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Holomorphic equivalence and proper mapping of bounded
Reinhardt domains not containing the origin

Davip E. BARRETT!

§1. Introduction

A bounded domain in C" is said to be a Reinhardt domain if it is invariant
under the action of the n-torus T"=R"/2wZ" on C" given by
0y, ...,0) (z4,...,2,)=(e"z,, ..., e %z). In this paper we shall study
bounded Reinhardt domains D satisfying the condition

there is an integer k, 0=k =n, such that DN{z; =0}#@ for j=1,...,k *)
and D_ﬂ{z,-=0}=¢ for j=k+1,...,n

The integer k above will sometimes be denoted k(D).

All domains in this paper are assumed to be connected unless otherwise
specified.

First we shall study the holomorphic equivalence problem for such domains.
The result is summarized in the following theorem:

THEOREM 1. If D, and D, are holomorphically equivalent bounded
Reinhardt domains in C" satisfying (%) then k(D;)=k(D,) and there is a
biholomorphic map F: D, — D, of the form

F(z',z")=(c12"™Z 1y - - - » 2" Zo ey Cos 12", o o oy CuZ"™),
where

k =k(Dy) =k(D,),

2'=(zq, ..., 2Z), 2" =(Zis1s o -+ 5 Z0),

B;ieZ"™ for j=1,...,k,

Qg +1
eGL(n—k,Z),

a,

o is a permutation of {1,...,k}, and c,, ..., c, are positive constants.

! Supported by NSF Grant MCS-8211330.
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The maps described in the theorem consist precisely of the rational monomial
maps F which map D, biholomorphically onto the bounded Reinhardt domain
F(D,). It is not hard to see that D, can be chosen so that the domains F(D,) are
distinct for distinct choices of F. This shows that the list of maps in the theorem
cannot be shortened.

In the case of bounded Reinhardt domains containing the origin the conclu-
sion of Theorem 1 is due to Sunada [7]. (For n = 2 the result goes back to Thullen
[8].) In the other extreme where k(D,) = k(D,) =0 the result may be viewed as a
special case of rigidity results due to Bedford [1]; in this case all biholomorphic
maps are of the type described in the theorem up to rotations in T".

In the course of the proof of Theorem 1 we learn many things about the
automorphism groups of the domains in question, but the proof does not yield the
complete description of the automorphism groups furnished by Sunada in the case
of bounded Reinhardt domains containing the origin [7].

In the case of proper maps we prove the following qualitative result.

THEOREM 2. If F:D,— D, is a proper holomorphic map of bounded
Reinhardt domains in C" and if D, satisfies (¥) then F extends holomorphically to a
neighborhood of D,.

In the case where D,; and D, are complete this result was proved by Bell in
[2]. In the case where k(D,)=k(D,)=0, F is biholomorphic, and all boundary
points of D, and D, are simple this result was proved by Kaup [4]. (This last
result is of course subsumed by the more quantitative conclusions of Bedford
mentioned above.)

Kaup’s example F:{(z;, z,):|z:|<|z2| <1} = {(z1, 22) :|24] <1, 0 <z, <1},
F(z,, z,) =(z,/z,, z,) shows that the hypothesis (*) cannot be dropped altogether
from the statement of Theorem 2.

The annulus {z :r, <|z|<r,} can be mapped properly onto the unit disk in C
by the use of elliptic functions. This example shows that a precise classification of
the proper maps in Theorem 2 will necessarily be more involved than the
corresponding result on biholomorphic maps.

Theorems 1 and 2 are proved in sections 2 and 3 below, respectively.

Background material used in this article and not otherwise cited may be found
in [6] and section 1.4 of [5].

§2. Holomorphic equivalence

This section contains the proof of Theorem 1.
For any bounded Reinhardt domain D in C" satisfying (*) let Ap denote the
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set of points in D of the form (0, z") and let D denote the envelope of
holomorphy of D. D is also a bounded Reinhardt domain in C" and is known to

be logarithmically convex (meaning that the set {(x;,..., x,)eR":(e", ..., e*)e
D} is convex) and z'-complete (meaning that (z,,...,z,)eD and |w,|=<
|z, ..., Wl =|z| imply (Wi, ..., W, Zess, ..., 2,)€D). D also satisfies (*) with
k(D)= k(D).

