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L&apos;invariant de Witt de la forme Tr(x2)

Jean-Pierre Serre

à John C. Moore

Introduction

Soit E une extension finie séparable d&apos;un corps commutatif K de
caractéristique ^ 2. La forme quadratique x *-&gt; TrE/K(x2) attachée à cette extension

a été souvent étudiée (cf. par exemple [2], [6], [10]). Il est naturel de
s&apos;intéresser à son invariant de Witt. Dans ce qui suit, je donne une formule reliant
cet invariant à la seconde classe de Stiefel-Whitney de la représentation de

permutation du groupe de Galois de E (cette classe peut aussi s&apos;interpréter

comme Vobstruction d&apos;un certain &quot;problème de plongement&quot;, cf. n°3.1).
La formule en question fait l&apos;objet du §2; sa démonstration utilise

l&apos;interprétation spinorielle de l&apos;invariant de Witt et de la seconde classe de

Stiefel-Whitney. Le §1 est consacré à des préliminaires; le §3 donne des exemples
et des applications (notamment aux extensions ayant pour groupe de Galois le
&quot;Monstre&quot; de Griess-Fischer); le §4 étend les résultats du §2 à la forme
x H-&gt;TrE/K(ax2), avec aeJ5*. Les Appendices contiennent divers résultats
auxiliaires.

§1. Notations

1.1. Cohomologie galoisienne mod 2 ([11], [12], [15])

Dans ce qui suit, K désigne un corps commutatif, Ks une clôture séparable de

K, et FK le groupe de Galois Gai (KJK). On suppose que la caractéristique de K
est ^ 2 (le cas où car (K) 2 est traité dans [1]). Si G est un groupe profini, on
note Hm(G) les groupes de cohomologie Hm(G, Z/2Z); ce sont des espaces
vectoriels sur le corps F2. Ceci s&apos;applique en particulier à G FK; pour m 1,2,
les groupes Hm(FK) ont une interprétation simple, fournie par la théorie de

Kummer:
(i) H1(rK) Hom(FK,Z/2Z) s&apos;identifie au groupe K*/K*2; si a appartient à

K*/K*2 (ou à K*), on note (a) l&apos;élément correspondant de H1^^; c&apos;est l&apos;unique

homomorphisme *:rK-^Z/2Z tel que Y(Vâ) (-l)*W)Vâ pour tout yeTK;
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652 Jean-Pierre Serre

comme on écrit Hl(FK) additivement, on a (xy) (x)4-(y) si x, y eK*;
(ii) H2(FK) s&apos;identifie à Br2(K), noyau de la multiplication par 2 dans le

groupe de Brauer Br(K) H2^, K*).
Si (at),..., (dm) appartiennent à Hl(FK), on note (^...(a™) leur cup-

produit dans Hm(rK). Lorsque m 2, (a1)(a2) coïncide avec l&apos;élément (ax, a2) de

Br2(K) H2(FK) défini par l&apos;algèbre de quaternions {i2 au j2 a2, ij -jî}. On
a (a1)(a2) 0 si et seulement si la forme Z2-axX2 — a2Y2 représente 0.

1.2. Formes quadratiques ([4], [9], [11], [12], [18], [22])

Soit Q Q(Xl5..., Xn) une forme quadratique non dégénérée de rang n sur
K. Soit m un entier ^0, et soit wm(Q) e Hm (FK) la m-ième classe de Stiefel-
Whitney de Q, au sens de [4]. Rappelons que, si Q — a1X2+... + anX2l, avec

on a

Si d d(Q)€K*/X*2 est le discriminant de Q, on a w1(Q) (d). Quant à

w2(Q) Sl&lt;J(al)(aJ), c&apos;est Vinvariant de Witt (appelé aussi &quot;invariant de Hasse&quot;)

de la forme Q; il peut s&apos;interpréter en termes d&apos;algèbres de Clifford, cf. [9], [18],
[22].

1.3. Extensions étales

Soit E une X-algèbre commutative de rang fini n^l. Nous supposerons que
E est étale au sens de Bourbaki A. V. 28, i.e. est produit d&apos;extensions finies
séparables de K; le cas le plus important pour la suite (et auquel on pourrait se

ramener si on le désirait) est celui où E est un corps.
Soit &lt;f&gt; Fensemble des K-homomorphismes de JE dans Ks. On a Card (4&gt;) n.

Le groupe FK opère de façon évidente sur &lt;P, d&apos;où un homomorphisme continu
e * J^K ~* ©&lt;i» où @&lt;i&gt; est le groupe des permutations de &lt;P. En identifiant &lt;P à

[1, n], on transforme e en un homomorphisme continu

défini à conjugaison près. D&apos;après la théorie de Galois (Bourbaki, A. V.
73), E est déterminée à isomorphisme près par e, et l&apos;on peut se donner e

arbitrairement; dans le langage de [15], III, §1, l&apos;algèbre E se déduit de l&apos;algèbre

déployée F Kx«&quot;XK par torsion au moyen du 1-cocycle
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On notera GE le sous-groupe e(FK) de ©n. Lorsque E K[X]/(/), où / est un
polynôme séparable de degré n, le groupe GE est le &quot;groupe de Galois de f&apos;, vu
comme groupe de permutations des racines de /; il est transitif si et seulement si /
est irréductible, i.e. si E est un corps.

1.4. La forme QE

Soit E comme ci-dessus. L&apos;application QE:£s—»K définie par QE(x)
TrEJK(x2) est une forme quadratique non dégénérée de rang n. Lorsque E Kn,
c&apos;est la forme unité X?+ • • • +X% Dans le cas général, QE se déduit de cette
forme par torsion (cf. [15], III-4, prop. 4) au moyen du 1-cocycle

où On désigne le groupe orthogonal à n variables (relatif à la forme unité).
Le discriminant dE de QE est (par définition) le discriminant de la K-algèbre

JE. L&apos;élément correspondant (dE) wt(QE) du groupe Hx(rK) Hom(rK,Z/2Z)
n&apos;est autre que le composé

où en est la signature (cf. Bourbaki, A. V. 57, exemple 6).
L&apos;invariant de Witt w2(QE) fait l&apos;objet du §2 ci-après.

