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Cyclic homology and the Lie algebra homology of matrices

Jean-Louis Loday and Daniel Quillen

In this paper we study a new homology theory for associative algebras called
cyclic homology. We investigate its relations with Hochschild homology, de Rham
cohomology and the homology of the Lie algebras of matrices.

In [3] A. Connes introduced the dual version: cyclic cohomology. One of his
basic theorems, when formulated in homology, says that there is a long exact

séquence

• • &gt; Hn(A, A) &gt; HCn(A) -2-&gt; HCn^2(A) &gt; Hn^(A, A)

where S is a kind of periodicity operator on the cyclic homology HC*(A), and
where Hn(A, A) is Hochschild homology. This resuit was found independently by
Tsygan [12] whose proof shows that the periodicity cornes from the degree two
periodicity of the homology of cyclic groups.

In this paper we approach the subject of cyclic homology starting from a

double complex suggested by Tsygan&apos;s work. On one hand this allows us to
simplify, or at least to explain, the proofs of some of Connes&apos; theorems using
diagrams instead of cochain computations. On the other hand the double complex
makes sensé for an associative algebra over any commutative ground ring. One
obtains a reasonable theory &apos;over the integers&apos; by defining the cyclic homology to
be the (total) homology of this double complex.

We note that the double complex appears in a more gênerai context in
Connes&apos; récent theory [4] on cyclic objects in a category, and that this theory
works &apos;over the integers&apos;.

The contents of the paper are as follows. In the first section we construct the
complex ^(A) and use it to go between the cyclic quotient of the Hochschild
complex and Connes&apos; double complex with the b and B operators. We dérive the
long exact séquence and spectral séquence relating Hochschild and cyclic
homology.

In the second section we construct maps from cyclic homology to, essentially,
de Rham cohomology. In the case of a smooth commutative algebra over k,
where fc is of characteristic zéro, we prove an algebraic version of a formula of
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566 JEAN-LOUIS LODAY AND DANIEL QUILLEN

Connes: HCn On/dOn~l®H^&apos;R®HD~R® If the condition on the charac-
teristic is dropped, then we show that Connes&apos; formula gives at least the E2-term
of the spectral séquence from Hochschild to cyclic homology.

In the third section we exhibit a product HCn®HCv-+HCn+v+x on cyclic
homology and show that it is compatible with a similar product deflned by
Deligne on difïerential forms.

In the fourth section we develop a theory of reduced cyclic homology which is

the cyclic homology of A relative to that of fc. We show that the cyclic homology
of a non unital algebra is the same as the reduced cyclic homology of the
associated augmented algebra obtained by adjoining an identity. We also compute
the cyclic homology for a ring of dual numbers.

The fifth section contains the computation of the cyclic homology for a tensor
algebra.

The last section is devoted to the homology of the Lie algebras of matrices

gl(A), when the ground ring fc is a field of characteristic zéro. The main resuit,
announced in [9] and independently by Tsygan in [12] claims that cyclic homology
is the primitive part of the homology of the Lie algebra of matrices. A refinement
of the technique gives stabilization results for the homology of gIr(A). This section
ends up with another spectral séquence converging to cyclic homology and

deduced from the rank filtration on gl(A).

1. Hochschild and cyclic homology

Let A be an associative algebra (with identity) over a commutative ring fc. We

will use the abbreviation An for A®n, the rc-fold tensor product of A over fc, and

write (al5 ...,an) for ax®---®^. Let b and b&apos;:An+1-+An dénote the

operators given by the formulas

n-l

i=0
n-l

b&apos;(a0,..., oj £ (-l)l(a0,..., oa+i, aj
i=0

The chain complex

b&apos;

A 3
b&apos;

A 2
b&apos;

a^ A &gt; Az &gt; A

is the standard Hochschild resolution of A over A®Aop up to a dimension shift
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[2]. It is acyclic because of the homotopy operator s:An-+ An+1, s(at,... ,an)
(1, at,... ,an) which satisfies

We shall refer to the complex (A*+1, b&apos;) as the acyclic Hochschild complex.
Upon tensoring the Hochschild resolution (A*+2, b&apos;) with A considered as a

right module over A®Aop, we obtain the chain complex

which we call the Hochschild complex. Its homology is the Hochschild homology
H%(A, A), which we write simply H#(A). When A is flat over k one has

We define an action of the cyclic group Z/n on An by letting the generator act
as the operator

Let N= 1 +1+ • • • + tnl dénote the corresponding norm operator on An.
We shall dénote by ^(A) the following double chain complex

A2 «i^L a

A +HL A +^ A +±zJL

in which the even degree columns are Hochschild complexes and the odd degree
columns are acyclic Hochschild complexes with the sign of the difïerential
changed. In the horizontal direction we hâve the standard complexes for the
homology of Z/n with coefficients in An. The difïerential in the associated total
complex Tôt ^(A) is the sum of the horizontal and vertical difïerentials and the

following lemma shows that d2 0.

LEMMA 1.1 [3,12]. One has b(l-t) (l-t)bf and b&apos;N Nb.

Proof. If / : An+1 -» An is defined by j(a0,..., oj (-l)n(ana0, au an_x)
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then one has

n-l
b I fjr1&quot;1 and b&apos;

i=0 i=0

on An+1. Using thèse formulas it is easy to check the lemma, for example, b&apos;N

and Nb are both equal to NjN.

DEFINITION. The cyclic homology HC*(A) of the associative fc-algebra A
is the homology of Tôt

In order to show this définition agrées when fc contains Q with the one used in

[3,7, 9], we note that there is an augmentation map

Tôt «(A) -* C*(A) (A*+1/(l ~ t), b)

to the quotient of the Hochschild complex obtained by taking the coinvariants for
the actions of the various cyclic groups. The augmentation induces an edge

homomorphism for the spectral séquence

E^ Hp(Z/(q +1), A«+1) z&gt; HC*(A)

associated to the double complex. In characteristic zéro the group homology
vanishes in positive degrees, and the spectral séquence collapses, proving the

following.

