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Definite unimodular lattices having an automorphism
of given characteristic polynomial

Eva BAYER-FLUCKIGER*

Introduction

A lattice will be an integral symmetric bilinear form of non-zero discriminant.
The orthogonal group of a definite lattice is finite. This implies that the charac-
teristic polynomial of an automorphism of a definite lattice is a product of
cyclotomic polynomials. Conversely, let f be a product of cyclotomic polynomials.
Does there exists a definite and unimodular lattice which has an automorphism
with characteristic polynomial f? The first part of the present paper is devoted to
the study of this problem. We shall give a complete solution in the case where f is
a power of a cyclotomic polynomial. As an example, let us discuss the case f = ¢,,,,
the mth cyclotomic polynomial, where m is not a power of 2. We shall give some
necessary conditions for the existence of a definite unimodular lattice (L, S)
having an automorphism t with characteristic polynomial ¢,,. One of these
conditions is that m must be mixed, i.e. m is not of the form p" or 2p" where p is
a prime. Indeed, if m =p" or 2p" then det (1—¢t)det (1+1t) = ¢,,(1)d,,,(—1) =p (cf.
e.g. [13] Chap. VIII, §3, 1 and 3). Therefore the determinant of S'=S(t—t") is
p. But this is impossible because S’ is skew-symmetric so det(S’) must be a
square. On the other hand it is not difficult to prove that (L, S) must be even, i.e.
S(x, x) is divisible by 2 for all x in L (see Lemma 1.4). The rank of an even,
definite lattice is divisible by 8 (cf. e.g. [21], Chapitre V, 2.1) therefore ¢(m)=
deg ¢,, must be divisible by 8.

It turns out that these necessary conditions are also sufficient:

THEOREM. Let m be a positive integer such that m is not a power of 2. Then
there exists a definite unimodular lattice having an automorphism with characteristic
polynomial ¢,, if and only if m is mixed and ¢(m) is divisible by 8.

* Supported by the “Fonds National de la Recherche Scientifique” of Switzerland.
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510 EVA BAYER-FLUCKIGER

In the second part of the paper we shall investigate some properties of definite
lattices which have an automorphism of characteristic polynomial ¢, :

DEFINITION. A lattice is said to be indecomposable if it cannot be written as
the orthogonal sum of two non-trivial lattices. We shall say that a lattice (L, S)
represents 2 if there exists x € L such that S(x, x)=2.

For instance we shall prove the following theorem, which also holds for non
unimodular lattices:

THEOREM. Let m be a square free integer, and let (L, S) be a definite lattice
having an isometry with characteristic polynomial ¢,,. Then (L, S) is indecomposa-
ble. If moreover ¢(m)>8 and m is not prime, then (L, S) does not represent 2.

It is possible to apply these results to obtain some interesting examples. The
first theorem implies that for m =35, 39, 56 and 84 there exist definite unimodu-
lar lattices of rank 24 having an automorphism of characteristic polynomial ¢,,.
Using the second theorem and similar results, we see that these lattices do not
represent 2, so by a theorem of Conway [3] they are isometric to the Leech lattice.
We also obtain lattices of minimum 4 in dimensions 32 and 40. In higher
dimensions we obtain lattices of minimum at least 4.

In the last part of the paper we shall study the classification problem of lattices
having an automorphism with characteristic polynomial ¢,,, and also the possibil-
ity of constructing such lattices explicitly. This leads to difficult problems concern-
ing the signatures of units of a cyclotomic field.

I thank R. Gillard for useful conversations about the signatures of the units of
a number field. I thank M. Kervaire for many useful comments on my manuscript.

1.

Let f be a product of cyclotomic polynomials. We shall say that (L, S) is an
f-lattice if (L, S) has an automorphism with characteristic polynomial f. Let us
denote ¢,, the mth cyclotomic polynomial. In this section we shall solve the
existence problem of definite unimodular ¢,-lattices, and then we shall make a
few remarks on the corresponding problem for an arbitrary f.

THEOREM 1.1.
1. Assume that m is not a power of 2. Then we have:
a) If n is divisible by 4, then there exists a definite unimodular ¢,-lattice for
any m.
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b) If n=2mod 4, then there exists a definite unimodular ¢ -lattice if and
only if ¢(m) is divisible by 4.
¢) If n is odd, then there exists a definite unimodular ¢7.-lattice if and only
if m is mixed and ¢(m) is divisible by 8.
II. If m is a power of 2, then there exists a definite unimodular ¢} -lattice for
any n.

Moreover if m is not a power of 2 then the lattices will be even (cf. Lemma
1.4).

COROLLARY 1.2. Let f be a product of cyclotomic polynomials. There exists
a definite unimodular lattice having an automorphism with minimal polynomial f if
and only if f has no repeated factors.

Proof of Corollary 1.2. Let (L, S) be a definite lattice and let t:L — L be an
automorphism of (L, S). Let f be the minimal polynomial of t. Then f has no
repeated factors: indeed, if f = gh, then M =gh(t)(L) is an isotropic submodule
of L.

By taking orthogonal sums it suffices to prove the corollary for f = ¢,,,.. But this
follows immediately from Theorem 1.1. [

Remark 1.3. Let f=f,-- - f, where f; is a power of a cyclotomic polynomial,
i=1,...,r. Assume that the resultants Res (f;, f;) ==+1 for all i#j. Then there
exists a definite unimodular f-lattice if and only if there exists a definite uni-
modular f;-lattice for alli=1,...,r.

Indeed, let (L, S) be a definite unimodular lattice having an automorphism ¢

with characteristic polynomial f. Let F=f, - - - f,. There exist integral polynomials
G and H such that

flG+FH= 1.

Let L, =F(t)(L) and L, =f;(t)(L), and let S; and S, be the restrictions of S to L,
and L,. Then it is easy to check that

(L, S)= (Lla Sl) (L, Sz)
where @ denotes the orthogonal sum, and that (L, S;) is an f,-lattice.

We have Res (¢, ¢,..) ==1 except if m =p'n, where p is a prime (see for
instance [23], Proposition 3.4).
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The remainder of this section will be devoted to the proof of Theorem 1.1. We
shall need a few lemmas:

LEMMA 14. If (L,S) is a ¢,.-lattice with m not a power of 2, then (L, S) is
even.

Proof. Let t be an automorphism of (L, S) with characteristic polynomial ¢,.
As m is not a power of 2, we have det(1—t)=1 or det(1+¢t)=1 (cf. e.g. [13]
Chap. VII §3). By replacing t with —t if necessary we may assume that 1—¢ is
invertible. We have S(wx, y)=S(x, w'y) with w=(1—-0)"", w'=(1—-¢t)"" It is
easy to check that w+ w' = id; . Therefore S(x, x) = S((w+w")x, x) =2S(wx, x) so
(L,S)is even. O

Let ¢ be a primitive mth root of unity, and let K =Q({). We shall denote by
an overbar the Q-involution of K which sends £ to {'. Let I be a fractional
Z[¢]-ideal such that I =1, let L be a torsion free Z[¢]-module of finite rank and let
h:L XL — I be a hermitian or skew-hermitian form. We shall say that (L, h) is
unimodular if and only if the adjoint of h, ad (h): L — Homyg (L, I), is bijective.

