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Intersection homology operations

R. MARK GORESKY™*

§1. Introduction

In this paper we construct Steenrod squares in intersection homology,
Sq' : IHZ(X; Z/(2)) — [HE (X Z/(2))

for any topological pseudomanifold X. Here, @ and b are perversities ((GM1],
[GM2]) with

b(c)=2a(c) for each c=2.

These homomorphisms are natural with respect to normally nonsingular maps,
and they agree with the usual Steenrod squares on the normalization of X when
a=b =0. They also satisfy a Cartan formula.

If X is an n-dimensional Z/(2)-Witt space ([S], [GM2]) then the “middle”

intersection homology group IHZX(X;Z/(2)) satisfies Poincaré duality. Thus the
Steenrod square

Sq' : IH; (X Z/(2)) — Ho(X; 2/(2)) — Z/(2)

may be used to define (in the usual way) a Wu class Iv € IH%(X ;Z/(ZQ\) and an
intersection homology Whitney class Iw = Sq(Iv).

For piecewise linear pseudomanifolds X, we give a combinatorial formula for
this intersection homology Whitney class, and compare it with Sullivan’s Whitney
class for Euler spaces.

The intersection homology Whitney class Iw does not normally lift to intersec-
tion homology (even if X is a complex algebraic variety.) However the single
characteristic number

Ix(X;Z/(2)) = Iw, - Iwg= Z rank IHL(X; Z/)2))

* Partially supported by the Alfred P. Sloan Foundation and National Science Foundation grant
#MCS-820/1680
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486 R. MARK GORESKY

determines the cobordism class of X in the Witt-space cobordism groups of P.
Siegel ([S]).

The results in this paper on Steenrod operations and Wu classes may be
considered as part of a program to describe ways in which the intersection
homology groups of certain singular spaces behave like the ordinary homology
groups of a nonsingular space ((CGM]§1). It remains as open question whether
there is an intersection homology — analogue to the rational homotopy theory of
Sullivan. For example, one would like to know when Massey triple products are
defined in intersection homology and whether they always vanish on a (singular)
projective algebraic variety (see [DGMS]).

I am grateful to C. McCrory, R. MacPherson, and R. Porter for valuable
conversations concerning cohomology operations. I would especially like to thank
R. MacPherson for his help with the argument in §5.3, and N. Habegger for his
careful reading and criticism of the first draft of this paper.

§2. Intersection homology sheaves

In this chapter we summarize basic material from [GM1], [GM2] and fix
notation which will be used throughout this paper.

2.1. Let X denote an n-dimensional topological pseudomanifold, with singular
set 3 < X. By sheaf we shall mean a sheaf of Z/2Z modules on X.

Choose a topological stratification
XOCXIC:XZC A 'CXn_2=2CXn:X

by closed subsets X; of dimension <i. ((GM1]), [GM]). Thus, each xe X, — X, _,
has a fundamental neighborhood U, which is homeomorphic (by a stratum
preserving homeomorphism) to R'xcone (L) where L is the (topologically
stratified) link of the stratum X, —X,_,.

For any perversity a=(a(2), a(3), a(4),...) there is a bounded complex of
injective sheaves IC; which is constructible with respect to this stratification and is
uniquely determined up to chain homotopy by the following conditions:

(a) IC;=0 for all i <0
(b) IC; | (X-3)=7Z/(2)x_s

(c) For all ¢c=2 and for any xe X—X, _._1,
#' (U, ;IC;) =0 whenever i=a(c)+1.
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(d) For all c=2 and for any xe X—-X,_._,,
#H.(U,;IC;) =0 whenever i=n—c+a(c)+1.

(Here U, denotes a fundamental neighborhood of x, of the type considered

above. X' denotes hypercohomology and #' denotes hypercohomology with
compact support.)

The cohomology groups of the complex of global sections,
> T(XGIC ) - IN(XGIC) - (X ICH) — - -
are the intersection homology groups of X.

