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Cyclic homology and the Lie algebra homology of matrices

JEAN-Louis LobAy and DANIEL QUILLEN

In this paper we study a new homology theory for associative algebras called
cyclic homology. We investigate its relations with Hochschild homology, de Rham
cohomology and the homology of the Lie algebras of matrices.

In [3] A. Connes introduced the dual version: cyclic cohomology. One of his
basic theorems, when formulated in homology, says that there is a long exact
sequence

I Hn(A’ A) —_— ch(A) __S__> HCn—-2(A) - Hn—l(Aa A) —

where S is a kind of periodicity operator on the cyclic homology HC4(A), and
where H, (A, A) is Hochschild homology. This result was found independently by
Tsygan [12] whose proof shows that the periodicity comes from the degree two
periodicity of the homology of cyclic groups.

In this paper we approach the subject of cyclic homology starting from a
double complex suggested by Tsygan’s work. On one hand this allows us to
simplify, or at least to explain, the proofs of some of Connes’ theorems using
diagrams instead of cochain computations. On the other hand the double complex
makes sense for an associative algebra over any commutative ground ring. One
obtains a reasonable theory ‘over the integers’ by defining the cyclic homology to
be the (total) homology of this double complex.

We note that the double complex appears in a more general context in
Connes’ recent theory [4] on cyclic objects in a category, and that this theory
works ‘over the integers’.

The contents of the paper are as follows. In the first section we construct the
complex 6(A) and use it to go between the cyclic quotient of the Hochschild
complex and Connes’ double complex with the b and B operators. We derive the
long exact sequence and spectral sequence relating Hochschild and cyclic
homology.

In the second section we construct maps from cyclic homology to, essentially,
de Rham cohomology. In the case of a smooth commutative algebra over k,
where k is of characteristic zero, we prove an algebraic version of a formula of
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566 JEAN-LOUIS LODAY AND DANIEL QUILLEN

Connes: HC,=Q"dQ" '@ HZDHLR®. ... If the condition on the charac-
teristic is dropped, then we show that Connes’ formula gives at least the E>-term
of the spectral sequence from Hochschild to cyclic homology.

In the third section we exhibit a product HC,® HC, — HC,,,.; on cyclic
homology and show that it is compatible with a similar product defined by
Deligne on differential forms.

In the fourth section we develop a theory of reduced cyclic homology which is
the cyclic homology of A relative to that of k. We show that the cyclic homology
of a non unital algebra is the same as the reduced cyclic homology of the
associated augmented algebra obtained by adjoining an identity. We also compute
the cyclic homology for a ring of dual numbers.

The fifth section contains the computation of the cyclic homology for a tensor
algebra.

The last section is devoted to the homology of the Lie algebras of matrices
gl(A), when the ground ring k is a field of characteristic zero. The main result,
announced in [9] and independently by Tsygan in [12] claims that cyclic homology
is the primitive part of the homology of the Lie algebra of matrices. A refinement
of the technique gives stabilization results for the homology of gl,(A). This section
ends up with another spectral sequence converging to cyclic homology and
deduced from the rank filtration on gl(A).

1. Hochschild and cyclic homology

Let A be an associative algebra (with identity) over a commutative ring k. We
will use the abbreviation A™ for A®", the n-fold tensor product of A over k, and
write (a;,...,a,) for a;®-:--®a, Let b and b':A""'— A" denote the
operators given by the formulas

n—1

bag, ..., a)= 2, (1) (@gs ..., GGis1s - .., @)+ (=D"(@ua0, - - -, Q1)

i=0
n—1 ]

b'(ao, - --» @)=Y, (=1)(ag, ..., Qlis1s ..., Q)
i=0

The chain complex

b’ b'- b’
—s A AT — A

is the standard Hochschild resolution of A over A® AP up to a dimension shift
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[2]. It is acyclic because of the homotopy operator s: A" — A"*! s(ay,...,a,)=
1, a4, . .., a,) which satisfies

b's+sb'=id.

We shall refer to the complex (A**! b’) as the acyclic Hochschild complex.
Upon tensoring the Hochschild resolution (A**2, b’) with A considered as a
right module over A® AP, we obtain the chain complex
b

b b

> A? > A

‘A3

which we call the Hochschild complex. Its homology is the Hochschild homology
Hy (A, A), which we write simply Hg(A). When A is flat over k one has

H, (A)=Tor2®2"(A, A).

We define an action of the cyclic group Z/n on A" by letting the generator act
as the operator

t(ala veey a’n) = (*1)n-l(an’ Ay, .-y an—1)°

Let N=1+t+---+t""" denote the corresponding norm operator on A"
We shall denote by €(A) the following double chain complex

b -b' b
72 v 2
A2 1-t A2 N A2 1-t
b -b Lb
2 £

A <L A &oa Lt
in which the even degree columns are Hochschild complexes and the odd degree
columns are acyclic Hochschild complexes with the sign of the differential
changed. In the horizontal direction we have the standard complexes for the
homology of Z/n with coefficients in A". The differential in the associated total
complex Tot €(A) is the sum of the horizontal and vertical differentials and the
following lemma shows that d*>=0.

LEMMA 1.1 [3,12]. One has b(1—t)=(1—1t)b" and b'N = Nb.

Proof. If j: A"*' — A" is defined by j(a,, ..., a,)=(-1)"(a,.aq, a1, ..., Ay_1)
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then one has

n—1
it and b'= ) it}

i=0

b=

i

on A™*!, Using these formulas it is easy to check the lemma, for example, b'N
and Nb are both equal to NjN.

DEFINITION. The cyclic homology HC4(A) of the associative k-algebra A
is the homology of Tot €(A).