The following lemma will be important for the construction of ¢,-lattices:

LEMMA 1.5 (Stoltzfus [23], Lemma 2.6 and Addendum). Let A be the inverse
different of K/Q. Let h:L XL —> A be a unimodular hermitian form, and let
n= rankz[c] (L). Set

S(x, y) =Trgq (h(x, y)). (1

Then (L, S) is a unimodular ¢} -lattice. Conversely, if (L, S) is a ¢,,-lattice then
there exists a unique hermitian form h:L XL — A such that (1) holds. If moreover
(L, S) is unimodular, then h is unimodular.

Let F=Q( + ¢ 1) be the fixed field of the involution. We shall denote by ¢ the
minimal polynomial of n =¢+ ¢!, and by ' the derivative of .
We shall also need the following lemma:

LEMMA 1.6. The different of K/Q is ({—¢ Y)Y’ (n)Z[].

Proof. The different of K/F is ({—¢ ")Z[{] and the different of F/Q is
¢'(m)Z[n], see for instance [14], III, §1. The lemma now follows by the multip-
licative property of the differents, see [14], III, §1.

Notice that this lemma gives a bijection between unimodular hermitian forms
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with values in the inverse different and unimodular skew-hermitian forms with
values in Z[{].

Let V be a finite dimensional K-vector space and let hy: VXV —=K be a
non-singular e-hermitian form, where £ = +1. We shall need to know under what
conditions (V, hx) contains a unimodular lattice, i.e. under what conditions there
exists a unimodular e-hermitian form h:L XL — Z[{] such that (L, h) &, K =
(V, hg). If e =—1, then we only need to consider the case where dimg (V) is even.
In this case det(hg) is an element of F', and we shall denote D =det (hg)e
F’[Ng,(K") the discriminant of (V, hg).

LEMMA 1.7. (Wall [27] Proposition 6, or Levine [16] Lemma 24.3). Let
0 =(L—C")? and let (,)p be the Hilbert symbol. Let us denote D the discriminant of
hk.

e =+1 (V, hg) contains a unimodular lattice if and only if (D, 0)p =1 for every
finite prime P of F which does not ramify in K.

e =—1, dim (V) even. Then (V, hy) contains a unimodular lattice if and only if
(D, 8)p =1 for every finite prime P of F which does not ramify in K, and for every
non-dyadic finite prime of F which ramifies in K.

Proof of Theorem 1.1. Let us check that the conditions of the theorem are
necessary. If m is not a power of 2 then a ¢}, -lattice (L, S) is even by Lemma 1.4.
If moreover (L, S) is definite then rank, (L) is divisible by 8, see for instance [21],
Chapitre V, 2.1. Therefore ne(m) must be divisible by 8. We have already proved
in the introduction that the condition m mixed is necessary in part c.) of the
theorem.

We shall now prove that the conditions are also sufficient:

I.a) Notice that it is sufficient to consider the case n =4. Let d € F* such that
dy/(o) is totally positive and set a=({—¢ ')d. Let us denote {(a) the skew-
hermitian form g:K X K — K such that g(x, y) = axy. Set V=K®, and let hx be
the form (a)® (a) E (a) ® (a) where I denotes the orthogonal sum. Lemma 1.7
implies that (V, hx) contains a unimodular lattice (L, h). Now let

1 1
S(x, y)=Trgq (Z-:Z:; m h(x, Y))

then (L, S) is a unimodular ¢? -lattice by Lemma 1.5 and Lemma 1.6.
We have to show that (L, S) is positive definite. It suffices to show that the
form Sg: VX V— Q, obtained by extension of the scalars, is positive definite. We
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have Sg =S¢ H S H S H S§ where

1 1
Sa(x, y) =Trgq (Z—C_“l e ax?)

with x, y € K. Now

d
Sa(x, x)=Trgq (m xf) , and ——

is totally positive. Therefore Sg is positive definite.

b) It is sufficient to consider the case n =2. Let d € F° such that dy/'(o) is
totally positive and set a =({—¢ ")d. Let V=K?, and let hg: VXV — K be the
skew-hermitian form {a) @ (a). The discriminant of h, is D= —-{ ")?*d*=—-1¢
F'/Nge(K'). We have (—1,0)p,=1 if P is a finite prime of F which does not
ramify in K (cf. [14], IX, §3). If m is mixed then no finite prime of F ramifies in K
(see [28], Proposition 2.15) so the conditions of Lemma 1.7 are satisfied in this
case. If m =p" or 2p’, then exactly one finite prime P of F ramifies in K, and
Ngo(P) =p. We have ¢(m)=(p—1)p"'. We are assuming that p is odd and that
¢(m) is divisible by 4. This implies that p=1mod 4. Therefore —1 is a square
mod p, and by Hensel’s lemma this implies that (—1, 8)p = 1. So the conditions of
Lemma 1.7 are satisfied in this case also, therefore (V, hy) contains a unimodular
lattice (L, h). Set

1 1
S(xa y) = TrK/Q (ZTZ-——I m h(x’ Y))

for x, ye L. As in the proof of case a) we check that (L, S) is a positive definite
¢2 -lattice.

The case 1. (c) of Theorem 1.1 will follow from a description of unimodular
definite ¢,,-lattices, given by Proposition 1.8. In order to state this proposition we
need the notion of signature.

Recall that the field F is totally real. Let G =Gal (F/Q), which can be
identified with the set of real embeddings of F over Q. Define o :R'—[F,G by
o(a) =0 if a is positive, o(a) =1 if « is negative. The signature sgn: F" —[F,G is
given by:

sgn (x)= ), o(g)g™".

geG

This is an equivariant homomorphism.
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Let {1,..., 4w 0" ..., {N' where N=¢(m)/2 be a list of the primitive mth
roots of unity such that, if we set n;=¢ +¢;’, then n; > for j<k.

Let g be the real embedding of F which sends n to 7,.

Recall that (,)p is the Hilbert symbol, and that 6 = (£ — ¢ )2

PROPOSITION 1.8. Let m be a positive integer such that m is mixed that ¢(m)
is divisible by 8.

1) There exists an a € F’ such that (a, 0)p =1 for all finite primes P of F, and
that

M
sgn(a)= Y, g

k=1
where

_e(m)
M————4 .

2) If aeF’ is as in 1) then there exists a fractional Z[{]-ideal I such that the
hermitian form

h:IxXI—>Z[{]
defined by

h(x, y)=axy

is unimodular.
3) Let a and I be as above. Set

1
S(x, y)=Trgg (llf_'(—"fﬁ ax?) (2)

then (I, S) is a definite unimodular ¢,,-lattice.