2.2 In this section we give an explicit construction of the sheaves IC;.
If A" is a complex of sheaves and peZ, Deligne defines ((GM2]) the
complexes 7_,A" and 7=A’ as follows:

(0 for j>p
(t1=,A) =qkerd forj=p
(A for j<p

(0 forj>p+1
(r=PA) =<Imd forj=p+1
(A’ forj<p

Clearly, 7<,A < 7=PA and this inclusion induces isomorphisms on cohomology.

Now let I' denote a fixed injective resolution of the constant sheaf Z/(2) over
X. Let I, denote its restriction to the open set U, =X-—X,_ . Define A;
inductively by the rules

(a) Az=L
(b) Af<+1 = (Tsa(k)ik*A;c) ® Ifc+1

where i : U, — U, _, is the inclusion. Then IC;= A, is the intersection homol-
ogy complex.

Remarks: 1. The tensor product with I, is formed in step (b) because it
injectively resolves the sheaf 7_,,i-I; in a canonical way.

2. The truncation functor 7=*® could be used instead of 7,

3. Indexing schemes: In this paper we will use “cohomology” notation for the
intersection homology groups and sheaves. This means that IC; | (X —3)=7Z/(2)
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in degree 0. The hypercohomology of the complex IC; is denoted
H'(X;IC;) = IHYX)

If X is an n dimensional piecewise linear pseudomanifold then the intersection
homology groups IH?(X) defined geometrically in [GM1] may be identified with
the hypercohomology with compact support

H: (X IC;)
as in [GM2]. For compact X we shall use both notations IH?(X) and IH? '(X).
2.3. Multiplication on the nonsingular part,

Z/(2)x-s R Z(2)x-5s— ZI(2)x -5
extends in a unique way to a product structure

IC;®IC; - IC;,;

whenever a+b is a perversity. If a+b=1t=(0,1,2,3...) then this product is a
Verdier dual pairing, i.e., the associated map

IC; — R Hom (IC;, D)

is a quasi-isomorphism. (Here Dy is the dualizing complex in the derived category
of constructible sheaves of Z/(2)-modules on X). In particular, for compact X,

IHX(X; Z/(2))=Hom (IH?_(X; Z/(2)), Z/(2)).

§3. Steenrod squares

In this chapter we show how to define, for any perversity @, mod 2 Steenrod
operations

Sq' : THY(X; Z/(2)) — IH;"(X; Z/(2))
where b(c)de(c) for each c¢. These operations are compatible with the usual

Steenrod operations in cohomology.
The Steenrod squares do not usually define ‘“‘operations” on intersection
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homology. This can be seen from a simple example: suppose X is a 6 dimensional
piecewise linear pseudomanifold with an isolated singularity x, and suppose
veIH7(X) is a homology class which is represented by a P.L. cycle Z which
contains x,. (Here m is the “middle” perversity of [GM1].) Then Sq*(v)=v ‘v is
represented by ZNZ' where Z' is a cycle transverse but homologous to Z
([MC1)]). This means Z' may also contain the singular point {x}, so the intersec-
tion ZNZ' does also. However Z N Z' is a 2-dimensional cycle and in order that
a 2 dimensional cycle represent an element of IH%(X) it must not contain the
stratum {x,}. Thus, Sq> does not lift to an operation on IH™(X) unless all the
intersection homology classes of dimension 4 can be “moved away”’ from the
singular point {x.}, i.e., unless IH,(X, x —x,) = 0.

3.1. In this section we review the construction of Steenrod squares as found in
Bredon [B] §20. Fix a topological pseudomanifold X, and let I' be an injective
resolution of the constant sheaf Z/(2) on X. Bredon defines a sequence of sheaf
morphisms

hy,: & PP ->I'""

p+q=n

which (do not commute with the differentials but) are determined “up to
homotopy” (see §3.6) by the conditions
(a) hg is induced from multiplication

Z/(2) @ Z1(2) —> ZI(2)
() h,+h,r=dh,_1+h,d

where 7:I° ® I — I? ® I” switches the factors.
The Steenrod squares are defined as follows: If U is any open subset of X, and
acT'(U, ) is a section such that da =0 then

St'(a)=h, (a®a)e'(U,PF")
is also a cycle. Furthermore, if a = db then

St'(a)=dh,_(b® db)+dh,_;_,(b® b)+2dh,_; ,(b® D).
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Using relation (b) above, it follows easily that St' induces a homomorphism,
Sq' : H?(U) — HP*(U)

which is the Steenrod squaring operation.