PROPOSITION 1.2. If k contains Q the above augmentation map is a

quasi-isomorphism (i.e., it induces an isomorphism on homology):

HCn(A) Hn(A*+1/(l-t),b).

Remark. From the spectral séquence it is easily seen that in order to hâve an

isomorphism in degree n it is sufficient to assume that n! is invertible.

The double complex ^(A) can be simplified in two ways up to quasi-

isomorphism. First of ail the odd degree columns can be eliminated as they are

acyclic. This leads to the double complex of Connes [3] with the differentials
b and B, which we dénote 38 (A). Secondly the Hochschild complexes can be

normalized.
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The double complex 38(A) will be drawn in a somewhat unorthodox way

A2 A2 A2

B V
A A A

in order to show its relation to ^(A). It consists of the even degree columns of
where B is given by the composition

a n + 1 l~f Ati + 1

More precisely $&amp;{A)m Aq+1 if p is even ^0 and q^=0; it is undefined if p is

odd. One has

B2 (1 - f)sN(l - t)sN 0 (1.3)

b(l - t)sN 4- (1 - r)sNb

0, (1.4)

so Tôt ââ(A) is a chain complex for the differential d b + B.

PROPOSITION 1.5. The complexes Tot^(A) and Tôt «(A) are quasi-
isomorphic.

Proo/. We define a map from 98 »(A) to % «(A) by sending x in »M, p

even, to (x, sNx) in ^pqS^p-i.q+i. This is a map of complexes because

d(x + sNx) (ftx, Nx + (-b&apos;)sNx, (1 - t)sNx)

(bx, sb&apos;Nx, Bx)

(bx, sNbx + sNBx, Bx).

Next we consider the increasing flltration of % and 38 by columns:
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Since the odd degree columns of *H&gt; are acyclic it is easily seen that the induced

map on the associâted graded complexes is a quasi-isomorphism. The proposition
then follows by a standard induction.

Remark. It is clear from the above proof that one is not working in the

category of double complexes, but rather with flltered complexes. Thus 39 (A) is a

filtered subcomplex of &lt;ë(A).

At this point we can easily prove the following basic results relating cyclic and
Hochschild homology.

THEOREM 1.6. For any associative k-algebra A there is a long exact séquence

Hn(A) -U HCn(A)

It is clear from the picture of 38 (A) that one has an exact séquence of
complexes

0^(A*+\b)-»Tot38(A)-»Tot38(A)[-2]-^0

where [-2] indicates that the degrees are shifted by -2: (Tôt 38[~2])n Tôt 38n_2.

Taking the associated long exact séquence in homology, we obtain the theorem
from Proposition 1.5.

COROLLARY 1.7. Cyclic homology is Monta invariant.

Proof. This follows from the long exact séquence (1.6) and the Morita invariance

of Hochschild homology (Cf. [14], theorem 3.7).
In order to simplify some further computations we change the indexing of the

bicomplex 38 (A) and put

(»(A)&apos;)M 38(A)2p,q_p Aq&quot;p+1. (1.8)

In this setting the maps B go horizontally.
The increasing filtration of the bicomplex 38(A)&apos; by columns gives the

following.

THEOREM 1.9. There is a spectral séquence abutting to HCn(A) with Ep^

Hq_p(A) and with d1:Hq_p(A)-^Hq_p+1(A) induced by Connes&apos; operator B.
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This theorem can also be obtained from Theorem 1.6. by interpreting the long
exact séquence as an exact couple.

(1.10) Next we show that the complex 98 (A)&apos; can be simplifiée further by
replacing the Hochschild complexes by their normalizations. We recall that the
Hochschild complex (A*+1, b) is the chain complex associated to a simplicial
abelian group. Hence it contains a degenerate subcomplex D*, where Dn &lt;= An+1
is spanned by the éléments (a0,..., a,,) such that a, 1 for some i with 1 ^ i ^ n.

Upon dividing out by it we obtain the normalized Hochschild complex An+1/Dn
A&lt;8&gt;Ân, where Â A/fc, whose differential we dénote again by b since it is given
by the same formula. The degenerate subcomplex is known to be acyclic, so the

projection (A*+1, b)—»(A®Â*, b) is a quasi-isomorphism.
We now normalize each column of 98 (A)&apos; and obtain a double complex

•I
&apos;1

2 „ B A f&amp;\ A ^3 AA®A
•i i

A&lt;g&gt;A &lt;r^~ A

\
A

PROPOSITION 1.11. The projection of Tôt 38 (A) onto Tot38(A)norm is a

quasi-isomorphism. The operator B : A®Ân —&gt; A&lt;8&gt;Ân+1 is given by

n

B(a0, al9..., aj X (&quot;-l)in(l&gt; a,,..., a™ a0,..., 0,-1).

Proof. We must check that the operator B (1 - t)sN : An+1 -&gt; An+2 passes to
the quotient. Now the image of ts lies in Dn+1, so B sN from An+1 to A®Ân+1.
This gives the above formula, which can be used to show that B is well-defined on
A®Ân. The rest is clear as the projection is columnwise a quasi-isomorphism.

Example 1. If A k, then â8(A)norm reduces to copies of fc in the diagonal
hence HCn(k) k for n even 2*0 and HCn(k) 0 for n odd.

Example 2. Recall that if A is commutative the module of Kâhler difïerentials

^a ^A/k is by définition the A-module generated by symbols dx for x e A with
the relations d(xy) xdy + ydx, d(x + y) dx + dy and d(k) 0. It is easy to see

that, when A is commutative, HCt(A) fl\ldA and HC0(A) A.
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2. Relation to de Rham cohomology

Connes has calculated the continuous cyclic cohomology of the ring of smooth
functions on a manifold in terms of currents. If we make the obvious translation
to the algebraic setting of this paper, we obtain a formula for the cyclic homology
of a smooth commutative algebra in characteristic zéro in terms of algebraic
difïerential forms. We are going to review the proof of this formula to see what
can be said without assuming characteristic zéro.