Conversely, if (I, S) is a definite unimodular @,,-lattice then I can be identified
with a fractional Z[{]-ideal, and S can be written under the form (2) so that the
hermitian form h:IXI—Z[{] defined by h(x, y)=axy is unimodular, and that
a € F’ satisfies the conditions of 1).

Proof of Proposition 1.8. 1) Let P; be the infinite prime of F corresponding to
g;. Then the condition

M
sgn (a)= ). gt

k=1
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is equivalent with (a, 6)p =(—1) for j=1,..., N=¢(m)/2. By Hilbert reciprocity
there exists an a € F’ such that (a, )p = (— 1Y forj=1,..., N and that (a, 6)p =1
for P finite if and only if [}, (—1)' =1. This is the case if and only if ¢(m) is
divisible by 8.

2) Let V=K and let h, be the 1-dimensional hermitian form (a). By Lemma
1.7 the form (V, h,) contains a unimodular lattice, i.e. there exists a fractional
Z[{}-ideal I such that h:IxXI—Z[{], h(x, y) = axy is unimodular.

3) If m is mixed then no finite prime of F ramifies in K, and {— ¢! is a unit.
Therefore by Lemma 1.6 the inverse different of K/Q is 1/¢/'(n)Z[{]. By Lemma
1.5 this implies that the lattice (I, S) defined by (2) is unimodular. Let us check
that (I, S) is also definite: it suffices to prove that ays/'(n) is totally positive, i.e. that

M
sgn (W' (M) = Y, ga¢.
k=1
We have

N N
vX) =Tl X-m), so ¢m)=[] -y
i=1 =k
i=1
Recall that n; >, if j <k. Therefore it is immediate that the signature of ¢/(n) is
as above.

Conversely let (I, S) be a positive definite ¢,,-lattice. We have seen in the first
part of the proof that the inverse different of K/Q is 1/¢/'(n)Z[{]. Therefore by
Lemma 1.5 we can write S under the form (2) where h:IxXI— Z[{], h(x, y) = axy
is a unimodular hermitian form. Therefore (a, 8)p =1 if P is a finite prime of F.

It is easy to check that S positive definite implies ay/'(n) totally positive (use
weak approximation). Therefore

M

sgn (a)=sgn (Y'(n)= 2, gzt. O

k=1

It is clear that this proposition implies I. c¢), therefore the proof of part I of
Theorem 1.1 is complete.

Part II of Theorem 1.1 can be proved by direct computation: the form
OHE---HBQ) is a ¢,,-lattice if m =2". It also follows from the description of
definite unimodular ¢,,-lattices, m =2', given by Proposition 1.9:

PROPOSITION 1.9. Let m=2" and set k =m/4.
1) Let a€F’ be totally positive and such that (a, 8)p =1 if P is a non-dyadic
finite prime of F. Then there exists a fractional Z[{]-ideal I such that the skew-
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hermitian form

h:IxI—Z[{]
defined by
h(x, y) = axy

is unimodular.
2) Let a and I be as in 1). Set

1 1
S(x, y)=Trgq (m [~

L "ax?) (3)

then (I, S) is a definite unimodular ¢,,-lattice.
Conversely, if (I, S) is a definite unimodular ¢,,-lattice then S can be written
under the form (3) with ae F" as in 1).

Proof. 1) By Lemma 1.7 there exists a fractional ideal I such that the
hermitian form g:IxI— Z[{] defined by g(x, y) = axy is unimodular. As ¢* is a
unit, this implies that (I, h) is also unimodular.

2) By Lemma 1.5 and Lemma 1.6 we see that (I, S) is unimodular. Let
a=(—¢ Y. In order to prove that (I, S) is positive definite, it suffices to
prove that

sgn (a) =sgn (¥'(n)).

As in the proof of Proposition 1.8 we see that
M
sgn (W)= Y. gan
h=1

where M =¢@(m)/4=k/2 if m#4 and M =0 if m =4. Notice that

g(m)=m; =exp (217%:‘12>+€XP (ﬂ%;l—)) i=1....k

We have

It is easy to check that g(a) is positive if j is odd and negative if j is even.
Therefore (I, S) is positive definite.
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Conversely let (I, S) be a definite unimodular ¢,,-lattice. By Lemma 1.6 and
Lemma 1.5 we have

1 1
S(x, y)=Trga (m [—7 1 be’-)

where h:IXI—Z[{] defined by h(x, y)=bxy is a unimodular skew-hermitian
form

Set a=b¢"*. Then aeF", and

1 1
S(x, y)=Trgaq (m =

/4 "ax?) .

Let us check that a satisfies the conditions of 1). As (I, h) is unimodular, the
hermitian form g : I X I — Z[ ] defined by g(x, y) = axy is also unimodular. Therefore
by Lemma 1.7 we have (a, 8)p =1 for all finite non-dyadic primes P of F. We
have seen in the proof of 1) that ¢/'(n)({—¢ )¢ is totally positive. Therefore a
is also totally positive.

Remark 1.10. Let m =2". It is easy to check that if we take a =1 and I =7[{]
in Proposition 1.9, we obtain the lattice (1) - - - E(1). On the other hand, if
(I, S) is a definite ¢,,-lattice such that I is a non-principal Z[{]-ideal then (I, S)
does not respresent 1. Indeed, suppose that there exists an xeI such that
S(x, x)=1. Then (Zx, S) is an orthogonal summand of (L, S). A definite lattice
factorizes uniquely into the orthogonal sum of indecomposable sublattices (cf.
[19], 105.1). This implies that either t(x) ==+x, or S(x, t(x))=0. Let a=m/2—1.
Then the elements x, t(x),...., t*(x) are linearly independent, so we must have
S(t(x), t(x))=0 if i#j But we also have S(t'(x),t'(x))=1, so the lattice
(Z[¢]x, S) is unimodular. As Z[{]x<I, this implies that Z[{]x=1 so I is a
principal ideal.

Remark 1.11. 1 thank J. Milnor for the following observations. Theorem 1
implies that for all integers m > 1, there exists a definite unimodular lattice L. such
that the orthogonal group of L contain a cyclic group C,, of order m, and such
that C,, acts freely on L\{0}.

Let t be an ailtomorphism of order m of a lattice L. Then the cyclic group
generated by t acts freely on L \ {0} if and only if the characteristic polynomial of ¢
is a power of the cyclotomic polynomial ¢,,.
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2'

In this section we shall investigate some properties of definite ¢, -lattices. If
there is no ambiguity we shall write just L instead of (L,S). We shall be
interested in the decompositions L =L, & - -H L, into the orthogonal sum of
sublattices (the sublattices L; are not supposed to be stables by an automorphism
of L). We shall say that L is indecomposable if L. cannot be written as the
orthogonal sum of two non-trivial lattices.

Let us recall that { is a primitive mth root of unity, that K =Q(¢) and that A is
the inverse different of K/Q.

THEOREM 2.1. Let (L, S) be a positive definite ¢;,-lattice such that

S(x, y) =Trga(h(x, y))

where h:L XL — A is an indecomposable hermitian form.