3.2. The following construction is an important step in extending the Steenrod

operations to the intersection homology sheaves.

Suppose A" and B° are complexes of sheaves on a pseudomanifold X, and
suppose a sequence of sheaf morphisms

J,: D A*"®A*—B ™

p+tq=n

have been defined for all integers m, such that

(@) J,, =0 for all m<0
(b) djm+1+jm+1d = jm +jm7

where 7 switches the factors. Let I' denote an injective resolution of the constant

sheaf Z/(2). Let A'=A"QT and B'=B @I denote the corresponding injective
resolutions of A® and B".

DEFINITION. The sheaf morphism

J.: © APQAT—>B" ™

p+q=n

induced from {J,.} is given by the following formula: For any open set U < X,

J.(a®@u)Q@BbRv))= i Jr" a®b)®h,,_ 1" (u®v)

i=0

whenever a, be I'(U,A"); u,ve['(U,T’) are homogeneous elements such that
deg(a)+deg(u)=p, deg(b)+deg(v)=q.

(Here, 7 switches factors, and h,, are the sheaf morphisms of Bredon, see §3.1.)
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PROPOSITION. The maps J,, also satisfy the relations

(a) J,,=0 for all m<0
(b) djm«i»l—*_‘,n‘m»ld:Jm"‘_Jm’r

Proof. Direct calculation.

3.3. In this section we will restrict the maps h,, of §3.1 to the nonsingular part
X~—3 of X, and show that they naturally induce maps on the intersection
homology sheaves.

Suppose a and b are perversities with 2a(c)<b(c) for each c. Let A; and B;
be the corresponding intersection homology complexes over the open sets U, =
X—-X,_ as in §2.

PROPOSITION. Suppose sheaf maps
i AL ® A; —Bi[-m]
have been defined for each m such that

(@) J,.x =0 whenever m <0

b) dJ ikt T mi1.6d =T i (Where 7 switches factors).
Then each J,, . extends in a natural way to a sheaf map
ki1 : A1 @ Apy = Bry[—m]

which is defined over U, ., and these maps also satisfy the equations (a) and (b)
above (but with k replaced by k+1).

Proof. Apply i~ to each of the sheaves. We obtain a diagram

J,

mk +1

(TSa(k)ik*Allc)®(TSa(k)ik*Al.c) ~mmmmoy (st(k)ik*B;c)[—— m]

| T

i (AD @ i (A = i (AL ® A —— ix-Bil-m]

But (7 iBi)[—m] is a subcomplex of i «B[—m], and the image of ¢ lies in
this subcomplex. (This is obvious except when m = 0. But h, is a chain map so it
takes ker (d) ® ker (d) to ker (d).) Thus we have found sheaf morphisms

jm,k+1 3Al.<+1 ® A;cﬂ - ﬁfcﬂ[‘m]
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satisfying (a) and (b) above, where
Api= T<a()k*Ak and By, = T <b (k) B

The construction of §3.2 now gives canonical extensions of the J mk+1 to the
injective resolutions,

Jomic+1: Ak QA — Bl‘(-f—l[_m]
as desired.

COROLLARY. If 2a(c)=b(c) for all c, then the maps h,, defined by Bredon
have canonical extensions

J.  IC;®IC,; — IC;[-m]
such that
(@) J,,=0 for all m <0
) J,d+dl, =T, + T,
© Ju | (X=3)=h,, | (X-3).
3.4. Suppose a and b are perversities such that
2a(c)=b(c) for each c.
We define Steenrod operations for any open set U X,
Sq" : IH(U) — IH;""(U)
as follows: if a e I'(U, IC;) let
St'(a)=h,_(a® a).

The same calculation as §3.1 shows that St" induces a homomorphism Sq" on
cohomology.

