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Holomorphic équivalence and proper mapping of bounded
Reinhardt domains not containing the origin

David E. Barrett1

§1. Introduction

A bounded domain in Cn is said to be a Reinhardt domain if it is invariant
under the action of the n-torus Tn=(R727rZn on Cn given by

(6l9..., 6n) • (zu ...,zn) (e&gt;/=&quot;le»z1,..., e^H,). In this paper we shall study
bounded Reinhardt domains D satisfying the condition

there is an integer k, 0&lt; k &lt; n, such that D d{zi 0} ^ 0 for / 1,..., fc

and D n{z, 0} 0 for / fc + 1,..., n.
W

The integer k above will sometimes be denoted k(D).
Ail domains in this paper are assumed to be connected unless otherwise

specifîed.
First we shall study the holomorphic équivalence problem for such domains.

The resuit is summarized in the following theorem:

THEOREM 1. If Dx and D2 are holomorphically équivalent bounded

Reinhardt domains in Cn satisfying (*) then k(Di) k(D2) and there is a

biholomorphic map F : Dx —» D2 of the form

F(z&apos;, z&quot;) (c1z&quot;e.zff(1))..., CfcZ&apos;&quot;^

where

z&apos; (zx,..., zk), z&quot; (zk+1,..., zn),

P,eZn~k for j \,...,k,
aic+i\

i \eGL(n-k,l),
«n/

a is a permutation of {1,..., fc}, and cl9..., cn are positive constants.

1 Supportée by NSF Grant MCS-8211330.
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The maps described in the theorem consist precisely of the rational monomial
maps F which map Dx biholomorphically onto the bounded Reinhardt domain
F(DX). It is not hard to see that Dx can be chosen so that the domains F(Dt) are
distinct for distinct choices of F. This shows that the list of maps in the theorem
cannot be shortened.

In the case of bounded Reinhardt domains containing the origin the conclusion

of Theorem 1 is due to Sunada [7]. (For n 2 the resuit goes back to Thullen
[8].) In the other extrême where fc(Di) k(D2) 0 the resuit may be viewed as a

spécial case of rigidity results due to Bedford [1]; in this case ail biholomorphic
maps are of the type described in the theorem up to rotations in T n.

In the course of the proof of Theorem 1 we learn many things about the
automorphism groups of the domains in question, but the proof does not yield the
complète description of the automorphism groups furnished by Sunada in the case
of bounded Reinhardt domains containing the origin [7].

In the case of proper maps we prove the following qualitative resuit.

THEOREM 2. If F:Dl-&gt;D2 is a proper holomorphic map of bounded
Reinhardt domains in Cn and if Dx satisfies (*) thenF extends holomorphically to a
neighborhood of Dt.

In the case where Dx and D2 are complète this resuit was proved by Bell in
[2]. In the case where k(Dt) fc(D2) 0, F is biholomorphic, and ail boundary
points of Di and D2 are simple this resuit was proved by Kaup [4]. (This last

resuit is of course subsumed by the more quantitative conclusions of Bedford
mentioned above.)

Kaup&apos;s example F:{(zu z2):|z1|&lt;|z2|&lt;l}-^{(z1, z2):\z1\&lt; 1,0&lt;|z2|&lt;l},

p(zu z2) (zjz^ z2) shows that the hypothesis (*) cannot be dropped altogether
from the statement of Theorem 2.

The annulus {z :r1&lt;\z\&lt;r2} can be mapped properly onto the unit disk in C

by the use of elliptic functions. This example shows that a précise classification of
the proper maps in Theorem 2 will necessarily be more involved than the

corresponding resuit on biholomorphic maps.
Theorems 1 and 2 are proved in sections 2 and 3 below, respectively.

Background material used in this article and not otherwise cited may be found
in [6] and section 1.4 of [5].

§2. Holomorphic équivalence

This section contains the proof of Theorem 1.

For any bounded Reinhardt domain D in Cn satisfying (*) let AD dénote the
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set of points in D of the form (0&apos;, z&quot;) and let D dénote the envelope of
holomorphy of D. D is also a bounded Reinhardt domain in Cn and is known to
be logarithmically convex (meaning that the set {(xt,..., x,,) €lRn : (ex\ e*n) e

D} is convex) and z&apos;-complète (meaning that (zl5..., zn)eD and \wr\&lt;

kil..., |wk|&lt;|zk| imply (wl5..., wk, zk+1,..., zn)eD). D also satisfies (*) with
k(D)=k(D).