Let L=L,{" - -{ L, where the L,’s are indecomposable lattices.

Then L;=L; for all i and j. The number of indecomposable components k
divides m and ne(m). We have rank; (L;) = ne(m)/k, and L; is a ¢}, ,-lattice for
some r. In particular ¢(m/k) divides no(m)/k.

If (L, S) is unimodular and if m is not a power of 2, then neo(m)/k is divisible
by 8. If moreover n =1, then m# kp", m# 2kp” where p is an odd prime.

Proof. Let t:L — L be an automorphism of (L, S) with characteristic polyno-
mial ¢,,. Then t permutes the L;’s:t(L;) = L;, because the decomposition into the
orthogonal sum of indecomposable sublattices is unique (cf. [19], 105.1). Suppose
that L =ME N with t(M)=M (therefore also t(N)=N). Then M and N are
sub Z[{]-modules of L. By Lemma 1.5 there exist hermitian forms g: M XM — A
and g': NXN — A such that

S(x, y) =Trgq (g8(x, ¥)) x,yeM

and

S, y)=Trga(@'(x,y)) x,yeN.

Then (L, h)=(M, g) H (N, g’), but we have supposed (L, h) indecomposable so
this implies M =0 or N =0. Therefore t induces a cyclic permutation of the L;’s.
So k divides m. On the other hand the L,’s are all isometric, and in particular
k - rankz (L,) = ne(m). We have t*(L,) = L;, so the L;’s are ¢, -lattices for some
r. Then ranky (L;) = ro(m/k), so re(m/k) =ne(m)/k.
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If (L,S) is unimodular, then the L;,’s are unimodular too, therefore
rank; (L;) = ne(m)/k must be divisible by 8 (see e.g. [21] Chapitre V, 2.1). Let
n=1. We have o(m/k)=<¢(m)/k, therefore r=1, and L, is a ¢, -lattice. By
Theorem 1.1 this implies that m/k must be mixed or a power of 2. [

We shall say that a lattice (L, S) represents 2 if there exists an x € L such that
S(x, x)=2.

COROLLARY 2.2. Let (L,S) be a definite ¢,,-lattice with m square free.
Then (L, S) is indecomposable. If moreover m# p, 2p where p is a prime and if
@(m)>8 then (L, S) does not represent 2.

Proof. As (L, S) is a ¢,,-lattice, by Lemma 1.5 it is the trace of a rank one
hermitian form, which is of course indecomposable. Let k be a common divisor of
m and of ¢(m). It is easy to check that as m is square free, we have ¢(m)/k <
¢(m/k) if k#1. Therefore by Theorem 2.1 we must have k=1, so (L, S) is
indecomposable.

Let R ={x € L such that S(x, x) =2} and set M =ZR. Let t be an automorph-
ism of (L,S) with characteristic polynomial ¢,,. Then t(M)=M. As ¢,, is
irreducible, we have either M =0 or rank; (M) =¢(m). If M#0, then (M, S) is a
definite ¢,,-lattice, so by the first part of Corollary 2.2, (M, S) is indecomposable.
Then R is an indecomposable root system, therefore R=A, or D, with h=
¢(m), cf. for instance [18] p. 145-146. The automorphism group of A, is the
product of the symmetric group of h+1 letters S, ., with C,=7Z/27 and the
automorphism group of D, is a semi-direct product of S, with C5 (cf. [2], Chap.
VI, no 4.7 and no 4.8) and it is easy to check that these groups do not contain any
element t such that the characteristic polynomial of the automorphism t:ZR —
ZR is ¢,,. Therefore M=0 and R is empty. [

In the following Corollary we shall assume that (L, S) is unimodular:

COROLLARY 2.3. Let (L, S) be a definite unimodular ¢}, -lattice such that
one of the following holds:
a) n=1, m is mixed and for all divisors k of m and of ¢(m) such that
e(m/k) = p(m)/k, either m/k is not mixed or @(m/k) is not divisible by 8.
b) n=2, m=p or 2-p with p prime and p=1mod 4.
¢) n=4, m=p or 2-p with p prime and p=3 mod 4.
Then (L, S) is indecomposable.

Proof. By Lemma 1.5, S(x, y) =Trg,o (h(x, y)) where h:L XL — A is a uni-
modular hermitian form. By Theorem 1.1 we see that h is indecomposable. The
indecomposability of (L, S) then follows immediately from Theorem 2.1. [
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Let (L, S) be a definite lattice and let a be a positive integer. Set R={xeL
such that S(x, x) = a}. We shall say that R is decomposable if R = R, U R, such
that R, and R, are disjoint and S(x, y)=0 for xe R,, ye R,.

If «a =2 then R is a root system.

The following Corollary is a consequence of Theorem 2.1 and of results of
Kervaire:

COROLLARY 2.4. Let (L, S) be a definite ¢h.-lattice. Let T < R such that T

is indecomposable.

a) If R contains exactly k copies of T, then k - rank; (ZT)=re(m) for some
integer 1<r=<n. If r=1, then k divides m, and ZT is a ¢, -lattice. In
particular rank; (ZT) = o(m/k).

b) Suppose that a =2 (so R is a root system) and that m is not a power of 2.
Then T is either D,, E,, Eg or A, with h even.

Proof. a) Let t be an automorphism of (L, S) with characteristic polynomial
én.. We have t(R)=R. Let M be an orthogonal summand of (ZR, S) such that
t(M)= M and that M does not have any orthogonal summands N with t(N)= N.
By Lemma 1.5 it is clear that (M, S) satisfies the hypothesis of Theorem 2.1. Let
M=L,H---BHL, then by Theorem 2.1 we have L;=L; for all i and j, so
a - rankz (L;) =rank; (M) which is divisible by ¢(m). Notice that L,=ZT for
some indecomposable T< R. It is easy to see that this implies that
k - rank; (ZT) = re(m) for some integer 1<r=<n.

If r=1, then there exists a unique M <ZR as above such that ZT < M. By
Theorem 2.1, ZT is a ¢b-lattice for some integer b. We have rank, (ZT)=
be(m/k), so be(m/k)=¢(m)/k. But @(m/k)=¢(m)/k, so b=1.

b) If m is not a power of 2, then either 1—t or 1+1¢ is invertible (indeed, ¢
is the multiplication by a primitive mth root of unity). Therefore (L, S) has
an automorphism s such that 1—s is invertible. Kervaire has proved that this
implies that (ZT, S) also has an automorphism s’ such that 1—s’ is invertible
(cf. [8] Proposition 2). On the other hand be also proved that this implies that
T must be one of the root systems D,, E¢, Eg or A, with h even (see [8]
Proposition 3). [

COROLLARY 2.5. Let (L, S) be a definite indecomposable ¢,,-lattice. As-
sume that for all common divisors k of m and of ¢(m) such that ¢(m/k)= @(m)/k
we have : ¢(m)+# 4k, ¢(m)+# 6k, and either ¢(m)/k is odd, or

m__ ¢(m)

—>2—+2.
k k 2

Then (L, S) does not represent 2.
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Proof. Let R={x €L such that S(x, x) =2}, and let T be an indecomposable
root system. Assume that R contains exactly k copies of T. Then part a) of
Corollary 2.4 implies that k divides m and ¢(m) and that rank; (ZT) = ¢(m)/k =
e(m/k).