Remarks. 1. Suppose z € IH3(X; Z/(2)). If r>s then Sq"(z)=0. If r=s then
Sq'(z) =z - z e IH3%(X; Z/(2)).
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2. The method of [GM2] 84 can be used to show the homomorphism
Sq" : IH3}(X)— IH;"*(X) is topologically invariant and does not depend on the
choice of stratification of X.

3.5. It is easy to see from the method of §3.3 that J,, is defined naturally as a
morphism

IC;®IC;—IC;

where b(k)=2a(k)—m for each k. (One must replace the complex B, ; by the

quasi-isomorphic complex +=*®j, .B, in the proof of Prop. 3.3.)

Problem. Can one use this fact to (a) lift the Steenrod squares
Sq" :IH; — IH}; "

to a perversity b <2a and to (b) lift the corresponding Whitney classes of §5.2 to
intersection homology?
Now suppose d<b are perversities, and X is locally (&, b)-acyclic, i.e.,

IH* (L) = Hg**>(L) = - - - = IH;*(L)=0,

whenever L is the link of a codimension k stratum. This implies that the natural
homomorphism

[H*(X) — IH%(X)

is an isomorphism ((GM2] §5.5). For which perversities a=<b is it possible to
multiply the Whitney classes of a locally (4, b)-acyclic space X, and obtain
cobordism invariant characteristic numbers?

3.6. In this section we show that the maps J,, of §3.3 are essentially unique.

PROPOSITION. Let a and b be perversities such that 2a(k)=<b(k) for all k.
Suppose A’ and B’ are complexes of injective sheaves which are quasi-isomorphic
to IC; and IC; respectively. Suppose K, :A'®@A —B[-m] is a system of
morphisms such that

(@ K,,=0 for all m<0
(b) de+1+Km+1d =Km+KmT
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(c) Ko|(X—2) induces the multiplication map on the cohomology sheaves over
the nonsingular part X—3 of X

KOI(X"E)322®12_912.

Suppose J,. :A’Q A" — B'[—m] is another system of morphisms which also satisfy
(a), (b), and (c). Then there exists a system of morphisms

D,,:A"QA " —>B[-m]
such that
]m _Hm = Dm+1d + dDm+1 +Dm +Dm7

(Consequently, if £ is a section of A’ such that dé =0 then J,,(§® ¢)—H,,(§Q &) =
dD,, . (€ ® &) so Sq™(&) is independent of choices.)

Proof. First we show that J, and K, are chain homotopic. The multiplication
on the nonsingular part X—23 has a unique lift in D”(X) to a morphism

¢ IC;QIC; = IC;

by [GM2] §5.1 and §1.15. Since A" and B’ are injective, they are homotopy
equivalent to IC; and IC; respectively. The morphism ¢ then corresponds to a
unique homotopy class of maps from A°"® A°— B’. But J, and K, are both in
this homotopy class.

We now follow Bredon [B] §20.7. Let D, be a homotopy between J, and K.
Thus

Jo— Ko)(1+7)=D1d(1+7)+dD;(1+71)
or
(J,—K;—D,(1+7)d+d(J,—K,—D;(1+71))=0.

Thus, J,— K;—D,(1+7) is a chain map and gives an element of Homp»x, (A" ®
A’, B'[-1]). The same argument as [GM2] §1.15, §5.1 shows that this element is
determined by its action on the cohomology sheaves over the nonsingular part of
X. But this action is 0. So H,—K,;—D,(1+171) is homotopic to 0 by some
homotopy D,. Continuing in this way the maps D,, can be defined inductively.
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3.7. In this section we show the Steenrod squares are compatible with the
canonical maps between intersection homology groups with different perversities.

PROPOSITION. Suppose a<¢ and b =d are perversities such that 2a(k)=<
b(k) and 2c(k)=d(k) for each k. Then the following diagram commutes:

IHY(X) -5 [HY(X)

o

IH;"(X) - IH"(X)

Furthermore, if a=b =0 then Sq":IHX)— IH5""(X) coincides with the usual
Steenrod square on the (ordinary) cohomology of the normalization of X.