1.5. Les groupes Hm(©n) pour m 1,2

Ces groupes sont bien connus ([3], [13]):

«¦«•&gt;-&amp;» ;; :»mz

(0
si n l

Z/2Z si n 2,3

Z/2Z0Z/2Z si nsM.

L&apos;élément non nul de H\&lt;5n)9 n^2, est la signature

Les éléments de H2(©n) sont décrits dans [13] en termes d&apos;extensions de &lt;3n par
un groupe à deux éléments {l,o&gt;}. Nous aurons surtout besoin de l&apos;élément
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sneH2(@n) correspondant à l&apos;extension

notée (If) dans [13], p. 355. On peut caractériser ©n (et sn) par la propriété
suivante:

(C) Tout élément de ©n dont V image dans &lt;Sn est une transposition (resp. un
produit de deux transpositions à supports disjoints) est d&apos;ordre 2 (resp. d&apos;ordre 4).

(On peut reformuler (C) en disant que, pour n^2, la restriction de sn au

sous-groupe {1,(12)} de ©n est 0, et que, pour n^4, la restriction de sn au

sous-groupe {1, (12)(34)} est ^0.)
A la présentation standard de ©n par n — 1 générateurs t, (les transpositions

(i, i 4-1)) soumis aux relations

f2=l, 0&amp;+1)3=l, ^ ^ si |/-

correspond une présentation de ©n par des générateurs tx et co, avec les relations

t?=l, oi2 l, cof^eo, (ft+1)3 l, tj, =(&gt;&gt;&amp; si \j-i\^2.
On a sn 0 si et seulement si n ^ 3. Pour n 2, 3 l&apos;unique élément non nul de

H2(©n) est le cup-carré en • en de la signature en g H1(©n). Pour n ^4, en • en et

sn forment une base de H2(©n); de plus, la restriction de sn au groupe alterné 5In

est l&apos;unique élément non nul de H2($tn).
Une autre façon de définir sn consiste à utiliser la représentation évidente

©n —&gt;On(R). A cette représentation est associé un fibre orthogonal ln sur Y espace

classifiant B©n de ©n; si m^O, la classe de Stiefel-Whitney wm(fn) est un
élément du groupe

Hm(B©n,Z/2Z) Hm(©n).

Pour m =2, on a w2(ln)= sn: cela se vérifie en utilisant (C). Quant à w1(in), c&apos;est

bien sûr la signature en.

§2. Le résultat principal

2.1. Enoncé

On reprend les notations des nos 1.3 et 1.4:

jE est une K-algèbre commutative étale de rang n,
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dE € K*/K*2 est le discriminant de JE,

QE est la forme quadratique x •-&gt; TrE/K(;jc2),
e : FK —&gt; ©„ est l&apos;homomorphisme (défini à conjugaison près) qui correspond à

E par la théorie de Galois.

Le groupe H2(rK) Br2(K) contient les deux éléments suivants:
(0 w2(OE), invariant de Witt de la forme quadratique QE ;

(ii) e*sn, image réciproque par e de sn€H2((5n), cf. n° 1.5.
(Comme e est défini à conjugaison près, e*sn est défini sans ambiguïté: cela
résulte, par exemple, de [14], p. 124, prop. 3.)

Nous allons comparer ces éléments:

THÉORÈME 1. On a

w2(QE) e*sn + (2)(dE). (1)

La démonstration sera donnée au n° 2.6.

Remarques. 1) Le terme (2)(dE) est égal (cf. n°l.l) à (2, dE), classe dans

Br2(K) de l&apos;algèbre de quaternions {i1 2, j2 dE, ij -ji}. Ce terme est nul si et
seulement si dE est de la forme x2-2y2 avec x,yeK.

2) Comme (dE) e*en, on peut récrire (1) sous la forme équivalente:

-e*(Ên), (10

ou encore (cf. n° 1.5):

e*w1fln)-

Question.™ Y a-t-il une formule analogue à (1&quot;) qui relie les wm(QE) aux
e*wm(fn)&gt; i.e. aux classes de Stiefel-Whitney de la représentation de permutation
de FK associée à E?

Ainsi, pour m 3, on a

cela se déduit du th. 1 et du fait que w3 Sq1w2+w1 • w2.

1 Cette question vient d&apos;être résolue affirmativement par B. Kahn (&quot;Classes de Stiefel-Whitney de

formes quadratiques et de représentations galoisiennes réelles&quot;, à paraître). En particulier, la formule
(3) ci-après est valable sans restriction sur n.

(Note ajoutée en mai 1984.)
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D&apos;autre part, on peut vérifier que, pour n*s7, on a:

K si mestimPair hï
e*w1B_1(U si m est pair. W

[Indiquons brièvement comment on démontre (3) pour n^l. Par un argument
élémentaire de restriction, on peut supposer que FK est un pro-2-groupe. D&apos;autre

part, en utilisant le fait que (2)(2) 0 (cf. n° 2.2), on montre que, si (3) est vraie

pour deux algèbres étales Et et E2, elle est aussi vraie pour leur produit Ex x E2.
Cela permet de se ramener au cas où E est un corps de degré n ^7. Comme FK

est un 2-groupe, on a n 1, 2 ou 4. Les cas n 1 et n 2 sont immédiats. Pour
n 4, on écrit E sous la forme K(yfx, Vy) avec jc€K* et y€KX&gt;/x)*, et l&apos;on

détermine explicitement les classes de cohomologie wm(QE) et e*wm(/4); on
trouve que ces classes sont nulles pour m ^3, ce qui démontre (3), compte tenu
du th. 1.]

2.2. Démonstration du théorème 1 pour n - 1, 2, 3

Dans chacun de ces cas on a sn=0 (cf. n°1.5) et la formule à démontrer
s&apos;écrit:

,2,3). (4)

Vérifions-la:
(i) n l

On a w2(QE) 0 et (dE) (l) 0, d&apos;où (2)(dE) 0.

(ii) n 2

On a QE(l) n 2, d&apos;où QE~2Xf + aXl, avec aeK*. En comparant les

discriminants, on voit que (a) (2dE), d&apos;où

QE~2X? + 2dEX|, (5)

et w2(QE) (2)(2dE) (2)(2) + (2)(dE). Mais (2)(2) 0 puisque la forme
Z2-2X2-2Y2 représente 0 (prendre Z 2, X= Y= 1). On obtient donc bien

(2)(dE).