Moreover (ZT,S) is a ¢, -lattice. By part b) of Corollary 2.4 we have
T=D,, E; or A, with h even. But we have assumed that o(m/k)#4,6s0o T=A,
where h = (m/k). The automorphism group of A, is S, X C, (cf. [2], Chap. VI,
no 4.7). We have assumed that m/k >2(h + 1), therefore the automorphism group
of A,=T does not contain any element of characteristic polynomial ¢,,.
Therefore T is empty, so (L, S) does not represent 2. [

We shall give an application of Theorem 2.1 to the indecomposability of
tensor products of definite lattices. We shall need the following lemma:

LEMMA 2.6. Let { be a primitive mth root of unity, and let (L, S) be a definite
lattice. Set M =L @, Z[{], and let h : M X M — Z[{] be the hermitian form defined
by

h(x®a, y®B) = aBS(x, y).

If (L, S) is indecomposable, then (M, h) is also indecomposable.

Proof. The proof is essentially the same as Kitaoka’s proof of a similar
statement for quadratic forms, cf. [9] Corollary of Theorem 4.

COROLLARY 2.7. Let (L,S) and (L', S") be indecomposable definite lattices
such that (L', S') is a ¢,,-lattice. Let r =ranky (L). Assume that if k is a common
divisor of m and of re(m), then ¢(m/k) does not divide ro(m)/k.

Then (L, S)®; (L', S’) is indecomposable.

Proof. Let (M, h)=(L, S)®,Z[{] as in Lemma 2.6. Then (M, h) is indecom-
posable. We have S'(x, y) =Trgq (g(x,y)), where g:L'XL’'— A is a hermitian
form, and L' is a rank one Z[{}-module (cf. Lemma 1.5). Then

(N, f) =M, h) @z (L', 8

is also indecomposable.
Let (N, S”) be defined by

S"(x, y) =Trgq (f(x, y)).
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Then (N, S") is indecomposable by Theorem 2.1. On the other hand, it is easy to

see that (N, ") is isometric to (L, S) ®, (L', S'), the proof is similar to the proof of
[12], Chapter VII, Theorem 1.3. O

Kitaoka has proved a theorem in [10] with same conclusion as Corollary 2.7.
The precise relationship between Kitaoka’s hypothesis and the hypothesis of
Corollary 2.6 is not known.

3. The dassification problem of definite unimodular ¢, -lattices

Let (L, S) be a definite unimodular ¢,,-lattice. In Section 1 we have found
necessary and sufficient conditions for the existence of such a lattice: namely
either m is a power of 2, or m is mixed and ¢(m) is divisible by 8. In the present
section we shall study the classification up to isometry of these lattices.

Let us recall some notations: ¢ is a primitive mth root of unity, K =Q({),
F=Q(+ ") is the fixed field of the Q-involution of K which sends £ to {~*. We
denote by ¢ the minimal polynomial of n =+, and by ' the derivative of .

Let h™ be the relative class number of K (i.e. the class number of K divided by
the class number of F).

Let Cx and Ci be the ideal class groups of K and F. We have a homomorphism
Ng/r: Cx — Cg which is induced by the norm of ideals. Notice that h™ is the
cardinality of the kernel of this homomorphism (see for instance [15] Theorem
4.4).

In this section we shall assume that h™ is odd. If m is a power of 2 then this
hypothesis is always satisfied, see Weber [29].

PROPOSITION 3.1. Assume that h™ is odd. Let J be a fractional Z[{]-ideal
such that Ng,([J]) =1, where [J] is the class of J in Cx.

Then there exists S:JxXJ—7Z such that (J,S) is a definite unimodular ¢,,- -
lattice.

Conversely if (J, S) is a unimodular ¢,,-lattice, then Ni,([J]) = 1.

Moreover if (J,S,) and (J,S,) are two definite unimodular ¢,,-lattices, then
(J,$)=(, S,).

Let us recall that G =Gal (F/Q), and that we have defined the signature
homomorphism sgn: F' —[F,G by

sgn (x)= ), o(gx)g™

geG

where o(a)=0 or 1 according as « is positive or negative.
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Let Ug and Ug denote the group of units of F and of K. We have
Ny : Ux = Ug defined by Ny p(u) = uil.

For the proof of Proposition 3.1 we shall need the following lemma (which I
believe is well known):

LEMMA 3.2. Assume that h™ is odd.
Let us denote IG the augmentation ideal of F,G. Then we have:
a) If m is mixed, then

sgn : Ug/Nip(Ux) — IG

is bijective.
b) If m is a prime power, then

sgn : Ug/Ng,s(Ug) = F,G
is bijective.

Proof of Lemma 3.2. Let us denote Uy the totally positive units of F.

a) If m is mixed then by Shimura [22] Proposition A.2 we see that [Uy: Uz]=
2. But it is well known that [Ngr(Ug): Uz]=2, see Hasse [7], §21 and
§22. Therefore Uf = Ng,r(U), so sgn: Ug/Ng,s(Ux) — IG is injective. But
Ug/Nge(Ux) and IG have the same cardinality, (see [1] Example 2.5)
therefore sgn is also onto.

b) If m =2", then by Shimura [22] Proposition A.2 we see that Uy = Uz =
Nge(Uk). On the other hand, Ug/Ngr(Ux) and F,G have the same
cardinality (see [1] Example 2.5). Therefore sgn: Ug/Ng,s(Ux) = F,G is
bijective. [

Proof of Proposition 3.1. We have two cases to consider: either m is mixed and
¢(m) is divisible by 8, or m is a power of 2.

1) Let us assume that m is mixed and that ¢(m) is divisible by 8. Let J be a

fractional Z[{]-ideal such that Ng,£([J]) = 1. Then there exists a b € F* such
that the hermitian form h:JXJ—Z[{] defined by h(x,y)=>bxy is uni-
modular (cf. [1], Proposition 1.2).
Recall that 6 =({—¢")? and that (,)p is the Hilbert symbol. No finite
prime of F ramifies in K, therefore by Lemma 1.7 we have (b, 6)p =1 for
all finite primes P of F. By Hilbert reciprocity we have [[pco (b, 8)p =1,
where (2 is the set of infinite primes of F. It is easy to see that this implies
that sgn (b) € IG.
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Let x =2}, g5, where M = ¢(m)/4 (see Proposition 1.8 for the definition
of g). As @(m) is divisible by 8, we have x € IG.
By part a) of Lemma 3.2 we see that there exists u € Ug such that

sgn (u) = x +sgn (b).