Let Aut (D) denote the group of automorphisms of D and let Aut, (D) denote
the identity component of Aut (D). By a theorem of H. Cartan Aut(D) is a
finite-dimensional Lie group and Aut, (D) is generated by the Lie algebra &(D)
of complete (real) vector fields on D which are holomorphic as maps into C" (It is
helpful to note that vector fields of this type may be written in the form 2 Re X,
where X is a uniquely determined complex vector field of type (1,0) with
holomorphic coefficients. The identity 2Re[X, Y]=[2Re X,2Re Y] for
holomorphic vector fields X and Y of type (1,0) is useful in this context.)
Furthermore, Aut, (D) acts naturally and smoothly on D.

Our first step in the proof of Theorem 1 will be to study the invariance
properties of Ap. Let D be a bounded Reinhardt domain in C" satisfying (*).

LEMMA 1. For each g€ Aut, (D) there are real numbers 6, (py.1, - . . , 0, such
that (w',w")=g(0’, z") satisfies w;,= e‘/__“’»z,- for each (0',z")eAp, |j=
k(D)+1,...,n.

Proof. Let p:D — Ap be the canonical projection. Then peg:Ap — Ap is
holomorphic and homotopic to the identity. But Theorem 3 below shows that any
such map is given by a rotation in T" . This proves the lemma.

THEOREM 3. Let 2, and (2, be pseudoconvex Reinhardt domains compactly
contained in (C*)®. Suppose that there are holomorphic maps F:Q,— {2, and
G :0Q,— 2, such that G.F,:H(Q,,R)— H,(,,R) is the identity map. Then F
and G are biholomorphic maps of the form (z,, ..., zg) > (c12™, ..., cgz2%) where

ay
( : )e GL(d,7)
g4

and cq,...,cy€C*.

Proof. This is a special case of Theorem 2 in Bedford [1].

LEMMA 2. M, ={g(z):g€ Aut, (D), z € Ap} is a closed analytic subset of D.
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Proof. Let & be the map @ : Aut, (D)X Ag — D, ®(g, p)=g - p, so that M, is
the image of &®. If we can show that & is proper and has constant rank, and that
the image of the tangent map @’ is complex at every point, then My, will be a
properly immersed complex submanifold of D and the lemma will be proved.

Let ¥ be the map ¥:Aut(D)xD — DxD, ¥(g, z)=(g- z,z). H. Cartan
proved that Aut (D) acts properly on D, which means precisely that ¥ is proper.
Let p,:DxD— D be the projection onto the first factor. Then @ =
p,o(¥ | Auty (D)X Ap), and Lemma 1 shows that p, is proper on ¥(Aut, (D)X
Ap). Hence @ is proper.

Now the image of the tangent map ®(, ., is the subspace g,(V,) of Tg.zﬁ,
where V, is the real span of {X,:Xe®&D)}U{0}xC" ™), Since g4 is a
C-linear isomorphism of T,D onto Tg.zﬁ, we will be done if we show that V, is
closed under the complex structure tensor J and has dimension independent of
zZe Aﬁ.

Let R be the vector field

d d
2RevV-1 (zl——-——+~ . '+zk——-)
02,

6Zk

which generates the rotations (z’, z") H(e‘/‘-“’z', z"), 0eR. Let
= d
X=2Re ), fi(z) —e®(D).
i=1 9z

Then [R, X]e &(D) and

k(D) 3
[R, X],=—2Rev—-1 Z fi(z) 5—2-5 — JX, mod (0} xCr k@
i=1 ;

)

since z'=0'. Thus V, is closed under J.

V, is now seen to be the complex span at z of a family of holomorphic vector
fields. It follows that the set S of z € Ap where dim V, fails to be maximal is a
proper analytic subset of Ap. But S is clearly invariant under the action of
T"*® on Ap, hence S must be empty. Thus dim V, is constant on all of Ap.

This completes the proof of the lemma.

It is not hard to show that My, is actually a manifold.
In the case k(D)=n Lemma 2 is a special case of a result of Kaup [4].

LEMMA 3. Every Aut, (D)-invariant closed analytic subset of D contains Mp,
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Proof. If M is such a subset and (z’, z")e M then M contains all points of the
form (e‘/:—“’z', z"). Since D is z'-complete it follows that M contains (0, z") € Ap.
Hence M contains the real (n— k(D))-torus in Ap obtained by rotating (0, z").
But this implies that A;s © M, which implies the lemma.