In this section the algebra A is assumed to be commutative. In this case the
Hochschild complex is the chain complex associated to a simplicial commutative
ring, and so it has a product, the so-called shuffle product, given by

(a, al9..., Op) • (a\ Op+1,..., Op+q) £ sgn (cr)(aaf, a^ •!,..., a^ i(p+q))

(2.1)

where the sum is over ail permutations a of {1, 2,..., p 4- q} such that al &lt; • • &lt;

op and a(p + 1) &lt; • • • &lt; cr(p + q). In this way both the Hochschild and normalized
Hochschild complexes become difïerential graded strictly anti-commutative A-
algebras, where strict means that the square of any odd degree élément is zéro.
Hence the Hochschild homology H*(A) is a graded strictly anti-commutative
algebra over A.

Since

A(8)Â/b(A(8)Â2)

A&lt;g&gt;Â/{(zx, y)-(z, xy) + (yz, x)}

it is easily seen that there is an isomorphism

obtained by sending adx to the class of (a, x). Because of the multiplicative
structure the map y extends to an A-algebra map

PROPOSITION 2.2. One has a commutative square

{lnA -^ Hn(A)

where à is the exterior derivative on forms.



Cychc homology and the Lie algebra homology of matrices 573

Proof. Given a generator w aodax • • • dan for fl% y(w) is the class of

(a0, ax) - (1, a2) • • • (1, aj £ sên (c)(a0, a^ H,..., a^-O (2.3)

in A&lt;8&gt;Ân, where £n is the group of permutations of {1,..., n}. Similarly
y(dw) y(da0 • • • dan) is représentée by

(1, a0) • • • (1, c^) X sgn (p)(l, ap i0,..., ap in) (2.4)

where 2n+l dénotes the permutations of {0,1,..., n}. By the formula of Proposition

1.11 B carries the shuffle product of (2.3) into

X sgn (o-)X sgn (t)(1, aCT .T i0, aCT iT il9..., aCT iT in) (2.5)
(T T

where t ranges over the cyclic subgroup of Xn+i generated by t : i »-&gt; i +1. Since
£n+1 is the product of Xn and this cyclic subgroup, the expressions (2.4) and (2.5)
are equal. Thus By(w) y(dw) as required.

Now suppose that A is smooth over k in the sensé of Grothendieck, for
example, A is the ring of algebraic functions on a nonsingular variety over the
perfect field fc. Then it is known that the map from 12a to H*(A) is an
isomorphism [5]. In effect, the idéal of the diagonal in A®A is locally generated
by a regular séquence, so

can be computed using a Koszul séquence and shown to be an exterior algebra.
Consequently, in the spectral séquence of Theorem 1.9 the Hochschild homology

can be identified with differential forms, and the differential d1 can be

identified with the exterior derivative by the proposition above. Hence we obtain
the first part of the following.

THEOREM 2.6. If A is smooth over fc, then the spectral séquence of Theorem
1.9 becomes

Remark. We do not know if the spectral séquence stops at E2 when the
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characteristic is différent from zéro. The first possibility for a non trivial differen-
tial would be a natural map d2:HoR(A)-&gt;H

In the characteristic zéro case there is defined a map jx : A&lt;8)Â* —&gt; O% by
jx(a0,..., on) (l/nfyaodax • • • da». We leave to the reader to verify the identities

jll6 O and djUL |ULJ3. (2.7)

Thèse identities show that /x induces a map from â§(A)norm to the following
double complex 3)(A).

n2

4 «I

4

The total complex of 3}(A) is the direct sum of the truncated de Rham

complexes

suitably shifted: Tôt

THEOREM 2.8. If k contains Q, for any commutative k-algebra A, the map /ut

induces homomorphisms,\ for

and

Proof. Thèse homomorphisms are obtained by composing jul with the projection

on the truncated de Rham complex and then taking homology.

THEOREM 2.9. If k contains Q and if A is smooth over k, then there is a
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canonical isomorphism

0 ^ :HCn(A) nydnnAl®HnDI?(A)®HnDI*(A)® • • •

1

Proof. It is clear that jll induces on homology a map inverse to 7, hence jll is a

quasi-isomorphism. Therefore the spectral séquence of Theorem 2.6. is the
spectral séquence of the double complex S (A), which proves the assertion.

3. Product structure

In this section we study a product HCn(A)&lt;g)HCp(A) ^ HCn+p+1{A) for a
commutative fc-algebra A. We could as well define a product HCn(A)&lt;&amp;

HCp(A&apos;)—&gt;HCn+p+1(A®A&apos;) for not necessarily commutative algebras, but we
take A A&apos; for simplicity.

First we investigate the properties of the map B defined on A®Â* (cf. 1.11)
with respect to the shuffle product.

LEMMA 3.1. B(x • B(y)) B(x) • B(y).

Proof. For x (a0, al9..., ap) and y (Op+i,..., Op+q) we hâve x-B{y)
X sgn (&lt;x)(a0, a^ il5..., a^ \p+q)) where the sum is over ail permutations or of
{1,..., p 4- q} satisfying cri &lt;•••&lt;op and ak &lt; • • • &lt;o~(p 4- q) &lt;cr(p + 1) &lt; • • • &lt;

a(k + 1) for some k e {p 4-1,..., p + q}. Therefore B(x • B(y))
S sgn (t)(1, aT i0,..., aT \p+q)) where the sum is over ail permutations r such that
there exist i e {0,..., p} and / e {p + 1,..., p + q} for which ri &lt; • • • &lt; rp &lt; rO &lt;

• • • &lt;t(î-1) and r/&lt; • • • &lt;r(p + q)&lt;r(p4-l)&lt; • • • &lt;r(j-l). This last sum is

easily seen to be equal to B(x) • B(y), whence the lemma.
We define a product on the total complex of 38(A)norm by the following

formula. Let x e (Sâ(A)norm)Im A®Âm~l and y g (S8(A)norm)rs =A®Âs~r

x-B(y) whenr 0,l rtJÙ, A\ \ (&lt;x i\n u A fe(^(A)norm)t+r,m+s+1. (3.2)
u when rfO J

Then this formula is extended to Tôt 3â(A)norm&lt;8&gt;Tot S8(A)norm by linearity. For
xeA&lt;g)Âl the degree of x is i and is denoted |jc|; it is also the degree mod 2 of x
considered as an élément in Tôt â8(A)norm.

