope de E’' de dimen-
sion (n—1)/2: cela se voit en utilisant les formules (30) ainsi que le fait que
Trex(x" ) =(1—n)a=0. La forme Qf est donc hyperbolique, d’ot (31).

Supposons maintenant que car (K) ne divise pas n—1, et que a# 0. Soit V le
sous-espace de E engendré par les vecteurs

e;=1+a'x"' et e,=a 'x""L

En utilisant les formules
TrE/K(xn—.l) =(1—-n)a et TrE/K(xzn—z) =(n— 1)02,

on voit que

Trgx(ee) =1, Trgi(eie)) =0 et Trgxleer)=n—1.

On en déduit:
Qe ~X2+(n-1D)X2 QL,

ou Qg est la restriction de Qg a 'orthogonal E” de V dans E.
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Les vecteurs x', avec (n+1)/2=<i=<n—2, engendrent un sous-espace totale-
ment isotrope de E” de dimension (n—3)/2. On a donc:

E~cX3+ X, Xs+--+X, ,X,, avec ceK*
Comme d =d(Qg)=(n—1)d(Qf) =(n—1c(-1)"">2, on a
c=(n-1d(-1)"372 (dans K*/K*?),

d’ou (32).

Reste le cas ou a =0 et ou car (K) ne divise pas n— 1. La formule (27) montre
alors que car (K) ne divise pas n (sinon d serait 0), et que d =(—1)""V2n dans
K*/K*?*. On a donc Qg ~nX?@® Qf. Comme les vecteurs x, x2,...,x" 1?2
engendrent un sous-espace totalement isotrope de E’ de dimension (n—1)/2, la
forme Qg est hyperbolique. D’ou:

Qr ~nXi1+X,X3+ X, X5+ -+ X, 1 X,.
Pour prouver (32), il suffit donc de montrer que les deux formes
X1+(n-DX3+(D"P2(n—-1)dX3% et nX?+X,X,
sont équivalentes. Or, dans la premiere de ces formes, on peut remplacer d par
(—=1)"*"Y2p, ce qui donne X3+ (n—1)X2%—n(n—1)X?%; on obtient ainsi une forme

ternaire de discriminant —n, qui représente 0 (prendre X;=n-1, X, =X;53=1);
elle est donc bien équivalente a3 nX3+ X, X5, cqfd.

Calcul de Uinvariant de Witt de Qg
On pose m =[n/4], de sorte que n=4m, 4m+1, 4dm+2 ou 4m+ 3.

PROPOSITION 7. Sin=4m ou 4m+1, on a:

_fo si car(K) divise m
wa(Qe) = {(—4m)(d)+ m(=1)(—1) sinon.

Sin=4m+2 ou 4m+3, on a:

0 si car (K) divise 2m +1

wy(Qg) = {(4m +2)(—=d)+ m(—=1)(—1) sinon.
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Traitons par exemple le cas n=4m +1 (les autres cas sont analogues). Si
car (K) divise m, la prop. 6 montre que

QE "‘X%'*' e +X%m+l—(X%m+2+ e +X%m+l)'
On en déduit:
w,(Qg) =m(-1)(-1) =0,

car (—1)(—1) =0 dans tout corps de caractéristique # 0.
Si car (K) ne divise pas m, on a, d’aprés (32):

Qe~ X1+ + X3, —(Xomirt -+ + X2 ) +4mX2, — 4mdX 1,
d’ou
wo(Qg) = (D)= + m(=D(=D+(-1)(4m) + (=1)(=4md) + (4m)(-4md).
En développant, et en utilisant la formule connue (x)(—x)=0, on obtient bien
wy(Qg) = (=4m)(d) + m(=1)(-1).
COROLLAIRE. Sin=4m ou 4m+1, on a:

% {0 si car (K) divise m
© T l2m)(@) + m(-1)(=1)  sinon.

Sin=4m+2 ou 4m+3, on a:

& {O si car (K) divise 2m +1
€ = Cm+1D(=d)+m(=1)(-=1) sinon.

On applique la formule e*s, = w,(Qg)+(2)(d), en tenant compte de ce que
(2)(=1)=0 [noter que, d’aprés (27), on a d==%1 si n=4m ou 4m+1 (resp.
4m+2 ou 4m+3), et car (K) divise m (resp. 2m +1)].
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