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The fundamental group at infinity of affine surfaces

R. V. GUrRIAR and A. R. SHASTRI

§0. Introduction

The main motivation for the results of this paper is the following question,
which arose in connection with the results in [G]:

(*) Suppose V is a contractible affine smooth surface/C.

Can the fundamental group at infinity of V be a finite, nontrivial group? The
analogous topological question is

(*+) can a homology 3-sphere X with nontrivial finite fundamental group be the
boundary of a smooth, contractible 4-manifold M?

An affirmative answer to (*) would have given an affirmative answer to (%),
which in turn, would have given an example of a homology 3-sphere with
nontrivial finite 7, other than the Poincaré-sphere. The Poincaré homology
3-sphere is the only known example of a homology 3-sphere with nontrivial finite
fundamental group. It is also known that it cannot be the boundary of a
contractible smooth 4-manifold. This further motivated the study of ().

However, the answer to () turned out to be negative. We do not know any
answer to (x*). (However, if M is not required to be smooth, the answer is yes;
see [F]).

It turns out, that the only possible finite nontrivial group in (*¥) and (%) is the
binary icosahedral group P=(x,y|x*=y?=(xy)>), being the only nontrivial,
finite perfect group that acts freely on a homotopy 3-sphere. See [M]. As in
[CPR] we are led to the study of a finite connected system of nonsingular rational
curves on an algebraic surface X whose dual graph is a tree. If N is a tubular
neighbourhood of this system of curves, it turns out that the fundamental group at
infinity of V is 7(8N). (See [CPR] or §2 for precise definition of the fundamental
group at infinity). In §1 we classify all such trees with 7;(0N) =P, under certain
conditions which arise due to geometric considerations. The method of proof is
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460 R. V. GURJAR AND A. R. SHASTRI

purely combinatorial and closely follows that in [CPR]. As such it turns out that
we need to classify trees with m,(6N) as a cyclic group of order <5 and in
particular, the results of [CPR] about trees is also included. For all this we need a
stronger group theoretic result than the proposition in III of [MU]. We find that
the proof of this proposition as presented in [MU] is incomplete. So we have
included the proof of this also in §1 (see Proposition 1).

Using the results in §1, (*) is answered negatively in §2. While this work was in
progress, thanks to M. Miyanishi, we received a preprint from him in which he
proves the following interesting result:

THEOREM [Miyanishi]. Let C>*% V be a proper morphism onto a normal,
affine surface V. Then V=C?/G for a small, finite subgroup G of GL(2;C). If V is
smooth, then V= C?2. If the coordinate ring I'(V) is a UFD, then V is isomorphic to
the affine surface X*+ Y>+Z>=0.

Miyanishi has used the theory of logarithmic Kodaira dimension. As it turns
out, our method for answering (*) is readily applicable for giving a topological
proof of this result. This has been incorporated in §3. See also [G] for earlier
partial results in this direction. Finally in §4 we give some examples of normal,
affine surfaces whose fundamental group at infinity is P.

§1. Intersection trees

We shall use the terminologies of [CPR]. Consider the following geometric
situation: Let X be any nonsingular, irreducible, surface/C and let F< X be a
Zariski closed subset of codimension one with irreducible components C, ..., C,
satisfying the following conditions:

(i) For each i#j either CNC = or C;NC, consists of a single point at
which C; and C; intersect transversally.

(ii) For three distinct indices i, j, kK, GNCGNC = .

We shall call such a pair (X, F) a normal pair.

Associated to a normal pair (X, F) is its weighted dual graph T= T(X, F)
defined as follows: The irreducible components {C;} are the vertices of T. Two
vertices C; and C; are linked in T if and only if C;NC;# J. We express this by
writing [C, G;] is a link in T. The weight at C, denoted by (2, is the self
intersection number of C, i.e.

QCI,:Ci'Ci
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Here we shall recall some generalities about weighted graphs. We shall
consider only finite, weighted graphs, and from now on simply refer to them as
graphs, and denote them by T, T' etc. Vertices will be denoted by u, v, w etc. A
vertex v of T is free if it is linked to at most one other vertex. It is linear if it is
linked to at most two vertices and it is a branch point if it is linked to at least
three other vertices. (Thus a free vertex is also a linear vertex).