In order to show this definition agrees when k contains Q with the one used in
[3,7, 9], we note that there is an augmentation map

Tot €(A) — Cx(A) = (A**Y/(1-1), b)

to the quotient of the Hochschild complex obtained by taking the coinvariants for
the actions of the various cyclic groups. The augmentation induces an edge
homomorphism for the spectral sequence

Eg=H,(Z/(q+1), A"") > HCx(A)

associated to the double complex. In characteristic zero the group homology
vanishes in positive degrees, and the spectral sequence collapses, proving the
following.

PROPOSITION 1.2. If k contains Q the above augmentation map is a
quasi-isomorphism (i.e., it induces an isomorphism on homology):

HC,(A)=H,(A*"'/(1-1), b).

Remark. From the spectral sequence it is easily seen that in order to have an
isomorphism in degree n it is sufficient to assume that n! is invertible.

The double complex 6(A) can be simplified in two ways up to quasi-
isomorphism. First of all the odd degree columns can be eliminated as they are
acyclic. This leads to the double complex of Connes [3] with the differentials
b and B, which we denote B(A). Secondly the Hochschild complexes can be
normalized.
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The double complex B(A) will be drawn in a somewhat unorthodox way

VAN

A% A?  A?
AVANAN
w\ v
A A A

in order to show its relation to €(A). It consists of the even degree columns of
€(A), where B is given by the composition

An+1 El_t An+1

L

An (__N_ An

More precisely B(A),, = A?*" if p is even =0 and q=0; it is undefined if p is
odd. One has

BZ2=(1-t)sN(1-t)sN=0 (1.3)
bB +Bb=b(1—t)sN+(1—1t)sNb
=(1-t)(b's+sb)N=(1-t)N=0, (1.4)

so Tot B(A) is a chain complex for the differential d = b+ B.

PROPOSITION 1.5. The complexes Tot B(A) and Tot €(A) are quasi-
isomorphic.

Proof. We define a map from B = B(A) to € = €(A) by sending x in B,,, p
even, to (x, sNx) in 6,,D %6, .. This is a map of complexes because

d(x + sNx) = (bx, Nx + (—b")sNx, (1 —t)sNx)
= (bx, sb'Nx, Bx)
= (bx, sNbx + sNBx, Bx).

Next we consider the increasing filtration of € and 3 by columns:

F6=®%,. F3=® 3,.

p=n p=n
p even
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Since the odd degree columns of € are acyclic it is easily seen that the induced
map on the associated graded complexes is a quasi-isomorphism. The proposition
then follows by a standard induction.

Remark. It is clear from the above proof that one is not working in the
category of double complexes, but rather with filtered complexes. Thus B(A) is a
filtered subcomplex of 6(A).

At this point we can easily prove the following basic results relating cyclic and
Hochschild homology.

THEOREM 1.6. For any associative k-algebra A there is a long exact sequ-
ence

. —> H,(A) —> HC,(A) > HC,_,(A) —> H,_;(A) —> - -

It is clear from the picture of B(A) that one has an exact sequence of
complexes

0— (A*" b) > Tot B(A) — Tot B(A)[-2]—0

where [—2] indicates that the degrees are shifted by —2: (Tot B[-2]),, = Tot B,,_,.
Taking the associated long exact sequence in homology, we obtain the theorem
from Proposition 1.5.

COROLLARY 1.7. Cyclic homology is Morita invariant.

Proof. This follows from the long exact sequence (1.6) and the Morita invari-
ance of Hochschild homology (Cf. [14], theorem 3.7).

In order to simplify some further computations we change the indexing of the
bicomplex B(A) and put

(BAY)pq = B(A)zpgp = ATPTL. (1.8)

In this setting the maps B go horizontally.
The increasing filtration of the bicomplex ZB(A) by columns gives the
following.

THEOREM 1.9. There is a spectral sequence abutting to HC,(A) with E;,=
H, ,(A) and with d':H, ,(A)— H,_,,,(A) induced by Connes’ operator B.
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This theorem can also be obtained from Theorem 1.6. by interpreting the long
exact sequence as an exact couple.

(1.10) Next we show that the complex B(A) can be simplified further by
replacing the Hochschild complexes by their normalizations. We recall that the
Hochschild complex (A**', b) is the chain complex associated to a simplicial
abelian group. Hence it contains a degenerate subcomplex Dy, where D, < A™"!
is spanned by the elements (a,, ..., a,) such that q; = 1 for some i with 1<i<n.
Upon dividing out by it we obtain the normalized Hochschild complex A™*'/D, =
A®A", where A = A/k, whose differential we denote again by b since it is given
by the same formula. The degenerate subcomplex is known to be acyclic, so the
projection (A**!, b) - (A® A*, b) is a quasi-isomorphism.

We now normalize each column of B(A)’ and obtain a double complex

B(A)norm: | bl bl bl
ARA? <& AQRA & A

PROPOSITION 1.11. The projection of Tot B(A) onto Tot B(A)norm IS a
quasi-isomorphism. The operator B: AQ A" — AQ A"*! is given by

B(aO’ Ay, ..y an):: Z (__1)in(1’ Q... A, Aoy - - - ai——l)-
i=0

Proof. We must check that the operator B =(1—t)sN: A"*! — A"*? passes to
the quotient. Now the image of ts lies in D, , so B=sN from A"*'to AQA"*".
This gives the above formula, which can be used to show that B is well-defined on
A® A" The rest is clear as the projection is columnwise a quasi-isomorphism.

Example 1. If A =k, then B(A),om reduces to copies of k in the diagonal
hence HC,(k) =k for n even =0 and HC,(k)=0 for n odd.

Example 2. Recall that if A is commutative the module of Kahler differentials
0, = 0}, is by definition the A-module generated by symbols dx for x € A with
the relations d(xy)=xdy+ydx, d(x+y)=dx+dy and d(k)=0. It is easy to see
that, when A is commutative, HC,(A)= 24/dA and HC,(A) = A.
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2. Relation to de Rham cohomology

Connes has calculated the continuous cyclic cohomology of the ring of smooth
functions on a manifold in terms of currents. If we make the obvious translation
to the algebraic setting of this paper, we obtain a formula for the cyclic homology
of a smooth commutative algebra in characteristic zero in terms of algebraic
differential forms. We are going to review the proof of this formula to see what
can be said without assuming characteristic zero.

