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Some topologically locally-flat surfaces in the complex
projective plane

Lee RuporpH*®

§ 1. Introduction; statement of results

THEOREM 1. For every integer n=6, there exists in the homology class
n[CP']e H,(CP?; Z) a topologically locally-flatly embedded surface of genus strictly
less than that of a nonsingular complex algebraic curve of degree n.

THEOREM 2. For every pair (m, n) of integers greater than or equal to 5,
(except possibly (5, 5)) there is a topologically locally-flatly embedded surface in the
4-disk with boundary a torus link O{m, n} of type (m, n) and genus strictly less
than the (classical) genus of O{m, n}.

Here, a surface S topologically embedded in a 4-manifold M will be called
“topologically locally-flatly embedded” if S has a neighborhood N in M which is
homeomorphic to an open 2-disk bundle over S by a homeomorphism carrying S
to a section. This is evidently some kind of local homogeneity assumption on the
embedding of S in M. (For instance, if S is smoothly, or P.L. locally-flatly,
embedded in M then it is a fortiori topologically locally-flatly embedded. After
preparing this paper, the author learned of a new theorem of Akbulut —-showing
that certain ‘‘topologically slice’” knots very similar to B¢ in §3, below, definitely
are not smoothly slice —which implies that not every topologically locally-flat
surface is just a smooth or P.L. locally-flat surface up to a global topological
change of coordinates.)

One construction will be used to prove both theorems. It is an instance of a
general construction discussed in earlier papers by the author [7, 8, 9]; it now
proves the theorems because of a recent result of M. Freedman. The specific
construction is given below, following some motivating remarks and a short new
(and, I believe, improved) exposition of the general construction.

* Research partially supported by the Fonds National Suisse at the Mathematics Institute of the
University of Geneva.
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Remark 1. A conjecture frequently attributed to R. Thom® is that no
smoothly embedded surface in CP? can have genus strictly smaller than that of a
homologous (smooth) complex algebraic curve. It is well-known [5] that, by being
willing to sacrifice local flatness, one can represent every homology class by a
piecewise-linearly embedded 2-sphere —-for instance, up to orientation, by the
complex algebraic curve with affine equation w = z". But this sphere need not be

piecewise-linearly locally-flat — in the example, for n =3, there is a singular point
at infinity.

The point of Theorem 1 is that by making a global (or at least regional)
sacrifice of smoothness, one can salvage a weaker sort of homogeneity of normal
structure while ‘“‘chopping off handles.”

Remark 2. Theorem 2 is vaguely related to the “problem of Milnor’” on the
Gordian number (I"Jberschneidungszahl, or unknotting number) of the link of a
singularity (cf. [6], [2]). Indeed, O{m, n} is such a link, and the problem in this
case asks whether the Gordian number ii(O{m, n}) equals (m —1)(n—1)/2, which
is the classical genus of O{m, n} (i.e. the least genus of a surface smoothly
embedded in S* with boundary O{m, n}). If the answer is affirmative, then any
smoothly embedded surface in the 4-disk with boundary O{m, n} has genus at
least (m —1)(n—1)/2. However, even if a smooth surface existed with boundary
O{m,n} and small genus, no conclusion could be necessarily drawn about
i(O{m, n}); much less for the topologically locally-flat surface of Theorem 2.

Remark 3. Here is a sketch of the strategy used to prove both theorems. “By
hand” we construct a smooth complex algebraic curve I' of degree 6 in CP?, and a
piecewise-smooth 4-ball D in C?<CP?, such that (i) the transverse intersection
I'NoD is a “topologically slice” knot, i.e., bounds a topologically locally-flatly
embedded disk in D, while (ii) the smooth surface I' N D, with the same boundary,
has genus 1. Then replacing the surface of genus 1 by the disk, we produce a
topologically locally-flatly embedded surface homologous to I" in CP?, of genus 1
smaller.