A graph is connected if given any two vertices v and v’ there exists a chain of
links [v;; v;44), i=0, ..., n, such that v = v, and v' = v,.,,. A connected graph is a
tree if there is no chain of links [v;; v;.1], i=1"-- n, such that v;=v,.,,. From
now on we shall consider only trees, though most of the terminologies can be used
for a general graph also with suitable modifications.

Let T be a tree and ve T be any vertex. By T—{v} we mean the subgraph of
T obtained by removing the vertex v and all the links at v from T, and keeping
the weights unchanged. Obviously T —{v} need not be connected. Its components
are called branches of T at v. A branch & of T at v is called simple if it does not
have any branch points of T. An extremal branch point is a branch point at which
at most one branch is not simple. Clearly a finite tree always has an extremal
branch point. A tree is linear if it does not have any branch points. For instance a
simple branch is necessarily a linear tree.

Associated to T is the bilinear form B(T), on the real vector space spanned by
the vertices {v;} of T as basis, defined as follows:

i

{1 if [v;;v;]isalinkin T
C U, =
0 otherwise for i#]j.

The discriminant of this form will be denoted by d(T).

We say T is unimodular, or negative definite if B(T) is unimodular or negative
definite etc.

Clearly, if T=T(X;F), is a tree of a normal pair (X, F) then B(T) is the
intersection form of the set of curves {C,} in F.

The fundamental group w(T) of a tree T is defined as follows: Fix an indexing
of the vertices arbitrarily. Let 7(T) be the quotient of the free group on {v;} by
the relations:

(@) [v, v;]1=e if [v;; v;] is a link
(b) v, - v, - v™ =1 for each vertex v, where i;<- - -<i and {v,,..., v, }is
the set of vertices in T linked to v.
This presentation of 7(T) will be used heavily, in this section. It is easily seen
that 7(T) does not depend, upto isomorphism, on the choice of indexing the
vertices, and the abelianized group, abm(T) is of finite order if and only if
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d(T)+# 0 and then its order =|d(T)|. In particular T is unimodular if and only if
abm(T) is trivial.

We say T is spherical or cyclic or of order <n if w(T) = e or cyclic of order <n
respectively.

For a normal pair (X, F) such that all the irreducible components of F are
isomorphic to P!, if T=T(X, F) is a tree then it is proved in [CPR] that
7w(T)=m,(6N) where N is the boundary of a small tubular neighbourhood N of
F in X.

Definition of “blow-up’’ and “blow-down”

Let [u; v] be a link in T. By “blow-up at [u; v]”’ we mean to obtain a new tree
T' as follows: Introduce a new vertex w in T, delete the link [u; v] and introduce
links [u; w] and [w; v]. Define the new weights 2’ by

Q,, if x#u ov,w
2:'=<0 -1, if x=uorv

-1 if x=w.

Let now v be a free vertex in T. By “blow-up at v’ we mean to obtain a new
tree T’ as follows: Introduce a new vertex w and a new link [v; w], and define the
new weights 2’ by

0, if x#o,w
2.=40,-1, if x=v

=1 if x=w.

“Blow-down” is described precisely as the inverse process of blow-up and as such,
we need to have a linear vertex w with £, = —1 to perform the blow-down, on a
given tree T.

We say two trees are equivalent if there is a finite chain of blow-ups and
blow-downs to obtain one tree from the other. A tree T is minimal if it has no
linear (or free) vertex v with £, =—1. Every (finite) tree is equivalent to a
minimal one (which may be an empty one). It is easily seen that w(T) is an
invariant of this equivalence relation. If (X, F) is a normal pair with all the
irreducible curves in F being nonsingular and rational, the blow-up and blow-
down operations on T = T(X, F) precisely correspond to the geometric ‘“‘blow-up”
and “blow-down” on (X, F). In particular, if T’ is equivalent to T = T(X, F), then
there is another normal pair (X', F') with F'=T(X',F') and X—F=X'—F" as
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varieties. Finally, if T’ is obtained by blowing-up T once, then B(T’)=
B(T)®D(-1).

Remark. In [MU] it is proved that a nonempty, negative definite, spherical
tree cannot be minimal.