In this section the algebra A is assumed to be commutative. In this case the
Hochschild complex is the chain complex associated to a simplicial commutative
ring, and so it has a product, the so-called shuffle product, given by

(a,ay,....,a,) (@ a,11,...,8,,4)= X sgn (o)(aa’, a, i1, - - -, g 1(p+q)
2.1)

where the sum is over all permutations o of {1,2,...,p+q}such that g1 <. -<
op and o(p+1)<---<o(p+q). In this way both the Hochschild and normalized
Hochschild complexes become differential graded strictly anti-commutative A-
algebras, where strict means that the square of any odd degree element is zero.
Hence the Hochschild homology H4(A) is a graded strictly anti-commutative
algebra over A.

Since

H,(A)=AQA/b(ARA?
= A®A/(zx, y)—(z, xy)+(yz, x)}

it is easily seen that there is an isomorphism
y:Qi=>H 1(A)

obtained by sending adx to the class of (a, x). Because of the multiplicative
structure the map y extends to an A-algebra map

v:Qh=A"0N4L— H,(A).
PROPOSITION 2.2. One has a commutative square

2, — H,(A)

f s

0'11\+1 —l—) Hn+l(A)

where d is the exterior derivative on forms.
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Proof. Given a generator w = agda, * * - da,, for %, y(w) is the class of

(@gs @) - (1, ay) -+ - (1, @)= 2, sgn(0)(@o, g1y, - - - » Ag-1p) (2.3)

oel,

in AQA", where 3, is the group of permutations of {1,...,n} Similarly
v(dw) =+vy(day - - - da,) is represented by

(1,ap) - - (La)= X sgn(p)(1, ayo-- -, Gpry) (2.4)
peX, 1
where 3, ., denotes the permutations of {0, 1, ..., n}. By the formula of Proposi-

tion 1.11 B carries the shuffle product of (2.3) into

Z sgn (O')Z sSgn (T)(l, As-17-10, Ag—14-115 « « « 5 a(,fx,ﬂn) (25)

where T ranges over the cyclic subgroup of X, ,, generated by t:i+—> i+ 1. Since
3.1 is the product of 3, and this cyclic subgroup, the expressions (2.4) and (2.5)
are equal. Thus By(w)= y(dw) as required.

Now suppose that A is smooth over k in the sense of Grothendieck, for
example, A is the ring of algebraic functions on a nonsingular variety over the
perfect field k. Then it is known that the map from Q% to Hy(A) is an
isomorphism [S]. In effect, the ideal of the diagonal in A® A is locally generated
by a regular sequence, so

Hy(A)=Torg®4(A, A)

can be computed using a Koszul sequence and shown to be an exterior algebra.

Consequently, in the spectral sequence of Theorem 1.9 the Hochschild homol-
ogy can be identified with differential forms, and the differential d* can be
identified with the exterior derivative by the proposition above. Hence we obtain
the first part of the following.

THEOREM 2.6. If A is smooth over k, then the spectral sequence of Theorem
1.9 becomes

E? :{ qA/dﬂ?\-la p=0
pa

H%P(A), p >0} > HGy o (A).

Remark. We do not know if the spectral sequence stops at E®> when the
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characteristic is different from zero. The first possibility for a non trivial differen-
tial would be a natural map d?: Hpg(A) — HER2(A).

In the characteristic zero case there is defined a map p:A®A* — Q% by
m(ag, ..., a,)=01/nYayda, - - - da,. We leave to the reader to verify the identities

wb=0 and du=uB. 2.7

These identities show that u induces a map from B(A),om to the following
double complex P (A).

! Ol Ol

The total complex of P(A) is the direct sum of the truncated de Rham
complexes

‘Qsi:ﬂi(__ﬂi—l(_... <——QO(—0<——
suitably shifted: Tot D(A) =D, Q=Yi].

THEOREM 2.8. If k contains Q, for any commutative k-algebra A, the map n
induces homomorphisms

i : HC,(A) = HEZ(A), for 1<isn/2,

and

Ho: HCL(A) — Q4/d!

Proof. These homomorphisms are obtained by composing p with the projec-
tion on the truncated de Rham complex and then taking homology.

THEOREM 2.9. If k contains Q and if A is smooth over k, then there is a
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canonical isomorphism

D wi : HC(A)= QL/dQL '@ HBEZ(A)BHE(A)D - - -

Proof. It is clear that u induces on homology a map inverse to v, hence p is a
quasi-isomorphism. Therefore the spectral sequence of Theorem 2.6. is the
spectral sequence of the double complex Z(A), which proves the assertion.

3. Product structure

In this section we study a product HC,(A)® HC,(A) > HC,,,..(A) for a
commutative k-algebra A. We could as well define a product HC,(A)®
HC,(A')—- HC, .,+.,(A®A’) for not necessarily commutative algebras, but we
take A = A’ for simplicity.

First we investigate the properties of the map B defined on AQ A* (cf. 1.11)
with respect to the shuffie product.

LEMMA 3.1. B(x - B(y)) = B(x) - B(y).

Proof. For x=(agy, ay,...,a,) and y=(a,.y,...,0,,4) We have x-B(y)=
Y sgn (o)(ag, dg-1qs - - - a,p+q) Where the sum is over all permutations o of
{1,...,p+q} satisfying 01<---<op and ogk<:--<o(p+q)<op+1)<-:-<
o(k+1) for some ke{p+1,...,p+q}. Therefore B(x - B(y))=
Y sgn (7)(1, a, v, . .., A,-1p+q) Where the sum is over all permutations 7 such that
there exist i€{0,...,p} and je{p+1,...,p+q} for which 7i<-: - <1p<70<
e <7(i—1) and 1< <1(p+q)<t(p+1)<---<7(j—1). This last sum is
easily seen to be equal to B(x) - B(y), whence the lemma.