It is clear that by various expedients (most naively, doing essentially the same
surgery in k disjoint balls, on a curve of degree 6k; or using a more complicated
topologically slice knot, which bounds a piece of a curve of degree Sk + 1 that has
genus k) one can produce as large a gap as desired between the genus of a smooth
algebraic curve and that of a homologous topologically locally-flat surface.
However, I know of no construction which makes a proportional gap bigger than

! Professor Thom has remarked (personal communication, November 19, 1982) that the conjecture
perhaps more properly belongs to folklore.
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10 per cent, which is already achieved by the example of degree 6 (where the
genus of the algebraic curve is 3(6 — 1)(6—2) = 10 and one handle is chopped off).
In any case, the proportional gap can’t be too big (whether the topologically
locally-flat surface is produced, as here, by ‘“‘surgery’ - rather, amputation — or
not); for, as Shmuel Weinberger has kindly pointed out to me, Wall’s topological
version [10] of the G-signature theorem fits into the proof of Hsiang and Szczarba
[4] to yield, for topologically locally-flat surfaces in 4-manifolds, exactly the
estimates given in [4] for smooth surfaces.

In particular, topologically locally-flat 2-spheres in CP? occur in degrees 0, +1,
+2 only (where there are smooth examples).

§2. A construction of closed braids

Fix an integer n=2. For k=1,...,n—1, let n, =exp 2m(k—1)i/(n—1)) (so
n,=1), and let J, =n,[0, 1] be the line segment in C from 0 to m,. Write
Q,._1={n:k=1,...,n—1}. The fundamental group m(C\Q,_,,0) is free of
rank n—1, with free basis x4, ..., x,_;, where x, is represented by a loop based at
0 and running once counter-clockwise around the boundary of a convex region
containing m, and no m; j# k. This group is, of course, identical to ((CU
{2\ (Q,._1{°}), 0). Represent it in the symmetric group on {1, ..., n} by sending
x, to the transposition (k  k +1). Let X be the corresponding n-sheeted branched
covering space of C U {}, branched over Q,,_; U{®}. One readily verifies that X is
a 2-sphere, with a single point over «. Thus the covering map ““is”” a polynomial
of degree n, with n—1 critical points, and critical values n, (k=1,...,n-1);
further requiring the polynomial to be monic and have constant term 0 will
specify it completely. We assume this is done, and call the result p(w)=
wrta,_w'l+- - -+ ayw. Write C,, for X—{x}, C, for the base space C, so
p:C, —C..

Remark 4. Except for n =2, 3, I have been unable to find p(w) explicitly. It is
not in general the elegant w" —aw, where a =n(1—n)'"""; this (like the even
simpler w" — nw, which only differs by rotation and homothety in the base space)
corresponds, apparently, to the representation x, — (1k+1). (Of course the
construction could be adapted to these polynomials, at the expense of complicat-
ing the braid theory a bit.) For n =2, 3, the two representations are equivalent.

Now consider p~'(J,). This has n—1 components, each a simple arc; let I, be
the one containing the critical point with critical value 7,. Then the endpoints of
I, are two of the preimages of 0, call them w, and w, . ,; it is easy to see that they
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may be numbered so that I, NI, ., ={w, 4} for k=1,...,n—2, while w; belongs
only to I;,w, onlyto I,_,,and , NI, = if |k—1|>1. Let I =JpZ] I.. Then I is
a simple arc in C,,.

Next consider the configuration space E,\A of unordered n-tuples of distinct
points of C,, ; that is, form the symmetric product E, =C.;/%,, and delete from it
the multidiagonal A of n-tuples with at least one pair of equal elements. The
n-string braid group is by definition the fundamental group of the configuration
space.

Specifically, we will take p~'(0)e E,\A as our basepoint. In the usual de-

scription of B,, the basepoint is taken to be {1,...,n}, and for k=1,...,n—1,
the loop L, :S'—E,-A:z—{1,...,k—1,k+2,...,n}U{k +3(1+z?} (where
S'={zeC:|z]|=1}) represents an element of m,(E,\A4,{1,...,n}) called the

standard generator o,. Here, let h:C, —C, be an orientation-preserving
homeomorphism with h(I)=[1, n] and h(w,)=k, k=1,..., n. Then h enforces
an identification of m,(E,\A4,{1,...,n}) with B,=m,(E\A4, p~(0)), giving a
meaning to the standard generators o4,...,0,_,€B,.

