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Réduction theory using semistability*

Daniel R. Grayson

Introduction

The purpose of this paper is to develop some new techniques for proving
theorems about arithmetic groups. Strong theorems about thèse infinité groups of
matrices were proved by Borel and Serre [1973], including finite présentation of
the group, finite génération of the cohomology and homology, and a form of
generalized Poincaré duality. Their technique is to produce a compact aspherical
manifold with boundary whose fundamental group is isomorphic to the arithmetic

group; then they show the boundary of the universal cover is homotopy équivalent

to the Tits building, which yields précise knowledge about its homology
groups.

We will produce the required manifold in a slightly différent way, still arriving
at the same end results. Whereas Borel and Serre adjoin a boundary to an open
manifold, we will instead delete an open neighborhood of infinity. Of course, for
such a neighborhood we could simply choose a collar of Borel and Serre&apos;s

boundary, but this choice is not canonical. Our approach appears to be as

canonical and explicit as possible, and is independent of Borel and Serre&apos;s results.
In fact, it amounts to a reworking of part of réduction theory for quadratic forms,
as developed by Minkowski [1896, 1911], Hermite [1905], Siegel [1957], and
Borel [1966]. We dispense with the &quot;Siegel sets&quot;, and replace them with the study
of &quot;semistability&quot; for lattices in Euclidean space. Roughly speaking, this involves
the part of réduction theory which provides lower bounds on lengths of vectors in
lattices. The other, more classical part of réduction theory is concerned with
getting upper bounds on lengths of shortest vectors in lattices, and with combining

upper and lower bounds to prove finiteness assertions.
The first advance along thèse lines was made by Stuhler [1976, 1977]. Serre

[1977] and Quillen [see Grayson, 1982] used the notion of semistable vector
bundle on an algebraic curve to study Sln(6) when 6 is a Dedekind domain

*This research was supported by the National Science Foundation through the Institute for
Advanced Study and the University of Illinois.
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finitely generated over a finite field. Stuhler knew of the analogy between function
fields and number fields formulated by Weil [1939], and was inspired to apply it
hère. He saw that some work of Harder and Narasimhan [1975] on stable vector
bundles carries over, and leads to new facts about lattices in Euclidean space.

One way to reformulate Stuhler&apos;s resuit is this. Let Lbea lattice in Euclidean
space. The real span of any nonzero subgroup M of L is again an inner product
space, so it makes sensé to speak of the (nonzero) covolume vol M of M in its

span, regardless of the dimension of M. Now plot (for ail M) the points (dim M,
log vol M) in the (x, y) plane. Thèse points are bounded below, so their convex
hull is bounded below by a certain convex polygon. The resuit is this: each vertex
of the polygon is represented by a unique subgroup M; moreover, the subgroups
representing the vertices form a chain. This chain is dubbed the Harder-
Narasimhan canonical filtration of L because it is analogous to the filtration
Harder and Narasimhan obtain for a vector bundle on a projective algebraic
curve.

In this paper we use the canonical filtration to undertake a more detailed study
of the structure of the space of lattices in a fixed Euclidean space. The idea is to
check that more of the work of Serre and Quillen for function fields can be

transferred, by analogy, to number fields. Imagine moving L in the space of
lattices; motion towards infinity (towards a cusp) can be detected by a decrease in
the angles at the vertices of the convex polygon of L, and the canonical filtration
itself tells us in which direction we are moving off toward infinity. We make this
précise: we get functions which measure the distance from infinity, and use them
to détermine the open neighborhoods of infinity, the deletion of which gives a

manifold. Thèse neighborhoods are small enough so that they do not change the

homotopy type of the manifold, and they allow proving that the boundary of the
universal cover is homotopy équivalent to the Tits building. This allows recover-
ing ail the results of Borel-Serre.

In the first part of the paper we consider Gln€, where 0 is a ring of integers in
a number field. This should be useful to K-theorists as a way of simplifying the

proof that the higher K-groups Kt6 are finitely generated. The reader may easily
modify the arguments of this paper to apply to Sln6.

In section 7 we consider orthogonal groups. This makes use of some ideas of
Atiyah and Bott, who discuss semistability for principal G-bundles on a Riemann
surface.

In the work of Atiyah and Bott, G is any semisimple Lie group. Thanks to
Ofer Gabber, I know how to express the symmetric space of maximal compact
subgroups of G as the space of those inner products on the Lie algebra of G
which difïer from the Killing form by a Cartan involution. I hope to be able to
présent this case in a future paper.
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An interesting incidental conséquence of this work is a more &quot;intrinsic&quot;

construction of the Borel-Serre &quot;géodésie action&quot; (and their boundary, although
we don&apos;t pursue that hère) for Gln0; here intrinsic means without référence to the
chosen basis of 6n.
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1. Lattices

Let 0 be the ring of integers in an algebraic number field F. Let oo be an
archimedean place of F, and let F^ be the completion of F at oo. The [R-algebra Fœ

is either equal to the real numbers R or is isomorphic to the complex numbers C

(in one of two ways).
If Voo is a finite dimensional Foo-vector space. then an inner product on V^ is a

positive definite bilinear form V^x VU-» F«,, which is required to be symmetric if
oo is real and to be hermitian if oo is complex. When equipped with an inner
product, Voc is called an inner product space.

We define an 0-lattice L to be a projective C-module F of finite rank
equipped with an inner product on each of the vector spaces Voo F(8)e?Foo. We

adopt the notations V L(&amp;ZM and VOO L®CFOO. We will maintain this notation
later, and the addition of subscripts or superscripts will not interfère with the

meanings of the letters L, F, and V. [The other logical (but too bulky) choice for
the notation would be to mimic the notation for global sections of a sheaf over
various open sets, for what we hâve resembles a sheaf on the topological space
Spec (0) USpec (Û^R), the collection of ail primes of 6, finite, infinité, and zéro.
Then L would be the &quot;sheaf&quot; on the whole space, F would be the sections over
the finite primes, and V^ would appear as the &quot;stalk&quot; at °o.]

If Vc is a hermitian (complex) inner product space, then there is a procédure
called restriction of scalars which makes it into a symmetric (real) inner product
space VR. One simply takes the real part of the inner product and forgets the
scalar multiplication by complex, nonreal, numbers. If {v, w,...} is an orthonormal

basis for Vc, then {v, iv9 w, iw,...} is an orthonormal basis for Vm.
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There is also a procédure called restriction of scalars which makes an ©-lattice
into a Z-lattice. Notice that V \[ V^. Define an inner product on the real vector
space V by

real complex

Let f*L dénote the Z-lattice obtained by equipping L, regarded as a Z-module,
with this inner product (at the unique infinité place of Q).

Let L be an ©-lattice, and let F dénote the underlying ©-module. Any
submodule PX^P can be made into an ©-lattice by restricting the inner product
on each Vœ to V1&gt;oo Px®0F^\ call the resulting ©-lattice Ll9 and write Lx ç L. We
will use the notation Lx Ln Px. Assume now that P/Px is projective; then we say
that Lx is a sublattice of L. The orthogonal projections p^: Voo—» VfïOO provide
isomorphisms (P/F1)®cFO0—&gt; Vt,oo which can be used to make P/P1 into an
©-lattice which we will call L/Llm We say that L/Lx is a quotient lattice of L, and
that E : 0 —&gt; Lx -» L —&gt; L/Lt —&gt; 0 is an exact séquence of lattices.

We do not define a notion of &quot;morphism&quot; of ©-lattices. The arrows in our
diagrams will be simply maps of the underlying ©-modules. An isomorphism of
©-lattices is an isomorphism of underlying ©-modules which préserves the inner
products at the infinité places.

Recall that a finitely générâted ©-module is projective if and only if it has no
torsion, and it doesn&apos;t matter whether we look for torsion by éléments of © or of
Z. From this observation cornes the following collection of trivia.

LEMMA 1.1. Suppose L is an 6-lattice.
(a) If Lx is a sublattice of L2, and L2 is a sublattice of L, then Lx is a sublattice

ofL.
(b) If LX^L2^L, and Lx is a sublattice of L, then Lx is a sublattice of L2.
(c) If Lt^L^L2 are both sublattices of L, then LtC\L2 is a sublattice of L.
(d) If Lt^L, then L2n(L1®(r?F) is a sublattice of L, and contains Lt as a

subgroup of finite index. If Lx is, in addition, a sublattice, then Lt L2.
(e) If Li^L has volume minimal among volumes of submodules of L of the

same rank, then Lx is a sublattice of L.

LEMMA 1.2. (a) Suppose L, L&apos; are 6-lattices with the same underlying module
P. Thenf*L=f*L&apos; iffL Lf.

(b) Suppose E : 0 —» Lt —» L -&gt; L2 —» 0 is an exact séquence of ©-lattices. Then
the inner products on Lx and L2 are uniquely determined by the inner products on L.

(c) Suppose E is a séquence of€-lattices, as above. Then E is exact ifff*E is.
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Proof. (a) This part is clear, because a hermitian inner product can be
recovered from its real part, or indeed from the associated norm.

(b) This is clear from the définitions.
(c) Suppose E is exact. It is clear that f*Lt is a sublattice of f*L. We must

check that f*L^&gt;f*L2 cornes from orthogonal projection. This has two
ingrédients: the first is that if Poo is an orthogonal projection at a complex place, then it
remains an orthogonal projection after restriction of scalars to (R. The second is

that V n ^oo is an orthogonal sum, and similarly for V2; the orthogonal sum of
orthogonal projections is still an orthogonal projection.