DEFINITIONS. We say T satisfies the hypothesis (E) if every positive
semidefinite subspace W of B(T) is of real dimension <1. We say T satisfies the
hypothesis (H) if no tree equivalent to T has a subtree of the form

with £2,,=~1 and 0, =0.

Remarks. (a) It is clear that if T satisfies (E) then every subtree of T also
satisfies (E), and every tree equivalent to T also satisfies (E). Further, there can
be at most two vertices with nonnegative weights and if there are two of them
then these two vertices should be linked, and one of the weights should be zero.

(b) If T=T(X, F) where (X, F) is a normal pair obtained by resolving a
normal singularity p of a surface V, then it is known that T is negative definite.
On the other hand if V is a nonsingular affine surface and V < X is a projective
imbedding with X non-singular, so that (X, F) is a normal pair, where F=
X—-V=", C and the irreducible curves C; are linearly independent in the
Neron-Severi vector space, then T = T(X, F) has exactly one positive eigen-value.
Thus in both the above geometric siutations T = T(X, F) satisfies (E).

(c) If T satisfies (H), then it does not contain a subtree of the form

Uiy

%

\*
/U3 U4
V¥

with Q, =0 and ,,>0. In particular if T=T(X, F) and H'(X, Ox) =0, then T
satisfies (H). (See [CPR] Lemma 6).

LEMMA 1. Suppose a tree T has a subtree of the form

b3

3 o,
u v
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where v is a linear vertex in T, with , =0. Then T is equivalent to a tree with the
same number of vertices and links and only the weights at u and w changed to
0,+1 and 2, —1 respectively.

Proof. “Blow-up” [v; w] to obtain R o — with weights 2, —1, —1,

v w u
and (2, —1 respectively. Now blow-down the vettex v;.

LEMMA 2. Let T be a minimal tree with a linear subtree & =lf1———*---'§r with a
nonnegative weight, r =2, and u; being linear in T for i =2. Assume that u, is either
free or is joined to a branch point w in T. Then T is equivalent to a minimal tree T’
obtained by replacing © by a linear tree © =x—#-----x——=x with the weight at
v,=0, and perhaps the weight at w being altered. H

Proof. If 2, =0 there is nothing to prove. By induction we can assume
0, <-2,i<k, 2, =0. Blow up on the right of u, successively, till the weight at
u, becomes 0. Using Lemma 1, make the weight at u,_, =0. In this process we
may have introduced certain vertices on the right of u, with weight —1. Blow
down as many times as possible, to obtain a minimal tree. This of course does not
change the weight at u,_; and so we can use Lemma 1 repeatedly, to complete
the proof.

LEMMA 3. Let T be a minimal tree with a branch point v. Let © be a simple
branch at v, with some nonnegative weights. Then T is equivalent to a minimal tree
with © replaced by a simple branch ©' with the free vertex having weight 0 and the
weight at v possibly being changed.

Proof. By Lemma 2 we can assume that the free vertex u of T in © has weight
=0. If it is zero there is nothing more to prove. Suppose it is >0.

S ==x

u

Blow up successively at the right of u till the weight at u has become 0. We now
have

u u,

with 2, =0, 2, =—1. Blow up at the free end at u to obtain

& ¥
£
3
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with weights —1, —1, and —1. Now blow down u to obtain

with weights at v; =0, i =1, 2. By blowing down as many times as needed on the
right of v, we can now obtain a minimal tree with the free vertex v, having weight
0. This completes the proof of the lemma.

LEMMA 4. Let T' be any tree, ve T’ be some vertex. Let T be obtained by

. 0 '
joining the tree * * to T' at v:

*o
T % 9< Q
” ’ v
-
Then

(i) m(T)==n(T")
. ) 0 1 0 1 .
(i) B(T)=B(T )@(1 0) where (1 0) denotes the hyperbolic space

(iii) T satisfies (E) if and only if T' is negative definite.

(iv) T is minimal and satisfies (H) implies T' is minimal.

Proof. (1) and (ii) are obvious and (iii) follows from (ii). To see (iv) we note
that T’ may fail to become minimal only if v is linear in T’ and 2, =—1. Since T
is minimal v is not a free vertex in T'. Hence T will have a subtree of the form

\*
/v

with €, = —1 contradicting (H).