We define a product on the total complex of B(A),orm by the following
formula. Let x € (B(A)orm)in = ARA™ " and y € (B(A)orm)s = AQ A"

. =0
x*y={x B(y) when r=0,

% A orm/l+rm+s+1- 32
: NI EC TEV RS (32

Then this formula is extended to Tot B(A),ormPTot B(A),orm by linearity. For
xe AQA' the degree of x is i and is denoted |x|; it is also the degree mod 2 of x
considered as an element in Tot B (A),orm-

THEOREM 3.3. The *-product defined above induces a degree 1 map of
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complexes
Tot B(A)orm®@Tot B(A),0rm — Tot B(A),0rm

which is associative. As a consequence it defines an associative product
*: HC,(A)® HC,(A) — HC,,,.,(A).
Proof. We recall that the boundary & of Tot B(A),om IS given by

(B+b)(x) if 1#0

S(x) = {b(x) lf l — O} for xe (B(A)norm)lm'

We will prove the formula
8(x *y)=8(x) * y+(=1)""'x % 5(y)
using (1.3), (1.4) and (3.1).
If r#0 and 1 then both sides are equal to 0. If r=1, then x *y=0 and

dx*y=0. One has x*8y =x*(B(y)+b(y))=x-BB(y)=0. If r=0, then there
are two cases. If [#0, then

8(x*y)=38(x - B(y))=B(x : B(y))+b(x - B(y))
= Bx - By +bx - By+(—1)**1x - bBy.

On the other hand we have

8x*y+(—1)**1x x 8y = (Bx + bx) *y + (—1)*\x * by

The equality follows from Bb+ bB = 0.
If r=1=0, then

8(x*y)=8(x - By) = b(x - By) = bx - By +(—1)*x - bBy.
On the other hand we have
8x %y +(—1)¥*1x % 8y = bx #y + (—1)**'x by = bx - By +(~1)**'x - Bby

and the proof of the first assertion is completed.
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Associativity is proved in a similar way.
Example. For n = p =0 the product is given by AQA — QL/dA, a*b=adb

PROPOSITION 3.4. Hy(A) is an HCy(A)-module and the map I: He(A) —
HC4(A) is an HC4(A)-map.

Proof. The normalized Hochschild complex is a subcomplex of Tot B(A),orm
and it is easily seen that for ye B(A),om the operation x+> x#*y sends this
subcomplex into itself. The formulas proved in (3.3) finish the proof.

(3.5) There is a similar product on the sum of the truncated de Rham
complexes. In terms of the double complex 2(A) (see section 2) this product is
given by

. _{x/\dy when r=0} for xe(D(A),, =02%""
**Y o otherwise J and ye(D(A)),=02%".

Deligne has remarked that this product is associative and homotopy graded
commutative provided that one puts deg ((Tot Z(A)),.) = n+ 1 (unpublished notes
by S. Bloch). The homotopy is given by h(x®y)=(—1)*"'x Ay. Therefore there
is a graded commutative product on the homology.

When k contains Q it is immediately seen that the map w is compatible with
the products. This proves the following:

PROPOSITION 3.6. The homomorphism

@D w,;:HC, > 0"/dQ" 'O HpZ ®HBD - - -

commutes with the products.

We now investigate the product on the complex Cx(A)=(A*"'/(1—-1), b). It is
defined by the same kind of formula:

x*xy=ux-B(y),

where

B(aO’ gy ..., a*n,) = Z (_l)in(l, Qi . . .5 Ay, Ags - - - ai—-l)
i=0

and where the dot means shuffle product.
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PROPOSITION 3.7. Provided that we put deg (C,(A)) =n+1, the product *
induces on Cx(A) a structure of commutative differential graded algebra.

Proof. The derivation property of b and associativity are proved like in (3.3).
Graded commutativity follows from the fact that x - B(y) —(—1)%** 9%y . B(x) is
in the image of (1—1t). To prove this we remark that x - B(y) (resp. y - B(x)) is the
sum of (p+q)!/p! q! terms (where p =|x| and q=|y|) and that for any such term
there is a unique power of t which converts it into a term in y - B(x).

COROLLARY 3.8. If k contains Q the *-product on HC4(A) verifies
x*y=(=1)"*"PP Vyxx  for xeHC,(A) and yeHC,(A).

Remark 3.9. The iterated *-product (a,,...,a,) ap* - -+ *a, from A""'
to HC,(A) factors through Q%/dQ% ' and defines a map Q24/dQ% ' — HC,(A)
whose composition with u, , is, in view of (3.6), the identity.

4. Reduced cyclic homology

In this section we suppose that the homomorphism k — A given by the
identity of A is injective. At the end of the first section we pointed out that the
Hochschild homology of A can be computed using the normalized Hochschild
complex. We now define the reduced Hochschild complex (A® A*, b),.4 to be
the quotient of the normalized Hochschild complex by the subcomplex given by
the normalized Hochschild complex for the algebra k. As the latter complex
consists of k in degree zero, we have an exact sequence

0— k[0]—> (AR A*, b) > (A®A*, b),eq— 0
and the reduced Hoschild complex is the same as the Hochschild complex except
that the A in degree zero is replaced by A. The homology of this reduced

complex will be called the reduced Hochschild homology and denoted H,(A).
From the above exact sequence one obtains an exact sequence

0— H,(A) — H,(A) > k = Ho(A) > Hy(A) > 0

and H,(A)=H,(A) for n=2.
In a similar fashion we define the reduced cyclic homology HCx(A) to be the
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homology of the double complex B(A),., defined by an exact sequence
0 - % (k)norm - %(A)norm - %(A)red - 0

where B (A ),om is the normalized version of Connes’ double complex described in
1.10. This reduced Connes’ complex is the same as B(A),om €xcept that the
diagonal of A’s is replaced by A'’s.