Now suppose f*E is exact. Then if E isn&apos;t exact, we may modify the inner
products on Lx and L2 to make it exact, obtaining a new exact séquence
jE&apos;:0-»Li —&gt;L-^Lr2 —&gt;0, with the same underlying ©-modules. Now f*E&apos; is

exact, so f*L[ f*Lx for i 1, 2. By part (a), E&apos; E, so is exact. QED

Not ail of the usual isomorphism theorems for C-modules go through for
©-lattices, so we must be careful at this stage.

LEMMA 1.3. IfLx is a sublattice ofL, and L2 is a sublattice ofLl9 then LJL2
is a sublattice of L/L2, and (L/L2)/(L1/L2) L/L2.

Proof. By Lemma 1.2, we may as well apply restriction of scalars to everything
in sight, achieving the case © Z. The first assertion is clear, and the second

amounts to the fact that the composite of two orthogonal projections V—»

V/V2-»(V7V2)/(V1/V2) is again an orthogonal projection. QED

We let rfc (L) dénote the ©-module rank of L, and let dim (L) dénote the rank
of L as Z-module. Of course, dim (L) rfc (L) dim (©).

We define the volume of L, vol (L), to be the covolume of the lattice f*L
inside its inner product space V. This may be computed as |det(il, e,)\, where {!,}
is a Z-basis of f*L, and {e,} is an orthonormal basis of V. Thus if dim L 0, then
vol L 1. If dim L 1, then vol L is the length of a generator of L. If dim L 2,

then volL is the area of a fundamental parallelogram, and so on. It is worth
reiterating that the volumes are not measured with respect to a fixed dimension,
and they are always nonzero.

FACT 1.4. If 11 is a submodule of finite index in L. then vol LJ [L: L;] vol L.

EXAMPLE 1.5. Take L C, and for each place oo déclare {1} to be an
orthonormal basis of V00 F00. This makes 6 into an ©-lattice in a natural way,
and it turns out that vol 6 - 2~&apos;V|d|, where r2 is the number of complex places of
F, and d is the discriminant of 6. See Lang [1970, p. 115] for a proof.
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EXAMPLE 1.6. Take L 6n, and give it inner products at each place. Let z^
be the matrix of the inner product at oo; then

vol L fi (det Zoo)c(oc)/2 (vol O)n

where e(^) [Fx:R\

Proof. If each 2»= 1, then the direct sum L 6n is orthogonal, and the resuit
is immédiate.

Choose an orthonormal basis {cioo} for VOD=F£!, and let y^ be the
Foo-automorphism of V«, such that the standard basis vectors bt are
given by bt y • eloo. Let y be the direct product of the yœ&apos;s it is an R-
automorphism of V nVoo. If we let Lf y~1L, then by the first line
of the proof, we know vol(L&apos;) vol(©)n. Thus volL |det y| (vo\Û)n
fi |det yJie(oo) (vol C)n =U(det Zoo)&lt;(00)/2(vol O)n. The last equality cornes from z»
* Y», * Yoo, where Yx dénotes the matrix of y^ with respect to the basis {eloo}. Notice
also that det Zoo&gt;0. The middle equality makes use of the formula

which holds when h is an endomorphism of a complex vector space, and det^ h

dénotes its déterminant when considered as an endomorphism of the underlying
real vector space; to prove it, one reduces to the case where the complex
dimension is 1 by row and column réduction.

Remark 1.7. For any ©-lattice L, we can find its volume as follows. There is a

sublattice L&apos;çL with the same rank as L, and which is free. Fix a basis for it, and

for each œ let zœ be the matrix of the inner product with respect to it. Then

vol L fi (det 2oo)e(0°)/2(vol O)n/[L : L&apos;].

LEMMA 1.8. If L is an Û-lattice and 11 is a sublattice of L, then vol(L)
vol (L&apos;) • vol (L/L).

Proof. By restriction of scalars, we may assume that 6 Z. Choose bases {Q
for V and U}U{m?} for L. Choose orthonormal bases {ct} for V and {eJUj/j} for
V, and let p be the orthogonal projection onto V/J\ Then, omitting ail subscripts
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for clarity, we hâve

DANIEL R GRAYSON

VOl(L) det\&lt;m,c&gt; (m,f))\

vol (L&apos;)-vol (L/L&apos;). QED

DEFINITION 1.9 [Stuhler, 1976, Définition 1]. The slope of a nonzero
lattice L is the number (log vol (L))/dim L, and can be thought of as the log of an

average length. The log is thrown in solely to convert the multiplicativity of the
volumes (provided by Lemma 1.8) into additivity. The slope is undefined when

L 0.

DEFINITION 1.10. Suppose we plot ail submodules of a nonzero lattice L as

points in the plane, where the horizontal axis is the dimension, and the vertical
axis is log vol. Call this plot the canonical plot of L. The slope of L appears in this

plot as the slope of the Une segment joining 0 and L. The import of Lemma 1.8 is

that slope (L/L!) appears in this plot as the slope Qf the Une segment joining L&apos;to

L (see Figure 1.11). In fact, the canonical plot for L/L appears (translated) in the
canonical plot for L as those points represented by sublattices of L containing 11.

If A and B are subgroups of an abelian group C, then a basic fact is that

A/AnB A + B/B. For lattices this is false, as can be seen in easy examples.
Nevertheless, we can make do with a certain inequality for the volumes, which we
now dérive.

Cog vot slope L

cCim

slope L/L*
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In the notation of the proof of Lemma 1.8, there is a formula

for the orthogonal projection p. It follows that orthogonal projection is length
decreasing, i.e. for ail v, M^|pt&gt;|; but it also is volume decreasing in the following
sensé.

THEOREM 1.12 [Stuhler 1976, Proposition 2]. Suppose L is an O-lattice, and
Lt and L2 are sublattices. Then

(i) vol (L2/L2 H Lt) s* vol (Lx + LJLJ
and

(ii) vol (La H L2) vol (Lt + L2) ^ vol.(L^ vol (L2).

Proof. Part (ii) follows from part (i) together with Lemma 1.8. Let&apos;s show part
(i). First, we may assume 0 Z, by restriction of scalars. Let Px and P2 dénote the

underlying modules. Now choose a filtration P1C\P2 Qo ç= Q1 ç= • • • ç= Qn P2 in
which each subquotient QJQl^1 is free with rank 1. By Lemma 1.8, we may
replace P2 by Qt and Px by Ql^1 + P1, thereby achieving dim (L2/L1PlL2) 1. We

may also achieve L1HL2 0 by replacing L, by Lj/^ni^ for i 1,2; this
réduction uses Lemma 1.3. Now let m be a generator for L2, and let p be the
orthogonal projection fo VV Then vol (L2) |m|^|pm| vol (L1 + L2/L1). QED

Remark: One can use 1.4 and l.l(d) to extend 1.12 to any pair of
submodules, as Stuhler does.

DISCUSSION 1.13. Theorem 1.12 is fundamental - it munies the equality for
the dimensions:

dim (Lt H L2) + dim (Lt + L2) dim (Lx) + dim (L2).

We can interpret this in terms of the canonical plot of L, from Définition 1.10.
Consider just the four points obtained from LtnL2, Lt + L2, Ll5 and L2; any
three of them détermine a parallelogram, and then the theorem can be visualized
as an assertion about the relationship of the fourth vertex of that parallelogram to
the fourth point. If the fourth point cornes from Lx or L2, then it lies at or above
the corresponding vertex of the parallelogram (and on the same vertical Une, by
the equality for the ranks). If the fourth point is from L^^ or Lx + L2, then it
lies at or below the corresponding vertex of the parallelogram (and on the same
vertical line). This situation is easily visualized: see Figure 1.14. We will call it the
&quot;parallelogram constraint.&quot;
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loq vol
L, +

citm

n l
Figure 1.14

LEMMA 1.15. Given a lattice L and a number c, there exist only a finite
number of submodules Lt&lt;^L with vol (Lt)&lt;c.

Proof [compare Stuhler 1976, Proposition 1]. By restriction of scalars, we may
assume 6 Z. Choose an integer r and require also that dim Lx r. In case r 1,

finiteness follows from the fact that Lx is discrète and the sphère of radius c is

compact. For r&gt;l we may replace L by AT and each L1 by ArLx. (As inner
product on ArV we take the one satisfying ((lx • • • lr), (mx • • • mr)) det(îl, m,).)
The assignment Lx »-&gt; ArLx is finite-to-one because ArLx détermines L n(L1®Q)
and the index in it of Lx. We hâve dim ArLt 1 and vol (Lx) vol {ArL^), so the
finiteness for r&gt;l follows from the finiteness for r= 1. QED

DISCUSSION 1.16. Lemma 1.15 tells us that the canonical plot of L is

bounded below. Thus the convex hull of the canonical plot of L will be bounded

on left and right by two vertical lines at 0 and dimL; it is unbounded above
unless L 0 (because L has submodules of arbitrarily large finite index). Its lower
boundary is a convex polygon stretching from the origin to the point correspond-
ing to L : we call it the canonical polygon of L. The interesting thing for us will be

to study its vertices, each of which, according to 1.15, is represented by a

sublattice of L. By &quot;vertex&quot;, we mean either an endpoint of the polygon, or a

point on the polygon where the slope actually changes; points on the polygon
represented by submodules may not be at vertices.