Let Aut (D) dénote the group of automorphisms of D and let Aut0 (D) dénote
the identity component of Aut(D). By a theorem of H. Cartan Aut(D) is a

finite-dimensional Lie group and Aut0 (D) is generated by the Lie algebra ®(D)
of complète (real) vector fields on D which are holomorphic as maps into C&quot;. (It is

helpful to note that vector fields of this type may be written in the form 2 Re X,
where X is a uniquely determined complex vector field of type (1,0) with
holomorphic coefficients. The identity 2 Re [X, Y] [2 Re X, 2 Re Y] for
holomorphic vector fields X and Y of type (1,0) is useful in this context.)
Furthermore, Aut0 (D) acts naturally and smoothly on D.

Our first step in the proof of Theorem 1 will be to study the invariance
properties of Aj&gt; Let D be a bounded Reinhardt domain in Cn satisfying (*).

LEMMA 1. For each g g Aut0 (D) there are real numbers 0k(o)+i, • • •, Qn

that (w&apos;, w&quot;) g(0\ z&quot;) satisfies w^e^1**, for each (O&apos;,z&quot;)eAô, j
k(D)+l,...,n.

Proof. Let p:D-*Aâ be the canonical projection. Then p°g:Aô-^ A&amp; is

holomorphic and homotopic to the identity. But Theorem 3 below shows that any
such map is given by a rotation in T n~~k. This proves the lemma.

THEOREM 3. Let Q1 and lï2 be pseudoconvex Reinhardt domains compactly
contained in (C*)d. Suppose that there are holomorphic maps F:Û1-^fl2 an^

G:£}2-^(11 such that G#F*:H1({ïl9R)-*H1({}1,R) is the identity map. Then F
and G are biholomorphic maps of the form (zl5..., zd) *-» (c^z&quot;1,..., cdzad) where

and qgC*.
Proof. This is a spécial case of Theorem 2 in Bedford [1],

LEMMA 2. MD {g(z) : g g Aut0 (£&gt;), z € A^} is a closed analytic subset ofD.
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Proof. Let * be the map &lt;P : Aut0 (D) xAô-+D, &lt;2&gt;(g, p) g • p, so that MD is

the image of &lt;f&gt;. If we can show that &lt;P is proper and has constant rank, and that
the image of the tangent map 4&gt;&apos; is complex at every point, then MD will be a

properly immersed complex submanifold of D and the lemma will be proved.
Let V be the map ^: Aut (D)xD-^DxD, ^(g, z) (g • z, z). H. Cartan

proved that Aut (D) acts properly on D, which means precisely that ^ is proper.
Let p1:DxD-^&gt;D be the projection onto the first factor. Then &lt;P

Pxo(^ | Aut0 (D)xAô), and Lemma 1 shows that pt is proper on *t(Aut0(D)x
Aô). Hence &lt;t&gt; is proper.

Now the image of the tangent map #(g&gt;Z) is the subspace g*(Vz) of T^.ZD,
where V2 is the real span of {X2:X€©(D)}U({0&apos;}xCn&quot;k(D)). Since g* is a

C-linear isomorphism of TZD onto TgzD, we will be done if we show that Vz is

closed under the complex structure tensor J and has dimension independent of
zeA&amp;.

Let R be the vector field

2ReVr=4 (zl—-h- • +zk —\ dzl kdzjBz1 azk&gt;

which générâtes the rotations (z&apos;, z&quot;) *-*(e^V, z&quot;), 0eR. Let

Then [R,X]e®(D) and

since z; 0&apos;. Thus Vz is closed under /.
Vz is now seen to be the complex span at z of a family of holomorphic vector

fields. It follows that the set S of z g Ad where dim Vz fails to be maximal is a

proper analytic subset of AD. But S is clearly invariant under the action of
jn-k(D) on A^ hence S must be empty. Thus dim Vz is constant on ail of AD.

This complètes the proof of the lemma.

It is not hard to show that MD is actually a manifold.

In the case k(D) n Lemma 2 is a spécial case of a resuit of Kaup [4].

LEMMA 3. Every Aut0 (D)-invariant closed analytic subset ofD contains MD.
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Proof. If M is such a subset and (z\ z&quot;)eM then M contains ail points of the
forai (e^V, z&quot;). Since D is z&apos;-complete it follows that M contains (0&apos;, z&quot;)eAô.

Hence M contains the real (n-fc(D))-torus in Ap obtained by rotating (0&apos;, z&quot;).