Let a = ub, then sgn (a) =YL, g2¢, and (a, 8)p =1 for all finite primes P of
F. Set

S(x, y) =Trgq ( &'(n) axy) (2)

then by Proposition 1.8, (J, S) is a definite unimodular ¢,,-lattice.
If (J, S) is a unimodular ¢,,-lattice, then we can identify J with a fractional
Z[¢]}-ideal. By Lemma 1.5 and Lemma 1.6 we have

S0, %) =Trigo (== h(x, )

P'(m)

where h:JXJ — Z[{] is unimodular. Therefore by [1], Proposition 1.2 we
have N(J])=1.

If (J,S;) and (J,S,) are two unimodular, definite ¢,,-lattices, then by
Proposition 1.8 we have

Si(x, y)=Trga ( alxy)

Y'(m)

such that h; : J xXJ—Z[{] defined by h;(x, y) = a;xy is unimodular. There-
fore u=a,a5'e Ug (cf. [1], §2). As S; and S, are definite, by Proposition
1.8 we have sgn (a;) =sgn (a,). Therefore u is totally positive. By Lemma
3.2 this implies that there exists v € Uk such that u = v0. Therefore f:J — J
defined by f(x) = vx gives an isometry between (J, S,) and (J, S,).

Let m=2". Let J be a fractional Z[{]-ideal such that Ng,([J])=1. Then
there exists b € F* such that the hermitian form h:JXJ — Z[{] defined by
h(x, y) = bxy is unimodular (cf. [1], Proposition 1.2). By Lemma 3.2 there
exists u € Ur such that sgn (u) =sgn (b). Set

S0 )= Triga (=2 auxy). G

Y'(n) ¢!
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By Proposition 1.9, (J, S) is a definite unimodular ¢,,-lattice. The end of
the proof if similar to the case m mixed. [

Let us denote by C™ the kernel of Ng,r: Cx — Cr and let h be the cardinality
of C7/Gal (K/Q).

COROLLARY 3.3. Assume that h™ is odd. The number of isometry classes of
definite unimodular ¢,,-lattices is at most h.

Proof. By Proposition 3.1 we have a surjective map from C~ to the set of
isometry classes of definite unimodular ¢,,-lattices. Let ¢, c,€ C~ and suppose
that there exists a g € Gal (K/Q) such that c§=c,.

It is easy to see that the definite unimodular ¢, -lattices associated to ¢, and c%
are isometric (write the ¢,,-lattice under the form (2) or (3)).

It would be interesting to know the exact number of isometry classes of
definite unimodular ¢,,-lattices. A similar problem (for automorphisms of prime
order) has been solved by H.-G. Quebbemann, cf. [20].

4. The signature of cyclotomic units

We have seen in the preceding section that in order to construct definite
unimodular ¢,,-lattices, we have to find units of F=Q({+{™") (where { is a
primitive mth root of unity) of prescribed signatures. If the relative class number
h™ of K=Q({) is odd, then such units exist by Lemma 3.2. The present section
deals with the problem of constructing these units explicitly.

We shall expose here a method of computing the signature of cyclotomic units
which uses some ideas of G. Gras (cf. [6]). This method has been communicated
to me by R. Gillard.

DEFINITION 4.1. Let & be a primitive 2mth root of unity, and let a be a
positive integer relatively prime to m. Set

" zga_g-—a
¢ 5—6".1

.

It is easy to check that w, is a unit of F (cf. e.g. [5]). We shall say that w, is a
cyclotomic unit.
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Recall that G = Gal (F/Q) and that

sgn (x)= Y. o(gx)g ' eF,G

geG

where o(a) =0 if a is positive and o(a)=1 if « is negative.

We shall give formulas for sgn (w,). We have to distinguish the cases m odd
and m even.

m odd
Set

Tri .
&=exp (———+ m) .
m

Let b be an integer relatively prime to m, and let p(b) be the element of G

which sends £+ &7 to £°+£7°. Let us denote R(b) the remainder of the division
of b modulo m. We have:

7R (ab)

£ — gab sin ( + *rrR(ab))

p(b)wa: b__ &b
&8 sin (WR(b)+~rrR(b))
m
. mwR(ab)
sin -
o (@ab)-R®B) §
= . 7R(b)
sin
m

Therefore the sign of o(b)w, is determined by the parity of R(ab)— R(b). We
have

sen(w,)= Y. [R(ab)—R(b)Jp(b)"
(b,m)=1
O<b<m/2

where [x] denotes the remainder of the division of x modulo 2.

m even
We may assume that m is divisible by 4. Set

& =exp (%i+1ri).
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Let 0<b<m, we have:

o gob _ gab ) sin (—7%[)+ wab)
e £-&7 sin (%b+ wb))

. (wb) |
sm\—
m

As a is odd, (—1)®"=1. We have 0<b<m, so sin(wb/m) is positive.
Therefore we have:

sgn(a)= Y, [%:—)]p(b)—l

(bym)=1
o<b<m/2

where [x] denotes the remainder of the division of the integral part of x modulo
2.

Assume that m is mixed and that ¢(m) is divisible by 8. By Proposition 1.8

there exists a ¢,,-lattice (I, S) with I=27Z[{] if and only if there exists a ue Ug
such that

sgn(u)= Y, g5t @)
k=1

where M = ¢p(m)/4.

(See Proposition 1.8 for the definition of the g;’s).

In the following examples we shall construct such units. This construction
makes use of the formulas for the signature of cyclotomic units.

EXAMPLE 4.2. m=15. Then g =p(2) generates G. We want to find ue Uz
satisfying (4), i.e.

sgn (W) =p2)+p(7)=g+g>

The formula fbr the signature of cyclotomic units in the case m odd shows that
sgn(w))=1+g. We have (1+g>(1+g)=g+g>, so u=w, - ws?=
L+ +L77) has signature g+ g>.
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By Proposition 1.8 the ¢,s-lattice (Z[{], S), with

S(x, y)=Trka (lll( ) uxy)

is definite and unimodular. By Lemma 1.4 this lattice is even. As the rank of this
lattice is 8, it must be isometric to I'y (see for instance [21] Chapitre V, 2.3).

EXAMPLE 4.3. m=24. Then G ={1, p(5), p(7), p(11)}. Using the formula
for the case m even, we see that sgn(w,)=p(5) '+ p(11)"". Therefore u=w,
satisfies the relation (4). As in Example 4.1 we obtain the lattice I'g.

EXAMPLE 4.4. m =35. Then g = p(2) generates G. We want to find ue Ug
satisfifying (4), i.e.

sgn (U)=p2) ' +p@ " +p@)  +p(AD) T +p(13) T +p(17) !
—g+g3+g*+g°+g0+g'l.