Suppose now that Lx and L2, submodules of L, are chosen to lie on the
canonical polygon of L in such a way that they do not both lie in the interior of
the same straight line segment of the boundary (this will happen, for example, if
either of them lies on a vertex). Since they hâve minimal volume for their ranks,
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dtro

i^nL.2??
Figure 1 17

both Lx and L2 are actually sublattices of L, according to Lemma l.l(e). Assume
for the sake of definiteness, that dim Lx ^dim L2. Then the slope of the segment
of the polygon just to the nght of L2 is strictly steeper than the slope just to
the left of Lx. This means that it is not possible that dimLt + L2&gt;dimL2,
without violating the parallelogram constraint from Discussion 1.13, so therefore

diml^ + L^diml^ (see Figure 1.17). It follows that L1 + L2 L2, for else îts

volume would be strictly smaller than the volume of L2. Thus we&apos;ve shown that

L^L2.
Now suppose Lx and L2 represent the same vertex. The preceding argument

shows both Lt^L2 and L2^Lt, so LX L2.
We hâve proved the following theorem.

THEOREM 1.18. The vertices of the canonical polygon ofL are represented by

unique sublattices of L, and they form a chain.

DEFINITION 1.19. The filtration of L consisting of those sublattices of L
which represent vertices of the canonical polygon of L, is called the canonical
filtration of L. By convention, it always includes 0 and L. The canonical filtration
is called canonical because it dépends only on L, and not on any choices.

Theorem 1.18 and Définition 1.19 are roughly équivalent to [Stuhler 1976,
Satz 1, Folgerung aus Satz 1].
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DEFINITION 1.20. We say that L is semistable if its canonical filtration
contains only 0 and L (i.e. its canonical polygon is a single line segment). In ail
other cases we say L is unstable.

If rk (L) 1, then L is semistable. The successive subquotients of the canonical

filtration of L are ail semistable, and their slopes are (strictly) increasing.
L is semistable if and only if it satisfies the inequalities slope M ^ slope L for

every submodule M.

Remark 1.21. It follows immediately from the définition that if h iL^* M is

an isomorphism of lattices (i.e. an isometry), then h carries the canonical filtration
of L into the canonical filtration of M It is this fundamental fact that enables

equivariant constructions in the symmetric space in chapter 2.

OBSERVATION 1.22. The (finite) orthogonal group G of L leaves invariant
the canonical filtration of L; the same applies if we tensor L with the rationals. If
G acts irreducibly on L, then L must be semistable. This happens, for example, if
we take L=f*6 where 0 is the ring of integers in a cyclotomic field, because the
roots of unity of 6 are in G. This gives an interesting explicit lower bound on
volumes of subgroups of /#&lt;?.

DEFINITION 1.23. Let maxL dénote the largest slope of a segment of the
canonical polygon of L, and let min L dénote the smallest.

DIVERSION 1.24. If r is a positive real number, then from L we may
produce a new (9-lattice called L[r] by multiplying each of the norms on L by r
(or equivalently, by multiplying the inner products by r2). Clearly /Hc(L[r])

(f*L)[r], thus the following formulas hold.

vol L[r] rdimL vol L
slope L[r] log r -f slope L

The canonical plot for L[r] can be obtained from the canonical plot for L by
applying the affine transformation (x, y)»-»(x, y + x log r). This transformation

préserves straight Unes, and thus transforms the canonical polygon for L into the
canonical polygon for L[r], It follows that L and L[r] hâve the same canonical
filtration (as far as the underlying &lt;?-modules are concerned), and the following
formulas hold.

max L[r] log r + max L
min L[r] log r + min L



Réduction theory using semistability 611

Another thing to notice is that the rescaling L «~&gt; L[r] préserves exact
séquences of lattices; if it were a functor, we could call it an exact functor. It is

analogous to tensoring a vector bundle with a power of a fixed Une bundle (on an

algebriac curve).
It is also possible to rescale the norms by independent factors at the infinité

places; were we studying SIJD we would do this.

EXAMPLE 1.25. Consider C R2 as the Euclidean plane, and let ^ be the

upper half plane. For any t e %£ we may form the lattice L L(t) 1 • 1 + Z • t. Let
3) ={z :|z|^l and |Re z|^|} be the usual fundamental domain for the action of
S12I. on 3£. Assume that t e 3) ; then it is clear that 1 is a vector of minimal length
in L. Since vol L Im f, it follows that L is semistable if and only if Im t ^ 1. The
set B of ail te%! such that L is semistable is invariant under F S12I.; for, given

g e F, we see easily that L(gt) zL(t) for some complex number z. Write z ru,
where r is real and |u| l. Then uL(t) and L(t) are isomorphic lattices (the
isomorphism is multiplication by m), and ruL(t) has the same canonical filtration
as uL(t) by diversion 1.24.

We know now that B is F-invariant, and we know its intersection with the
fundamental domain 3). This allows us to détermine B - it is the complément of
countably many disjoint open disks, namely ail the translates of the half-plane
C {te%t :Im r&gt;l}. See Figure 1.26: this is the same picture which appears in
Rademacher&apos;s work on partitions [1973]. Many of thèse disks are tangent (at

points corresponding to those lattices with two independent vectors of minimal
length), so clearly B is not a manifold (with boundary). If, however, we shrink C

slightly by strengthening the inequality in its définition to Im t &gt; 1 + e, letting the

0

Figure 1.26
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other disks shrink the same way, then the tangencies disappear, and this enlarge-
ment of B is a manifold with boundary. This was explained by Serre [1979], and it
is this which I generalize to G^ in the sequel.

DISCUSSION 1.27. Suppose J:0 LoçL1ç • • • çLs L is a filtration by
sublattices of an (?-lattice L. Consider the plot formed by plotting log vol and dim
(as in Définition 1.10) for only those submodules L&apos; of L such that Ll^L&apos;^Ll+1

for some i ; call it the canonical plot of L subordinate to the filtration SF. Consider
also, as before, the convex hull of this plot, and the corresponding convex polygon
C bonding it below. Suppose now that each L, happens to sit on C: I claim then
that C actually is the canonical polygon. It is équivalent to show that every
sublattice 11 of L lies on or above C, and this we can do by induction on s (the
case s 1 being obvious). Consider L&apos;-\-Ls^1 and UnL^i&apos;. the former clearly lies

on or above C, and the latter, by induction, does, too. Now Ls_! is on C, which is

convex, so the parallelogram constraint of discussion 1.13 tells us that L&apos; must be

on or above C. See Figure 1.28.
The canonical filtration of L will include those Lx which sit at vertices of C.

Notice that we didn&apos;t assume that each 1^ occurs at a vertex of C; thus this

argument might easily lead to the conclusion that L is semistable. Indeed, it
follows that Cn is a semistable O-lattice for any n, where 6n dénotes the n-fold
orthogonal sum of the CMattice € from example 1.5.

COROLLARY 1.29. Suppose L has filtration O^Lq^L^ • • • çLs =L by

cfim
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sublattices, so that minL^JL^mdixLJL^x. Then
(a) The canonical polygon of L is formed by laying the canonical polygons of

the subquotients LJLl^1 end to end.

(b) Each Lt lies on the canonical polygon of L.
(c) min LjLt min Ll+1/Ll.
(d) max Lt max LJLl_l
(e) // min Ll+1/Lt&gt;max LJLl_l, then Lt is the canonical filtration of L.
(f) 1/ Lt g: L&apos; §: L,+1 and L&apos; is in the canonical filtration of Ll+1m, then Lr is in

the canonical filtration of L.
(g) The canonical filtration of L consists solely of sublattices arising as in (e)

or (f).

COROLLARY 1.30. Suppose L has a filtration 0 LoçL1ç • • • çls =L,
whose subquotients LJL^i are semistable, with strictly increasing slopes. Then this

filtration is the canonical filtration.

COROLLARY 1.31. Suppose L is a sublattice of L. Then L! is in the

canonical filtration of L is and only if max L&apos;&lt;min L/L&apos;.

2. Spaces ol lattices

In this section we investigate the way the canonical filtration behaves when the
lattice moves.

Let P be a finitely generated projective ©-module of rank n, let F Gl(P). Let
X X(P) be the space of lattices L whose underlying ©-module is P. Let X» be
the space of inner products on V»; if a basis is chosen for Voo, then X^ is seen to
be an open subspace of a real or complex vector space. We hâve X J\ X», and
this provides us with a topology for X.

We consider F to act on P on the left. If a basis is chosen, our vectors will be

thought of as column vectors, and matrices of linear maps will be written on the
left, as usual.

Given LeX and u,we VU let (v9 w^L)^dénote the value of the inner product
on the vectors v and w. If g g F, we define a new lattice gL in X by the formula
(i?, w; gL)oo (g~1v, g^wjLX». This defines an action of F on X on the left.

lt happens that there is an isomorphism L —&gt; gL of lattices defined by v »-&gt; gv
which we may as well call g, also.