*O
o

LEMMA 5. Let T be a minimal tree satisfying (E) and (H). Suppose T has a
simple branch & with nonnegative weights and w(©) is finite. Then T is equivalent
to a tree T' obtained from T by replacing © by a tree of the form

0 0

Hemm ook % *

U U,

with £}, <-2 and the vertex with weight zero at the right end being free in T'.
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Proof. From Lemma 3 we can assume that © has the free vertex v with weight
zero. Since w(©) is finite it follows that & is not *,. Let the vertex adjacent to v in
T be u. If (2, <0, blow up at the free vertex v to obtain

Repeat this process till the weight at u becomes zero. On the other hand suppose
0, >0, then, first blow up the link [u, v] to obtain

u v,
------- ek
Q,-1 0

Repeat this process till the weight at u becomes zero.

Notation. By joining 6 * t0 Eg at eight different vertices v,i=1,2,...,8

we obtain eight different trees E§. e.g. E3 is shown below:

wd g =P e = = ]
* * Sk Cul— *

*

-2

Weshall denote by E, the following tree:
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Note that 7w(E,)=P and B(E,) has one positive eigen value.
The main result of this section can be stated now.

THEOREM 1. Let T be a minimal tree satisfying (E) and (H). Suppose w(T)
is a cyclic group of order <5 or is isomorphic to P, the binary icosahadral group.
Then either T is linear or is equivalent to E, or Eg or one of the E§ or

2 -2 -2 2 2 -2 -2

* sk % %k * %k *
to *(Q or to %0
><O *0

We shall prove a sequence of lemmas, studying trees with increasing complex-
ities, before proving the theorem.

LEMMA 6. Let © be a linear tree of the form

with T, having weights <—2, and T, # @ i =1, 2. If |d(&)| =<5, then —2<, <0.

Proof. Using Lemma 2 of [CPR] it is easily seen that d(&)=
P1P282, + p1G, + p»q; for some positive integers p;, P2, qs, 4z such that (p, ¢) =1,
and 0<gq/p, <1, i=1,2. Now one can easily see that |d(S)|<5 implies —2<
., =<0.

LEMMA 7. Let © be a linear tree of the form

with T, nonempty and having weights <—2. Suppose d(&)=2,3 or 5. Then & is
one of the following trees, with w(©) isomorphic to the cyclic group of order shown
in the bracket:

LY
I. * * * 5
g R - )

*C

L 57 %5 5 =5 >



468 R. V. GURJIAR AND A. R. SHASTRI

e R e T
V. }Jl % )
V. e (5)
VIt (3)

Proof. Use the Lemma 6 and compute directly.

For the study of trees with branch points we need a stronger version of a
group theoretic result due to Mumford. Let G,, ..., G, be any nontrivial groups,
a,€G; i=1,...,n, be any elements. Let (G4, ..., G,) denote the quotient of
the free G,*---*G, by the single relation a,*---*a,=e. For n=3, and
G;=7Z/(\,), and a; € G,, the generators, 7(G,, G,, G;) is denoted by 7(Ay, Ay, A3)
where A; =2 are some integers. These are classically known as triangle groups.
They are all nontrivial, noncyclic and those which are finite among them are all
known. In particular, order a;=A; in 7(Ay, A5, A3). These facts will be used
heavily.

PROPOSITION 1. Let G4,..., G, be any nontrivial groups, a; € G; be any
elements. Then
(1) For n=4, 7(G,, ..., G,) is infinite
(i) 7(Gy, ..., G,) is nontrivial for n=3.
(i) 7(G,, Gy, G3) is finite =>-G; are cyclic groups generated by a;, i =1, 2, 3.

Proof. We shall repeatedly use the following basic fact which is a direct
consequence of Schreier’s construction of amalgamated products.

“Suppose K is a subgroup of the groups G and H. Then both G and H are
subgroup of GEH. If K is a proper subgroup of both G and H then GiH is
infinite”’.

Now (i) follows from the fact that 7(G4, ..., G,,) is isomorphic to the amalga-
mated product of G,*G, and G;*---*G, over the infinite cyclic subgroups
generated by a;'*a;'e G;*G, and as*: - -*a, € G3*: - - *G,.

Assume n =3. If one of the q; is trivial then 7(G,, G,, G3) is a free product
and hence nontrivial. So, let 2< order a; =\, <x, i=1,2, 3.