PROPOSITION 4.1. One has long exact sequences

— HC,(k) — HC,(A)— HC,(A) — HC, (k) —
— H,(A)— HC,(A)— HC, ,(A)— H,_,(A)—.

The first follows from the exact sequence defining B(A),.q and the fact that

the homology of B(A),orm is HC(A). The second exact sequence can be derived
as Theorem 1.6. but using the double complex B(A),q-

The reduced theory is a natural thing to consider when dealing with aug-
mented algebras. We recall that an augmented algebra A is of the form
A =ko®I where I is the augmentation ideal, and that A is isomorphic to the
algebra with identity obtained by adjoining an identity to the non-unital ring I. In
fact the categories of augmented algebras and non-unital algebras are equivalent
in this way.

For an augmented algebra the first exact sequence in the above proposition
splits yielding the isomorphism

HC4(A) = HCy(k)® HCy(A)

At this point one might define the cyclic homology of non-unital algebra to be the
reduced cyclic homology of the corresponding augmented algebra. On the other
hand inspection of the arrows in the double complex €(A) of the first section
shows that it makes sense for non-unital rings, hence we can make the definition
HC4(I) = Hy(Tot €(I)). The following shows that these two definitions agree.

PROPOSITION 4.2. If A=k®I is an augmented ring, then the complexes
6(I) and B(A),.q are isomorphic, hence HC4(I) = HC4(A).

Proof. We define an isomorphism from 4(I) to B(A),.q by

%(I)pn®(g(1)p+l,n~l = In+1 ®In - A®In = (% (A)red)p,n+p

where the isomorphism in the middle sends (x,, ..., x,) in I"*" and (x4, ..., x,)
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in I" to (xg,...,%,) and 1®(xy,...,x,)=(1,Xx1,...,%,) in AQA", respectively.
By the formulas
n—-1
b(l, X150 ,xn)':(xls- "9xn)+ Z (_1)l(1a LI ,xixi+1$ .. ')
i=1

+(-1)n(xns X1y eves xn—-l)
= (1—- t)(xh sesy xn)._ 1®b,(x1’ LR | xn)
B(1,x4,...,x,)=0

n

B(Xo, ..., %)= 2. (=11, X . . ., Xny X0y - - - » ;1) = 1®N(xq, . . . , X,)
i=0
the isomorphism respects the differentials.

(4.3) Example. Suppose A = k@1 is a ring of dual numbers, that is, xy =0 for
x, y in I. Then the b and b’ operators in €(I) are all zero, hence we have

HC,(A)=HC,(D= @ H,_,@/m+1,I™"".
m=0
In characteristic zero this becomes simply HC,(A)=I""!/(1—t).
The remainder of this section will be devoted to proving the analogue for
reduced cyclic homology of Proposition 1.2. Put C, = A"*!/(1—t). As one has an
exact sequence

1A" > A" (1-t)—>C,—0

and b(1,a,,...,a,)=01-1t)a,,..., a,) mod 1@ A", it follows that b induces a
differential on Cj.

PROPOSITION 4.4. Assume that k contains Q and that k is a direct sum-
mand of A as a k-submodule. Then the complexes Cyx and Tot B(A)..q are
quasi-isomorphic, hence one has an isomorphism

HCy(A) = Hyx(A**Y/(1-1), b).

Proof. Put B = B(A),.q and recall that

A®AT™ q-p>0
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with horizontal differential B and vertical differential b. We define a map of
complexes & : Tot B — C by letting € : By, = AQA" — A"*!/(1—1t) be the obvi-
ous surjection, and a(.@m) =0 for p>0. We define a filtration of B by

B q—-psn
F3={1QA"" q—-p=n+1
0 q—-p>n+1

where 1® A"*! denotes the k-submodule of A® A"*! spanned by the elements
(1,a9,...,a,). As BA®A")<1®A"*! by 1.11, F,# is a subcomplex of 3.
Moreover &(F,3)< F,,C, where F,C < C coincides with C in degree less than n
and is zero elsewhere.

As k is assumed to be a direct summand of A, we have 1® A"*'=A"*' One
can now verify easily that F,%/F,_B is isomorphic to the double complex

An+l N

N

An+1 ¢ A.n+1

ll_,

An+1

(compare the formulas in the proof of 4.2). In characteristic zero, this is a
resolution of C, = F,C/F,_,C. So the map ¢ induces quasi-isomorphisms on the

quotients of the filtration, hence it is a quasi-isomorphism, proving the proposi-
tion.

Remark. When k is a field of characteristic zero, Proposition 4.4 can be
derived using the interpretation of the cyclic homology in terms of the homology
of the Lie algebra gl(A) (cf. Remark 6.8).

5. Cyclic homology of a tensor algebra

Let A be a tensor algebra T(V)=D,.-, V™, where V is a module over k.
We first compute the Hochschild homology of A starting from the well-known

LEMMA 5.1. One has an exact sequence

b’

0 —> AQVRA —> AQA —> A

v
e
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Proof. In degree m for the tensor grading the three terms of this sequence are
respectively m, m+ 1, and one copy of V™. The lemma can then be proved by
checking the arrows. Alternatively one can use the general fact that the kernel I
of the multiplication b': A® A — A is the module of noncommutative differen-
tials of A, i.e., it represents derivations of A with values in A-bimodules. Since a
derivation of the tensor algebra is specified by its restriction to V, it follows that
I=A®V®A, whence the lemma.