Conversely, suppose g:L1s-&gt;L2is an isomorphism of (9-lattices, each of which
is in X. Since P is the underlying module for both of them, g gives rise to an
élément of F, which we may also call g. We see clearly that Lt gL2.
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Thus the orbit set F\X can be regarded as the set of isomorphism classes of
O-lattices whose underlying C-module is isomorphic to P. (It is the analogue of
the moduli space for vector bundles on an algebraic curve, and will become

compact once we throw out the unstable points.)
Scaling the norms commutes with changing the basis, i.e. if r&gt;0 and geF,

then g(L[r]) (gL)[r]. Let X be the quotient of X by the équivalence relation
L~L[r&quot;\; it is clear that X is a manifold. The différence between X and X
becomes important only for assertions about compactness.

DEFINITION 2.1. By an F-subspace of V, we will mean either an F-
subspace of P®GF, or the real span of such a subspace in V: no confusion should
resuit from this blurring of the distinction between an F-subspace and its real

span, for each can be recovered from the other. If L g X, then the sublattices M of
L are in one-to-one correspondence with the F-subspaces WçV. We will use the
notation M LHW. If 0 ç L n Wt c • • • c L H Ws=L is the canonical filtration
of L, then we will refer to 0 ç Wx c • • • ç Ws V also as the canonical filtration of
L. For F-subspaces W of V we may define a real function dw on X by the
formula

dw(L) d( W, L) exp ((min L/L HW)- (max L H W))

This function is concocted so that, by corollary 1.31, W occurs in the canonical
filtration is and only if d(W9 L)&gt; 1 (and in that case, the canonical filtration for L
is obtained by splicing the canonical filtrations for L H W and L/L H W). In terms
of the polygon, d(W,L)&gt;l iff W is at a vertex, d(W,L) l iff W is in the
interior of an edge, and d{ W, L) &lt; 1 iff W is not on the polygon. A larger value of
d(W,L) corresponds to a more acute slope change at the vertex W. Moreover,
d(W, L[r]) d(W, L), for any r&gt;0, so dw descends to a function on X. We may
imagine that the larger d(W, L) is, the further L is out toward infinity; alterna-
tively, d(W, L)&quot;1 measures the distance to the cusp corresponding to W.

For any r^l, define Xw(t) X(W,t) {xeX:d(W,x)&gt;t}9 and let
XW=X(W, 1). Define X(W, t) and Xw similarly. We let Xss(t) X-\JwX(W, t),
and XSS=XSS(1). We call Xss the semistable part of X, for its points are those L
which are semistable. For t 1 and € - Z, thèse sets agrée with those defined in
[Stuhler, 1976]; what we prove in this case was already obtained by Stuhler.

We state the following easy lemma:
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LEMMA 2.1.
(a) d(gW, gL) d(W, L), for g g T.

(b) X(gW, t) gX(W, t)9 for g g T.

(c) Xss(t) is closed, and is stable under F.

(d) IfX(Wl9t)H • • • HX(Wn, t) + 0, tfien {Wi,..., WJ; ordered by inclusion,
is a chain.

2.3. Examples

EXAMPLE 2.3.1. Take 6 1 and n 2. Let 5if çC be the upper half plane.
Given z g $f we may embed P Z2 Zc!©Ze2 into C by sending e1 to z and e2 to
1. The plane C =IR2, with its standard (real) inner product, makes P into a lattice
which we will call L L(z). The number z can be recovered from L(z) (forgetting
the embedding into C) because &lt;e1,e1) |z|2 and (el9 e2) Rez. We can also

extract L(z) from its équivalence class up to scaling because of the normalization
condition (e2, e2) 1. This shows that the resulting map Sif-^ X is a diffeomorph-
ism. It turns out that gL(z) and L(gz) differ only by scaling, provided we define

gz (dz-c)/(-bz + a). If we replace the usual action of SI2Z on 3if by its
composite with transpose inverse, we may say that the map 9if -^ X is equivariant.

Now suppose a Q-subspace W span (rex H- se2) Ç V is given, where r and s are
relatively prime integers. Then LHW corresponds to the subgroup Z(rz ¦+• s) of C,
so

vol L Im z

dw(z) d( W, L(z)) (vol L/L n W)/(vol LflW) (vol L)/(vol L H W)2

(Imz)/|rz + s|2

If r 0, then \s\ 1, so dw(z) Im z and X( W, t) {z g 3C : Im z &gt; r}. If r^ 0, then
X(W, f) is the open disk of diameter l/(fr2) tangent to the real Une at the rational
number —s/r. For t 1, we recover the situation in example 1.25; for t&gt;l, the
closed set Xss(f) is a manifold with boundary, and was described by Serre [1979].

The next two examples use Remark 1.7 implicitly for Computing volumes.

EXAMPLE 2.3.2. This time take 0 quadratic imaginary, n 2, and let
^3 {(z,w)GC2:Imw 0,Rew&gt;0} be the hyperbolic 3-space, sitting in C2

endowed with the standard hermitian inner product. Choose an embedding OçC.
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Given h (z, w)e Dt3 we may embed P 62 €ex®€e2 into C2 by sending ex to
h and e2 to (1,0). This makes P into an CMattice we call L(h), and we get a

diffeomorphism W3s-&gt;X, equivariant for S12C. If we identify C2 with the quatern-
ions C©C/, and take

g

in S12€, the formula g • h (dh - c)(-bh + a)&apos;1 gives the action of S12€ on $?3.

We can repeat the discussion from Example 2.3.1 up to a point. We hâve

vol L w2(vol 0)2

vol L H W (vol L Hspan {rex + se2))/I \rh + s|2 (vol 0)/I
d(W, L(h)) (vol L/L H W)1/2/(vol L H W)m

(vol L)i;2/(vol L H W)

wl/\rh + s\2

Hère r and s are chosen from 0 so that LHW^. C(rel + se2) ^ 0, we identify s e 6
with (s, 0) g $?3 so the expression rh + s makes sensé, and the integer I is defined
by I [€:Or + Cs]. If € happens to be a principal idéal domain, we can always
take 1=1 by choosing r and s properly. This is the same function used by
Mendoza [1980], except that he gives a slightly différent (but équivalent) définition

for /.

EXAMPLE 2.3.3. Take 0 real quadratic (with its real places labeled 1,2),
n-2, and let K fflx3€, where H is the upper half plane. A point (z,z&apos;)eK

gives two inner products on R2, each one defined as in Example 2.3.1; this is just
what&apos;s required to make P €2 into a lattice. For W span (e2), we find that

vol L (vol &lt;?)2(Im z)(Im z&apos;)

vol LHW volC

d{W; z, z&apos;) (vol L)1/2/(vol LCiW) ((Im z)(Im z&apos;))112

The régions Xw(t) turn out to be the same as those used in [Ash, et al., 1975, p.
41-42], where the function dw was called &quot;distance to the cusp&quot;.

DISCUSSION 2.4. Now we describe our interprétation of the &quot;géodésie

action&quot; of Borel-Serre. Suppose we are given LeX, an F-subspace WçV, and
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r&gt;0. We construct a new lattice L[W, r] in X by changing the norms of L.
Writing V00 L®GF00 and W00=W®CF009 we can use the inner product on V^
provided by L to write V&lt;x=Woo(BWi, an orthogonal sum. Now multiply the
norm on Wi by r, but leave the norm on W^ unchanged; assemble thèse by
orthogonal sum to form a new inner product for Voo. Doing this for each oo defines

a new lattice L[W, r]eX, there is an obvious exact séquence

and

d(W,L[W,r]) r

This procédure is easy to visualize as a dilation of V in the directions perpen-
dicular to W. Since it commutes with scaling (i.e. LfW, r1][r2]=IL[r2][W, f-J), we
can also regard it as acting on X. For gefwe hâve g(L[W; r]) (gL)[gW; r].

Now suppose that we hâve a chain of F-subspaces Wt ç= • • • ç= Wm of V. Then
for r1,...,rm&gt;0, let 11 L[Wu rj • • • [Wm, rj. Since L&apos;nWJL&apos;nW,.^

(LPl WJLHW^^lrx - - • rj, 1.29 implies that choosing r, large enough ensures
that Wt is in the canonical filtration of L&apos;, or even that L! eX(Wt, t). This proves
the following converse to Lemma 2.2(d).

LEMMA 2.5. Given F-subspaces O^^Ç&apos;-&apos;çW.çV, the set

X(W1? t) H • • • DX(WS, t) is nonempty.

Remark 2.6. We can also prove that any P can be given norms which make it
into a semistable ©-lattice. To see this, choose the norms arbitrarily at first,
producing an (9-lattice L. Then let Wtç • • • ç Wm be its canonical filtration. Then
for suitable choice of numbers r,, the lattice L&apos; L[Wl9 rj • • • [Wm, rm] will hâve

lW^ ail of the same slope, and will be semistable by 1.27.

3. Continuity

In this section we prove that the functions dw are continuous.
Suppose M is a topological space. We say that a family {fn} of real functions

on M is locally equicontinuous if, for any e, there is a covering of M by open sets

U, such that for ail n and each x, y e U, |/n(x) —/n(y)|&lt;e. Equivalently, each x in
M has a neighborhood U such that for ail n and each y g 17, |/n(x) —/M(y)| &lt; e. It is
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clear that the supremum of a locally equicontinuous family, if finite, is itself a

continuous function. The union of a finite number of locally equicontinuous
families is locally equicontinuous.

LEMMA 3.1. (a) For each nonzero F-subspace WçV consider the real function

X defined by L &gt;-» log vol (L H W); this family of fonctions is locally equicontinuous

(b) L »-&gt; min L is a continuous function on X.
(c) L &gt;-&gt; max L is a continuous function on X.
(d) dw is a continuous function on X.
(e) X(W, t) is an open subset of X.