Consider the three cyclic subgroups (a,)< G,, i =1, 2, 3; and form the group
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1((ay), (a3), (a3)) = T(Ay, A, A3). Since order a; = A; in T(Ay, Ay, A5), it follows that
7(G, (ay), (a3)) is an amalgamated product of G, and 7((a,), (a,), (a;)) over the
cyclic group (a;). In particular 7((a,), (a,), (a3)) is a subgroup of (G, (a,), (as))
and hence order a,=A, in 7(Gy,(ay),(as)). As before it follows that
7(G1, G», (as)) is an amalgamated product of 7(G;, (a,), (as)) and G,, and simi-

larly, 7(G,, G3, G») is an amalgamated product of 7(G;, G,, (a;)) and Gs. Thus we
have

T(A1, Ay, A3) =71((ay), (ay), (as)) € 7(Gy, (ay),
(@3)) € 7(Gy, Ga, (a3)) € (G4, Gy, Ga)

and hence 1(G,, G,, G3) is nontrivial. Finally, if 7(G,, G,, G,) is finite, then all
the groups in above sequence are finite. Since 7((a,), (a,), (a3)) is not cyclic, (a,) is
a proper subgroup of 7((a,), (a,), (a3)). Hence (a,) = G,. Similarly (a,) = G,, and
(as) = Gs.

Remark. The first and the second part of the above proposition are due to
Mumford. However, we note that the proof of it as presented in III of [MU] is
incomplete and needs modification.

LEMMA 8. Let T be a minimal tree with at most one branch point. Suppose T
satisfied (E) and (H) and @ (T) is cyclic of order <5. Then T is either linear or is
equivalent to

-2 -2 -2 -2 -2 =2 =2
* % %k Or * %
>1<0 ’0
%0 *()

Proof. Let v be the branch point of T. Since T satisfies (E) it follows that at
most one of the branches at v has nonnegative weights. Since a minimal linear
tree with negative weights cannot be spherical at most one branch at v can be
spherical. On the other hand putting v = e in the presentation of 7(T), we obtain
a quotient of 7 (T) of the form 7(G4, ..., G,), with G, = w(T;) where T, are the
branches of T at v. Since w(T) is finite cyclic, using the Proposition 1, we
conclude that except possibly for two, say G, and G, all the G, are trivial, i =3.
From the above observation it now follows that n=3. In particular, T3 is the
spherical branch at v, and carries some nonnegative weights. By Lemma 5, we can
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assume that T; is of the form

o
*O

with [v; u,] being a link in T. But Tj; is spherical implies r =0, and hence T has
the form

%0

Then w(T)=w(&) where & i 1s the horlzontal linear subtree above. Lemma 7 now
shows that & =*—+#—+ or *——* ——* Hence the result.

Remarks. (a) The argument used in the above lemma is very typical and
occurs repeatedly in what follows; viz., constructing the quotient of w(T) by
putting a branch point v=-e. The basic fact we use about P is that the only
nontrivial quotient of P is 7(2, 3, 5) which is isomprohic to A5. We shall be much
brief, in using the above argument, in what follows.

(b) The following two trees are equivalent

- -1 - - - - _ -
T;: “-'2 * *2 *2 , Ty *2 *2 *2 *2

*+1 *0
*()

- . , =2 =1 =2 =2

For, blow up T, at the free vertex with weight +1 to obtain *—x Kk

and use Lemma 1 with weight 0 at v.
vx0
*—1

LEMMA 9. Let T be a tree with a single branch point v and weights on each
branch at v <-2. Suppose w(T)=P. Then T is either E, or Es.
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Proof. Here we use the fact that the only nontrivial quotient of P is
7(2, 3, 5)= As. Thus putting v =e in 7(T) it follows that there are exactly three
branches at v, say T,, T, and T3, with «(T;) of order 2, 3 and 5 respectively
i=1,2,3. (Since T; have weights <—2, #(T;) are nontrivial finite cyclic groups).
Thus the possible choices for T; can be listed as follows:

T1=52 .