Now let F: D, — D, be a bihomomorphic map of bounded Reinhardt domains
in C" satisfying (*). F extends to a biholomorphism of D, onto D, which will also
be called F. Since 15“ retracts onto Ap , and Ap , being logarithmically convex, is
diffeomorphic to the product of an (n—k(D,))-dimensional torus with an open
(n—k(D,))-cell (u=1,2), it follows that n—k(D,)=dimH(D,,R)=
dim H,(D,,R) = n—k(D,); let k = k(D,) = k(D).

By Lemmas 2 and 3 F(Mp ) ={g(z):ge€ Aut,(D,), z€ F(Ap,)} contains Ap..
Hence after composition with an automorphism of D, we may assume that F
maps a point (0’, a”)e Ap, to a point (0', b") € Ap,.

Let K, be the isotropy subgroup of (0, a”) in Auty(D,) and let K, be the
isotropy subgroup of (0, b") in Auty(D,). Then K; and K, are compact and
F*K,=K,.

Let 0% be the subspace of 0(D,) consisting of functions f satisfying fog =f
for all ge K, (pn =1, 2); clearly F*0%:= 0%:. Let do, denote the Haar probability
measure on K,. Then for each feO(D,) we can form a function f%:z+>
Sk, f(g(2)) do,(g) in 0%, and fe 0% if and only if f=f"-

Let p: Iju — Ap_be the canonical projection.

LEMMA 4.
0% =p*0(Ap,) for p=1,2.

Proof. K, contains T* acting on the z'-variables, so the mean value property
shows that f(z', z") = f(0', z") for fe 0% thus 0% p*O(Ap).

Now let fep*0O(Ap,); we must show that f%=f so that fe 0., But f¥.e
p*0(Ap,) by the preceding paragraph so that

fK“(Z’, Z") =fK“(O', ZH)

=) f(g(0', 2") do,.(g)

o

=1 f(pg(0',z") do,(g)

K,

i

=~-K f(or’ Z") do'u(g)

=f(0', z")
=f(z', z")
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since pg(0’, z")=(0', z") for ge K, by Lemma 1 and the definition of K,. This
proves the lemma.

COROLLARY. F(z)=c¢z" (j=k+1,...,n) for suitable

O +1
: leGL(n—k,2)
an

and Cx.y,...,c,€C*.

Proof. F*p*0(Ap,) =p*0(Ap,) by Lemma 4 and the definitions of K; and K,
so each coordinate function F, depends only on z.q,...,2z, (j=k+1,...,n).
‘Thus poF maps Ap, biholomorphically onto Ap, with inverse given by peF ™',
and the conclusion now follows from Theorem 3.

By composing F with a rotation in T"™* we may assume that ¢, ..., c, are
positive.

Let H be the map

H(z', z")=(2', Csr12", . . ., € 2") (1)

and let D;=H '(D,). Then D, also satisfies (¥) and it suffices now to study
G =H 'oF:D, — D, which is of the form G(z', z")=(G'(z’, z"), z").

Note that Ap, = Ap, and Ap, = Ap,.

Next we shift our point of view somewhat to study G using the Bergman
kernel function.

LEMMA 5. For any Reinhardt domain D in C" let Sp=
{yez":zv e O(D),||z"||2p)<}. Then the functions z°, y€ Sp form a complete
orthogonal set in the Bergman space L*(D)NO(D) so that the Bergman kernel
function for D is of the form

Kp(z, w) = Z c,zYW”
veSp

with ¢, >0 for each y e Sp.

Proof. By [6, p. 13] any f € O(D) has a representation f(z) =} a,z” converging
uniformly on compact subsets of D. (The sum ranges over yeZ" for which
z¥ e O(D).) Our conclusions follow from the formula

AR 20y = 2 lay 12 12712 2y
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which is justified by integrating over Reinhardt domains compactly contained in D
using the well-known orthogonality of the z"s and passing to the limit.

As a consequence of Lemma 5 the Bergman kernel function K, for D, may be
written in the form

K,.(z,w)= Y etz we "W
(@B)eNkxZn*

with all ¢}3>0, p =1, 3. The transformation law for the Bergman kernel function
applied to the map G thus yields

Z BZ “w' Z"BW"B = u(z)u(w) Z BG "(2)*G'(w)*z "8,

(o,B)eN* xZ"* (a,B)eNkxZ"*

(2)

for all z, we D,, where u is the Jacobian determinant of the map G.

In (2) let us take w=(0', a"). Then G'(w)=0' so that all terms on both sides
with a# 0 vanish. Hence u(z) must be independent of z'.