As the above sequence of A-bimodules splits as a sequence of right A-
modules, one gets a long exact sequence in Hochschild homology:

0 —> H(A) —> A®V 25 A — 5 Hy(A) —> 0
H,(A)=0 for n=2.

Here

b('U], & 16 1 1y vm~1)®vm = (vla ceey vm)—-(vm7 Uy eens Um-—l)

= (1_0)(01, ) vm)s
where o is the cyclic permutation of V™ (without the sign). Thus we obtain

LEMMA 5.2. The Hochschild homology of A =T(V) is

Hy,(A)= @ V™/(1-0), H,(A)= @D (V")

m=0 m=1

H,(A)=0 for n=2.

Next we look at the spectral sequence going from Hochschild to cyclic
homology and note that it stops at E* because there are only two nonzero rows.
This gives HC,(A)= Hy(A), HC,(A)=Ker B for n even >0, and HC,(A)=
Coker B for n odd>0, where B: H,(A)— H,(A) is induced by B: A > AQA,
B(a)=1Qa.

LEMMA 5.3. With respect to the formulas of Lemma 5.2 the map B : Hy(A) —
H,(A) in degree m is given by the norm map

mi ot VT(1—a) = (V™).
i=0

1

Proof. Modulo b(A ® A?) we have (a,, a,as)=(a,a,, as)+(asa,, a,) in AQA.
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Soif a=v,---v, with v; in V, then

B(v, - v,)=(,0;" " v,)
=V, V2" * V) + (V2 * - U, )

= (0102, V3 * * V) + (V3 * =+ 0,01, V) + (V3 * * Uy, V1)

(Viv1" " U1 * "0, 1) in AQV,

I agE

Upon identifying the degree m part of AQV with V™ the lemma follows.

PROPOSITION 5.4. One has HC,(T(V))= D,.-o H,(Z/m, V™) where the
cyclic group acts on V™ via o.

This follows by assembling the above lemmas and using the fact that the
kernel and cokernel of the norm map gives the homology of a cyclic group.
In characteristic zero the proposition says that

HC|(T(V)) =T(V)I[T(V), T(V)]= & V"/(1-0)

m>0

and that HC,(T(V))=0 for n>0. If one uses the interpretation of cyclic
homology in terms of the Lie algebra homology of gl(A) proved in section 6, then
this formula for the cyclic homology of T(V) was proved by W.-c. Hsiang and R.
E. Staffeldt in [6].

6. Homology of Lie algebras of matrices

In this section k is a field of characteristic zero and A is an associative
k-algebra (with identity) over k.

For any Lie algebra g over k the homology of g with coefficients in k is defined
by H,(g) = TorY®(k, k) where U(g) is the universal enveloping algebra of g (cf.
[2, 8]). There is a standard complex (A"g, d) which computes this homology,
where A"g is the nth exterior product of g over k and where

dxiA - Ax)= 2 (D[ 5]AX A ARA AR A A,

I=<i<j=n

Equipped with the Lie bracket [x, y]=xy—yx, the k-algebra M, (A) of rxr
matrices becomes a Lie algebra over k denoted gl,(A). The inclusions gl,(A) <
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gl,.1(A) define gl(A)=1_i_12gl,(A). We recall from section 1 that Cy(A)=
(A**1/(1-1), b).

LEMMA 6.1. The map A : A**'gl(A) — Cyx(M(A)) defined by
AxoA -+ AX) =(=1)" Y, 580 (0)(X0s Xo1s - - - » Xom)s

where the sum is over all permutations of {1, 2, ..., n}, is a map of complexes.

Proof. We first remark that A is well defined thanks to the cyclic permutation
relation. To prove that bA = Ad one verifies easily that both composites applied to
XoA"* AX, give Y sgn (0)(Xe0Xg 1, Xo2s - - - » Xou) 10 C, (M(A)).

The trace map Tr:#,(A)"—> A", given by Tr(x,y,...,z)=Y (%,
YViis - - - » Ziyi,)» Where the sum is over all possible sets of indices (iy, ..., i,), is
compatible with b and with t. It induces the isomorphism Try: HCy(A,(A)) —
HC4(A) (Morita invariance).

The homology of the Lie algebra gl(A) is a Hopf algebra. The multiplication is
induced by the direct sum @ and the comultiplication by the diagonal A. An
element x in a Hopf algebra is called primitive if A(x)=x®1+1®x. Primitive
elements form a graded Lie algebra. In the case of Hy(gl(A)) the primitive part
is a commutative graded Lie algebra.

THEOREM 6.2. Let k be a field of characteristic zero and A an associative
k-algebra. The restriction of TryA 4 to the primitive part of the homology of gl(A) is
an isomorphism

TryAs: Prim Hy(gl(A)) — HCy_ ,(A).

The proof involves invariant theory and a kind of “plus”’ construction (6.4) for
algebraic complexes. We will use the abbreviation g" for g®", the n-fold tensor
product of g over k.

(6.3) Invariant theory. Let 3, be the symmetric group of order n and let k[ 3, ]
be its group algebra over k. Suppose V is a vector space over k of dimension r and
g=Hom (V, V) is the Lie algebra of endomorphisms of V. The homomorphism
k[3,.]— Hom (V®", V®")=g" sends a permutation o to the endomorphism of
V®" which permutes the variables according to o. This endomorphism is invariant
under the adjoint action of g and the classical invariant theory of H. Weyl [13]
asserts that k[3,]— (g")? is surjective. When r=n this homomorphism is clearly
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injective and therefore bijective. By duality and using the natural isomorphism
g* =g (the star is for dual) one deduces an isomorphism from k[3,]=k[Z,]* to
the module of coinvariants (g"),, where X, acts by conjugation on k[, ] and by
permutation of the variables on g".

PROPOSITION 6.4. Let g be a Lie algebra over k and g a sub-Lie algebra of
g'. Suppose that A"g' is semi-simple as a g-module for all n. Then taking the
coinvariants with respect to g gives a morphism of complexes

A*g — (A*g),
which is a quasi-isomorphism.