THEOREM 3.3. The *-product defined above induces a degree 1 map of
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complexes

Tôt â8(A)norm®Tot %(A)norm -* Tôt ®(A)noTm

which is associative. As a conséquence it defines an associative product

* :HCn(A)®HCp(A) — HCn+p+1(A)-

Proof. We recall that the boundary S of Tôt 98(A)norm is given by

+ b)(x)
ifl-oJ f°r

We will prove the formula

Ô(x * y) 8(x) * y + (-l)|x|+1x * ô(y)

using (1.3), (1.4) and (3.1).
If r^O and 1 then both sides are equal to 0. If r=l, then x*y 0 and

ôx*y 0. One has x*8y x*(B(y) + b(y)) x • BB(y) 0. If r 0, then there

are two cases. If i^O, then

Bx By + 6x • By H- (-l)|x|+1

On the other hand we hâve

Bx • By + bx • By + (-l)|x|x • Bby.

The equality follows from Bb + bB 0.

If r= / 0, then

S(x*y) 8(x • By) fc(x • By) bx • By+ (-l)|x|x • bBy.

On the other hand we hâve

and the proof of the first assertion is completed.
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Associativity is proved in a similar way.
Example. For n p 0 the product is given by A &lt;8&gt; A —&gt; fl^/dA, a * b adb

PROPOSITION 3.4. H*(A) is an HC*{A)-module and the map I:H*(A)-+
HC*(A) is an HC*(A)-map.

Proof. The normalized Hochschild complex is a subcomplex of Tôt 38(A)norm
and it is easily seen that for ye$KA)norm the opération x&gt;-»x*y sends this
subcomplex into itself. The formulas proved in (3.3) finish the proof.

(3.5) There is a similar product on the sum of the truncated de Rham
complexes. In terms of the double complex 3}(A) (see section 2) this product is

given by

(xAdy whenr Olfor xe(9)(A))lm= QT
X * y &quot;

10 otherwise J and ye (®(A))rs f2sA&quot;r.

Deligne has remarked that this product is associative and homotopy graded
commutative provided that one puts deg ((Tôt 2&gt;(A))n) n 4-1 (unpublished notes
by S. Bloch). The homotopy is given by h(x®y) (-l)|x|+1XAy. Therefore there
is a graded commutative product on the homology.

When k contains Q it is immediately seen that the map jll is compatible with
the products. This proves the following:

PROPOSITION 3.6. The homomorphism

commutes with the products.

We now investigate the product on the complex C*(A) (A*+1/(l - f), b). It is

defined by the same kind of formula:

x*y x -

where
n

B(a0, al9...,an)=Jé (-l)m(l, a,,..., a*, a0,..., a,^
i=0

and where the dot means shuffle product.
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PROPOSITION 3.7. Provided that we put deg(Cn(A)) n + 1, the product *
induces on C*(A) a structure of commutative differential graded algebra.

Proof. The dérivation property of b and associativity are proved like in (3.3).
Graded commutativity follows from the fact that x • £(y) - (-l)deg x deg yy • B(x) is

in the image of (1 -r). To prove this we remark that x • B(y) (resp. y • B(x)) is the
sum of (p + q)!/p! q\ terms (where p |x| and q \y\) and that for any such term
there is a unique power of t which converts it into a term in y • B(x).

COROLLARY 3.8. If k contains Q the *-product on HC*{A) vérifies

y1*l) for xeHCn(A) and yeHCp(A).

Remark 3.9. The iterated *-product (a0,..., an)»-&gt; a()* • • • *an from An+l
to HCn(A) factors through O^/dOX1 and defines a map nnAldnnAl -&gt;HCn(A)
whose composition with /u,n0 is, in view of (3.6), the identity.

4. Reduced cyclic homology

In this section we suppose that the homomorphism k—&gt; A given by the

identity of A is injective. At the end of the first section we pointed out that the
Hochschild homology of A can be computed using the normalized Hochschild
complex. We now define the reduced Hochschild complex (A(8&gt;Â*, 6)red to be

the quotient of the normalized Hochschild complex by the subcomplex given by
the normalized Hochschild complex for the algebra fc. As the latter complex
consists of fc in degrée zéro, we hâve an exact séquence

0 -^ fc[0] -* (A(g)Â*, b) -» (A&lt;g)Â*, 6)red -* 0

and the reduced Hoschild complex is the same as the Hochschild complex except
that the A in degree zéro is replaced by Â. The homology of this reduced

complex will be called the reduced Hochschild homology and denoted Hn(A).
From the above exact séquence one obtains an exact séquence

0 -&gt; H.iA) -* H.iA) -* fc -» H0(A) -* H0(A) -* 0

and Hn(A) Hn(A) for n ^2.
In a similar fashion we define the reduced cyclic homology HC*(A) to be the
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homology of the double complex â§(A)red defined by an exact séquence

o -* a (k)norm -&gt; m (A)norm -&gt; a (A)red -&gt; o

where Ô8(A)norm is the normalized version of Connes&apos; double complex described in
1.10. This reduced Connes&apos; complex is the same as 3â(A)norm except that the
diagonal of A&apos;s is replaced by Â&apos;s.

PROPOSITION 4.1. One has long exact séquences

-&gt; HCn(k) -&gt; HCn(A) -* HCn(A) -
&gt; HCn(A) -&gt; HCn_2(A)

The first follows from the exact séquence defining S8(A)red and the fact that
the homology of ^(A)norm is HC*(A). The second exact séquence can be derived
as Theorem 1.6. but using the double complex £$(A)red.

The reduced theory is a natural thing to consider when dealing with aug-
mented algebras. We recall that an augmented algebra A is of the form
A k(&amp;I where I is the augmentation idéal, and that A is isomorphic to the
algebra with identity obtained by adjoining an identity to the non-unital ring I. In
fact the catégories of augmented algebras and non-unital algebras are équivalent
in this way.