T,=x%_ or
S B )

T by Oy T

Taking different choices for T; and joining them at v, we obtain different choices
for T. Since *-————ag can be joined essentially in two different ways, we obtain the

following eight possibilities for T. Out of these only the first and the last have

discriminant +1, for £, —2 and —1 respectively. One can directly check that these
two graphs T do have #(T)=P. (a =1,):

e w—— % _:-*2 d(T)=—-(30a+59)=1if a=-2.
"))
a
. ey d(T) = —(30a +47) # £1
At (T)=—(30a+47)
)
% d(T) = —(30a+53)# +1
=Y ) i) __*2 (T)—_( a+ )7’5
*
2 e =2 -2 d(T)=30a+41# £1.
£ 3
)
e A d(T)=30a+49# +1
22 -9 -2 =2 -3
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a
X = + 7 :t ®
_**2 _*3 _*3 d(T)=30a+37# 1
S
-2
a
S :k3 d(T)=30a+43 # +1.
%
-2
-5
®
/*_3
a* _*2 d(T)=—@B0a+31)=-1if a=—1.

Remark. In particular, when B(T) is negative definite and has exactly one
branch point and #(T)=P, then T = Ej.

LEMMA 10. There is no minimal tree T satisfying (E) and (H) with w(T) as a
cyclic group of order <5 or w(T)=P and T having the form

with T; nonempty simple branches with negative weights.

Proof. We first claim that v and u are linked. If not let © be the linear subtree
between v and u, © # J. Putting v = e and using the Proposition 1, we conclude
that the nonsimple branch T’ at v is cyclic of order <5. By Lemma 8, it follows

+1
that © is spherical. So we can as well assume ©= x by Lemma 5 of [CPR].

Arguing as above at v as well as at u, and using Lemma 8 and the Remark (b)
below it we see that T is equivalent to

—2% *—2
\ +1 /
—-1/* *-————*\—-1
—2% *\—2
—2% *—1

with discriminant =—11. This is absurd.
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So u and v are linkeg. Let §; be the discrimuinant of T; and 4,, A, denote the
discriminants of T,----- #--=-T, =y, and Ty-----%------ T, =y, respectively. As in
[CPR] one can easily see that |d(T)|=|4,4,— 8§,8,858,|. Since weights on T, are
<-2, we have |§,|=2.

Consider the case when T is cyclic of order <5. Putting v = e (and respectively
u=e) in 7w(T), we obtain that &, (respectively ©,) is spherical. Le. || =|4,]|= 1.
Hence |d(T)|=7 which is a contradiction.

On the other hand, when w(T)=P, |d(T)|=1 . Hence it follows that |A,4,|=
7. But, as before, |A;|<5. Hence |4A;| # 1. This means each of &, is cyclic of order
2, 3 or 5. Thus &, is one of the six linear trees listed in Lemma 7. This implies
that at least two of the §; are greater than or equal to 3 in absolute value. Hence
|6,8,8584 = 36. This mean |A,A,|=35 which is absurd since |4,|<5, i=1, 2.

LEMMA 11. There is no minimal tree T, with w(T) of order <5 or w(T)=P
and T having the form

T, fo

AN .
Ny
*

c
Y TR
3

” \\
T, T,

where T; are simple branches with negative weights.

Proof. Let © and &' denote the nonsimple branches of T at v and w
respectively. Putting v=e (or w=e¢) in @(T) we conclude that © (or &’
respectively) is cyclic of order <5. Now putting w=e (or v=e) in w(S)
(in w(&') resp.) one concludes that T, - - - - % is spherical. Since T, has weights
<-2, 2, = —1. By Lemma 8, it follows that © (respectively ©’) is equivalent to a
linear tree. Clearly, this is possible, only if all the weights on T, are =—2 and then
© can be blown down to Ts- - - -¥- - - -T, with weight at w changed to Q,, +r+1.

W
By Lemma 6, we have —2<{,, +r+1<0. Similarly, we conclude that —2<

Q,+r+1=<0.

By putting u=e in «(T), it is seen that both T;----- oo T, and
T3""W ----- T, cannot have fundamental groups of order >5. So we may assume
that T,--- e -T, is of order <5. Again by Lemma 6, it follows that
-2<(),<0. Together with —2<,+r+1=<0, this implies r=1 and Q,=
~2. In particular, T;---- R T,, having at least three vertices with weights
<-2, it is of order =4. Now again purring u=e in m(T) we conclude that
T5------ (o mm e ne T, is of order <3. Hence, by Lemma 7 Q,, =—1, contradicting
the earlier observation that (2, +r+1=<0. This completes the proof of the lemma.
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Proof of the theorem

Let k denote the number of branch points in T. We shall induct on k. Clearly
if k =0, there is nothing to prove. So assume k=1.