But this implies that A&amp; &lt;= M, which implies the lemma.
Now let F:D1-^D2 be a bihomomorphic map of bounded Reinhardt domains

in Cn satisfying (*). F extends to a biholomorphism of Dt onto D2 which will also
be called F. Since D^ retracts onto A^, and A&amp;^ being logarithmically convex, is

diffeomorphic to the product of an (n-fc(D^))-dimensional torus with an open
(n - kiDjyœll (^ 1, 2), it follows that n - k(Dx) dim H^D^ R)

dimHt(D2,U) n-fc(D2); let k k(Dx) k(D2).
By Lemmas 2 and 3 F(MD) {g(z): g g Aut0 (D2), zeF(Aô)} contains Aô2.

Hence after composition with an automorphism of D2 we may assume that F
maps a point (0&apos;, a&quot;) g A^ to a point (0&apos;, b&quot;) e Aô2.

Let K1 be the isotropy subgroup of (0&apos;, a&quot;) in Aut0 (Dx) and let K2 be the

isotropy subgroup of (0&apos;, b&quot;) in Auto iP-ù- Then Kt and K2 are compact and

Let CK&quot; be the subspace of C(D^) consisting of functions / satisfying /°g /
for ail g € K^ (/x 1,2); clearly F*0K* €kk Let da^ dénote the Haar probability
measure on K^. Then for each feOiD^) we can form a function fK»:z&gt;-+

iKJ(g(z)) dorjg) in 0S and fet^ if and only if / /V
Let p : D^ —» A^ be the canonical projection.

LEMMA 4.

€K~ p*O(A6J for ii l,2.
Proof. K^ contains T k acting on the z&apos;-variables, so the mean value property

shows that f{z&apos;, z&quot;) /(0\ z&quot;) for /e0K»; thus CK^p*€(AôJ.
Now let fep*O(AôJ; we must show that /K- / so that fe(JK». But /K-e

p*6(AôJ by the preceding paragraph so that

} f(pg(0&apos;,z&quot;))cUr.(g)
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since pg(0&apos;, z&quot;) (0&apos;, z&quot;) for g e K^ by Lemma 1 and the définition of K^. This
proves the lemma.

COROLLARY. F^z) qz&quot;*** (j k +1,..., n) for suitable

and ck+1,...,cneC*.

Proof. F*p*O(AÙ2) p*&lt;9(Aôi) by Lemma 4 and the définitions of Kx and K2,
so each coordinate function F, dépends only on zk+1,..., zn (j&apos; k +1,... ,n).
Thus p°F maps Aqi biholomorphically onto A&amp;2 with inverse given by p°F~1,
and the conclusion now follows from Theorem 3.

By composing F with a rotation in Tn~k we may assume that ck+1,..., cn are
positive.

Let H be the map

H(z\ z&quot;) (z\ ck+1z&apos;^-,..., cnz&apos;^) (1)

and let D3 H~1(^2)- Then D3 also satisfies (*) and it suffices now to study
G HloF:D1 -&gt; D3 which is of the form G(z\ z&quot;) (G&apos;(zf, z&quot;), z&quot;).

Note that AD3 ADl and Aô3 Aô1.
Next we shift our point of view somewhat to study G using the Bergman

kernel function.

LEMMA 5. For any Reinhardt domain D in Cn let SD

{yeZn:zye6(D), ||z^||L2(D)&lt;a)}. Then the functions z\ yeSD form a complète
orthogonal set in the Bergman space L2(D)PlC(D) so that the Bergman kernel

function for D is of the form

KD(z,w)= X cyzW
76SD

with cy&gt;0 for each y e SD.

Proof. By [6, p. 13] any feC(D) has a représentation /(z) I ayzy converging

uniformly on compact subsets of D. (The sum ranges over ye/&quot; for which
zy s6(D).) Our conclusions follow from the formula
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which is justified by integrating over Reinhardt domains compactly contained in D
using the well-known orthogonality of the zys and passing to the limit.

As a conséquence of Lemma 5 the Bergman kernel fonction K^ for D^ may be
written in the form

z, w)

with ail c£3&gt;0, |x 1, 3. The transformation law for the Bergman kernel function
applied to the map G thus yields

X c^z&apos;-w&apos;-z&quot;^&quot;* u(2)u(w) I cleG\zYG\vtYz&quot;&amp;w&quot;*
(a,3)eNkxZ&quot;-k («,3)eNkxZn k

(2)

for ail z^weD^ where u is the Jacobian déterminant of the map G.