Proof. There is a direct sum decomposition of complexes A"g' =(A"g), DL,
where L, is made of simple modules on which g does not act trivially. As g acts
trivially on the homology of g the complex L, has to be acyclic and the
proposition is proved.

(6.5) The important consequence of taking the coinvariants in the case of
g =gl(k) and ¢ =gl(A) (with inclusion induced by x — x - 1) is that the direct sum
@ becomes an associative operation. As a consequence ((A*gl(A))yq), d) is a
differential graded Hopf algebra.

PROPOSITION 6.6. The primitive part of ((A*gl(A))yw), d) is the complex
Cx1(A).

Proof. The k-vector space of rank 1 on which 3, acts by the signature will be
denoted (sgn). Let g=gl(k) and g® A =gl(A). There is a sequence of isomorph-
isms (see 6.3 for the last one):

(A"(@®A)), = (a® A)" Q5 (sgn)), = ((g" ® A") 5 (sgn)),
=((@"),®A™)®s5 (sgn) = (K[, ] A™) Q5 (sgn).

It is important to remark that in the last term 5, acts on k[2,] by conjugation.
This X, -module splits into a direct sum of modules: one for each conjugacy class
of 3,. Let U, denote the conjugacy class of the cyclic permutations (i.e. with only
one cycle). Now we will prove that the primitive part of (k[3,]® A")®s (sgn) is
(k[U,]I® A™")®s (sgn). Let x =[c]1®(a,, ..., a,), 0€3,, a;€ A. Then

Ax)=Y [01®C .., a,.. NO([0,1R(. .., a; .. .),
Ly
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where the sum is over all partitions (I, J) of {1,..., n} such that o(I)=1 and
o(J) =J. In the formula o; (resp. o;) denotes the restriction of o to I (resp. J) and
iel (resp. jeJ). We deduce from this formula that x is primitive if and only if
celU,.

Any element of U, is of the form oo™ where 7=(12---n)and o€ 3,. Asa
3,.-set U, is isomorphic to X,/(Z/nZ) where 3, acts by left multiplication.
Explicitly one has oro™'+>(class of o). From this we deduce the following
sequence of isomorphisms

(Prim (A*(g® A),),, = (k[U,1® A™) s (sgn)
= (k[2,/(Z/nZ)]® A™)®s (sgn)
=A" ®Z/nZ(Sgn) =C,_1(A)

because k[3,/(Z/nZ)] is induced from the trivial Z/nZ-module k by the inclusion
of Z/nZ in 3, sending the canonical generator to 1.

To compute the transformation of the differential d by this composition
of isomorphisms we remark that the image of (ELAERBA---AEM) is
(-1)"Yay,-...,a,), where Ej denotes the matrix with exactly one non zero
entry a in the ij-position. One easily shows that the image of d(E3A- - -AE
by the sequence of isomorphisms is exactly b(a,,..., a,). This ends the proof
of Proposition 6.6.

We now come back to the proof of Theorem 6.2. The primitive part of
Hy((A*gl(A)),) is the homology of Prim (A*gl(A)), that is, in view of Proposition
6.6, the homology of Cy4_;(A), because we are in characteristic zero. The
isomorphism of the theorem follows now from Proposition 6.4.

The computation TrA(EA---AEm)=(1D""Ya,,...,a,) finishes the
proof.

We now give some immediate consequences of Theorem 6.2. Let sl(A) be the
Lie algebra of matrices of trace zero (the trace being evaluated in A/[A, A]). This
Lie algebra is perfect, i.e. sl(A)=[sl(A), sl(A)]}, and so it has a universal central
extension denoted st(A) (cf. [7]).

COROLLARY 6.7. In the characteristic zero case there are isomorphisms
H,(sl(A))=HC,(A) and Hj(st(A))=HC,(A).

Proof. The exact sequence 0 — sl(A) = gl(A) — HCy,(A) — 0 gives rise to a
spectral sequence in homology from which one deduces the isomorphism
H,(sI(A)) =Prim H,(gl(A)). And so the first isomorphism follows from 6.2.
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The exact sequence 0 — H,(sl(A)) = st(A) = sl(A) — 0 which characterizes
the universal central extension gives rise to another spectral sequence in homol-
ogy. These two spectral sequences together with the vanishing of the groups
H,(st(A)) and Hy(st(A)) (cf. [7]) gives an isomorphism H;(st(A))=
Prim H;(gl(A)). And so the second isomorphism follows from 2.2.

Remark. The first isomorphism is true without any hypothesis on the charac-
teristic of k. It was first proved in [1] for the commutative case and in [7] in
general.

Remark 6.8. According to J.-L. Koszul [8] one has a spectral sequence
E;,=H,(3 9®H,(9 > H,.,@)

for any Lie algebra g and sub-Lie algebra g such that g is semi-simple as a
g-module. We apply this to gl(k) <> gl(A). On the primitive parts the spectral
sequence reduces to a long exact sequence involving (when we apply Theorem
6.2) HCy(k), HC4«(A) and the homology of (A**'/(1—1t), b). As a consequence
we get another proof of Proposition 4.4 in characteristic zero: Hy(A**!/(1—
t), b) = HCx(A)/HCx(k).

The following result gives informations on the stability of the homology of
gl,(A) and was announced in [9].

THEOREM 6.9. Let k be a field of characteristic zero and A an associative
k-algebra with 1. The stabilization homomorphism s; : H(gl,,_(A)) = H;(gl,,(A)) is
an isomorphism for i <n—1 and an epimorphism for i=n—1.

Moreover, if A is commutative s, _, is also an isomorphism and there is an exact
sequence

H, (g, 1(A)) —> H,(@l,(A) —> Q% Y/d2y> —> 0.