(iii) n 3

Montrons 4&apos;abord que l&apos;on a:

QE -X\ + 2X| + 2dEX|. (6)
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Distinguons deux cas:
(a) E se décompose en E1xE2, avec rg(El) 1, rg(JB2) 2.
On a alors QE ~ OEl © O^; la forme QEi est isomorphe à la forme unité X\\

d&apos;après (5) et le fait que (dE) (d^), la forme Q^ est isomorphe à 2Xl + 2dEXl;
on obtient bien (6).

(b) E est un corps.
Notons ce corps K&apos;\ c&apos;est une extension cubique de K. Soit E&apos; K&apos;®KE

l&apos;algèbre déduite de E par extension des scalaires à K&apos;\ il est clair que E&apos; possède
un facteur isomorphe à K&apos;, donc est du type (a) ci-dessus. Il en résulte que (6)
devient vraie sur K&apos;. Comme [K&apos; : K] est impair, (6) est donc vraie sur K, en vertu
d&apos;un théorème de Springer [17].

Une fois (6) prouvée, la formule (4) se démontre comme dans le cas n 2.

Remarques. 1) Supposons n - 3, et car (K) j= 3. La restriction de QE aux
éléments de trace 0 est non dégénérée; si l&apos;on note cette forme QÉ, on a
QE~3X?©QE, d&apos;où, en utilisant (6):

l (7)

On en conclut qu&apos;il existe x g E tel que TrE/K(x) 0 et TrE/K(x2) 6. Un tel x
satisfait à une équation de la forme

x3-3x-H 0, avec teK. (8)

On voit ainsi que toute extension cubique de K peut être obtenue par une
équation du type (8), si car (K) £ 3. (Ce résultat peut aussi se démontrer par un
argument direct, et l&apos;on en déduit alors (7) et (6).)

2) Les formules (5) et (6) sont des cas particuliers de formules valables pour
tout n, cf. Appendices I et IL

2.3. Rappels sur Un et le groupe des spineurs

A partir de maintenant, et jusqu&apos;à la fin du §2, on suppose n sM. On note an
l&apos;élément non nul de H2(9tn), et %n l&apos;extension centrale correspondante:

*%n-&gt;\. (9)

(H est commode pour la suite d&apos;employer une notation multiplicative, i.e. d&apos;écrire

{±1} à la place de Z/2Z.)
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On sait (cf. [3], [13]) que cette extension peut se construire à l&apos;aide du groupe
des spineurs Spinn(K). Rappelons comment on procède:

On identifie ?ln à un sous-groupe de SOn(K) grâce au plongement standard
de ©n dans On(K), et l&apos;on utilise la suite exacte de groupes algébriques:

1 -* {±1} -» Spînn -* SOn -&gt; 1. (10)

Par passage aux points rationnels, on obtient une suite exacte:

1 -&gt; {±} -* Spinn(K) -* SOn(K). (11)

LEMME 1. Le groupe %n est contenu dans V image de Vhomomorphisme

et son image réciproque dans Spinn(K) est isomorphe à %n.

Autrement dit, on a un diagramme commutatif :

1-&gt;{±1} -&gt; «n - %n

i i
1 -+ {±1} -» Spinn(K) -+ SOn(K).

Démonstration. Soit (e,), 1 ^ i ^ n, la base canonique de l&apos;espace V Kn, muni
de la forme quadratique standard Q:

Q(e,) l, 0(^,0 0 si iîj.
Soit C l&apos;algèbre de Clifford du couple (V, Q), autrement dit l&apos;algèbre

engendrée par les ex soumis aux relations

ef l, exe^-e}ex si i£j.

Le groupe Spinn(K) s&apos;identifie à un sous-groupe de C*, le &quot;groupe de Clifford
réduit&quot; au sens de Bourbaki, A/g. IX, §9, n° 5 (ensemble des x € C* de degré pair
tels que xVx~x V et que x - x&apos; 1, où x &gt;-» x&apos; désigne l&apos;anti-involution de C qui
est l&apos;identité sur V); l&apos;homomorphisme Spinn(K)-^SOM(K) associe à un tel
élément x la rotation v^xvx&apos;1 de V.

Soient {i, jr fc, i} des indices tels que ij=j et fc ^ l On a
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Si l&apos;on pose

x=j(el~e])(ek-el),

on vérifie tout de suite que x appartient au groupe de Clifford réduit, i.e. à

Spinn(IC); de plus, son image dans SOn(K) est égale à (ij) (fcl), produit des

transpositions (ij) et (kl). Comme %n est engendré par de tels produits, cela

montre bien que %n est contenu dans l&apos;image de Spinn(K). Il reste à voir que
l&apos;image réciproque de 9tn dans Spinn(K) est une extension non triviale de 9ln. Or,
si l&apos;on choisit {i,j, k, 1} distincts (ce qui est possible puisque n^4), les éléments

ex — e] et ek - ex sont orthogonaux, donc anticommutent dans C, et l&apos;on en déduit:

Il en résulte que x est d&apos;ordre 4 dans Spinn(lC), ce qui démontre la non trivialité
de l&apos;extension considérée.

Remarque. Le fait que 9tn soit contenu dans l&apos;image de Spinn(K) peut aussi

se déduire de ce que %n est engendré par des carrés, donc a une image triviale par
la norme spinorielle SOn(K)-^ K*/K*2.

2.4. Démonstration du théorème 1 dans le cas alterné

Revenons à la situation du th. 1, et supposons que e :FK —»©n applique FK
dans 9ïn, ou ce qui revient au même que (dE) 0. La formule à démontrer s&apos;écrit

alors:

w2(QE) e*an, (12)

où e est maintenant considéré comme un homomorphisme de FK dans 9tn.

La forme QE se déduit de la forme unité Q(X) Xf + • • • +X^ par torsion
galoisienne au moyen du 1-cocycle e :FK —»5ln c=SOn(K). Soit ë la classe de e

dans l&apos;ensemble de cohomologie

H\K, SOn) H\FK, SOn(Ks)).