We first observe that at a branch point v, *, cannot occur as a branch. For if so
let T,,..., T, be the other branches at v, n=2, with vertices v,, ..., v, linked
to v. Then #(T) is isomorphic to 7 (T,) *w(T,) *- - - *7(T,) and hence = (T;) = (e)
for i =2, say. Also each T, is negative definite. Hence, as in [MU], it follows that
), =—1, i=2. In particular, by the minimality of T, v; are not linear in T. Hence
T has a subtree of the form

*

\Ei
/—'1 0

which contradicts hypothesis (H).

It is enough to show that T is E, or Eg under the additional hypothesis that all
simple branches of T at any branch point of T carry negative weights. For if there
is a (unique!) simple branch with nonnegative weights, using Lemma 5, we see
that T is equivalent to a tree T obtained by joining * * to a tree T' where all
simple branches of T’ carry negative weights. Moreover, number of branch points
of T=k and hence number of branch points of T’ <k. All the hypothesis of the
theorem are satisfied by T' also. So T is either linear, or E, or Eg according to
the above claim. But, clearly T’ is negative definite and so it is not E,. If it is Eg
then T is one of the E} and so we are through. If T” is linear, since T should have
a branch point, T’ has at least three vertices. The only minimal negative definite
linear trees with at least three vertices and of discriminant less than or equal to 5
. -2 =2 -2 =7 2 =2 =2 _ .
in absolute value are # *——x% and * e * . Jommg(ﬂj
them we get the other two possibilities for T.

Thus we shall assume that all simple branches of T at any branch point have
negative weights and show that T is E, or Eg.

First consider k = 1. Let v be the branch point and put v=-e in «(T). Using
Proposition 1, we conclude that 7w (T) cannot be cyclic and so 7 (T)=P. Lemma 9
now says that T is either E, or Eg.

We shall claim that there is no tree T satisfying all the conditions of the
theorem with k =2, by induction on k. So consider first the case k =2. Let u and
v be the branch points of T. If possible let there be more than two simple
branches, say at v. Putting u = e in 7(T) we obtain the nonsimple branch & at u
is of order <5. © has a branch point v of which there are at least three simple

* tO
0
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branches carrying negative weights. Clearly © is minimal and hence cannot be of
order <5, by Lemma 8, a contradiction. Thus T is of the forms

as in Lemma 10, and case k =2 is done.

Now assume k =3. We first claim that at an extremal branch point there are
exactly two simple branches. If not let v be an extremal branch point and
Ty, ..., T, n=3 be the simple branches at v, © be the nonsimple branch. Since
all T, have negative weights, 7(T;)# e and hence by the Proposition 1, putting
v=-e in w(T) we conclude that 7(&) = e. By induction hypothesis, it follows that
there is a vertex u € ©, linked to v in T, linear in &, with , = —1. Further, there
is exactly one simple branch T, and one nonsimple branch @' of T at wu.

S
51

SHe----

Suppose T, has r vertices, r=1. Then it follows that after successive blow-downs

beginning at the vertex u, the entire branch T,U{u} of © should disappear to give
the tree ©":

with the weight at w={2,+r+1=r=1. In particular, ©" is minimial. Being
equivalent to ®, it is spherical. By induction hypothesis, (and Lemma 8) &" is
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linear. But T}, and ©” are nonempty and hence |d(&")/ # 1. This contradiction
shows that at an extremal branch point there are exactly two simple branches.

Further, let v be any extremal branch point, T,, T, be the simple branches, and
& be the nonsimple branch at v. Then putting v = ¢ in w(T), it follows that, since
S is of order <5, there is a vertex u in © with 2, =—1, u is linked to v in T and
u is linear in ©.

In other words, we have: (¥) At each extremal point v of T we have the

following configuration for T:

with T; being simple, and 2, = —1.