For an augmented algebra the first exact séquence in the above proposition
splits yielding the isomorphism

HC*(A) HC*(k)®HC*(A)

At this point one might define the cyclic homology of non-unital algebra to be the

reduced cyclic homology of the corresponding augmented algebra. On the other
hand inspection of the arrows in the double complex ^(A) of the first section
shows that it makes sensé for non-unital rings, hence we can make the définition

H*(Tot(6(I)). The following shows that thèse two définitions agrée.

PROPOSITION 4.2. If A k®I is an augmented ring, then the complexes

and 38(A)red are isomorphic, hence HC*(I) HC*(A).

Proof. We define an isomorphism from «(/) to 38(A)red by

«(Dpne^Dp+i.n-1 In*l®In =&gt; A®fn ($(A)red)p,n+p

where the isomorphism in the middle sends (jc0, xn) in In+1 and (xl9..., xj
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in In to (x0,..., xj and l®(*i,..., xj (1, xl9..., xj in A®Ân, respectively.
By the formulas

n-1
b(l9xl9 ...,xn) (x1, ...,xn)-f J] (-l)&apos;(l,. ..,x,x,+1,...)

- (1 - t)(xl9..., xn)-KS&gt;bt(x1, ...,Xn)
B(l,xl9...,xn) 0

n

B(Xo, Xj I (-Dm(l, X,, X,, X0, X,-!) l®N(x0, Xn)
i==0

the isomorphism respects the differentials.

(4.3) Example. Suppose A fc©I is a ring of dual numbers, that is, xy 0 for
x, y in I. Then the b and b&apos; operators in ^(J) are ail zéro, hence we hâve

In characteristic zéro this becomes simply HCn(A) In+1/(l-t).

The remainder of this section will be devoted to proving the analogue for
reduced cyclic homology of Proposition 1.2. Put Cn Ân+1/(1-1). As one has an

exact séquence

and b(l, al9..., aJ^U- t)(al9..., On) mod l®An&quot;\ it follows that b induces a

differential on C*.

PROPOSITION 4.4. Assume that k contains Q and that k is a direct sum-
mand of A as a k-submodule. Then the complexes C* and Totâ8(A)red are

quasi-isomorphic, hence one has an isomorphism

Proof. Put 9$ â8(A)red and recall that

Â q-p=0
.0 q-p&lt;0



Cyclic homology and the Lie algebra homology of matrices 581

with horizontal differential B and vertical differential b. We define a map of
complexes e : Tôt $ -* C by letting e : $On A &lt;8)Ân -? Ân+1/(1 -i) be the obvi-
ous surjection, and e(9ipq) 0 for p&gt;0. We define a filtration of B by

\ l&lt;g)An+1 q-p=n+l

where l®Ân+1 dénotes the k-submodule of A®Ân+1 spanned by the éléments
(1, a0,..., aj. As B(A&lt;8&gt;Ân) c l®Ân+1 by 1.11, Fn® is a subcomplex of ®.
Moreover e(Fn^)c=FnC, where FnC&lt;^C coincides with C in degree less than n
and is zéro elsewhere.

As k is assumed to be a direct summand of A, we hâve l(8)Ân+1 Ân+1. One
can now verify easily that Fn^IFn-lB is isomorphic to the double complex

1-
An4

(compare the formulas in the proof of 4.2). In characteristic zéro, this is a

resolution of Cn FnCIFn_1C. So the map e induces quasi-isomorphisms on the
quotients of the filtration, hence it is a quasi-isomorphism, proving the proposition.

Remark. When k is a field of characteristic zéro, Proposition 4.4 can be
derived using the interprétation of the cyclic homology in terms of the homology
of the Lie algebra gl(A) (cf. Remark 6.8).

5. Cyclic homology of a tensor algebra

Let A be a tensor algebra T(V)= ©mSB0 ^&quot;\ where V is a module over k.

We first compute the Hochschild homology of A starting from the well-known

LEMMA 5.1. One has an exact séquence

0 &gt; A&lt;8&gt;V®A -^-» A®A -^-&gt; A &gt; 0.
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Proof. In degree m for the tensor grading the three terms of this séquence are
respectively m, m + 1, and one copy of Vm. The lemma can then be proved by
checking the arrows. Alternatively one can use the gênerai fact that the kernel I
of the multiplication fe&apos;: A&lt;8&gt;A —&gt; A is the module of noncommutative differen-
tials of A, Le., it represents dérivations of A with values in A-bimodules. Since a

dérivation of the tensor algebra is specified by its restriction to V, it follows that
1 A&lt;8&gt;V®A, whence the lemma.

As the above séquence of A-bimodules splits as a séquence of right A-
modules, one gets a long exact séquence in Hochschild homology:

0 &gt; HX(A) &gt; A&lt;g)V -5-» A &gt; Ho(A) &gt; 0

Hn(A) O for n^2.

Hère

b(vu vm^)(S&gt;vm (vl9..., vm)-(vm, ih,..., um_i)

where cr is the cyclic permutation of Vm (without the sign). Thus we obtain

LEMMA 5.2. The Hochschild homology of A T(V) is

H0(A)= 0 Vm/(l-cr), Hl(A)= 0 (V&quot;T
m5e(3 m 5*1

Hn(A) 0 /or n ^2.

Next we look at the spectral séquence going from Hochschild to cyclic
homology and note that it stops at E2 because there are only two nonzero rows.
This gives HC0(A) H0(A), HCn(A) KcrB for n even &gt;0, and HCn(A)
Coker B for n odd&gt;0, where B:Ho(A)-»HxiA) is induced by B\Â-Â

LEMMA 5.3. With respect to the formulas of Lemma 5.2 the map B : H0(A)
Hi(A) in degree m is git;en by fhe nom map

m-1
£ o-&apos;:Vm/(l-o-)-^(Vmr.

1=0

Proof. Modulo b{A®A2) we hâve (al9 a2a3)^(a1a2, a3) + (a3au a2) in
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So if a vx - - • vm with vt in V, then

B(vt • - &apos;Vm) (l9v1- • -vm)

(VXV2, V3 &apos; &apos; &apos; Vm) + (V3 &apos; &apos; • VmVl9 V2) + (t&gt;2 * * * «m» Vl)
m

Z (^.+1 • * * vmVi * • • u,-i, u.) in A® V.