(Il s&apos;agit ici de cohomologie non abélienne, cf. par exemple, [15], chap. I, §5 et

chap. III, §1.)
Soit d&apos;autre part

ô : H\K, SOn) -* H2(K, {±1}) - H2(FK)
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l&apos;opérateur cobord associé à la suite exacte

-»SOn^l, (10)

cf. [15], p. 1-69. D&apos;après Springer ([18], formule (4.6)), on a

(13)

On obtient un 2-cocycle d(a, /3) appartenant à la classe 8(ë) par la construction

suivante:
Pour tout ae%n, on choisit un représentant a&apos; de or dans %n &lt;=Spinn(K), cf.

lemme 1. Si aefK, l&apos;élément xct e(a)&apos; de Spinn(Ks) a pour image e(a) dans

SOn(K); si l&apos;on pose

d(a, fi) xMx^)x~l (a, (3 G FK), (14)

on obtient un 2-cocycle sur fK, à valeurs dans {±1}, dont la classe de cohomologie
est ô(ë), cf. [18], loc. cit. Comme les xa sont rationnels sur K, la formule (14) se

simplifie en

Le 2-cocycle d est donc simplement l&apos;image réciproque par e du système de

facteurs de l&apos;extension ?tn—»?ïn (relativement aux représentants choisis). On a
donc:

e*am (16)

ce qui démontre (12), compte tenu de (13).

2.5. Un résultat auxiliaire

Soient Et et E2 deux algèbres étales, et soit E3 Ex x E2 leur produit.

LEMME 2. Si la formule (1) du th. 1 est vraie pour deux des trois algèbres El9 E2,
E3, elle est vraie pour la troisième.

Soit rij le rang de El9 et soit ex l&apos;homomorphisme de FK dans ©^ associé à Ex
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(î 1, 2, 3). On a n3 Mt + n2, et l&apos;homomorphisme e3 : FK -» ©n3 se factorise en:

où / est l&apos;injection naturelle de ©ni x ©n2 dans ©n3 ©ni+n2 •

Posons:

et

de sorte que (1) équivaut à w(Et) w&apos;(f^).

Comme (^~ Q^ 0 Qb* on a (dE3) (dEl) + (d^) et

w(E3) w(Et) + w(E2) + (dEl)(d^). (17)

D&apos;autre part, l&apos;image de sn3 par l&apos;homomorphisme de restriction

/*:H2(@n3)-&gt;H2(©nix(5n2)

est donnée par la formule

où pt désigne la projection de ©^x©^ sur son i-ème facteur (cela se voit, par
exemple, en appliquant à l&apos;espace classiflant B(©nix@n2) la formule donnant la
classe de Stiefel-Whitney d&apos;une somme directe).

On déduit de là:

e%sn^ (el9 e2)*/*sn3 (eu e2)*[pîs

En ajoutant (2)(dE3) (2)(dEt) -f (2)(dE2) aux deux membres, on obtient

w&apos;(E3) w&apos;(Bi) + w&apos;(ê2) + We.)W^). (18)

En comparant (17) et (18) on voit que, si wfà) w&apos;(£0 pour deux des trois
indices {1,2,3}, la même formule vaut pour le troisième indice. Le lemme en
résulte.
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2.6. Fin de la démonstration du théorème 1

Soit E2 K[X]/(X2 — dE); c&apos;est une K-algèbre étale de rang 2 ayant même
discriminant que l&apos;algèbre E donnée. La formule (1) est vraie pour E2, cf. n° 2.2;
elle est vraie pour ExE2 puisque le discriminant deExE2 est 1, cf. n° 2.4; d&apos;après

le lemme 2, elle est donc vraie pour E, cqfd.

Remarques. 1) D&apos;un point de vue &quot;galoisien&quot;, la construction précédente
revient à utiliser le plongement évident de @n dans 2ïn+2.

2) Le détour par le groupe alterné n&apos;est pas indispensable. On peut faire des
calculs analogues à ceux du n° 2.4 pour le groupe ©n tout entier, à condition
d&apos;élargir le groupe Spinn en un groupe Ôn &quot;deux fois plus grand&quot;, se projetant sur
On. Le groupe ©n se réalise alors comme un sous-groupe de Ùn(Ks) formé de

points rationnels sur K(y/l), mais pas sur K (sauf si 2 est un carré). La formule (14)
ne se réduit plus à (15), mais à:

^)(a(x3)x31); (15&apos;)

le terme (x^x&quot;^) donne e*sn et le terme (a(x3)xp1) donne (2)(dE).

§3. Applications

3.1. Le problème de plongement associé àe\
Soit fig la sous-extension de Ks engendrée par les corps &lt;p(E), où &lt;p parcourt

l&apos;ensemble &lt;2&gt; des K-homomorphismes de E dans Ks, cf. n° 1.3. C&apos;est une
extension galoisienne de K de groupe de Galois GE &lt;= ©n.

Notons xE l&apos;image de sn par Res : H2(©n) —» H2(GE), et notons GE l&apos;extension

centrale correspondante; le groupe GE s&apos;identifie à l&apos;image réciproque de GE
dans ©n, cf. n° 1.5. Si ir désigne la projection FK —&gt; GE, on a

e*sn 7r*xE dans H2(rK) Br2(K). (19)

En d&apos;autres termes, e*sn est l&apos;obstruction au problème de plongement associé à
l&apos;extension GE -» GE. Les deux propriétés suivantes sont équivalentes:

3.1.1. e*sn 0.

3.1.2. Uhomomorphisme tt :FK —&gt; GE se relève en un homomorphisme continu
7r:rK-&gt;GE.

Lorsque xE^0, i.e. lorsque GE est une extension non triviale de GE, tout
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homomorphisme tt satisfaisant à 3.1.2 est surjectif. Cela permet de reformuler
3.1.2 de la manière suivante:

3.1.3. H existe une sous-extension galoisienne Ég de Ks contenant JEg, et un
isomorphisme GE =* Gai (ÉJK) tels que le diagramme

GE-Gal(Ég/K)

i i
GE-Gal(Eg/K)

soit commutatif.

Le th. 1 ramène le calcul de e*sn à celui de l&apos;invariant de Witt de la forme QE.

Il permet, dans certains cas, de décider si les propriétés 3.1.1, 3.1.2 et 3.1.3 sont
vraies ou non. Nous allons en voir quelques exemples.