Proof. It is enough to prove (a). For example, to see that (a) —&gt; (c) simply
observe that max L sup {(log vol L - log vol L H W)/(rk P-rkLD W)}.

We may as well restrict scalars, achieving C Z, for this only increases the

family of functions being considered.
We may choose a number m, and restrict attention to F-subspaces W of V of

dimension m. As in the proof of Lemma 1.15, we may apply the mth exterior

power to everything, achieving m 1 (and possibly enlarging the family once
again). Now let n dim P.

Choose a basis for V, and identify each L in X with its (positive definite
symmetric) matrix z. Let w be a generator for LHW, so log vol (LnW)
log |w| (1/2) log (w&apos;zw). Enlarge the family of functions once again by dropping
the requirement that w be in W, and forget W; for any nonzero w in V we will
consider the function z »-&gt;log (w*zw) on X, (forgetting the factor 1/2).

Fix a point zeX and a number e &gt;0. We seek a small neighborhood of z, but
we may as well first change the basis of V to make z 1, the identity matrix. Let
8 &gt; 0 be a small number (to be determined later) and consider arbitrary symmetric
matrices Az with \{Az)x]\&lt;8 for each i,/. Then

Az • w)/(w4 ¦ w)|*8(H k| k|)/(I w?)

This leads to

|log (w&apos;(z 4- Az)w)- log (w* • z • w)| |log(l + (wf • Az

which is smaller than e if ô is chosen small enough. QED
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COROLLARY 3.2. Given a point LeX and a F-subspace WçV, there is a
neighborhood of L on which dw is the infinum of a finite set of smooth fonctions.

Proof. We can write log d(W,L) as the infinum of ail fonctions

slope (L H W2/L H W) - slope (L H W/L H

where W2 runs over ail F-subspeaces of V containing W properly, and W1 runs
over ail those contained properly in W. Each one of thèse functions is smooth, so
it is enough to show that in some neighborhood of L, only a finite number of them
are needed. In fact, only the ones which already achieve the minimum are needed,
because by 1.15 and 3.1 (a), the others stay far enough away on some small
enough neighborhood U of L. As for the ones which do achieve the minimum,
there are only a finite number of them (by 1.15, again). QED.

COROLLARY 3.3. Given t ^ 1, the family of open subsets X(W, t) of X (one

for each F-subspace W of V) is locally finite. Moreover, if t &gt; 1, each L in X has a
neighborhood U so small that {W | X(W, t) H ^ 0}, in addition to being finite, is a
chain.

Proof. Suppose LeX. Consider first those WgVfor which LHW lies above
the canonical polygon of L. They are ail further above it than a certain minimum
distance, according to 1.15. By 3.1 (a), we can find a neighborhood U of L so that
whenever L&apos;e U, the points corresponding to the various U C\W are still above
the canonical polygon of L&apos;; thus the only candidates for members of the
canonical filtration of such an L&apos; will be those W for which LDW was on the
canonical polygon of L; of thèse there are only a finite number, by 1.15 again.

For the second statement, the same argument shows that U can be chosen so
that for ail W, d(W,L&apos;)&lt;t if d(W,L)&lt;t for ail L in U. Q.E.D.

THEOREM 3.4. Given r&gt;l, the spaces Xss(t) and Xss(t) are manifolds with
boundary, and the boundary consists of those points x with supwd(W, jc) t.

Remark. Example 1.25 shows that the bound on t is sharp, for when t 1,

thèse spaces are not manifolds.

Proof. The foliowing proof works equally well for either Xss(t) or Xss(f).

Define h(x) max(l,supwd(W, x)), so that Xss(t) is h~\[l,t]). It follows
from 3.3 that h is continuous. Choose a point x0 in X with h(x0) t. Since t &gt; 1, in
a small enough neighborhood U of x0 we hâve h(x) sup, d(Wl9 x), where
Wt ç • • • c Ws; this follows from 3.3. If U is small enough, then any x in U has
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each Wt in its canonical filtration, so d(Wl9 x) d(WJWt^l9 (x D Wl+Jx H W^));
replace h(x), globally, by the supremum k(x) of thèse latter fonctions. Since h k

on Uy it will be enough to show that fc~1((0, t]) is a manifold with boundary. For
r&gt;0 and xeX, define r*x x[Wl9 r] • • • [Ws, r]. Our modification of h was rigged
to force fc(r*x) rfc(x), for ail x and ail r (not just those near x0).

Now define a function g on X by g(x) exp (slope (x Pi W2I

xfl W^-slopeCxH Wi)). This function is smooth (infinitely differentiable), and

satisfies g(r*x) r • g(x) for ail x and ail r. The differential dg is nonzero
everywhere, so the level set Y - g~l({l}) is a submanifold of X of codimension 1.

Then there is an évident homeomorphism:

This makes it clear that k^iiO, t]) is homeomorphic to Yx(0, f], and thus is a

manifold with boundary. Q.E.D.

4. Contractibility

4.1. The space X X(P) is contractible, as is well known. To prove it, one
embeds X into X using some section of the map X—»X; this makes X into a

déformation retract of X. Now X II X»; each X» can be identified with the set

of positive definite (symmetric of hermitian) nxn matrices, is therefore a convex
subset of a vector space, and thus is contractible.

THEOREM 4.2. For any number t^l, the spaces Xss(t) and Xss(f) are
contractible.

Proof. It is enough to show that Xss(0 is contractible, for choice of a section of
the map Xss(f) —&gt; Xss(r) exhibits the latter space as a déformation retract of the
former.

In this proof we use the géodésie action to straighten out ail the angles in the
canonical polygon; this will give a déformation retraction of X onto its subset Xss,

as well as a déformation retraction of Xss(f) onto Xss. This will be enough because

we already know X is contractible.
We would like to define the déformation retraction H:XxI-*X by setting

H(Ly u) L[Wl9 /x(u)] • • • [W,, fs(u)l where (Wi s • c Ws) is the canonical
filtration of L, and fi(u) is any monotonie continuous function decreasing from 1 to
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(d( Wt, L))&quot;1, as u goes from 0 to 1. It is clear from 1.29 that if L € Xss(t), then so
is H(L, m); moreover, H(L, 1) is semistable, and if L is semistable, then H(L, u) -
L, for ail u.

The only trick is to see that the function H is continuous, but for this purpose
we hâve the equicontinuity results of the previous section. They imply, that given
Lo, there is a neighborhood U of Lo so that the members of the canonical
filtration for any L in U are drawn from a finite list, say Wl9..., Wm. Thèse

F-subspaces are in fact exactly those W which lie on the canonical polygon of Lo.
This time, let ft(u) be u (max(l, d(Wn L)))~l-f(l-u). This function is chosen to
be continuous as a function of the pair (L, u). If Wt occurs in the canonical
filtration of L, then as a function of m, ft decreases monotonically from 1 to
d(Wt, L)&quot;1 as u goes from 0 to 1. In addition, if W, is not in the canonical
filtration of L, then ft(u)=l for ail u; notice that L[Wt, 1]=L. Now define
H(L, u) L[W;, /i(m)] • • • [Wm, fm(u)]. This agrées with the previous définition for
H on the neighborhood U, and is clearly continuous. Q.E.D.

We will call a map h between convex subsets of vector spaces affine if
h((l-u)x + uxf) (l-u)h(x)+uh(x&apos;) for ail points x, x\ and ail m,0^m^1. A
real function h on a convex set is convex if h((l-u)x + ux&apos;)^(\-u)h{x) + uh{x&apos;).

A convex function composed with an affine function is convex. A sum or a

supremum of convex functions is convex. A function h is called concave if — h is

convex.
There are several continuous affine maps involving spaces X:

X(P) x X(Q) -&gt; X(P0 Q) (L,M)

Hère /*P dénotes the Z-module underlying P, and P&apos; is some submodule of P.

LEMMA 4.3.
(a) The function L »-&gt; -log vol (L) is a convex function on X.
(b) For any constant c, the set {L e X : min L&gt;c} is convex, and thus

contractible.

Proof. (a) By restriction of scalars, we may assume 0 Z. If a basis if chosen

for P, and we let x dénote the matrix of the inner product on L, then log vol L
(l/2)(logdet x). Thus we must check that -log det ((1 - u)x + ux&apos;) is a convex
function of u. This becomes clear if we diagonalize x and x&apos; simultaneously, for
then we see that we hâve a sum of functions of the form — log((l — u)y + uy&apos;),
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where y and y&apos; are positive numbers; each of thèse is convex because -log (u) is

convex and (1 — w)y 4- uy&apos; is a linear function of u.

(b) The proposed condition on L amounts to the conjunction of the ine-
qualities -log vol L H W&lt;-c rk W, so (a) yields the resuit. Q.E.D.

Remark 4.4. If we use géodésie paths instead of affine paths in 4.3 we get
concavity instead of convexity.

Remark 4.5. Lemma 4.3 implies that the function on X which assigns to a

point x its canonical polygon, is itself a concave function. To make this précise,
one considers the polygon as a real function on the set {1,2,..., n}, where
n dim P.

Suppose q (W1c • • • ç Wk) is a strictly increasing chain of F-subspaces of
V; we call q an F-flag on V. Let t be a fixed real number 5*1. Let Xq=Xq(P)
X(Wl9 t)H • • • dX(Wk, t); we don&apos;t claim that this set is convex, but nevertheless

we can prove the following theorem by mimicking Quillen&apos;s argument in
[Grayson, 1980].