In (2) let us take w (0\ a&quot;). Then G&apos;(w) 0&apos; so that ail terms on both sides

with a^O vanish. Hence u(z) must be independent of z\
Next let z (zr, z&quot;) and w (0&apos;, z&quot;). Then the left-hand side of (2) is independent

of z&apos;, so the sum on the right-hand side must also be independent of z&apos;. Since

the map z&apos; *-&gt; G&apos;(z\ z&quot;) is a diffeomorphism for flxed z&quot;, the coefficient

G&apos;(0\ z&quot;)&quot;

of G&apos;(z&apos;, z&apos;T must vanish for a^O. Hence G&apos;(0\ z&quot;) 0&apos;.

Thus, for any Zq, G maps the fc-dimensional Reinhardt domain {

biholomorphically onto the Reinhardt domain {zeD3:z&quot; Zq} preserving the

point (0&apos;, z&apos;ô). Then by H. Cartan&apos;s theorem on biholomorphic maps of circular
domains G must be linear in z&apos;. Thus we hâve proved

LEMMA 6. G is of the form (z&apos;, z&quot;) h-* (A2»(z&apos;), z&quot;) where Az- is a linear map
(or kxk matrix) varying holomorphically with z&quot;.

Let Cl&quot; and Cl&quot; be the positive diagonal kxk matrices with /th diagonal
entries given by

L^ c(j)3z z
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and

respectively. (Hère (/) is the multi-index for which zf(l) zr)
Take w&quot; z&quot; in (2) and equate the terms which are linear in z&apos; and w&apos; to get

C\* XRZ*C**AZ*. (3)

For simplicity of notation we will often drop the subscripted z&quot; in the sequel.
Let d and â dénote the usual holomorphic and anti-holomorphic difïerentials

with respect to z&quot; acting on functions (and forms) with values in the space of fc x fc

complex matrices. Then diflferentiation of (3) yields

dCl lÂC3dA + lÂ(dC3)A,

hence substituting from (3) we hâve

ôa (tÂc3)~1ac1-(c3)-1(ac3)A

A(dlogC1)-(dlogC3)A. (4)

Difïerentiating again we hâve

0 ddA A (dd log C1) - (dd log C3)A.

Thus if at some point ZqgAd, the (1,1)-forais in the ith diagonal entry of
dd log C1 and the /th diagonal entry of dd log C3 are unequal we must hâve Av 0

at z&apos;q. Since âalogC1 and âalogC3 are invariant under the Tn&quot;k action on the
z&quot;-variables, the relation AtJ=0 must persist on the real (n-k)-torus in A^
obtained by rotating zg. Since A,, is a holomorphic function of z&quot; it follows that
AtJ vanishes for ail zn^A^x.

Let the set {1,..., fc} be partitioned into coordinate blocks {Eii)v by the

équivalence relation i^^j if and only if

(àa log c^^àa log e%

for ail z&quot;eAùiL (jx 1, 3). Then the calculations above show that after permuting
the z&apos;-coordinates of D3 we may assume that the two partitions above are the
same and that A maps VEv isomorphically onto itself for each v and for ail
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z&apos;^A^. (Hère the V^ are the summands in the direct sum décomposition
Ck=©vVEv associated with the partition {Ev}v {Elv}v {El}v.) Thus it will
suffice now to study the behavior of A on each V^ separately.

LEMMA 7. AXJ=pl]z&quot;y^ for suitable constants ptJeC and multi-indices ytJe
Zn~k. Furthermore, p,, 0 if i and j fail to lie in the same coordinate block of the

partition {Ev}v.

Proof. From the work above it suffices to prove the first statement.
To simplify notation we make the temporary assumption that Ev ={1,..., fc}

for some v so that

is a scalar matrix of (1,1) forms for ail z&quot;^
Let W be a positive scalar solution of ddW=&lt;P depending only on

|zk+1|,..., |zn|. (For example, we may take W to be the first diagonal entry of
log C1.) Then log C* difïers from W by a diagonal solution T* of ddT» 0 with
T^ depending only on |zk+1|,..., \zn\. Let (rs, 0s) give polar coordinates for zs,

s k 4-1,..., n. Then in particular we hâve

-a -a q

dzs dzs dr2s drs

so that T^ is necessarily of the form

the F^s and A^s are constant diagonal matrices. Let B^=expr^ and U

exp W. Then

(5)

(The use of diagonal matrices as exponents above may be interpreted component-
wise.)
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Putting (5) into (4) we hâve

dA A(ôlog U) + £ z^AA] dz

since U is scalar this yields

so that

/lu ~ Pu 11 zs
s

ft,2&quot;Y&quot; (6)

for suitable constants pir This proves the lemma.