3.2. Extensions de degré 4 ou 5

PROPOSITION 1. Supposons n 4 ou 5. Pour que e*sn 0, il faut et il suffit
que QE soit isomorphe:

à la forme X\ + X\ + 2X\ + 2dEX\ si n 4,

à la forme X? + Xi + X| + 2Xj + 2dEX| si n 5.

Supposons d&apos;abord n=4. Si Qe ~ X? + Xi + 2X| + 2dEXi on a w2(Qe)
(2)(2dE) (2)(2) + (2)(dE) (2)(dE) et le théorème 1 montre que e*sn 0.

Réciproquement, supposons que e*sn 0, i.e. que w2(QE) (2)(dE). D&apos;après la

prop. 4 de l&apos;App. I, on peut écrire QE sous la forme X\ + g(X2, X3, X4), où g est

une forme ternaire. On a d(g) dE et w2(g) w2(QE) (2)(dE). H en résulte que
g a même discriminant et même invariant de Witt que Xl + 2Xl + 2dEXl.
D&apos;après [22], Satz 11, cela entraîne g~X\ + 2X\ + 2dEX\, d&apos;où le résultat
cherché.

Le même argument s&apos;applique à n 5, compte tenu de ce que

d&apos;après la prop. 4 de l&apos;App. I. (On peut aussi ramener le cas n 5 au cas n 4 par
une extension convenable de degré impair du corps de base.)

EXEMPLE. Supposons que E soit une extension biquadratique de K, autrement

dit un corps de degré 4, composé de trois extensions quadratiques K(\fx),
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K(yfy) et K(\fz) avec xyz 1. Le groupe GE est un groupe abélien élémentaire de

type (2, 2), et l&apos;on vérifie facilement que GE est isomorphe au groupe H des

quaternions. Si l&apos;on prend {1, vGc, Vy, Vz} pour base de E, on voit que la forme QE

est isomorphe à T2+xX2+yY2 + zZ2, et l&apos;on a dE 1. En appliquant la prop. 1,

on en déduit que e*sn est nul (i.e. que E peut être plongée dans une extension

galoisienne É de groupe de Galois H) si et seulement si les formes xX2+yY2 +
zZ2 et X2 + Y2 + Z2 sont isomorphes (noter en effet que 2Y2 + 2Z2 est isomorphe
à Y2jtZ2). On retrouve ainsi un résultat de Witt [21].

Remarque. Witt démontre davantage. Il donne un procédé permettant de

construire É à partir d&apos;un isomorphisme de la forme X2+ Y2 + Z2 sur la forme
xX2+yY2+zZ2. Il serait intéressant d&apos;étendre sa construction à d&apos;autres cas.

(Signalons une faute d&apos;impression dans [21], Satz, p. 244: le terme r(p]L1f1-f
P22&amp; + P33&amp;) doit être remplacé par Kl + p11£1 + p22£2 + p33£3).)

Extensions icosaédriques du type de Klein

PROPOSITION 2. Supposons que n 5, dE 1, et que 5 soit un carré dans

K*. Les propriétés suivantes sont alors équivalentes:

(a) e*Sn=(-l)(-l);
(b) QE~X2 + Xl + X2-X2-X2;
(c) II existe x € E, x £ 0, tel que TrE/K(x) TrE/K(x2) 0;
(d) Uextension EJK peut être construite par le procédé de Klein (cf. [16]).

D&apos;après le th. 1, (a) équivaut à w2(QE) (-l)(-l). Notons QE la forme

quadratique de rang 4 obtenue en restreignant QE aux éléments xeE tels que
TrE/K(x) 0. On a:

QE ~ 5X2 0 QE ~ X2 0 QE, (20)

puisque 5 est un carré dans K*. Cela permet de récrire (a), (b) et (c) en termes de

(a&apos;)

(b&apos;)

(c&apos;) Q&apos;E représente 0.

D&apos;autre part, la prop. 4 de l&apos;App. I montre que

QE ~X\ + X\ + g(X3, X4, X5), (21)
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où g est une forme ternaire de discriminant 1. En comparant (20) et (21) on
obtient:

QÉ~X!+g(X3,X4,X5), (22&gt;

et (a&apos;), (b&apos;), (c&apos;) se récrivent à leur tour:

(a&quot;) w2(g) (-l)(-l);
(b&quot;) g-Xf-Xî-Xl;
(c&quot;) g représente 0.

L&apos;équivalence de ces propriétés est maintenant immédiate (cf. par exemple [22],
Satz 11). Le fait que (a) et (c) soient équivalents à (d) est démontré dans [16].

3.3. Extensions définies par une équation Xn + aX+b 0

Supposons que JE — K[X]/(Xn + aX+ b), avec n ^ 2, a, b e K, le discriminant d
du polynôme Xn + aX+ b étant ^=0. On peut alors déterminer QE, w2(QE) et
e*sn en termes du couple (n, d), cf. App. IL On trouve (cor. à la prop. 7):

l)(-l) (-2)(-d) si n 4,5,

(3)(-d) + (-l)(-l) si car(K)^3 et n 6,7,

(-l)(d) si n 8,9,

(5)(-d) si car(K)/5 et n 10,11,

0 si n 18,19,50,51,98,...

EXEMPLES, a) Supposons que n=l et d 1, de sorte que GE est un

sous-groupe de %1. On a e*s7 (—3)(-l). Il en résulte que le problème de

plongement est résoluble si et seulement si -3 est somme de 2 carrés dans K.

Exemple numérique: a -154, b 99, et [K: Q] 2. Le groupe GE est alors

un groupe simple d&apos;ordre 168, isomorphe à PSL^Fv), cf. [5]; le groupe GE est

isomorphe à SL^Fv). On en conclut que, pour que EJK se plonge dans une
extension galoisienne à groupe de Galois SL2(F7), il faut et il suffit que K soit

imaginaire et que 3 soit inerte ou ramifié dans K/Q: en effet, on sait que ces

conditions équivalent à dire que (-3)(-l) 0 dans Br2(K).
b) Supposons que n 18 et GE=©n. Comme e*sn=0, le problème de

plongement a une solution: il existe une extension quadratique de JEsg dont le

groupe de Galois sur K est ©n. (Comment construire effectivement une telle
extension?)