THEOREM 4.6. Xq is contractible.

Proof. We construct a map to a contractible space, whose libers are convex, as

follows. Take q- (Wx c • • • c Wk^)9 W Wk9 P&apos;= P H W, and F&apos; P/P&apos;.

Regard q— as a flag on P&apos;. Let Com (W^, V») dénote the set of subspaces T^ of Voo

such that WL®TOO= V». Let Com(W, V) dénote riooCom(W^ VJ; it is a real
affine space, thus is contractible. We hâve a homeomorphism X(P)
X(F)xX(P/P&apos;)xCom(W, V) defined by L^iLDW^L/LnW^W^), where
we take the collection of orthogonal compléments Wr± with respect to the inner
products provided by L at each infinité place. Use the notation b(L&apos;, L&quot;, T) to
dénote the inverse map. Let g be the continuous map Xq(P)—&gt;

Xq_(P&apos;) x Com W, V) defined by g(L) (L n W, Wf±).

By induction on the length fc of the flag, we may assume that Xq_(P&apos;) is

contractible, so it is enough to show that g is a homotopy équivalence. We will do
this by constructing a section h for g, and a homotopy between h°g and the

identity which respects the fibers of g, so g also has the property that any map
obtained from g by pullback is a homotopy équivalence, too.

Choose norms for P&quot; at infinity arbitrarily, yielding a fixed lattice L&quot; on P&quot;. We
construct a section h of g by defining h(L&apos;9T) b(L&apos;,L&quot;[r],T), where r
t exp(maxL/-minL&quot; + 23). (Hère 23 is a random positive number.) Check that
h(L&apos;, T)€Xq(P) by Computing d(W, h(L\ T)) exp (min L&apos;[r]-max L&apos;)
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exp (log r 4- min L&quot; -max L&apos;) &gt; t. Notice that r r(L) is a function of L&apos;, but by 3.1

it is continuous, and thus h is continuous, too. It is clear that g(h(Lf, T) (L&apos;, T).
Now suppose x, yeXq, O^u^l, and let z (1 - u)x + uy. We claim that if

g(x) g(y), then g(z) g(x), and zeXq. The first part is clear, and the second
follows from 4.3(b). Thus there is a homotopy from h°g to the identity function
on Xq, defined by (l-u)h°g + u • id. Q.E.D.

COROLLARY 4.7. For t&gt;l the open set U X-XJf) has the homotopy
type of the Tits building of F-subspaces of V, as does the boundary of the manifold
Xss(t). In either case, the homotopy équivalence can be chosen so it respects the

action of F (up to homotopy).

Proof The open set U is the union of the sets X(W, r), where W runs over ail

proper nontrivial F-subspaces of V. The closure of U or of any finite intersection
X(Wl9 t)C\ • • • C\X(Wn, t) is a manifold with boundary; this follows from
arguments like those in the proof of 3.4. Moreover, the closure of any finite
intersection is the intersection of the closures. Thus we may replace each X(W, t)
by its closure without changing the nerve of the cover, or the fact (provided by
4.6) that the intersections are contractible or empty. Now that we hâve a closed

cover, we may apply Theorem 8.2.1 of [Borel-Serre] to produce the desired

homotopy équivalence. (We could hâve made a shortcut hère by using Mayer-
Vietoris to produce a homology équivalence, which is ail that is required later.)
By 2.2(d) and 2.5, the nerve is the simplicial complex whose vertices are the

proper nontrivial F-subspaces of V, and whose simplices are the chains of such

subspaces; this is one of the définitions of the Tits building. It follows from 2.2(b)
that the homotopy équivalence respects the action of F.

In order to prove the same thing about the boundary of Xss(r), one simply
shows it is a déformation retraction of X-Xss, by using a retraction similar to the
one used in the proof of 4.2. Q.E.D.

5. Compactness

In this section we show that the quotient spaces F\Xss(t) are compact. We
follow a suggestion of Borel, and dérive the compactness directly from the Mahler
criterion. As in the previous sections, P is a fixed projective ©-module, and we
study lattices on P.

THEOREM 5.1. Given f^l, there is a constant c so that any LeXss(t),
normalized so vol L 1, has every nonzero vector vef^L of length &gt;c.
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Proof. Let W,ç- • • ç WS V be the canonical filtration of L, and write
Ll=LDWl. Then

cx log t^log d(Wl9 L) slope i^+i/L, -slope

Adding thèse inequalities up for i 1,2,..., s - 1 yields

c2 (n — l)Ci 55 (s - l)ct ^slope L/Ls^l -slope Lx

where n rkL. Since slope L 0, and Ls_! is below the line Connecting 0 and L,
we hâve slope L/Ls_!^0. Thus

£3 -c2:SS slope Lx

Now if t; g f*L is a nonzero vector, then we can consider the submodule Cv of L.
We hâve

(1/m) log vol (Pu slope 6v ^ slope Lx ^ c3

where m dim 0, so

c4 exp (mc3) ^vol Ov

Now by 1.6

Thus

M ^ ((vol Ou)/(vol (?))1/m ^ (c4/vol C&gt;))1/m

Q.E.D.

COROLLARY 5.2. For arcy r^l, the space Xss(t) is compact modulo F.

Proof. Let ZçX be the set of lattices on P whose volume is one. The
intersection B ZDXss(t) maps onto Xss(0 because any lattice can be normalized
by scaling to make its volume one; it is enough to show that B is compact modulo
F. Let G be the Lie group fl Gl(Vœ), fixanleZ, and choose orthonormal bases
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for L on each Voo. We write ail matrices and vectors with respect to the union of
thèse bases. Now consider the continuous map p:G—&gt;X defined by p(g)
&apos;g&quot;1 &apos; g~\ the matrix of the inner product on f*(gL). This is the map which
expresses X as a homogeneous space of G. It will be enough to show that the set
M p~1(B) is compact modulo F. (A point of M may be thought of as a lattice L&apos;

on P together with a choice of orthonormal basis at each infinité place.) Restriction

of scalars gives an embedding of G into Gln(U), where n =dim F. Keeping in
mind that |det g|~* is the volume of the lattice p(g), and that if x is a vector in P,
then its length as a vector of the lattice /*p(g) is Ig&quot;1*!, we may apply [Borel,
1966, Proposition 8.2], because the group G is reductive. It says that F\M is

compact (our set M is closed) if there is an upper bound on the volumes of the
lattices in M, and a lower bound on the lengths of nonzero vectors in the
restriction-of-scalars of the lattices of M. The upper bound is clear, because ail
our lattices hâve volume 1, and the lower bound is provided by 5.1. Q.E.D.

6. Conséquences

From 4.2, 3.4, 4.7, and 5.2 we know that the space Xss(f), for r&gt;l, is a
contractible manifold with boundary, its boundary is homotopy équivalent to the
appropriate Tits building, via a homotopy équivalence compatible with the action
of F, and it is compact modulo F. At this point we hâve acquired, for our
manifold, ail the same topological information as Borel and Serre acquired for
their rrçanifold with corners. (Notice that Xss(t) inherits from X the property that
some subgroup of F of finite index acts freely, properly, and discontinuously on
it.) The only différence is that our manifold does not hâve a differentiable
structure on the boundary. Let fcThea torsion-free subgroup of finite index
acting freely on X. The manifold M Xss(f)/F&apos; is not known to be triangulable
because its boundary is not smooth. Nevertheless, it follows from the &quot;local

finiteness theorem&quot; of Kirby-Siebenmann, p. 123, that M (which is metrizable
because it has a countable basis) is homotopy équivalent to a finite simplicial
complex; this property can be used in place of triangulability in Borel-Serre
[1973, §11.1]. It follows, for example, that r^ir^M is finitely presented.

Ail the qualitative results about F follow immediately, using the same techniques

Borel-Serre use. The list of results is rather lengthy, so we refer the reader
to [Borel-Serre, 1973, section 11] or to [Bieri-Eckmann, 1973]. The results
include finite présentation for F and its intégral homology and cohomology, a

détermination of its cohomological dimension, and a sort of generalized Poincaré

duality for torsion-free subgroups of finite index. The latter duality is an essential

ingrédient in Quillen&apos;s proof [1973] of the finite génération of the higher
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K-groups Kt(6), for it gives the finite génération of the homology of F with
coefficients in the Steinberg module (since the Steinberg module is not a finitely
generated group, compactness alone of the manifold with boundary doesn&apos;t

suffice).

7. Orthogonal groups

We now proceed to the case of arithmetic groups which occur as subgroups of
orthogonal groups of symmetric or alternating nondegenerate bilinear forms. We
begin by defining the dual of a lattice, and then express the relevant symmetric
space X in terms of inner products, following Siegel [1957, Chapter III]. For
simplicity&apos;s sake, from now on 6 Z, and a lattice is a Z-lattice.

DISCUSSION 7.1. The dual of an inner product space is naturally an inner
product space, because the inner product itself provides an isomorphism
H : V-2» V* which can be used to transport the inner product from V to V*. The
dual basis of an orthonormal basis of V is an orthonormal basis for V*. We hâve
V** V, and hâve compatibility with orthogonal sum:(V© W)*= V*©W*.