We note for future référence that (6) shows that (AS1)JJ=(AS3)U modZ when
ptJ/0. If pu is also non-zero it follows that (Al)u=(A*)n modZ.

To complète the proof of Theorem 1, we now show that G can be adjusted by
an automorphism of D3 so that the pMs in Lemma 7 satisfy ptJ 0 for i^cr(j)9
where a is a permutation of {1,..., k}. We need the following theorem.

THEOREM 4. Let O be a (possibly disconnected) bounded Reinhardt domain
in Ck. Let K be the identity component of the group of linear automorphisms of SI.

Then there is a partition {Q?L of {1,..., k} into coordinate blocks along with a
positive diagonal bilinear form Q on each Vo« so that K consists precisely of linear

maps of the form ©^o-, where LCT : VQn —» VQn satisfies

{Hère Ck ©^Von is the direct sum décomposition associated with the partition

Proof. This is proved in slightly différent form in Sunada [7]. An adapted
proof is provided hère for the convenience of the reader.

Since SI has finite volume, det L 1 for ail LeK. Applying Lemma 5 to (a
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component of) Q the Bergman Kernel transformation law for the map L reads

oteSn «eSn

Equating linear terms we obtain *LCL C, where C is the positive diagonal
matrix with jth diagonal entry equal to c^y By performing dilations in each

variable separately we may arrange that C is (a scalar multiple of) the identity
matrix and thus K is made to be a subgroup of the unitary group U{k).

In the notation of this paper the Lie algebra of U(k) consists of ail vector
fields of the form 2 Re £M alJzl d/dZj with a,, -an.

Let $ dénote the Lie algebra of K. Since O is Reinhardt $ must contain the

vector fields Rf 2Re\/—T ZjCd/dz,) which gênerate the rotations in each of the
variables. Then for

A 2Re£aIJzl-^-

and i£j we hâve

2 Re [R,, [R,, A]] 2 Re (a.,2, /- + a^ /¦) e ft
\ oZj oZ, /

and

2 Re [i*l5 IX, CJR,. A]]] 2 Re ^l (^z, /¦- anz, -f) s St.
\ oZj oZt /

Let î~/ if Ojj^O for some A€^. Then the présence of the JR,s shows that — is

reflexive, the relation a,, =— an shows that ~ is symmetric, and the computation

ax{ix—+ anZj — ^z,—+ bSJzs — a^fi^z, —— Ojfi^ —
L dzl dzx dzs oZjj ozs azl

shows that ~ is transitive.
Let {Q^ar be the partition of {1,..., k} induced by ~. Then K&lt;= 71^1/(1 Q?|),

where each unitary factor U(\Q%\) acts in the usual manner on VQn. But

remembering to count the jR;s we hâve found

k + Z |Qî?| (|Cff| ~ 1) dim

independent vector fields in ®. Hence K II(TU(\Q%\) (up to the dilations per-
formed earlier) and the theorem is proved.
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Now let fl^zS) U € D1 : z&quot; z£} and f23(zS) {z € D3 : z&quot; zj}, and let us use
Theorem 4 to study the linear map AZo:{l1(z&apos;o)-*03(zo). Since the isotropy
groups of the origin in Aut0 (ill(zo)) and Aut0 (O3(z&apos;ô)) are related by Az» we may
conclude that A2o maps each Vq^&apos;v isomorphically onto some Von^z0&gt;; we shall

say that AZo respects the partitions {Q^&lt;Zo}CT and {QTiZo)}&lt;r- But thèse partitions
are invariant under the Tn~k action on zJ5, so that AZo maps Von&apos;(v onto VQ«3(&lt;&gt;&gt;

for ail z&quot; on a totally real (n-k)-torus, hence indeed for ail z&apos;^A^

Let {PX}A be the coarsest partition which is finer than each of the partitions
{QT(Z&apos;\ (z&quot;eAâJ and {E^}v, /x 1, 3. Then each AZu respects the partitions
{P\}\ and {PA}X; after permuting the coordinates we may assume the two
partitions coincide. Let {Px}x {Px}x {Pj}x. Then by Theorem 4 Auto(D|Jl)
contains ail maps of the form (z&apos;, z&quot;) •-» (Lz»(z&apos;), z&quot;), where (i) Lz» is a linear map
of z&apos; which dépends holomorphically upon z&quot;, and (ii) L2» is of the form ©X(LX)2»,

where (Lx)z» maps VPx isomorphically onto itself and satisfies

Hère (C^)^&apos; is a positive diagonal bilinear form on VPxX VPk which is indepen-
dent of Lz&gt; and unique up to a positive scalar factor.