Pour d&apos;autres exemples du même genre, voir [20].
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3.4. Exemples où K Q et e*sn 0

Supposons que K Q, et définissons des entiers ru r2^0 par la relation
habituelle:

R®E-Rr*xC\ (23)

On a rx + 2r2=n. La signature de la forme QE est (rt + r2, r2). Notons Qrur2 la
forme quadratique à coefficients ±1 ayant cette signature:

,a 1,la (24)

Nous allons comparer QE et Qri,r2:

PROPOSITION 3. Les deux propriétés suivantes sont équivalentes:

(a) dB 1 ef e*sn 0;
(b) r2=0 (mod4) et QE~Qri,f2.

Le discriminant de Qriff2 est (-1Y2, et son invariant de Witt est 0 (sur Q, ou sur
R) si et seulement si r2==0,1 (mod4). Si (b) est vérifié, on a donc dE 1 et
w2(QE) 0, d&apos;où e*sn=0, ce qui prouve (a). Inversement, si (a) est vrai, r2 est

pair. De plus, QE est R-isomorphe à Qri,r2, donc a même invariant de Witt sur R;
comme cet invariant est 0 (vu les hypothèses faites), cela montre que r2==0

(mod4). Il en résulte que les formes QE et Qrur2 ont même discriminant, même

invariant de Witt, et même signature. Elles sont donc isomorphes, ce qui achève

de prouver (b).

Exemples d&apos;extensions satisfaisant à (a) et (b)

1) La propriété (a) est notamment vérifiée lorsque le groupe GE est tel que
H1(GE) H2(GE) 0. C&apos;est le cas, par exemple, lorsque G est un groupe simple
non abélien dont le multiplicateur de Schur est d&apos;ordre impair. On trouvera la
liste de ces groupes dans [7]; parmi les 26 groupes sporadiques, il y en a 17 qui
conviennent: M11? M23,..., et parmi eux le groupe de Griess-Fischer F\.
Comme Thompson a construit des extension de Q à groupe de Galois Fx (cf.

[19]), on peut leur appliquer la prop. 3: la forme QE correspondante est isomorphe
à la forme standard Qri,,2. Signalons à ce sujet la question suivante: peut-on
choisir E totalement réelle (i.e. r2 0) telle que GE — F11 (Noter que la méthode
de Thompson fournit uniquement des extensions imaginaires.)
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2) La propriété (a) est également vérifiée (sur un corps de base K quelconque)
lorsque E est un corps, extension galoisienne de K, et que le groupe de Galois
GE — Gai (E/K) est tel que les deux premières classes de Stiefel-Whitney de sa
représentation régulière sont nulles. Les groupes finis satisfaisant à cette condition
ont été déterminés par B. Kahn [8]. Il en est ainsi par exemple de:

a) tout groupe ayant un 2-groupe de Sylow non métacyclique,
b) tout groupe simple non abélien et non isomorphe à PSL2(Fq), q ±3

(mod8).
On peut donc appliquer la prop. 3 à toute extension galoisienne de Q ayant

pour groupe de Galois l&apos;un de ces groupes.

§4. Une généralisation: la forme Tr (ax2)

4.1. Enoncé du résultat

Soit a un élément inversible de l&apos;algèbre étale E. Si x e E, posons

QE,ol(x)=TrE/K(ax2l

On obtient ainsi une forme quadratique QE,«, qui est non dégénérée de rang
n =rg(E); pour a 1, on retrouve QE. On peut se poser les mêmes questions

pour QEoL que pour QE. Les résultats sont tout à fait semblables, comme on
va le voir.

Tout d&apos;abord, si &lt;pt,..., &lt;pn sont les différents homomorphismes de E dans Ks,
et si ±j3i,..., ±^n sont les racines carrées de &lt;Pi(a),..., &lt;pn(«)&gt; te groupe FK

opère sur les ±j3t par permutations et changements de signes. Cela conduit à

introduire, à la place du groupe ©n du n° 1.3, le groupe

d&apos;ordre 2nn!, produit semi-direct de {±l}n et de ©n (ce dernier opérant sur {±l}n
de façon évidente). Une autre façon de définir ©^ est de dire que c&apos;est le groupe
de Weyl d&apos;un système de racines de type Bn ou Cn, cf. Bourbaki LIE. VI.

L&apos;action de FK sur les &lt;p, et les ±j3, définit un homomorphisme

qui caractérise le couple (E,a), à la multiplication près de a par un carré. Ici
encore, ©^ s&apos;identifie à un sous-groupe du groupe orthogonal On(K), et la forme
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QEa se déduit de la forme standard £X? par torsion au moyen du 1-cocycle

Le discriminant de QEa est donné par:

où Na NE/K(a) est la norme de a; cela se vérifie, soit par un calcul direct, soit
en explicitant l&apos;homomorphisme det:©^ —*{±1}.

En ce qui concerne V invariant de Witt de QEa, on procède comme pour QE.
On définit d&apos;abord un élément canonique s&apos;n de H2(©^) par la méthode de la fin
du n° 1.5, i.e.

où l&apos;n est le fibre orthogonal sur B&amp;&apos;n associé à la représentation évidente
©n~&gt;On(R). L&apos;extension centrale ©^ correspondant à s&apos;n est décrite par
générateurs et relations dans [3], p. 619 (prendre y A /ut -1). L&apos;analogue du
théorème 1 est:

THÉORÈME 1&apos;. On a

w2(QE,J e*&lt;+(2)(dE). (25)

Noter que, dans le terme (2)(dE), c&apos;est bien dE qui intervient, et non d(QE,«).

4.2. Démonstration du théorème Y

On peut procéder de diverses manières. J&apos;en indique deux, sans entrer dans les

détails:

Première démonstration

Elle consiste à se ramener au th. 1, grâce à l&apos;algèbre de rang 2n:

E&apos; E[X]/(X2~a).

Notons E&apos;o l&apos;ensemble des xeE&apos; tels que TrE7E(x)=0. L&apos;espace vectoriel E&apos; est

somme directe de E et de E&apos;o. De plus, ces sous-espaces sont orthogonaux pour la
forme QE&gt;, et la restriction de QE&gt; à E (resp. Eq) est 2QE (resp. 2QEa). On a
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donc:

QE-2QE02QEa. (26)

En appliquant le th. 1 à E et E&apos;, on obtient les valeurs de vv2(QE) et w2(2QE),
d&apos;où, grâce à (26), la valeur de w2(QEa). La formule (25) s&apos;en déduit par un calcul
sans difficulté (remarquer que la représentation FK —&gt;©2n cO2n(R) associée à E&apos;

est somme directe de FK -*©n c On(R) et FK -&gt;©;c:On(R)).