Upon identifying the degree m part of A (8) V with Vm the lemma follows.

PROPOSITION 5.4. One has HCn(T(V))= ©m&gt;0Hn(//m, Vm) where the

cyclic group acts on Vm via a.

This follows by assembling the above lemmas and using the fact that the
kernel and cokernel of the norm map gives the homology of a cyclic group.

In characteristic zéro the proposition says that

HC0(T(V)) T(V)/[T(V),T(V)]= © Vm/(l-cr)
m&gt;0

and that HCn(T(V)) 0 for n&gt;0. If one uses the interprétation of cyclic
homology in terms of the Lie algebra homology of gl(A) proved in section 6, then
this formula for the cyclic homology of T(V) was proved by W.-c. Hsiang and R.
E. Stafïeldt in [6].

6. Homology of Lie algebras of matrices

In this section k is a field of characteristic zéro and A is an associative
k -algebra (with identity) over fc.

For any Lie algebra g over k the homology of g with coefficients in fc is defined
by Hn(g) Tor^(fl)(fc, fc) where l/(g) is the universal enveloping algebra of g (cf.
[2, 8]). There is a standard complex (Ang, d) which computes this homology,
where Ang is the nth exterior product of g over fc and where

d(xlA • • • AXn)= X (~l)I+J[^l&gt;^j]AX1A • • • AJC, A • • • AX, A • • • A Xn.

Equipped with the Lie bracket [x, y] xy-yx, the fc-algebra Mr(A) of rxr
matrices becomes a Lie algebra over fc denoted glr(A). The inclusions gI,.(A) c-»
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gIr+i(A) define gi(A) limglr(A). We recall from section 1 that C*(A)
(A*+1/(1-O,b). ~~*

LEMMA 6.1. The map A : A*+1gI(A)-&gt; C*(M(A)) defined by

A(xoa • • • axJ (-l)n £ sgn (o-)(x0, x^,...

wfiere fhe sum is over ail permutations of {1, 2,..., n}, is a map o/ complexes.

Proof. We first remark that À is well defined thanks to the cyclic permutation
relation. To prove that bk Ad one vérifies easily that both composites applied to
xoa • • • Axn give £ sgn (o-)(x^0^i, x^, • •, ^) in Cn(M(A)).

The trace map Tr : M^iAT —&gt; An, given by Tr (x, y,..., z) £ (x,)l2,

&gt;W • • • &apos;

z«»ii)&apos; where the sum is over ail possible sets of indices (îl5..., in), is

compatible with b and with t. It induces the isomorphism Tr*:HC*(Mr(A))-&gt;
HC*(A) (Morita invariance).

The homology of the Lie algebra gl(A) is a Hopf algebra. The multiplication is

induced by the direct sum © and the comultiplication by the diagonal A. An
élément x in a Hopf algebra is called primitive if A(x) x®l + l®x. Primitive
éléments form a graded Lie algebra. In the case of H^CgKA)) the primitive part
is a commutative graded Lie algebra.

THEOREM 6.2. Let k be a field of characteristic zéro and A an associative

k-algebra. The restriction of Tr^A* to the primitive part of the homology of gl(A) is

an isomorphism

^-&gt; HQc_i(A).

The proof involves invariant theory and a kind of &quot;plus&quot; construction (6.4) for
algebraic complexes. We will use the abbreviation gn for g&lt;8&gt;n, the n-fold tensor
product of g over k.

(6.3) Invariant theory. Let Sn be the symmetric group of order n and let k[Xn]
be its group algebra over k. Suppose V is a vector space over k of dimension r and

g Hom(V, V) is the Lie algebra of endomorphisms of V. The homomorphism
fc[2n]~^Hom(V&lt;8&gt;n, V&lt;8&gt;n) gn sends a permutation a to the endomorphism of
V&lt;8&gt;n which permutes the variables according to or. This endomorphism is invariant
under the adjoint action of g and the classical invariant theory of H. Weyl [13]
asserts that k[2n]-*(Qn)a is surjective. When r^n this homomorphism is clearly
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injective and therefore bijective. By duality and using the natural isomorphism
g* g (the star is for dual) one deduces an isomorphism from k[Xn] k[Xn]* to
the module of coinvariants (gn)ô, where Xn acts by conjugation on k[Xn] and by
permutation of the variables on gn.

PROPOSITION 6.4. Let g&apos; be a Lie algebra over k and g a sub-Lie algebra of
g&apos;. Suppose that Ang&apos; is semi-simple as a ^-module for ail n. Then taking the

coinvariants with respect to g gives a morphism of complexes

which is a quasi-isomorphism.

Proof. There is a direct sum décomposition of complexes Ang&apos; (Ang%©Ln
where Ln is made of simple modules on which g does not act trivially. As g acts

trivially on the homology of g&apos; the complex L* has to be acyclic and the

proposition is proved.

(6.5) The important conséquence of taking the coinvariants in the case of
g gl(k) and g&apos; gl(A) (with inclusion induced by x »-* x • 1) is that the direct sum
© becomes an associative opération. As a conséquence ((A*gI(A))gl(k), d) is a

difïerential graded Hopf algebra.

PROPOSITION 6.6. The primitive part of ((A*gl(A))gl(k), d) is the complex

Proof. The k-vector space of rank 1 on which Xn acts by the signature will be

denoted (sgn). Let g gl(k) and g&lt;8&gt;A =gï(A). There is a séquence of isomorph-
isms (see 6.3 for the last one):

(An(g® A))9 ((g® A)n &lt;g&gt;sn(sgn))8 ((g&quot; ®A&quot;)®2n(sgn))fi

((9n)9® An)&lt;g&gt;sn(sgn)

It is important to remark that in the last term Xn acts on k[Xn] by conjugation.
This Xn-module splits into a direct sum of modules: one for each conjugacy class

of Xn. Let Un dénote the conjugacy class of the cyclic permutations (i.e. with only
one cycle). Now we will prove that the primitive part of (k[Xn]&lt;8)An)®2n(sgn) is

n)&lt;g&gt;sn(sgn). Let x =[cr]®(alf..., an), aeXn, al e A. Then

a,,..
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where the sum is over ail partitions (I,/) of {1,..., n} such that cr(I) I and
&lt;x(J) J. In the formula o-r (resp. &lt;Tj) dénotes the restriction of a to I (resp. J) and

iel (resp. jeJ). We deduce from this formula that x is primitive if and only if
aeUn.