Next let z =(2’, z”) and w = (0’, z"). Then the left-hand side of (2) is indepen-
dent of z', so the sum on the right-hand side must also be independent of z’. Since
the map z'+ G'(z', z") is a diffeomorphism for fixed z”, the coefficient

G0, ") Z o‘Bz"‘sz”"

Bezn —k

of G'(z', z")* must vanish for a# 0. Hence G'(0', z")=0".

Thus, for any z}, G maps the k-dimensional Reinhardt domain {z € D, : z" = z§
biholomorphically onto the Reinhardt domain {z € D,:z"=z!} preserving the
point (0', zg). Then by H. Cartan’s theorem on biholomorphic maps of circular
domains G must be linear in z’. Thus we have proved

LEMMA 6. G is of the form (2', z")— (A,(2"), z") where A,. is a linear map
(or k X k matrix) varying holomorphically with z".

Let C! and C2. be the positive diagonal k X k matrices with jth diagonal
entries given by

1 ng . ng
Z CisZ "z
BeZ™™
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and

WP L chuz ™
BeZ"k

respectively. (Here (j) is the multi-index for which z'? = z,)
Take w”=z" in (2) and equate the terms which are linear in z’ and w’ to get

Cl.="'A,.C3.A,. (3)

For simplicity of notation we will often drop the subscripted z” in the sequel.

Let 9 and d denote the usual holomorphic and anti-holomorphic differentials
with respect to z” acting on functions (and forms) with values in the space of k X k
complex matrices. Then differentiation of (3) yields

aC ="AC33IA +'A(3C3)A,
hence substituting from (3) we have

A = (FAC?)13C - (C?(aCA
=A@log C")—(3log C3)A. 4)

Differentiating again we have
0=09A = A(39log C')— (33 log C3)A.

Thus if at some point zge Ap, the (1, 1)-forms in the ith diagonal entry of
39log C* and the jth diagonal entry of 33 log C* are unequal we must have A; =0
at z{. Since 99 log C' and 90 log C? are invariant under the T"™* action on the
z"-variables, the relation A; =0 must persist on the real (n—k)-torus in Ap,
obtained by rotating z§. Since A;; is a holomorphic function of z" it follows that
A;; vanishes for all z"€ Ap,.

Let the set {1,..., k} be partitioned into coordinate blocks {E}}, by the
equivalence relation i =, j if and only if

(69 log C*),; = (33 log C");
for all z"¢ Ap (n =1, 3). Then the calculations above show that after permuting

the z'-coordinates of D; we may assume that the two partitions above are the
same and that A maps Vg, isomorphically onto itself for each v and for all
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z"e Ap,. (Here the Vg are the summands in the direct sum decomposition
C* =@, Vg, associated with the partition {E,}, ={E.}, ={E3},.) Thus it will
suffice now to study the behavior of A on each Vg separately.

LEMMA 7. A;=p;z"" for suitable constants p; eC and multi-indices v; e
Z""*. Furthermore, p; =0 if i and j fail to lie in the same coordinate block of the
partition {E,},.

Proof. From the work above it suffices to prove the first statement.
To simplify notation we make the temporary assumption that E, ={1, ..., k}
for some v so that

3dlog C'=ddlog C*=d

is a scalar matrix of (1, 1) forms for all z"€ Ap,.

Let W be a positive scalar solution of 30W =@ depending only on
|Zs1l s - - -, 12,]. (For example, we may take W to be the first diagonal entry of
log C'.) Then log C* differs from W by a diagonal solution T* of 30T* =0 with
T* depending only on |z,4|,...,]|z.|. Let (r, 6,) give polar coordinates for z,,
s=k+1,...,n Then in particular we have

9? 92 3
= — T =__2.Tu+(rs)'1_Tu
0Z, 0Z org ar,

so that T" is necessarily of the form

r“+ Z 2AY logr,;

s=k+1

the I'*s and AYs are constant diagonal matrices. Let B* =expI'* and U=
exp W. Then

c+=UB*[] r*
= UB*[] z27z27. (5

(The use of diagonal matrices as exponents above may be interpreted component-
wise.)
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Putting (5) into (4) we have
dA=A@log U)+ Y, z:'AA! oz,
—@log U)A—Y, z7'A%A az,;
s
since U is scalar this yields

d
0z

Aij = z;lAii{(A:)ji - (Ag)ii}

so that
A.‘ = pi. H Z{(A:)l! _(Ag)u}
3] ] S
s
= pyz"™ (6)

for suitable constants p;. This proves the lemma.