By the formula for the case m odd we have
sgn(wy)=1+g+g*+g’>+g*+g’.
We see by direct computation that
(g°+g’+g°+g N sgn(wy)=g+g’+gl+g°+g " +g'"
Let a =g ®+g7+g °+g ''. Then the unit
u=ws =+ SN+

Satisfies the relation (4).
Therefore by Proposition 1.8 the ¢ss-lattice (Z[£], S) with

S(x, y) =Trgq (tll o) uxy)

is definite and unimodular. As 35 is square free we can apply Corollary 2.2: the
lattice (Z[¢], S) is indecomposable and does not represent 2. By Lemma 1.4 the
lattice is also even. As the rank of this lattice is 24, the above properties imply
that it must be isometric to the Leech lattice (cf. Conway [3]).
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5. Examples

There exists a complete list of the isometry classes of definite unimodular and
even lattices of rank at most 24 (cf. Niemeier [18]). For all mixed integer m such
that ¢(m)=<24, we shall determine which of these lattices are ¢,,-lattices.

Recall that if m is mixed and if ¢(m) is divisible by 8, then there exists a
definite unimodular and even ¢,,-lattice (see Theorem 1.1).

1) Lattices of rank 8

We have ¢(m)=38, so m=15(30), 20 or 24. As Iy is up to isometry the
unique definite, unimodular and even lattice of rank 8, we see that Iy is a
¢, -lattice for these values of m.

2) Lattices of rank 16

We have ¢(m)=16, so m=40, 48 or 60. For these values of m the
corresponding cyclotomic field has relative class number h™ =1 (cf. [28], p. 353).
Therefore there exists a unique definite unimodular ¢,,-lattice with m =40, 48 or
60 (see Section 3, Proposition 3.1). This lattice is I's [H I's in each case. Indeed, Iy
is a ¢, p-lattice (cf. 1)). Let t be an automorphism of I’y with characteristic

0
polynomial ¢,,,. Then ( I

t\ . . . ..
0) is an automorphism of I's [ I'y with characteristic
polynomial ¢,,.

Every definite, unimodular and even lattice of rank 16 is isometric to I'y[H I's
or to I'ys. The above discussion shows that I';¢ cannot be a ¢,, -lattice. This also

follows from Corollary 2.4: indeed, the root system of I'j¢ is D;s.

3) Lattices of rank 24
We have ¢(m) =24, so m =35(70), 39(78), 45(90), 52, 56, 72 or 84. We shall
study each case separately.

m =35

As 35 is square free, we can apply Corollary 2.2: Every definite ¢5s-lattice is
indecomposable and does not represent 2. Therefore if (L,S) is a definite
unimodular ¢;s-lattice, then (L, S) is isometric to the Leech lattice (cf. Conway
[3]. Explicitly, we have L =Z[{] where { is a primitive 35th root of unity, and

1
S(x, y) =Trgo (:lf—'—(—’ﬂ—) ux)'») , x,yeZ[{]
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where u=(L+ LN+ + )M+,  is the minimal polynomial of
n=¢+¢ " and ¢/ is the derivative of ¢ (cf. Example 4.4).

m =39

As 39 is square free, we can again apply Corollary 2.2 to deduce that every
definite unimodular ¢;g-lattice (L, S) is isometric to the Leech lattice. We shall
give a description of (L, S) which is similar to Craig’s presentation of the Leech

lattice (cf. [4]). Let K=Q({) where { is a primitive 39th root of unity. It is
straightforward to check that the different of K/Q is

Pll")'lePleléll

where Py, P, and Q are prime Z[{]-ideals with norms 3>, 3®> and 13 respectively.
Let I=(P,P,Q")"', and let us denote A the inverse different of K/Q. Then
A =II. Therefore we can take L =1 and

S(x, y) =Trgq (xy), x,yel

(This corresponds to a =/(n) in Proposition 1.8.)
Notice that for m =35 one cannot write the inverse different under the form
JJ, therefore this type of description is not possible.

m =45
I's@ Iy is a ¢,s-lattice. Indeed, let ¢t be an automorphism of I'y with
characteristic polynomial ¢,5 (cf. 1). Then

0 0 I
¢ 0 0)
0O I O
is an automorphism of I'y [ I'y [ I'y with characteristic polynomial ¢s.
Let K=Q({), where ¢ is a primitive 45th root of unity. The relative class

number of K is 1 (cf. [28], p. 353). By Proposition 3.1 this implies that up to
isometry I's B I'; B I is the unique unimodular definite ¢,s-lattice.

m=352

Let (L, S) be a definite unimodular ¢s,-lattice. Then Corollary 2.3 implies that
(L, S) is indecomposable. Indeed, k =2 is the only common divisor of 52 and of
©(52) =24 such that ¢(52/k) =24/k. But 24/2 =12 is not divisible by 8, therefore
(L, S) is indecomposable. Let R ={x €L such that S(x, x) =2} be the associated
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root system. Then Corollary 2.4 implies that either R is empty or R=2A,,. We
shall see that there exists a definite unimodular ¢s,-lattice (L, S) having root
system 2A;,.

The automorphism group of A, is S;3XC, (cf. [2], Chap. VI, no 4.7),
therefore there exists an automorphism t:ZA,,—Z7ZA,, with characteristic
polynomial ¢,¢. Set R=2A;,, and let T:ZR — ZR be the automorphism which
is given by the matrix

r o)

Then the characteristic polynomial of T is ¢s;.
Let us identify the ith copy of ZA,, with

13 13
{Z x;;¢; such that x; €Z, Z X;i =O}
i=1 i=1

fori=1,2. Let
12
— 1 12
Y1 13 Z € —13€13i
i=1

and let y, =ry;;. Set R=2A,,, and let L =ZR +7Z(y;; +Ys2). Then L is unimodu-
lar (cf. Niemeier [18] p. 163). It is easy to check that T(y;;+ ys2) = ¥s1— Y12
modulo ZR. An easy computation shows that S(y,;+ yso, T(y11+¥s2) = 1, there-
fore T(y;;+ysy)eL. So T is an automorphism of (L, S).

The relative class number of the cyclotomic field corresponding to the 52th
roots of unity is h™ =3 (see [28], p. 353). therefore by Corollary 3.3 there are at
most two isometry classes of definite unimodular ¢s,-lattices. We already know
that there exists such a lattice (L, S) with root system 2A;,. But Niemeier has
shown that every definite unimodular lattice of rank 24 having root system 2A,,
is isometric to (L, S). We have seen that there are no other root systems R such
that ZR is a ¢s,-lattice. Therefore if there exists another definite unimodular
¢ so-lattice, it must be isometric to the Leech lattice.

m=>56
Let (L, S) be a definite unimodular ¢s¢-lattice. Then Corollary 2.3 implies that
(L, S) is indecomposable. Indeed, k =2 and k =4 are the only common divisors of
56 and of 24 such that ¢(56/k) =24/k, and in each case 24/k is not divisible by 8.
Let R={xeL such that S(x, x)=2} be the associated root system. Then
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Corollary 2.4 implies that if R is not empty, then R =2A,,, 4E, or 4Aq. It is easy
to check that the automorphism groups of 2A,, and of 4E4 do not contain any
element of characteristic polynomial ¢s¢ (cf. [2], Chap. VI, no 4.7 and no 4.12).