Proof. Let A, By, C; and D, denote the corresponding complexes of sheaves

on the open set U, (see §2). One checks by induction that the following diagram
of sheaf maps commutes:

A;QA;, 225 C.®C;

‘Im kl Jm‘kl

Bi[-m] —— D;[-n]

The case k =2 is trivial. The maps B are inclusions of complexes, so the inductive
hypothesis is easily verified.

Now suppose that X is normal and a=b =0. The injective complexes I' and
IC; are quasi isomorphic. Thus there is a homotopy equivalence ¢ :I' = IC; and a
homotopy inverse ¢ :IC;— I'. Apply the uniqueness result (§3.6) to the systems
of morphisms {J,,} (from §3.3) and {¢h,,.y}. We conclude that they determine the
same Steenrod squares.

3.8. In this paragraph we show that the Steenrod squares satisfy a Cartan
formula.

PROPOSITION. Suppose a and b are perversities such that b(k)=2a(k) for
each k. Suppose £ € H'(X) and n € IH3(X). Then the following equality holds in
IH%+s+t(X)‘

Sq'(¢ - m)=2. Sq4'(€) - Sq" " (m).

Proof. The proof is similar to [B] §20.11.
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Consider the family of morphisms of sheaves

K, IQRIC)QI QIC) I QIC;

which assigns to a homogeneous section u® a ® v ® b the section

m

K, (u®a®v®b)=

i=0

ht'(u®v)®J, ;7" (a ®b).
A direct calculation shows that

dK, .1 +K,,.d=K, +K,T

and that K, induces the multiplication map on the cohomology sheaves over the
nonsingular part X—3 of X.

Let ¢ :I' ®IC; — IC; be the quasi-isomorphism which is induced from multi-
plication on the nonsingular part of X (and which induces the product H*@ IH% —

IH?%). If we apply the uniqueness result (§3.6) to the systems of morphisms,
J.o(d®d) and ¢ ° K,,, we obtain morphisms

D,:IQ®IC)®I KIC, = IC;
such that
Ined®db—9¢°K,, =D,.1d+dD, + D, +D,7

Now suppose u and a are sections of I' and ICj; respectively, and that du =0 and
da =0. Then

Sq"([u]- [a]) =[Jsst-(d(u @ a) ® ¢(u® a))]
- [cpg hu®w®1J,, ., (a® a)]
+[dDy s (U®a @ u® a)]
= ¥ (Saw)]-[Sg7(@)]

where [a] denotes the homology class represented by the section a.
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§4. Open questions on the geometry of Steenrod operations

4.1. A homology operation which doubles perversity can be constructed using the
geometric technique outlined by McCror§ [MC2] 86, i.e., by dualizing the
construction in [SEJVIL.1. Does this agree with the operations Sq' defined in §3?
An investigation of this question might lead one to study a Smith theory of
involutions for the intersection homology groups.

4.2. It would be interesting to study the relationship between the operations Sq”
and the “branch point” operations of [MC2] and [HMC)]. Intuitively, Sq*(&)
represents the Whitney class of the ‘“normal bundle” of a cycle £ in a space X. (It
is precisely this when £ and X are manifolds.) The “branch point operation”
S*(¢) represents the Whitney class of the “inverse tangent bundle” of & One
might hope for a Whitney duality formula relating these operations.

4.3. The following question is due to R. MacPherson:

Steenrod operations (in ordinary cohomology) arise as an obstruction to
finding a cochain-level representation of the cup product which is both commuta-
tive and everywhere defined. If we take an everywhere defined product (as in
sheaf theory, or by using front and back faces of simplices in the singular theory)
then it fails to be commutative, and the amount by which it fails is precisely the
Steenrod square. If instead we take a commutative product on the cochain level
(as in the geometric intersection of transverse cochains [G], [GM1]) then it fails to
be everywhere defined. Is it possible to use this second choice of product to give a
geometric construction of the Steenrod operations in intersection homology, as
the amount by which the product fails to be globally defined?