We note for future reference that (6) shows that (A}); =(A?); modZ when
p;# 0. If p; is also non-zero it follows that (A2); =(A32); modZ.

To complete the proof of Theorem 1, we now show that G can be adjusted by
an automorphism of Dj; so that the p;s in Lemma 7 satisfy p; =0 for i# o(j),
where o is a permutation of {1, ..., k}. We need the following theorem.

THEOREM 4. Let 2 be a (possibly disconnected) bounded Reinhardt domain
in C*. Let K be the identity component of the group of linear automorphisms of (.
Then there is a partition {QT}, of {1, ..., k} into coordinate blocks along with a
positive diagonal bilinear form C, on each V ge so that K consists precisely of linear
maps of the form @,L,, where L, :Vqa—> Vo satisfies

‘L,C,L,=C,.

(Here C* =@,V oo is the direct sum decomposition associated with the partition

{Q3,.)

Proof. This is proved in slightly different form in Sunada [7]. An adapted
proof is provided here for the convenience of the reader.
Since 0 has finite volume, det L =1 for all L € K. Applying Lemma 5 to (a
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component of) 2 the Bergman Kernel transformation law for the map L reads

Z CZoW = z c L(z)*L(w)*.

aeSq aeSq

Equating linear terms we obtain '‘LCL = C, where C is the positive diagonal
matrix with jth diagonal entry equal to c;. By performing dilations in each
variable separately we may arrange that C is (a scalar multiple of) the identity
matrix and thus K is made to be a subgroup of the unitary group U(k).

In the notation of this paper the Lie algebra of U(k) consists of all vector
fields of the form 2 Re ¥,; a;z; 9/9z; with a; = —a;.

Let & denote the Lie algebra of K. Since {2 is Reinhardt & must contain the
vector fields R; =2 Re v—1 z;(3/dz;) which generate the rotations in each of the
variables. Then for

d
A = 2 Re z aiizi—e(@
ij 0z;

1

and i#j we have
2Re[R; [ A]]—2Re( z—a—+ zi)eﬁ
is R,', a;; i(')z,- Qa;; "az,-
and

2Re[R; [R, [R;, Alll=2Rev~1 (“ﬁzi 5‘3‘" %, b’i’-‘) e

1

Let i ~j if a;#0 for some A €. Then the presence of the R;s shows that ~ is
reflexive, the relation a; = —a; shows that ~ is symmetric, and the computation

Jd d 0 d d 0
ai]'Zi 52 + ai'zl' EZ_I . bszj 'az + bs,-zs a_zj = aijb,-szi 5;8‘ - aﬁbsizs a_Zl

shows that ~ is transitive.

Let {Q%}, be the partition of {1,. .., k} induced by ~. Then K < ILU(Q%)),
where each unitary factor U(|Qf]) acts in the usual manner on Vge. But
remembering to count the R;s we have found

k+Y Q2 (02~ 1)=dim IL,U(Q%)

independent vector fields in &. Hence K =IL,U(|Q%) (up to the dilations per-
formed earlier) and the theorem is proved.
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Now let 2'(z5) ={ze D;:z"=z{} and Q3(z) ={ze D;:z" =z}, and let us use
Theorem 4 to study the linear map A, :82'(z§) — Q3(z}). Since the isotropy
groups of the origin in Aut, (£2'(z{)) and Aut, (23(z})) are related by A,; we may
conclude that A,; maps each Vga's; isomorphically onto some Vao'ep; we shall

al)y

say that A,; respects the partitions {Q, ™}, and {O$**?} . But these partitions
are invariant under the T "% action on z}, so that A,; maps Vgolep onto Vgeiey
for all z” on a totally real (n —k)-torus, hence indeed for all z"€ Ap..

Let {P%}, be the coarsest partition which is finer than each of the partitions
{Q2**"), ("€ Ap,) and {E%},, u=1,3. Then each A, respects the partitions
{P\}, and {P;},; after permuting the coordinates we may assume the two
partitions coincide. Let {P,}, ={P\}, ={Pi}». Then by Theorem 4 Aut,(D,)
contains all maps of the form (z’, z")— (L,(z'), z"), where (i) L, is a linear map
of z' which depends holomorphically upon z”, and (ii) L, is of the form B, (L,),~,
where (L,),» maps Vp_isomorphically onto itself and satisfies

ta—‘——)\)z”(cr)z”(L)\)z" = (Cr)z"-

Here (C%),~ is a positive diagonal bilinear form on Vp X Vp which is indepen-
dent of L,. and unique up to a positive scalar factor.