Let 0X Ax be the décomposition of A associated with the partition {Px}x. Then
each Ax satisfies

^ClA^Cl (8)

after adjusting each (Cx)z» by a scalar. The entries of Ax are given by (6), so we

may rewrite (8) in the form

(n

where the A£xs are constant diagonal matrices and px is a constant invertible

matrix. By permuting coordinates within the block Px we may arrange that the

diagonal éléments of px are non-zero.
Since lpx is invertible, (9) shows that

is independent of z&quot;. Since the diagonal éléments of px are non-zero and ail other

matrices above are diagonal it follows that
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is a constant diagonal matrix. Thus by (9) the matrices

satisfy (i) and (ii) above and thereby yield an automorphism $ of D3. (The
exponents occurring in the expansion of the right hand side above are integers by
the remark following the proof of Lemma 7.)

Now replace G : Dx -» D2 by G &amp;1 • G. By inspection G is of the form

for suitable positive constants cl5..., ck and multi-indices yl5 7k eZn~k.

Finally, H°G maps Dx biholomorphically onto D2 and by équations (1) and

(7) H°G is of the form given in the statement of the theorem after adjusting
constants and rescrambling coordinates.

This complètes the proof of Theorem 1.

§3. Proper mapping

This section contains the proof of Theorem 2.

LEMMA 8. Let D be a bounded Reinhardt in Cn. Then for each aeNn there is

a function &lt;f&gt;a e C%(D) such that P&lt;f&gt;a za, where P is the Bergman projection from
L2(D) onto L2(D)n0(D).

Proof. By Lemma 5 the Bergman kernel function for D is of the form

with each ca positive. Let &lt;f&gt;eC%(D) be nonnegative and Tn-invariant with
$D&lt;t&gt;dv 1, and let &lt;f&gt;a(z) (caaî)&quot;1 • (-d/dzT&lt;t&gt;. Then

f dv(w)

&quot;l

by intégration by parts and the mean value property. This proves the lemma.
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LEMMA 9. If D is a bounded Reinhardt domain in Cn satisfying (*) then the
Bergman kernel function KD(z, w) for D extends holomorphically in z and anti-
holomorphically in w to a neighborhood of DxD in C2n.

Proof. Since KD is holomorphic in z and w KD extends automatically to DxD,
where D is the envelope of holomorphy of D. Furthermore, it follows from
Lemma 5 that if Kx,..., An are any positive numbers and z (À1z1,..., Ànzn),

w (A71 wu A&quot;1 wn) then KD(z, w) KD(z, w) wherever both sides are
defined.

Let z0 g bD. Without loss of generality we may assume that zOj 0 precisely
for l&lt;/&lt;r (0&lt;r&lt;k(D)). Let

A ={(zr+1&gt;..., zn)€C&quot;-r :(0,..., 0, zr+1,..., zn)eD}.

Then (zr+1,..., zn)e A for ail zeD so that (zOr+i,. • •, zOn)g bA. Hence zeD
for suitable choices of \u Àn close to 1. Fix any point woeD. Then we may
choose connected neighborhoods UZq of z0 and UWo of w0 and positive numbers

Àj,..., An so that z and w are in D for ail ze UZo, we C/Wo; we may define
KD(z, w) KD(î, w) for such z and w. Since thèse extensions are ail based on the
same séries expansion they patch together in a consistent way to provide the
desired global extension. This proves the lemma.

LEMMA 10. PD maps C%(D) into 0(D).

Proof. This is an immédiate conséquence of Lemma 9 and the formula

PDf(z)= f KD(z,w)f(w)dv(w).

We are now ready to prove Theorem 2. Let F&quot; F*zoc and u det F&apos;. Then
by the transformation law for the Bergman projection under proper mapping [2]
we hâve

uF« w PDA°F PDl(u • &lt;f&gt;oloF)e0(D)

using Lemma 8 and 10. This and the fact that €(D) is a unique factorization
domain together imply that each coordinate function of F is in 6(D). (For détails
of this argument see Bell [3].)

This complètes the proof of Theorem 2.
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