Finally, note that p~' is well-defined as a continuous map C, — E,, and that
by construction p~!|(C, — Q,_;) has image in E,\A.

PROPOSITION. The induced homomorphism p ™' | (C, — Q,_1)« from the free
group m(C,— Q,_;,0) to B, carries the free generator x, to the standard generator
o, fork=1,...,n—1.

Proof. Recall that x, is represented by a loop which traverses (counterclock-
wise) the boundary of a convex region-call it D, —-in C,, and that n e
Int Dy, m;¢ Dy (j#k), and 0€dD, (k=1,...,n—1). As with I, = D,, the preim-
age p~'(D,) has n—1 components; n—2 of them are carried to D, homeomor-
phically by p, and one —call it Dy —is a 2-sheeted branched cover of D, via p,
branched at w, € Int Dy ; so Dy, is again homeomorphic to a 2-disk. No component
of p~'(D,) other than D, contains any critical point w; of p. The loop in E,, with
domain the simple closed curve aD,, which takes z €D, to p~'(z) € E,, clearly
has image in E,\A. It can easily be homotoped (respecting its basepoint p~'(0)),
in E,\A, to a path of n-tuples each containing the n—2 points of p~'(0) not in
D;, together with two points on dD; which exchange positions (by a counter-

clockwise ‘“rotation”) as the loop is traversed; but such a path clearly represents
gy. O

Recall that an oriented (closed) 1-manifold L in the open solid torus S'xXC
is a closed braid (on n strings) if pry | L:L—>S ! is an oriented covering projec-
tion (of degree n). A braid BeB, vyields a closed braid §<S'XC (unique
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up to isotopy respecting pr;) by taking a loop l:S'— E,\A representing 8
and considering its ‘“graph” (as an n-valued complex function) grl=
{(z, w)eS*XC:wel(z)}

COROLLARY. Ifx;) - - - xi& is any word in the free group m(C, — Q,_;,0),
and v:8'—=C,—Q,_;,¥(1)=0, is a loop representing it, then the set
{(z, w):y(z)=p(W)} is a closed braid B on n strings in S*xC,, where B=

[¢3] (s)
Uie(]) £ 8w O'f(ss) EBn. D

§3. Freedman’s theorem; proofs of theorems 1 & 2

The profound researches of Michael Freedman into the topology of 4-
manifolds have recently led him to the following improvement [3a] of a theorem
published in [3] (the original theorem applied only to a knot K which was an
untwisted double of a knot with Alexander polynomial 1).

FREEDMAN’S THEOREM. Let K< S3*=0D* be a (smooth) knot with
Alexander polynomial Ag(t) identically 1. Then K bounds a topologically locally-
flat disk S<D*. O

It is not important for the following proofs to know what an Alexander
polynomial is; it is enough to believe that the knot K pictured in Figure 1A,
where it is shown as the boundary of a punctured torus in R?, has Ag(t) = 1. (This
K is in fact an untwisted double of a trefoil knot; from that fact, or calculating
directly from the obvious Seifert matrix of the visible surface, those in the know
will see that Ax(t)=1. As readers of [8] will have guessed, this particular K was
chosen simply as being about the easiest ‘‘quasipositive’ knot with corresponding
““braided surface” of genus 1 and Alexander polynomial 1.)

Figure 1B shows an isotopic surface, punctured by a line in R?; the boundary
knot is a closed braid in the open solid torus complementary to the line, and is the

Fig.1
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Fig.2

same type of closed braid as in Figure 2A. (The surface is less explicit but still
visible.) Call the pictured braid B¢ € Be. If we abbreviate aba™! by ®b, and o, by k
(k=1,...,5), then we may write B¢=23*5-13:%4-1-45.1224.1. (The raised
dots are for clarity only.)

Fix integers n=2, m=1. Let p:C,, —C, be the n™ degree polynomial of §2;
let f(z,w)=pw)—2z™; and let I.(m,n)={(z,w)eC?:f(z, w)=¢€}. Then
pr, | To(m, n):Ty(m, n) > C, is an n-sheeted branched covering branched over
QUm={¢:tmeQ,_}={expR2mi(k—1)/m(n—1]:k=1,..., m(n—1)}.