Seconde démonstration

Elle imite la démonstration du th. 1. On traite d&apos;abord le cas où l&apos;image de FK
dans ©^ est contenue dans le sous-groupe Wn entendre par §ln et par les éléments

(et) g {±l}n tels que Fl^t 1 (cela revient à supposer (dE) (Na) 0). Notons a&apos;n la
restriction de s&apos;n à Wn9 et soit %&apos;n l&apos;extension centrale correspondante. Comme au
n° 2.3, on a un diagramme commutatif :

1 1

1 -+ {±1} -* Spinn(K) -* SOn(X).

La démonstration du n°2.4 s&apos;applique alors sans changement, et montre que
w2(QE,&lt;J e*a^, d&apos;où le th. V dans le cas considéré.

Le cas général se ramène au précédent par un procédé analogue à celui du
n° 2.6. On utilise les couples (Eu a^ et (E2, a2) suivants:

E2 K[X]/(X2-dE\ a2=l.

Le th. 1&apos; se vérifie immédiatement pour ces couples, ainsi que pour leur produit

(E1xE2, (ai, a2)). D&apos;autre part, le produit

(E X Ex xE2, (a, ai, a2))

est du type ci-dessus (i.e. correspond à un homomorphisme de FK dans Stn+3). On

peut donc lui appliquer le th. 1&apos;. On passe de là à (E, a) par un lemme analogue

au lemme 2 du n°2.5.
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Appendice I. Une décomposition de QE

Ecrivons le rang n de E sous forme dyadique:

n 2m*+- • • +2&quot;\ avec 0^m1&lt;m2&lt;- • • &lt;mh.

PROPOSITION 4. (a) Si £ rnx est pair, on a

QE~X?+ - • + X£+g(Xh+1,...,Xn),

où g est une forme quadratique de rang n-h et de discriminant dE.

(b) Si X mt est impair, on a

H+1,... ,Xn),

où g est une forme quadratique de rang n-h et de discriminant 2dE.

EXEMPLES. Si n 3, on a m1 0, m2=l, h 2, et g est une forme à 1

variable de discriminant 2dE; on retrouve le fait que QE est isomorphe à

ï i L cf. n°2.2.
Si n 5, on a m1 0, m2 2, h 2, et l&apos;on voit que

où g est une forme à 3 variables de discriminant dE. Il en résulte ([22], Satz 11)

que QE est bien déterminé par ses deux invariants dE et w2(Qe)-

LEMME 3. Il existe une extension finie K&apos; de K, de degré impair, telle que la
K&apos;-algèbre E&apos; K&apos;®KE se décompose en produit d&apos;algèbres E[ (l^i^h) de

rangs 2m«.

Soit GE e(FK) le groupe de Galois de E, considéré comme sous-groupe de ©„
(n° 1.3). Soit P un 2-sous-groupe de Sylow de GE, et soit K&apos; l&apos;extension de K
correspondant à P. Le degré de K&apos; sur K est égal à (GE:P), qui est impair.
Comme e(TK) P, les orbites de e{FK) dans [1, n] ont pour ordres des puissances
de 2. Il en résulte une décomposition de E1 en produit

E&apos; \\E\ (l^j^k),
où le rang n, de chaque E\ est une puissance de 2. Choisissons une telle
décomposition avec le moins de facteurs possible, i.e. avec fc minimum. Les n,
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sont alors distincts: en effet, si l&apos;on avait n, n{ pour /^ /, on pourrait regrouper
E\ et E[, et remplacer fc par fc -1. Comme n YJnp ceci entraîne que les n, sont
égaux aux 2™, à l&apos;ordre près; d&apos;où le lemme.

LEMME 4. Soient q&gt; et i(/ des formes quadratiques sur K. Soit K&apos; une extension

finie de K de degré impair, et soit g&apos; une forme quadratique sur K&apos; telle que
&lt;p ~ \fr © g&apos; sur K&apos;&apos;. Il existe alors une forme quadratique g sur K telle que &lt;p ~ t/r © g.

Soit fc le rang de i/r. Pour qu&apos;il existe g avec &lt;p ~ i/&gt; © g, il faut et il suffit que
l&apos;indice sur K de la forme &lt;p © (-i^) soit ^fc (cf. [22]). Or, d&apos;après un théorème de

Springer [17], cet indice est le même sur K et sur K&apos;&apos;. D&apos;où le résultat.

LEMME 5. La forme quadratique 2miX?+ • • • +2m*Xl est isomorphe:

à la forme X\ 4- • • • + Xl si X ^ est pair,

à la forme 2X\ 4- X\ + • • • + X\ si X mt est impair.

On peut évidemment remplacer le coefficient 2m- par 1 si mt est pair, et par 2
si ml est impair. Cela montre que la forme considérée est isomorphe à:

où r est le nombre des indices i tels que mt soit impair. Le lemme en résulte,

compte tenu de ce que 2X2 + 2Y2~X2+ Y2.

Démonstration de la prop. 4

Vu les lemmes 3 et 4, on peut supposer que E se décompose en produit:

E=rm, avec rg(Et) 2ms l^i^h.

On a QE~QEl© * •* ©QEh- Comme QE(l) TrE/K(l) 2ms la forme QE se

décompose en:

QEi~2m^X2©gl, avec

On en déduit une décomposition de QE:

UE~2 ^jH- # * * +Z hAH+g(,AH+1, Anj,

et l&apos;on conclut en appliquant le lemme 5.
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Appendice II. Détermination de QE lorsque E est définie par une équation de la
forme Xn+aX+b=0

Soient a et b deux éléments de K, et soit n un entier ^2. Posons

Le discriminant d de f est donné par la formule:

Supposons d^O. L&apos;algèbre E K[X]/(Xn + aX+b) est alors étale, et (dE)

(d). Nous allons voir que l&apos;on peut expliciter la forme quadratique QE en fonction
seulement de n et de d (cf. prop. 5 et 6 ci-dessous). Ce résultat m&apos;a été signalé

par P. E. Conner, pour n impair (le cas n pair est d&apos;ailleurs plus facile); on
trouvera dans la thèse de N. Vila [20] des résultats analogues pour certaines

équations du type Xn + aX2+ 6X+ c 0.