§5. Witt spaces and Wu classes

5.1. Throughout this chapter we shall assume X is a locally compact n-
dimensional piecewise linear pseudomanifold.

DEFINITION. [S], [GM2] X is a Z/(2)-Witt space if, for some (and hence for

every) stratification of X, and for every stratum of odd codimension c in that
stratification,

IH(L;Z/(2))=0 §

where L is the link of that stratum and ¢ =21+1.
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Remark. It follows ([S]) that the natural map

IHX(X;Z/(2)) — [HE(X; Z/(2))
is an isomorphism, so TH%(X; Z/(2)) is self-dual.

For the rest of this chapter IH* will be used to denote the intersection
homology with middle perversity, IH}.

DEFINITION. A Witt space with boundary (X,9X) is a compact
pseudomanifold X with collared boundary dX such that both X —-9X and 0X are
Z/(2)-Witt spaces. We shall say two compact Z/(2)-Witt spaces X; and X, are
cobordant if there is a Z/(2) Witt space with boundary (X,9X) such that
0X = X, UX,. The technique of [S] gives:

PROPOSITION. The cobordism group of n-dimensional Z/(2)- Witt spaces is

0 for n odd
Witt =
Z/(2) for n even.

The cobordism class of a compact n-dimensional Witt space X is determined by the
single characteristic number

Ix(X;Z2/(2)= i rank TH (X; Z/(2)) (mod 2)

i=0

Remark. The cobordism groups of rational-Witt spaces were calculated [S] to
coincide with the higher Mischenko—Witt groups of Q, [R] [Mis].

Remark. It is interesting to compare the Z/(2) — Witt space cobordism groups
to the Z/(2)-Euler space cobordism groups of Akin and Sullivan [A]. The
Z/(2)-Euler space cobordism class of an Euler space X is completely determined
by the (usual) mod 2 Euler characteristic of X. McCrory showed [MC3] that each
Whitney class defines a homology operation in Euler space bordism theory. We
do not know whether there is an analogous operation in Witt-space bordism
theory.

5.2. In this section we define Wu classes in intersection homology and Whitney
classes in ordinary homology for Z/(2)-Witt spaces, using the original method of
Wu. We will allow the n-dimensional Witt space X to be noncompact in this
section, and use IH*(X) to denote the intersection homology with compact
supports.
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Let o:IH¥(X)—Z/(2) denote the augmentation, i.e., a(£)=0 unless &€
IH?(X) and in that case a(£) is the number of points in any cycle representation
of & This augmentation is defined for any perversity.

DEFINITION. The intersection homology Wu class, Iv*e IH*(X) is the
unique class such that, for all ¢ € IH*(X) the following formula holds:

a(Sq(§)) = a(lv™ - §)

where
Sq=1+Sq'+Sq*+ - - -

Following Wu we define the intersection homology Whitney class to be
IW(X) = Sq(Iv*) e HY(X) = HZY(X)

The Whitney class is an element of the (Borel-Moore) homology of X with
closed supports. If X is compact we shall write IW,(X) for the component of
IW(X) in H{(X).

Remarks. 1. Iv*(X) and Iw(X) are topological invariant of X since the
squaring operations on the intersection homology sheaves are topologically in-
variant.

2. Iv'(X)=0 for all j>n/2.

3. If X is a Z/(2)-homology manifold then Iv*(X) and IW(X) agree with the
usual Wu and Whitney classes.

4. Iw(X) does not necessarily lift to IH*(X), even if X is a complex algebraic
variety. For example take X to be the Thom space of the negative line bundle
E — CP* whose first chern class is —2. Then IW,(X) is nonzero in H,(X).
However, the map IH?*(X) — H,(X) is zero. (see also §5.5)

3.3. In this section we calculate the pullback of the intersection homology
Whitney class under a normally nonsingular map.

THEOREM. Suppose X and Y are Z/(2)-Witt spaces, and f: X —Y is a
normally nonsingular map ((FM], [G], [GM2]) with normal bundle v. Then the
following equation holds in ITH*(X):

F*UW(Y)) = W(v) - IW(X)

where W(v) is the Whitney class (in H*(X)) of the normal bundle v.
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Proof. We will prove this formula for compact X in two special cases,

Case 1. F is a normally nonsingular inclusion

Case 2. f is a projection MXY — Y where M is a smooth manifold.