Choose a basis for V, and form the dual basis for V*. The matrix of the inner
product on V is then the same as the matrix of the map H, formed with respect to
thèse two bases: let H also dénote this matrix. Letting J H~1, we see that the
matrix of the inner product on V* (with respect to the dual basis) is lJHJ tH~1
H&quot;1, according to the standard formula for transport of matrix of bilinear form.

We define the dual lattice L* to be Homz (L, Z) equipped with the dual inner
product just described. The discussion above about matrices shows that vol (L*)
(vol L)&quot;1, because vol (L) (det H)1/2 if our basis for V is chosen to be a Z-basis
for L.

The duality L*-*L* préserves exact séquences: it does so as far as the
underlying abelian groups are concerned, because the underlying séquence of
abelian groups splits; to check this assertion we may therefore forget the underlying

abelian groups, retaining only the inner product spaces; but at this level the
exact séquences are also split (canonically), and corne from orthogonal sum.

Duality is compatible with orthogonal sum, converts inclusions to projections, and
vice versa; thus it préserves exact séquences.

Now it is easy to see the relation between the canonical filtrations of L and L*.
The sublattices of L are in one-to-one correspondence with the sublattices of L*:
corresponding to Lx is Lf, defined as the image of (L/LJ* in L*. Letting
n dim L and v log vol L, we see that the transformation (x, y) »-» (n - x, y - v)
of the plane transforms the canonical plot for L into the canonical plot for L*,
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tog vol loq vol

ditn cCiro

Figure 7.2

and the canonical polygon for L into the canonical polygon for L*. Therefore, a

sublattice Lx of L is in the canonical filtration of L if and only if Lf is in the
canonical filtration for L*. Moreover, max (L*) =-min (L), and for any Q-
subspace W of V, d(W, L) d(W#, L*). See figure 7.2.

DEFINITION 7.3. Suppose S and H are two nondegenerate bilinear forms
on a vector space V, each of which is either alternating or symmetric. As
described above, we use H to transport H to V*, yielding a bilinear form &apos;H&quot;1

there. We say that S and H are compatible if S, regarded as a map V-&gt; V*, is an
isometry for H and tH~1. The corresponding équation is &apos;S&apos;JT^S H. If a basis is

chosen for V, and its dual basis is used for V*, then this équation can be regarded
as an équation on the corresponding matrices. It happens that this condition is

symmetric with respect to interchanging S and H, for it can be written as

H-i tS s-i tH If w is a subsPace of V, we will use Wv (resp. Wx) to dénote the
orthogonal complément of W with respect to S (resp. to H). We say that W is

totally isotropic if Wç Wv, and is coisotropic if Wvç W.

EXAMPLE 7.4. If S is definite, then there is a unique inner product H
compatible with S, for S may be assumed to be positive definite symmetric, and
then with respect to an orthonormal basis of S the matrix of H must be

orthogonal and symmetric. We may choose the basis to diagonalize H, also, so
then H must be the identity matrix.

LEMMA 7.5. If S and H are compatible, then W±v Wv\ If, in addition, W
is coisotropic (resp. totally isotropic) then Wx is totally isotropic (resp. coisotropic).

Proof.lt is easy to see that Wv± H W, because CyYS(z)
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(ty)H(H&quot;1 • &apos;S • z); similarly, WXv S&apos;1 &apos;H-W, quite generally. The desired
equality then foliows from the définition of compatibility. The second statement is
clear. Q.E.D.

DISCUSSION 7.6. Let X(V) dénote the set of inner products on V, and let
X( V, S) dénote the set of inner products H on V which are compatible with S.

If H is compatible with S, and Wvç Wg V, then let U= WPl WvX, and let
T= Wx. We get a décomposition of V into subspaces orthogonal for H, namely
V=WV©(7©T. It turns out that U can be recovered from T because U
Wn WvX =Wn WXv WnTv. For this reason we focus attention on T. By 7.5
T is totally isotropic.

Recall that Com W, V) dénotes the affine space of compléments for W in V,
and let Com (W, V, S) dénote the space of totally isotropic compléments T for W
coisotropic with respect to S in V.

LEMMA 7.7. Com (W, V, S) is contractible (and nonempty).

Proof. Consider the map h:Com(W, V, S)-*Com(W\ W) defined by T-&gt;

U= Wfir. Since W®T= V, we hâve WQT^^V, and intersection with W
gives Wv©l/= W; this shows LTeCom(Wv, W).

Now we show that h is surjective: fixa U, and we construct T by induction on
dim Wv. If Wv is nonzero, the write Wv= WX®Rx, with x^O, and choose y so

W1 W(&amp;Ry. Since S\u is nonsingular, there is a unique ueU such that
y - u € [/v. Replace y by y - u, so now y g l/v. If S is alternating, then lySy 0; if
S is symmetric, we can arrange *ySy 0 by adding a suitable (unique) multiple of
x to y. Let l/1 JRx©l7©l?y. By induction, we find ^eComiW^V) totally
isotropic and orthogonal to Ux. Let T Ry©T1; it works.

The fibers of h are real affine subspaces of Com (W, V), as we see now. Fix U,
and choose a basis for one of the spaces Te Com (W, V, S) which is orthogonal to
U. The other compléments T&apos;to W can be obtained by adding arbitrary éléments
of W to the basis vectors. The compléments V which are orthogonal to U can be

obtained by adding arbitrary éléments of WD l/v= Wv to the basis vectors. The
condition that T be totally isotropic imposes additional conditions on those
éléments which happen to be linear équations (rather that quadratic) because Wv
is totally isotropic.

The fibers of h are nonempty affine spaces, and therefore are contractible, so

it is reasonable that h is a homotopy équivalence. The proof we gave for the

surjectivity of h actually gives a recipe for constructing a continuous section g of
h, provided we fix in advance ail the x&apos;s and y&apos;s to be used inductively. Since the
fibers of h are ail affine subspaces of Com W, V), the formula g ° h + (1 - t)id, for
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defines a homotopy from g°ft to the identity, and shows that h is a

homotopy équivalence.
Since Corn (WV,W) is contractible, it follows that Com(W, V, S) is

too. Q.E.D.

In the following lemma we learn how to reconstruct inner products compatible
with S, from data on the pièces of the décomposition of 7.6.

LEMMA 7.8. Let WçV be a coisotropic subspace, and let S&apos; dénote the

(nonsingular) form induced by S on

Consider the map X(V, S) -* XiW/W^, S&apos;) x XÇV/W) x Corn (W, V, S) which
sends H *-*&gt; (K, J, Wx), where K and J are induced by H (by orthogonal complément

and restriction) and the orthogonal complément Wx is formed with respect
to H.

This map is a homeomorphism.

Proof. We show surjectivity of the map, so suppose we are given (K, J, T) e
X(W/Wv,S&apos;)xX(V/W)xCom(W, V, S). Let l/=WnTv: the proof of 7.7
shows that V= Wv© 17©T. We regard K as an inner product on U and J as an
inner product on T. The map S, by restriction, gives an isomorphism
Si&apos;.W^-^ T*, and J&quot;1 is an inner product on the target of this map. Thus

f tS1J1S1 is an inner product on Wv. Now let H be the orthogonal sum
J&apos;(BK(BJ: it is easy to check that H is compatible with S, because the matrix of S

(with respect to the triple direct sum) is antidiagonal.
Injectivity and continuity of the map and its inverse are clear. Q.E.D.

COROLLARY 7.9. X(V, S) is contractible.

Proof. We use 7.8 with Wv chosen to be a maximal isotropic subspace of V.

Since S&apos; is definite, X(WjW^y S&apos;) is a point, so the resuit follows from 7.7 and

4.1. Q.E.D.

DISCUSSION 7.10. Suppose from now on that P is a finitely generated free
abelian group of rank n, V P® R, and S : P —&gt; P* is a nondegenerate alternating
or symmetric bilinear form-this means that S is injective, but not necessarily
surjective. Let G O(S) {AeGl(V):tASA S}, and let r= O(S)nGÏ(P); G
is a real Lie group and an algebraic group, and F is an arithmetic subgroup of G.
Let X X(P,S) X(V, S) be the space of ail lattices L with P as underlying
abelian group, and for which S.L-+L* is compatible with the inner product H.
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The group G acts on X (on the left) via A*H tA~1HA~1; this agrées with the
action previously defined on X.

LEMMA 7.11. X is homeomorphic to the homogeneous space G/K, where K is

a maximal compact subgroup of G, and is a contractible manifold,

Proof. We adapt a proof Siegel [1957, Chapter III] used when S is symmetric.
First we show that X is nonempty (which we also did in 7.9). To do this, choose a

basis for V which puts S in normal form So, i.e. block diagonal form where the
blocks are ail

0)

if S is alternating, and are ail

(+1) or (-1)

if S is symmetric. In the symmetric case we agrée to put the -l&apos;s after the +l&apos;s:

this ensures that So dépends only on S, because the signature is well-defined. With
respect to this basis, we may set Ho 1 ; it clearly is in X, because So is

orthogonal.
Now we must see that G acts transitively on X. Suppose HeX; choose an

orthonormal basis for it: this makes H 1, and our équation becomes lSS 1, i.e.
S is orthogonal. According to the orthogonal form of the spectral theorem, we

may find a new orthonormal basis for H which puts S in block diagonal form,
with blocks

/cos t -sin t\(+1) or (-1) or \sin t cos t)

Taking into account that S ±*S, we may assume that the matrix of S in this new
basis is So. Let A be the change of basis matrix Connecting the two bases we hâve
found: then since S has the same matrix in both bases, we see that AeG. Since

the matrix for Ho with respect to the first basis is 1, and the matrix for H with
respect to the second basis is 1, too, we see that %A&quot;1HqA~1-H9 which proves
transitivity.