Il est commode de séparer les cas suivant la parité de n :

PROPOSITION 5. Supposons n pair. On a alors:

QE ~ XXX2 + X3X4 + • • • + Xn_iXn si car (K) divise n, (28)

et

QE~nX?-(-l)n/2ndXl + X3X4+ • • • +Xn_!Xn sinon. (29)

Soit x l&apos;image de X dans E. Les xl (0^i^n-l) forment une base de E.
D&apos;après les formules de Newton, on a

TrE/K(l) n et TrE/K(xl) 0 pour l^i^n-2. (30)

Si la caractéristique de K divise n, le sous-espace de E engendré par 1,

x,..., x(n~2)/2 est totalement isotrope de dimension ni2; la forme QE est donc

hyperbolique, d&apos;où (28).
Supposons maintenant que car(K) ne divise pas n, et décomposons E en

somme orthogonale

E K • 10 E\

où E&apos; est l&apos;hyperplan des éléments de trace 0. On en déduit QE ~ nX\ © QÉ, où

QÉ est la restriction de QE à E&apos;. D&apos;après (30) les vecteurs x, x2,..., x(n~2)/2
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engendrent un sous-espace totalement isotrope de E1 de dimension (n-2)/2. On
a donc

n1Xn, avec ceK*.

Comme à d(QE) nd(Qfe) nc(-l)(n-2)/2 (dans K*/K*2), on a

c -(-l)n/2nd,

d&apos;où (29).

PROPOSITION 6. Supposons n impair. On a alors

OE ~ X\ + X2X3 + X4X5 + • • • + Xn_xXn si car (K) divise n -1, (31)

et

QE-Xi + (n- 1)X| + (- l)(n&quot;3)/2(n - 1) dX| + X4X5 + • • • + Xn_xXn sinon.

(32)

On définit comme ci-dessus les x\ l&apos;hyperplan E&apos; et la forme QE. Si car (K)
divise n-1, on a n l dans K, d&apos;où QE~ X?©QE. De plus, les vecteurs x,
x2,..., x(n~1)/2 engendrent un sous-espace totalement isotrope de E&apos; de dimension

(n-l)/2: cela se voit en utilisant les formules (30) ainsi que le fait que
TrE/K(xn~1) (1 - n)a 0. La forme QE est donc hyperbolique, d&apos;où (31).

Supposons maintenant que car (K) ne divise pas n -1, et que aj^O. Soit V le

sous-espace de E engendré par les vecteurs

e1=l + a&quot;1xn&quot;1 et e2 a~1xn~1.

En utilisant les formules

TrE/K(xn&quot;1) (l-n)a et TrE/K(x2n-2) (n - l)a2,

on voit que

TrE/K(e1e1)=l, TrE/K(e1e2) 0 et TrE/K(e2e2) n-1.

On en déduit:

où Q&apos;É est la restriction de QE à l&apos;orthogonal E&quot; de V dans E.
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Les vecteurs x\ avec (n + l)/2^i^n —2, engendrent un sous-espace totalement

isotrope de E&quot; de dimension (n-3)/2. On a donc:

QE~cX| + X4X5+-..+Xn__1Xn, avec ceK*.

Comme d d(QE) (n- l)d(QE) (n - l)c(-l)(n~3)/2, on a

c (n- l)d(-l)(n-3)/2 (dans K*/K*2),

d&apos;où (32).
Reste le cas où a 0 et où car (K) ne divise pas n - 1. La formule (27) montre

alors que car(K) ne divise pas n (sinon d serait 0), et que d (—l)(n~1)/2n dans
K*/K*2. Qn a donc QE~nx?0QE. Comme les vecteurs x, x2,..., x(n~1)n

engendrent un sous-espace totalement isotrope de E&apos; de dimension (n -1)/2, la
forme QÉ est hyperbolique. D&apos;où:

5+ • • • +Xn_1Xn.

Pour prouver (32), il suffit donc de montrer que les deux formes

3)/2(n-l)dXl et nX

sont équivalentes. Or, dans la première de ces formes, on peut remplacer d par
(-l)(n~1)/2rc, ce qui donne X2 + (n - 1)X\- n(n - 1)X|; on obtient ainsi une forme
ternaire de discriminant -n, qui représente 0 (prendre X1 n-1, X2 X3= 1);
elle est donc bien équivalente à rcX2 + X2X3, cqfd.

Calcul de V invariant de Witt de QE

On pose m [n/4], de sorte que n 4m, 4m + 1, 4m + 2 ou 4m + 3.

PROPOSITION 7. Si n 4m ou 4m +1, on a:

si car(iC) divise m

-4m)(d) + m(-l)(-l) sinon.

Si n 4m +2 ou 4m + 3, on a :

{0
si car(K) divise 2m+ 1

(4m+2)(-d) + m(-l)(-l) sinon.
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Traitons par exemple le cas n 4m + l (les autres cas sont analogues). Si
car (K) divise m, la prop. 6 montre que

QE~X? + • • • +XL+1-(Xlm+2+ • •

On en déduit:

car(-l)(-l) 0 dans tout corps de caractéristique
Si car(K) ne divise pas m, on a, d&apos;après (32):

QE~X?+ • • • +X!m-(XL+1+

d&apos;où

En développant, et en utilisant la formule connue (x)(-x) 0, on obtient bien

w2(OE) (-4m)(d) + m(-l)(-l).

COROLLAIRE. Si n 4m ou 4m+ 1, on a:

* f 0 si car (K) divise m
l(-2m)(d) + m(-l)(-l) sinon.

Si n 4m + 2 ou 4m+ 3, on a:

^ fO si car(X) diuise 2m+ 1
6 Sn

l(2m + l)(-d) + m(-l)(-l) sinon.

On applique la formule e*sn w2(QE) + (2)(d), en tenant compte de ce que
(2)(-l) 0 [noter que, d&apos;après (27), on a d ±l si n 4m ou 4m+ 1 (resp.
4m+2 ou 4m+3), et car(K) divise m (resp. 2m+ 1)].
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