Let y:8'—>C,— QY™ be a loop with y(1)=0. Then in S'XC, the set
{(z, w):(v(2), w)eI'y(m, n)} is a closed n-string braid, and it is easy to see which
one it is: compose y with z — z™ to obtain y":S'—>C, —Q,_;, y"(1)=0; then .
look at the element of B, corresponding to the class of y™ via the proposition of
§2 and its corollary.

In particular, if R is a closed region homeomorphic to a disk in C,, with
0€dR, Q,/"yNA3R = &, then we may take y to be a (counterclockwise) paramet-
rization of dR; we find that L ={(z, w):z €0R, (z, w)e I'y(m, n)} is a closed braid
in dR XC,,. Being compact, L lies in some closed solid torus R xXD, D<C,, a
closed disk; finally, then, L lies in the 3-sphere (with corners) 3(R X D). In fact
(by, say, the maximum principle), L =TIo(m,n)N3(R x D), that is, L is the
complete boundary of I'y(m, n)NR X D. Also, it is easy to calculate the Euler
characteristic of the surface I'o(m, n) N R X D, for it is the branched cover of R
branched over Q)™ NR.
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THEOREM 1. For every integer n=6, there exists in the homology class
n[CP']e H,(CP?;Z) a topologically locally-flatly embedded surface of genus
strictly less than that of a nonsingular complex algebraic curve of degree n.

Proof. In Figure 2B is sketched a simple closed curve in C,\ Q3 which gives

the braid B¢. (The 25™ roots of 1 are indicated by dots, the 5™ roots among them
by larger dots; O is the basepoint.) Let R be the region it bounds. Then (for a
suitably large disk D <C,,) the surface I'((5,6) N R X D has Euler characteristic
—1 and a connected boundary (of type B¢), so it is of genus 1. (It is essentially the
surface of Figure 1A, “pushed in.””) Now, I'(5, 6) is nonsingular in C?, but has a
singular point at infinity in CP?; but for sufficiently small £ # 0, I'.(5, 6) will be
nonsingular when completed in CP?, while I'.(5,6) "R x D will still be a punc-
tured torus with boundary in 8(R X D) of type Bs. The homology class of the
completion of I',(5, 6) is of course 6[CP"].

By Freedman’s Theorem, the smooth surface S’ =1T,(5,6) N R X D, of genus 1,
shares its boundary with a topologically locally-flatly embedded disk S in R X D.
Replace S’ by S on the completion of I'.(5, 6); the resulting surface is still in the
homology class 6[CP'], is topologically locally flat, and has genus 1 smaller than
the genus of I'.(5, 6). The theorem is thus proved for n =6.

For larger n, one may apply the same technique, starting with the braid
B.=Be0s" " *0,_1€B, and taking the appropriate simple closed curve in
C\QM3,; for B, is of the same knot type as B3¢ (and 5 replications of Q,,_, still
suffice to write the whole word properly). [

THEOREM 2. For every pair (m, n) of integers greater than or equal to 5,
(except possibly (5, 5)) there is a topologically locally-flatly embedded surface in the
4-disk with boundary a torus link O{m, n} of type (m, n) and genus strictly less
than the (classical) genus of O{m, n}.

Proof. Follow the proof of Theorem 1 up to the final paragraph.

Without loss of generality, we may assume n=m =5 and n =6. Then we may
apply the same technique as above, starting with 8, and taking the simple closed
curve to lie in C\ QY™ ; again, B, is the correct knot type, and extra replications of
Q,.—1 do no harm. So I',(m, n) can have a handle surgered away inside C?, in the
topologically locally flat sense. But for ry, r, sufficiently large, the intersection of
I'y(m, n) with the boundary of the bidisk {(z, w):|z|=r,, |w|=r,} is a link of type
O{m, n} (in fact it is the closure of the m™ power of the n-string braid
0,05 * 0,_1), and the intersection of I'((m, n) with the whole bidisk has genus

(m—1)(n—1)/2, the classical genus of O{m, n} (by direct calculation). [J
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