Any élément of Un is of the form otct&quot;1 where t (12 • • • n) and a e Xn. As a

Xn-set Un is isomorphic to XJ(Z/nZ) where 2n acts by left multiplication.
Explicitly one has errer&apos;1 ?¦-» (class of &lt;x). From this we deduce the following
séquence of isomorphisms

(Prim (A*(g®A)fl)n (k[l/n]® An)&lt;g&gt;2n(sgn)

An(8&gt;z/nZ(sgn)=Cn_1(A)

because fc[Xn/(Z/nZ)] is induced from the trivial Z/nZ-module k by the inclusion
of Z/nZ in 2n sending the canonical generator to t.

To compute the transformation of the differential d by this composition
of isomorphisms we remark that the image of (E^aE^A&apos;^aE^) is

(—l)n~1(a1,..., an), where E^ dénotes the matrix with exactly one non zéro
entry a in the ij-position. One easily shows that the image of d{Eax2/\- * -aE^i)
by the séquence of isomorphisms is exactly b(al9..., a^). This ends the proof
of Proposition 6.6.

We now corne back to the proof of Theorem 6.2. The primitive part of
H*((A*gl(A))g) is the homology of Prim (A*gï(A))fl that is, in view of Proposition
6.6, the homology of Qc-^A), because we are in characteristic zéro. The
isomorphism of the theorem follows now from Proposition 6.4.

The computation Tr A (JB% a • • • a JS^i) (- l)n~1(ai,.. •, &lt;*n) finishes the

proof.

We now give some immédiate conséquences of Theorem 6.2. Let &amp;\(A) be the

Lie algebra of matrices of trace zéro (the trace being evaluated in A/[A, A]). This
Lie algebra is perfect, i.e. sI(A) [sl(A), si (A)], and so it has a universal central
extension denoted &amp;t(A) (cf. [7]).

COROLLARY 6.7. In the characteristic zéro case there are isomorphisms

and H3(st(A)) HC2(A).

Proof. The exact séquence 0-&gt;sl(A)-»gl(A)-»HCo(A)-»0 gives rise to a

spectral séquence in homology from which one deduces the isomorphism
H2(sI(A)) Prim H2(gï(A)). And so the first isomorphism follows from 6.2.
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The exact séquence 0—»H2(sï(A))—»sf(A)-»sI(A)—&gt;0 which characterizes
the universal central extension gives rise to another spectral séquence in homology.

Thèse two spectral séquences together with the vanishing of the groups
Hi(*f(A)) and H2(st(A)) (cf. [7]) gives an isomorphism H3(sf(A))
PrimH3(gI(A)). And so the second isomorphism follows from 2.2.

Remark. The first isomorphism is true without any hypothesis on the charac-
teristic of k. It was first proved in [1] for the commutative case and in [7] in
gênerai.

Remark 6.8. According to J.-L. Koszul [8] one has a spectral séquence

&gt; Hp+q(g)

for any Lie algebra g and sub-Lie algebra g such that g is semi-simple as a

g-module. We apply this to gl(fc) c—»gI(A). On the primitive parts the spectral
séquence reduces to a long exact séquence involving (when we apply Theorem
6.2) HQe(fc), HC*(A) and the homology of (Â*+1/(l~0, b). As a conséquence
we get another proof of Proposition 4.4 in characteristic zéro: H^(Â*+1/(1-
t),b) HC*(A)/HC*(k).

The following resuit gives informations on the stability of the homology of
gln(A) and was announced in [9].

THEOREM 6.9. Let k be a field of characteristic zéro and A an associative

k-algebra with 1. The stabilization homomorphism st :Hl(gIn_1(A))-^Hl(gïn(A)) is

an isomorphism for i &lt; n -1 and an epimorphism for i n-l.
Moreover, if A is commutative sn_x is also an isomorphism and there is an exact

séquence

HMn-i(A)) -^ Hn(gIn(A)) &gt; nX&apos;IdQX2 &gt; 0.

Proof. We put gn =gln(k). By Proposition 6.4 the homology of gn®A can be

computed using the complex L* (A*(gn® A))9n ((g*)9n ®A*)®^ (sgn). We will
compute the n first terms of the relative homology groups of the pair (gn®A,
gn-i®A) which are the homology groups of the quotient complex LJL&apos;*, where

LJ. is the similar complex corresponding to n -1. By invariant theory (cf. 6.3) the

map (gln-i)ôn x-&gt;(gjl)8n is an isomorphism when i^n-1. Therefore mL[ 0 and

Ht(gIn(A), gln_!(A)) 0 for i ^ n -1. It follows from the homology exact séquence
that st is an isomorphism for i &lt; n -1 and an epimorphism for i n - 1.
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We will now compute the middle term of the homology exact séquence

If V is a vector space of dimension n — 1, then the kernel of the surjective
homomorphism k[5n]-^Hom(V&lt;8&gt;n, V®&quot;)9&quot; is of dimension 1 and generated by
Zo-eXn (sên °&quot;)°r- By duality we deduce a short exact séquence

0 &gt; dC-V, —- «D^fcKJ ^^ k &gt; 0.

Therefore we hâve Ln/L;=(fc(8)An)(8)5;n(sgn) AnA. To détermine the bound-
aries of AnA it is sufficient to compute the image of the composite

L*+1 -^ K —^ AnA.

We hâve seen in the proof of 6.6 that the restriction of the differential à to the

primitive part is b. Thus the image in AnA is generated by the éléments

Suppose now that A is commutative. Then the foliowing formula proves that
AnA/Im b is isomorphic to fl

- ûoA aifl2+flofl2a aj a a3 a • •

11 {n-1)! Xsgn(or)6(ao,

where the sum is over ail permutations a of {1,..., n} such that cr~x(l) &lt;cr~1(2).