Let D, A, be the decomposition of A associated with the partition {P, },. Then
each A, satisfies

'ALC3A, = C} (8)

after adjusting each (C3),. by a scalar. The entries of A, are given by (6), so we
may rewrite (8) in the form

(Yo (Tl ([ 220) = ©

where the A¥,s are constant diagonal matrices and p, is a constant invertible
matrix. By permuting coordinates within the block P, we may arrange that the
diagonal elements of p, are non-zero.

Since ‘p, is invertible, (9) shows that

Ci(l:[ |zsl-2Af-x)px(l:I 2 )

is independent of z”. Since the diagonal elements of p, are non-zero and all other
matrices above are diagonal it follows that

4, = ([T 2Pty



562 DAVID E. BARRETT

is a constant diagonal matrix. Thus by (9) the matrices
(LA)Z":: (H z?i.x)A}\/pr(H Z;Aix)

satisfy (i) and (ii) above and thereby yield an automorphism & of D,. (The
exponents occurring in the expansion of the right hand side above are integers by
the remark following the proof of Lemma 7.)

Now replace G:D, — D, by G=® ' - G. By inspection G is of the form

Gz, 2" =(c12"™ 2z, ..., 22, 2")

for suitable positive constants cy, ..., ¢, and multi-indices vy,,..., v, €Z"7
Finally, HoeG maps D, biholomorphically onto D, and by equations (1) and
(7) Ho G is of the form given in the statement of the theorem after adjusting
constants and rescrambling coordinates.
This completes the proof of Theorem 1.

§3. Proper mapping

This section contains the proof of Theorem 2.

LEMMA 8. Let D be a bounded Reinhardt in C". Then for each a eN" there is

a function ¢, € Cg(D) such that P¢, = z, where P is the Bergman projection from
L*(D) onto LAD)NO(D).

Proof. By Lemma 5 the Bergman kernel function for D is of the form

Kp(z, w)= Z CoZ W™

a€eSp

with each ¢, positive. Let ¢ € C5(D) be nonnegative and T "-invariant with
fpddv=1, and let ¢,(z)=(c,a!) - (—8/0Z)*¢. Then

P¢a(z)=j Y, cazPWPd, (w) dv(w)

D BESD —_
*wh
=j Z cglcoa!)'2® Mi &d(w) dv(w)
D BeSp aw

= [ 2w doow)

o

]

z

by integration by parts and the mean value property. This proves the lemma.
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LEMMA 9. If D is a bounded Reinhardt domain in C" satisfying (*) then the

Bergman kernel function Kp(z, w) for D extends holomorphically in z and anti-
holomorphically in w to a neighborhood of D X D in C?".

Proof. Since K, is holomorphic in z and w Kp, extends automatically to D x D,
where D is the envelope of holomorphy of D. Furthermore, it follows from

Lemma 5 that if A4, ..., A, are any positive numbers and 2 =(A,z;,...,A,2,),
w=AT"'wy, ..., A'w,) then Kp(z, w)=Ky(%, W) wherever both sides are
defined.

Let z,€ bD. Without loss of generality we may assume that z,; =0 precisely
for 1=j<r (0=r=<k(D)). Let

AZ{(Zr+1a-- -9zn)€C“_':(09'~-70a Zr+ls~-"zn)ED}'

Then (z,.1,...,2,)€ A for all ze D so that (zg,44, ..., Zo,) € bA. Hence 2eD
for suitable choices of Ay, ..., A, close to 1. Fix any point wye D. Then we may
choose connected neighborhoods U, of z, and U, of w, and positive numbers
A, ..., A, so that Z and w are in D for all ze U,, weU,,; we may define
K (z, w)= Kp (2, w) for such z and w. Since these extensions are all based on the
same series expansion they patch together in a consistent way to provide the
desired global extension. This proves the lemma.

LEMMA 10. P, maps C(D) into O(D).

Proof. This is an immediate consequence of Lemma 9 and the formula

Pof(2)= | Ko(z, wifw) do(w)

We are now ready to prove Theorem 2. Let F* = F*z* and u =det F'. Then
by the transformation law for the Bergman projection under proper mapping [2]
we have

UF* =u - P, o F=Pp,(u - ¢,°F)eO(D)

using Lemma 8 and 10. This and the fact that O(D) is a unique factorization
domain together imply that each coordinate function of F is in O(D). (For details
of this argument see Bell [3].)

This completes the proof of Theorem 2.
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