Proof. We put g, =gl, (k). By Proposition 6.4 the homology of g,&® A can be
computed using the complex Ly = (A¥*(g, ® A)), = ((g¥), ® A*) R, (sgn). We will
compute the n first terms of the relative homology groups of the pair (g, ® A,
8.1 ® A) which are the homology groups of the quotient complex Ly/L%, where
L% is the similar complex corresponding to n — 1. By invariant theory (cf. 6.3) the
map (g, _1),_, — (d\),, is an isomorphism when i <n—1. Therefore L/L{=0 and
H;(gl,(A), gl,_1(A)) =0 for i <n—1. It follows from the homology exact sequence
that s; is an isomorphism for i <n—1 and an epimorphism for i=n—1.
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We will now compute the middle term of the homology exact sequence

H,(gl,-,(A)) ——> H,(al,(A)) —> H,(L4/L})
R Hn——l(g‘n—l(A)) "'—s::'"'> Hn—-l(gln(A)) -_—> 0

If V is a vector space of dimension n—1, then the kernel of the surjective
homomorphism k[3,]— Hom (V®", V®")% js of dimension 1 and generated by
Yocs, (sgn o)o. By duality we deduce a short exact sequence

0 —> (@' 1), , — @), =k[3,] —=— k —> 0.

Therefore we have L /L, =(k®A")®s (sgn)=A"A. To determine the bound-
aries of A™A it is sufficient to compute the image of the composite

L., > L, —» A"A.

We have seen in the proof of 6.6 that the restriction of the differential d to the
primitive part is b. Thus the image in A"A is generated by the elements

n-—1
blag, ..., a)= 2, (1" NagA- "AGai A" AG,)
i=0

—(=D"(a,a0A * - - AGy_1).

Suppose now that A is commutative. Then the following formula proves that
A"A/Im b is isomorphic to 2%7/d0Q%2:

(aga,Aa,—agAaa,+agas A )AA3A "+ A,

=1/(n—1)! Z sgn (0)b(ag, dg1s - - - » Gon)s

where the sum is over all permutations o of {1, . .., n} such that o7 '(1) <o (2).

Therefore H,(L4/Ly)=A"A/Im b =07%"/dQ'2. To prove that the map p of
the homology exact sequence is surjective it is sufficient to remark that the
element (1/n!) Y, cs sgn(o)o®(a,, . .., a,)®1 of L, is a cycle in Ly and maps
to a,da,- - -da, in Q% '/dQ% 2 Thus the second assertion follows from the
homology exact sequence.
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Remark 6.10. The composition

HC,(A) —> H,.,(@l(A)) = H,, (g, ,(A)) —> Q4/dQ%" is (—=1)"u,.

Remark 6.11. Let GL(A) be the general linear group li_rB)GLn(A). The
homology H4(GL(A), Q) of this discrete group is a Hopf algebra and its primitive
part is rational algebraic K-theory K4 (A)®Q (cf. [10]). By analogy Prim
Hy(gl(A), k) should be called additive algebraic K-theory. Many results in alge-
braic K-theory have their counterpart in the additive framework. For instance the
role of Milnor’s K-theory is played by 2*/d2*! and Theorem 6.9 is analogous
to a theorem of A. Suslin.

(6.12) We now analyse a filtration on cyclic homology induced by the rank
filtration on gl(A). For i=<n, (g})* is the 2-sided ideal F*™' of (g")* =k[3,].
For instance F" =0, F""! is of dimension 1 generated by 3 sgn (o)o, F' is the
augmentation ideal and F°=k[3,]. By duality we obtain a filtration on (g}}), =

k[Z,T*=k[Z,]:
0=F0CF1C e CFn_lanzk[zn],

where now F; is of dimension 1 generated by 3 o and F,_, is the kernel of the
signature homomorphism.

The modules F; can be interpreted in terms of irreducible representations of
3, that is in terms of Young diagrams with less than i rows.

The filtration Fy4 determines a filtration of the submodule k[U, ] and therefore
a filtration of C,_,(A)=(k((U,]® A")®s (sgn)), that we denote by Fx(C,_,(A)).
In particular F,C,(A)=C,(A) as soon as i > n.

This filtration of C4(A) comes from the filtration of gl by the gl;. Thus, in view
of Proposition 6.6 and using the fact that the boundary d preserves the rank
filtration, it is immediately seen that the boundary operator b of C4(A) respect
the filtration. As an immediate consequence we have:

PROPOSITION 6.13. There exists a first quadrant spectral sequence
Exl)q = Hp(Fp+qC*/Fp+q-lC*) $ HCp+q'

As a corollary of Theorem 6.9 one can compute E,,= 2°/d2”" and the edge
homomorphism is the map (—1)"u, o (cf. 2.8).
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Considering the rank filtration in algebraic K-theory (cf. 6.11) C. Soulé has
conjectured the vanishing of some K-groups [11, §2.10]. Similarly in the additive
framework it is natural to conjecture the vanishing of H,(GL,(A))N
Prim H,(GL(A))=FHC,_,(A) for 2i<n. Translated in terms of symmetric
groups this is equivalent to the following statement.

6.14. The filtration Fy on k[U,] is such that
Fk[U,1]=0 and Fk[U,;]=0.

Moreover it is expected that F, k[U,,] is of dimension 1 and generated by
Sa(o)o where the sum is over U,;.,, a(o) =sgn(g) and g is such that gog ' =
(12---2i+1).

These assertions were stated as conjectures in the first draft of this paper. But C.
Procesi informed us that the first one follows from a result of J. Levitzki on
polynomial identities and that the second one follows from the Amitsur-Levitzki
formula for matrices.

As a consequence the rank filtration on HC,, and HC,, ., is of length n+1,
which is the same as the length of the filtration deduced from the filtration of
B(A) by columns. Proofs of these reults will appear elsewhere.
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