The general case follows from these because any normally nonsingular map
can be factored into a composition of these two types.

Case 1. By restricting to a tubular neighborhood of X in Y, we may suppose
that f is the inclusion of the zero section X into a vector bundle w: Y —> X
(which, therefore, coincides with v). Then it suffices to show that

IW(Y)=m*(W()) - 7*(IW(X))

(Here IW(Y) is an element of the closed support homology of Y or, equivalently,
of the relative homology H,(Y, Y —X).
Let a: IH*(X)— Z/(2) be the augmentation.

LEMMA 1. Define ReIH*(X) to be the unique class which satisfies the
following equation for all B € IH*(X),

a(W(v)-Sq(B))=a(B - R)
Then 7*(R) is the Wu class of Y.

Proof. Let o’ denote the augmentation on IH*(Y). Let ¢ : IH*(X) — IH*(Y)
be the Thom isomorphism, with Thom class U = ¢(1). For any B’ IH*(Y) we
can write B’ = ¢(B)=n*(B) - U for some B € IH*(X). Therefore,

a'(Sq(B") = o'(7*Sq(B) - Sq(U))
=a'(m*Sq(B) - 4(W(v))
=a'(Sq(B) - W(v))
=a'(B+ R)
=a'(B' - 7*(R)). Q.E.D.

It follows that IW(Y)= 7*Sq(R), so we must show that the following equa-
tion holds on IH*(X):

Sq(R) = W(v) - Sq(Iv(X)).
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LEMMA 2. The nondegenerate bilinear pairing
H*(X)X H(X)—>Z/(2)

(which is given by {(a, b)=a(a - b)) is compatible with the nondegenerate bilinear
pairing

IH*( X)X IH*(X) = Z/(2)

(which is given by <{(a,b)=al(a-b)) with respect to the canonical maps
H*(X) A IH*(X) B H (X).

Proof. Obvious.

Remark. It follows that (A(a), b)=(a, B(b)) for any aec H*(X) and be
IH*(X). Thus, A and B are adjoints with respect to these inner products.
We may unambiguously define the adjoint

Sq* : H*(X) — IH*(X)
by the formula
(b, Sq(a))=(Sq*(b), a)
for any be H*(X) and a € IH*(X).

LEMMA 3. Sq(R)= W(v) - Sq(Ic(X))
Proof. We shall show that for any B € H*(X), the following formula holds:
(B, Sq(R)) = (B, W(v) - Sq(Iv(X))).

We shall use W to denote the cohomology class Sq~'(W(v)). This is well defined

because Sq is invertible when considered as an operation on ordinary
cohomology. Now calculate

(B, Sq(R)) = (B, Sq Sq* W(»)) since R=Sq*W(»)
=(SqSq*B, SqW) since W =Sq(W)
= a(Sq(Sq*(B) - W)) by Cartan formula
=a(Sq*(B) - W Iv(X))
=(Sq*(B), W - In(X))
={(B, w(v) - Sq(Iv(X))) as desired.
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This concludes the proof of Case 1.

Case 2. Suppose f: M XY — Y is the projection to the second factor, where
M is a smooth manifold. Then v~ !=#*(TM) so we must show IW(MXY)=
F*IW(Y)) - w*(W(M)) where m: M XY — M is the projection to the first factor.
From the Kunneth formula for middle intersection homology ([GM2]) and the
Cartan formula for Sq, it follows that the intersection homology Wu class of
M XY is the product of the Wu classes of M and Y and, therefore, (by the Cartan
formula again) the intersection homology Whitney class is the product of the
Whitney classes of M and of Y. This completes the proof in Case 2.

5.4. In this section we give a combinatorial formula for the intersection homology
Whitney class of a compact piecewise linear pseudomanifold.

LEMMA. Suppose X is a compact Z/(2)-Witt space. Then
IWo(X)=Ix(X;Z/(2))= ) rank IH'(X;Z/(2)  (mod 2).