Therefore Hn(L*/I4) AnA/Im b aX1/dOX2- To prove that the map p of
the homology exact séquence is surjective it is sufficient to remark that the

élément (1/n!) Lr€i:nsgn (&amp;)&lt;r&lt;8(au On)®l of 1^ is a cycle in L* and maps
to axda2 &apos; - - dcin in QXxldOX2- Thus the second assertion follows from the

homology exact séquence.
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Remark 6.10. The composition

HCn(A) ?Hn+1W(A)) Hn+1(rfn+1(A))-U œjdnx1 is (-l)Vn,o.

Remark 6.11. Let GL(A) be the gênerai linear group lim^GL^A). The
homology H*(GL(A), Q) of this discrète group is a Hopf algebra and its primitive
part is rational algebraic K-theory K#(A)&lt;8Q (cf. [10]). By analogy Prim
Hj|e(gI(A), k) should be called additive algebraic K-theory. Many results in
algebraic K-theory hâve their counterpart in the additive framework. For instance the
rôle of Milnor&apos;s K-theory is played by Q*ldO*~l and Theorem 6.9 is analogous
to a theorem of A. Suslin.

(6.12) We now analyse a filtration on cyclic homology induced by the rank
filtration on gl(A). For i^n, (&amp;)* is the 2-sided idéal Fn~l of (q^)8» k[Xn].
For instance Fn 0, F&quot;&quot;1 is of dimension 1 generated by X sgn(cr)cr, F1 is the
augmentation idéal and F° k[Xn]. By duality we obtain a filtration on (ç£)Qn

where now F1 is of dimension 1 generated by 2 a and Fn_x is the kernel of the
signature homomorphism.

The modules F, can be interpreted in terms of irreducible représentations of
Xn that is in terms of Young diagrams with less than i rows.

The filtration F* détermines a filtration of the submodule k[Un] and therefore
a filtration of C^iA) (fc([lU® An)&lt;8&gt;2n(sgn)), that we dénote by FHc(Cn_1(A)).
In particular FlCn(A)=Cn(A) as soon as i&gt;n.

This filtration of C*(A) cornes from the filtration of gï by the glr Thus, in view
of Proposition 6.6 and using the fact that the boundary d préserves the rank
filtration, it is immediately seen that the boundary operator b of C*(A) respect
the filtration. As an immédiate conséquence we hâve:

PROPOSITION 6.13. There exists a first quadrant spectral séquence

q-xC*) =&gt; HCp+q.

As a corollary of Theorem 6.9 one can compute E\o fip/dilp~1 and the edge

homomorphism is the map (-l)nfv0 (c^-2.8).
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Considering the rank filtration in algebraic K-theory (cf. 6.11) C. Soulé has

conjectured the vanishing of some K-groups [11, §2.10]. Similarly in the additive
framework it is natural to conjecture the vanishing of HniGmA^D
Prim Hn(GL(A)) FlHCn_1(A) for 2i=^n. Translated in terms of symmetric
groups this is équivalent to the following statement.

6.14. The filtration F* on k[Un] is such that

1] 0 and Flfc[l72l] 0.

Moreover it is expected that Fl+1k[U2l+i] is of dimension 1 and générâted by
Sa(cr)a where the sum is over l/2l+1, a(&lt;r) sgn(g) and g is such that g&lt;xg~*

(12 •• -2î + l).
Thèse assertions were stated as conjectures in the first draft of this paper. But C.

Procesi informed us that the first one follows from a resuit of J. Levitzki on
polynomial identities and that the second one follows from the Amitsur-Levitzki
formula for matrices.

As a conséquence the rank filtration on HC2n and HC2n+i is of length n + 1,

which is the same as the length of the filtration deduced from the filtration of
38(A)&apos; by columns. Proofs of thèse reults will appear elsewhere.

REFERENCES

[1] S. Bloch, The dilogarithm and extensions of Lie algebras, in Algebraic K-theory, Evanston 1980,
Springer Lecture Note, 854 (1981), 1-23.

[2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
[3] A. Connes, Non commutative differential geometry, Ch. II De Rham homology and non

commutative algebra, preprint I.H.E.S. (1983).
[4] y Cohomologie cyclique et fondeurs Extn, Comptes Rendus Acad. Se. Paris 296 (1983),

953-958.
[5] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras,

Trans. A.M.S. 102 (1962), 383-408.
[6] W.-c. Hsiang and R. E. Staffeldt, A model for Computing rational algebraic K-theory of simply

connectée spaces, Invent. Math. 68 (1982), 227-239.
[7] C. Kassel et J.-L. Loday, Extensions centrales d&apos;algèbres de Lie, Ann. Inst. Fourier 32 (1982),

119-142.
[8] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950),

65-127.
[9] J.-L. Loday et D. Quillen, Homologie cyclique et homologie de Valgèbre de Lie des matrices,

Comptes Rendus Acad. Se. Paris, 296 (1983), 295-297.
[10] D. Quillen, Cohomology of groups, Actes Congrès International Math. 1970, t. 2, 47-51.
[11] C. Soulé, Opérations en K-théorie algébrique, prépublication Paris VII, 1983.
[12] B. L. Tsygan, Homology of matrix algebras over rings and the Hochschild homology (in Russian),

Uspekhi Mat. Nauk, tom 38 (1983), 217-218.



Cychc homology and the Lie algebra homology of matrices 591

[13] H Weyl, The classical groups, Princeton University Press, 1946
[14] R K Dennis and K Igusa, Hochschild homology and the second obstruction for pseudo-isotopy,

Spnnger Lecture Notes in Math 966 (1982), 7-58

Institut de Recherche Mathématique Avancée,
Université L Pasteur
7 rue Descartes
67084 Strasbourg, France

Department of Mathematics
Massachusetts Instttute of Technology
Cambridge, MA 02139
USA

Received December 1, 1983/May 1984


	Cyclic homology and the Lie algebra homology of matrices.