We shall see that R=4A is also impossible. Indeed, let R=4A,. The
automorphism group of Ag is S; X G, (cf. [2], Chap. VI, no 4.7) therefore Ag has
automorphisms of characteristic polynomial ¢,4. Let T be an automorphism of R
with characteristic polynomial ¢ss. Then T is the composition of

tt 0 0 0
0 t,b 00
0 0 t, 0
0 0 0 ¢t

with a permutation matrix of order 4, where t, =+1I or an automorphism of Aq
with characteristic polynomial ¢4 or ¢,. Niemeier has proved that the unimodu-
lar lattice (L, S) with root system R =4A; is unique up to isometry (cf. [18], p.
165). We shall see that T does not extend to an automorphism of L.

We shall identify the ith copy of ZA¢ with

2 7
i=1

i=1

Let Vii =%Zj6_—_1 e]'i ”%e7i and let VYri = Y1is fOI‘ r= 1, s v 6. Let X1 = YI1+ y22+ Yia3,
X3 =Y3,— Y3+ y14. then L =ZR +7Zx,+7Zx, is a unimodular lattice (cf. Niemeier
[18], p. 166). It is easy to check that

T(y1:) = £Y1,¢) modulo R

where o is a permutation of order 4. To simplify notations, we shall write ab
instead of S(a, b). We see that x,;T(x,) is either +y,y,+y,y; Or y;y3+y,ys, or
+y,¥,+y,ys (we omit the second index which is irrelevant here). But none of
these can be an integer, as y,y>=3, y;y3=7 and y,ys; =5. Therefore T(x,)¢L.

This implies that up to isometry the Leech lattice is the unique definite
unimodular ¢«-lattice.

m=72
a) I{@ I @I, is a ¢s-lattice. Indeed, I's has an automorphism t with
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characteristic polynomial ¢,, (see 1)). Then

0 0 I
(t 0 O)
010

is an automorphism of I's [ I's I's with characteristic polynomial ¢,.

b) There exists a unimodular lattice (L,S) with root system R =4E,.
Moreover, (L, S) is unique up to isometry with these properties (cf. Niemeier [18],
p. 160). We shall see that (L, S) is a ¢,,-lattice.

The root system Ej is generated by 6 simple roots ay, a5, . . ., ag, with Dynkin
diagram
aq O3 Oy Qg (8 73

105)

The corresponding matrix of inner products is

2 0 -1 0
/ O 2 0 -1
-1 0 2 -1
0O -1 -1 2 -1
\0 O 0 -1 2 -1
O 0 O o0 -1 2

o O O O

We have det (M) =23.
We see that ZE is a ¢o-lattice. Indeed, one can identify ZE, with the lattice
(Z[£]1, S'), with

S'(x, y) =Trgq (Tni_l) x?)

where ¢ is a primitive 9th root of unity, K =Q(¢) and n =+ . Notice that the
different of K/Q is 3({— {H(m%—1), see Lemma 1.6. On the other hand,
NK,Q(§—§’1)=3. As m and n—1 are units, it is easy to deduce from this that
det(S')=3. It is easy to check that n/n+1 is totally positive. Therefore S’ is
positive definite. Theorem 2.1 implies that S’ is indecomposable. But Kneser has
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proved (cf. [11]) that there exists only one isometry class of definite indecomposa-
ble lattices of rank 6 and determinant 3, so (Z[{], ') is isometric to Eg.

I thank Michel Kervaire for the following explicit identification of (Z[{], S')
and Eg set o, =0+, a,=1, a;=—+), a,=¢ as=¢* ag=
-1+ —*+ 2. Using this identification, he also obtains formulas for an
automorphism 6 of E¢ with characteristic polynomial ¢:

0(a)=a,+az+a,+as

O(ay) =ay

0(a3) = —a,

0(a,) = —(az+ay)

0(as) =a;+ay+ 203+ 20, +as+ag

0(ag) =—(a;+2a,+2a3+3a,+2as+ ay).

Let t=—6. Then t is an automorphism of Eg with characteristic polynomial ¢s.
Set

S O ~ O
S ~ O O
~ o © O
S O O~

Then T is an automorphism of 4E with characteristic polynomial ¢-,.
If (M, S) is a lattice, we shall denote

M?% ={x e QM such that S(x, M) e Z}.

We have X =ZE#/ZE,=Fsx, with x =i(—a;+as3—as+as), x>=%. The auto-
morphism t of ZE, extends to an automorphism of ZE?,and induces t: X — X. It
is easy to check that t(x) =—x.

Following Niemeier (cf. [18] p. 160) we shall denote +x; £y, +z; +s;, i =0, 1,
the elements of

4
kEB (ZEZ|ZEy)
=1

Let L=ZR+Za+7Zb, where a=x;+y;+z;+s¢=x1+y;+2z;, and b=
Xo—y;+2z,+5; =—y;+2z;+s;. It is easy to check that aT(a)=aT(b)=bT(b)=0
and that bT(a)=4. As these are all integral, we have T(L)=L.
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The relative class number of the cyclotomic field corresponding to the 72th
roots of unity is 3. Therefore by Corollary 3.3 there are at most 2 isometry classes
of definite unimodular ¢,,-lattices. This implies that up to isometry the only
definite unimodular ¢,,-lattices are I's[H I's [} I'y and the lattice with root system
4E,.

m =84

Let (L, S) be a definite unimodular ¢g,-lattice. The only common divisor k of
84 and of 24 such that ¢(84/k)=24/k is k=2. As 12 is not divisible by 8,
Corollary 2.3 implies that (L, S) is indecomposable. As 41>26, Corollary 2.5
implies that (L, S) does not represent 2. Therefore by Conway’s result [3] the
lattice (L, S) is isometric to the Leech lattice.

The following Proposition summarizes the above results on ¢,,-lattices of rank
24:

PROPOSITION 5.1. Every definite unimodular ¢,,-lattice of rank 24 is
isometric to one of the following:

a) the Leech lattice (m =35, 39, 56, 84)

b) IZzHBI HI (m=45,72)

c) the Niemeier lattice with root system 2A,, (m =52)

d) the Niemeier lattice with root system 4E¢ (m =72).

Remark 5.2. J. Tits has given four presentations of the Leech lattice (cf. [24],
[25]) which also make use of trace maps. M.-F. Vignéras has generalized one of
these constructions and obtained lattices of higher rank (cf. [26]).

4) Lattices of rank r=32

We shall give some values of m such that every definite unimodular ¢,,-lattice
is indecomposable and does not represent 2 (this can be proved by easy applica-
tions of Corollaries 2.2, 2.3 or 2.5). We shall also give the relative class number
h~ of the corresponding cyclotomic field (cf. [24], p. 353).

r=32 m =151, h™ =S5
r=40 m =355, h™ =10
m =132, h™ =11
r=48 m =65, h™ =64
m = 105, h™ =13
r=56 m =87, h™=1536
r =64 m =85, h™=6205
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r=72 m =91, h™=53872
m =228, h™=238203
r=96 m=119, h™=1238459625

This list is not always complete for the given values of r: if r=72, it is easy to
find more examples.
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