Proof. If n=dim(X) is odd then Ix(X)=0 by Poincaré duality, while
IW,(X) =0 by remark (2) above. If dim (X) is even (say n =2[) then IWy(X) =
Iv' - Iv' and Ix(X)=rank IH'(X;Z/(2)) (mod 2). By Milnor [Mil], IH'(X;Z/(2))
breaks into an orthogonal direct sum

(€.)D(ex)D - - - B(e)DH

where (¢;) is a one dimensional subspace generated by a vector ¢ such that e? =1,
and where H is hyperbolic. (i.e., h - h =0 for all h € H.) This means that H is even
dimensional, and Iv' = e, +e,+ - - - +e, Therefore, IW,=e3+e3+ - -+ +e?=r=
rank (IH'(X)) (mod 2) as desired.

THEOREM. Suppose X is a compact n-dimensional Z/(2)-Witt space. Then
IW(X) equals the Whitney class W,(f) which corresponds to the constructible
function f(x) = Ix(X, X —x)=Y"rank IH*(X, X —x; Z/(2)) (as defined by Fulton
and MacPherson [FM)).

Proof. The proof is almost the same as [FM] §6.3.2 which was due originally
to R. Thom [T].

First we check that IWy(X) = W,(f), i.e., that both Whitney classes have the
same Euler characteristic. Consider the spectral sequence for IH*(X) which is
associated to the complex of sheaves IC' ((GM2]). We have E®9= C?(X;IH")
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where IH? represents the local intersection homology sheaf. By the preceding
lemma, IW(X)=Ix(X)=x(EY%) =}, rank C°(X;IH?) (if these are all finite
dimensional). Choose any triangulation of X to compute these cochain groups.
Each simplex o will contribute a tern

Y rank IH(X, X — &) = f(6)

where & is the barycentre of t. Therefore,

TWo(X) =Y. f(&)

which is the formula for Wy(f) in [FM] §6.1.1.

Now we shall show, for each cohomology class &€ H*(X;Z/(2)) that
(& TW(X))=(& W,(f)). By cobordism theory, & is the Thom class of some
normally nonsingular map g:Y — X with some virtual normal bundle v. There-
fore,

(& TW(X)) =(g*(IW(X)), [ Y]
=(w(v) - IW(Y),[YD by §5.3
=(w(v) - W(g*(f),[Y]) by induction
=(g*(W(),[YD by [FM]
=<& W() Q.E.D.

COROLLARY 1. If X is a complex algebraic variety then IW(X)=0
whenever j is odd.

Proof. Let f be the constructible function
f(x) = Ix(X, X —x).
Then

= C,(f) (mod 2)

where C, is the homology chern class of MacPherson [M].

COROLLARY 2. Let K’ be the first barycentric subdivision of any triangula-
tion of a compact Witt space X. Then IW(X) is represented by the chain which is
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the sum of all the j-simplices o € K’ such that Ix(X, X —x) =1 for any point x in the
interior of o.

COROLLARY 3. Suppose a compact Witt space X can be stratified with even
dimensional strata {S,}. Then there exist numbers {F,} and {G,} (in Z/(2)) such
that

Wi(X) =) FIWS,)

and

IW(X) =Y. G Wi(S,).

(Here W, denotes the Sullivan Whitney class [Su] of a mod 2 Euler space.)

Proof. For each stratum S, consider the Z/(2)-valued constructible functions f,
and g, which are supported on the closure S, and are defined by

f. (x)=Ix(S,, S,—x) (mod 2)
g (x)=x(S,, S, —x) (mod 2)

for any xeS,. If xe S, then f,(x)= g, (x) = 1. Therefore, {f,} and {g.} are both
bases for the space of Z/(2)-valued functions on X which are constructible with
respect to the stratification {S,}. Therefore, we can find numbers F, and G, so
that

1=) F.f.

and

X, X—x)= 2, G.g..

However, each S, is simultaneously a Z/(2)-Witt space and a Z/(2)-Euler space so
each of the functions f, and g, satisfy the local Euler condition of [FM].
Therefore, we can apply W, to each of these equations, which gives the desired
formula.
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