Let K be the stabilizer in G of the inner product Ho, and consider the

bijection G/K^+X. We apply a standard category argument [Helgason, Theorem,

p. 121] to conclude that this map is a homeomorphism. The hypothèses required
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for that theorem are: G is a locally compact group with countable base, acting as

a transitive topological transformation group on a locally compact Hausdorfï
space X; thèse hypothèses are fulfilled because X is a closed subset of a

Euclidean space. Homogeneous spaces are always manifolds, so now we know
that X is a manifold.

The orthogonal group of Ho is a compact group and contains K as a closed
subset, so K is compact; it remains to show that K is a maximal compact
subgroup of G. It is enough to show that any compact subgroup of G is conjugate
to a subgroup of K, and Siegel did this for S symmetric [1957, Chapter III,
Section 2]. To make his proof work when S is alternating, we only need to know
the following. Fix an inner product P on V; it allows us to regard S as an
endomorphism of V. The complexification of S is skew-hermitian, diagonalizable
by an unitary change of basis, and has purely imaginary eigenvectors. It follows
that we can find a basis for V which is orthonormal for P and which splits S up
into blocks of the form

° &quot;Y

-a 0/

By rescaling the basis vectors we make the matrix of S be So, and the matrix D of
P be diagonal, with DS0 S0D. Q.E.D.

DISCUSSION 7.12. We are now ready to bring the canonical filtrations into
the study of X. Each lattice of X certainly has a canonical filtration, as defined

before; moreover, for each Q-subspace W we hâve the restriction of the
continuous function dw to X available. It turns out that we won&apos;t need ail of thèse

functions: only those for which W is totally isotropic or is coisotropic will be

needed, for the others will remain bounded on X. This is fortunate, for it is only
for such W that we will be able to define a &quot;géodésie action&quot;, to be used for
retracting the cusps.

LEMMA 7.13. Suppose L is a lattice, and M is a subgroup of finite index less

than or equal to k. If W is a Q-subspace of V L&lt;8)R, then k2

Proof. We clearly hâve

vol L ^ vol M^s k vol L

If Wx ç W2 are Q-subspaces of V, then the index [L n W2/L H Wx :MnW2IMH
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WJ is bounded by fc, too, so we get similar inequalities for thèse lattices. Apply
them to the définition

d(W, L) exp inf (slope (L H W2/L HW)-slope (L D W/L H Wi))

where W2 (resp. Wt) runs over ail Q-subspaces of V contaming (resp. contained

in) W. Q.E.D.

COROLLARY 7.14. There is a constant C^l such that for any lattice LinX
and any Q-subspace Wof V, ifd(W, L)&gt;C, then Wand its orthogonal complément

for S are both contained in the canonical filtratton of L, W is either totally
isotropic or coisotropic, and Cd(W9 L)^d(W^,L)^ C&apos;ld(W9 L).

Proof. Apply 7.1 and 7.13 to the inclusion L^L*, taking C= k2. See figure
7.15. Q.E.D.

DISCUSSION 7.16. Lemma 7.14 tells us which cusps of X may be mhabited

by cusps of X, and they corne m pairs, corresponding to a Q-subspace W and its

orthogonal Wv, with W^^W^ V. Accordmg to 7.13, if a point of X is far out

along one of the cusps, ît is just as far out along the other, roughly. For each such

pair, we will use one distance function, say dw, where W is the coisotropic
member of the pair, and we will hâve one type of géodésie action for retracting
the cusp, which we now describe.

Let r be a positive real number. According to 7.6 and 7.8, we may multiply

ciitti

Figure 7 15
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the inner product on V/W by r, leave the inner product on W/ Wv unchanged, and
reassemble the pièces to get a new inner product on V compatible with S. (It
follows from the proof of 7.8 that the norm on Wv gets divided by r.) For the new
lattice which results from replacing the norm on L with this new one we use the
notation L{W; r}. We hâve

} L[r-1][W;rlWv;r]
vol L{W;r} vol L

DEFINITION 7.17. Let Xss(f), for any real number t^Q be the space
XHXss(r). Define X(W, t) XDX(W, t), for any coisotropic Q-subspace W of V.
Suppose q (W1c • • • c Wk) is a strictly increasing chain of coisotropic Q-
subspaces of V: call q a coisotropic flag on V, as before, and define Xq=XnXq.

THEOREM 7.18. Suppose t is a real number, and t&gt;C.

(a) The space Xss(t) is a manifold with boundary, and the boundary consists of
those points x with d(W, x) d for some W.

(b) The space Xss(t) is contractible.
(c) For any coisotropic flag q on V, the space Xq is contractible.
(d) The open set X-Xss(t) has the homotopy type of the Tits building of G, as

does the boundary of the manifold Xss(f).
(e) The space Xss(t) is compact modulo F.

Proof. (a) Just as in the proof of 3.4, making the obvious adjustments.
(b) The proof hère can be done just as in 4.2. Continuity of the déformation

retraction is automatic because Xss(0 is a subspace of X.
(c) This goes as in 4.6, but we use 7.8 instead of the décomposition presented

there.
(d) This follows from (c) just as in the proof of 4.7. In order to apply the

définition of the Tits building [Tits, 1974, Section 5], which is phrased in terms of
parabolic subgroups, we need the additional information that a one-to-one,
order-reversing correspondence exists between the Q-parabolics of G and the
coisotropic Q-flags of V: each parabolic is the stabilizer of a unique flag.

(e) As in 5.2; according to 7.14, it is okay to ignore the functions d(W, x) for
those Q-subspaces W of V which are not coisotropic. The needed fact that G is

reductive follows from the fact that for a basis of V which makes S into an

orthogonal matrix, geG implies lge G. Q.E.D.

CONCLUSION 7.19. Now ail the remarks of 6 apply to the situation intro-
duced in 7.10, because of 7.18.



634 DANIEL R GRAYSON

REFERENCES

A Ash, D Mumford, M Rapaport and Y Tai, Smooth compactification of locally symmetnc
vaneties, Math Sci Press, Brookhne, Mass 1975

M F Atiyah and R Bott, The Yang-Mills Equations over Riemann Surfaces, Phil Trans R Soc

London A 308 (1982) 523
R Bieri and B Eckmann, Groups with homological duahty generahzing Poincaré duahty, Inventiones

Mathematicae 20 (1973) 103

A Borel, Réduction Theory for Anthmetic Groups, Proc Sympos Pure Math 9 (1966) 20, AMS,
Providence, RI

A Borel and J -P Serre, Corners and Anthmetic Groups, Comment Math Helv 48 (1973) 436
D Grayson, Finite Génération of K-groups of a curve over a fïnite field [after Daniel Quillen], Lecture

Notes m Mathematics no 966, Algebraic K-theory, Proceedings, Oberwolfach, 1980, Part I,
Spnnger, Berlin, 1982

G Harder and M Narasimhan, On the cohomology groups of moduh spaces of vector bundles on
curves, Math Ann 212 (1975) 215

C Hermtte, Oeuvres, I, Pans (1905) 94
R Kirby and L Siebenmann, Foundational Essays on Topological Manifolds, Smoothing, and

Triangulations, Annals of Math Study 88, Princeton University Press, 1977
S Lang, Algebraic Number Theory, Addison-Wesley, Reading, Massachusetts, 1970
E Mendoza, Cohomology of PGl2 over Imaginary Quadratic Integers, Bonner Mathematische

Schnftstellen 128 (1980)
H Minkowski, Géométrie der Zahlen, Leipzig (1896)
H Minkowski, Discontinuitatsbenech fur anthmetische Aquwalenz, Ges Werke II (1911) 53-100
D Quillen, Finite génération of the groups Kt of rings of algebraic integers, in Algebraic K-theory I,

Battelle Institute Conférence 1972, Lecture Notes in Math no 341, Spnnger, Berhng, Heidelberg,
New York, 1973

H Rademacher, Topics in Analytic Number Theory, Grundlehren Math Wiss 169, Spnnger, 1973
J-P Serre, Arbres, Amalgames, SL2, Asténsque no 46, Soc Math France, 1977

Anthmetic Groups, in &quot;Homological Group Theory&quot;, Cambndge University Press, 1979
C Siegel, Lectures on quadratic Forms, TATA, Bombay, 1957
U Stuhler, Eine Bemerkung zur Reduktionstheone quadratischen Formen, Archiv der Math 27

(1976) 604
Zur Reduktionstheone der positwen quadratischen Formen II, Archiv der Math 28 (1977) 611

J Trrs, Buildings of sphencal type and finite BN-pairs, Lecture Notes in Mathematics 386, Spnnger,
Berlin, Heidelberg, New York, 1974

A Weil, Sur Vanalogie entre les corps de nombres algébriques et les corps de fonctions algébrique
[1939a], Collected Papers, vol I, Spnnger, 1980

University of Illinois
Dept of Mathematics
273 Altgeld Hall
1409 West Green Street

Urbana, III 61801/USA

Received December 1, 1983, revised June 1, 1984


	Reduction theory using semistability.