We shall dispose of the case k =3 now. From the above observation (*) it
follows that if v and w are the two extremal branch points of T, then T has the
following configuration:

T,
A T,

,
’
P *\
-0 u Wi
N

T, T,

Hence we are in the situation of Lemma 11 completing the case k = 3.

Now assume k =4. Consider the case wherein for all extremal branch points v,
0, =—1. Let v; and v, be two distinct extremal branch points (k =4). By (*) there
are vertices u, and u, with €, =—1, and links [v,; u,] and [v,; u,]. Since k =4 it
also follows from (*) that v, is not linked to v, or u, and v, is not linked to u,. In
particular u; # u,. If u, is not linked to u, then it follows that v, + u; and v,+ u,
will span a two dimensional positive semidefinite subspace of B(T) contradicting
(E). Hence [u;; u,] is a link. Thus T has the following configuration

>3
e
oS

*
5-(--'.---_
C*
.
’
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with T; nonempty simple branches with weights <-2. Let © denote the non-
simple branch at v,. Then putting v, =e in w(T) it follows from case k = 3, that
all the weights on T, are —2 and if r =number of vertices on T,, then & is
equivalent to S:

with the weight at u, changed to Q,,=0, +r+1=r=1. But 7(S)=n(S) is of

order <5 and hence putting v,=e in w(S), it follows that To----- * with
=r=1 has to be spherical, which is absurd.
Hence there exists an extremal branch point v in T with ,# —1. In particular

T------- ommee T, is not spherical. Hence putting u = e in w(T) yields that &’ is of

order <5 By induction, it follows that there is a vertex we @/, linked to u, in T,

linear in &' with 2, =—1. T looks like

T, To

'
SRR

with Q, =-1, 2, =-1, @" having at least one branch point of T. Putting v =e,
the nonsimple branch & at v has to be of order <5. Since u is the only vertex
which is linear and with 2, = —1, it follows that & is equivalent to a minimal tree
©, obtained by successively blowing down at u. But then the weight at w will
become =0 and hence &, will have at least two branch points (but fewer than k),
contradicting the induction hypothesis. This completes the proof of the theorem.

§2. A generalization of C. P. Ramanujam’s theorem
We will begin with the following

PROPOSITION 2. Let V be a normal, quasi-projective, irreducible surface/C
and V< X with X a normal, projective surface containing V as a Zariski-dense
open subset. Assume that X is smooth in a neighbourhood of X—V and X is a
minimal, normal compactification of V. Further assume that for a smooth, projective
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surface Y birational with X, q(Y)=0. Then the weighted dual graph of X—V
cannot be E§ fori=1,...,8.

Remark. If the dual graph of X — V is E and if V is actually affine, then using
a slight generalization of the Lefschetz hyperplane section theorem, we can see
that actually 7,;(Y)=(1) where Y, is as above. Thus the condition q(Y)=0 is
automatic in this case.

Proof of the Proposition. Assume that the weighted dual graph of X—V is Ej
for some i and C,, C, are the non-singular rational curves with C3=0= C3 and
C, joined to the Eg-configuration at the ith vertex.

Let Y% X be a resolution of singularities such that Y—-o Yp,,...,p,}—
X—{py,...,p} is an isomorphism, where {p;, ..., p,} is the singular locus of X.
Then we can think of the Eg configuration lying on Y. Thus it suffices to assume
that V and hence X is smooth.

From C2+C,- K=-2, we get C,- K=-2 and hence |nK|= for all n=1.
We have now P,(X)=0=q(X). By the Riemann-Roch Theorem,
dim H°(X, 0(C,))=2 and from the exact sequence 0 — H°X, 0)—
H°(X, 0(C,)) — H%(C,,0(C,)|c,) — 0, it follows that |C,| has no base points. By
taking a 2-dimensional subsystem of |C,| containing C,, we get a morphism
X % P! which is a P!-fibration. C, is one fiber of ¢ and C; is a section of ¢. Since
the Eg configuration occurring in Ej} is connected and disjoint from C,, the Eg
configuration is contained in a single fiber F of ¢. ¢ is obtained from a minimal P'
fibration over P! by successively blowing-up points. It follows that F contains at
least one exceptional curve of the 1st kind. Blowing-down such a curve still gives
a P! fibration. The new fibration will also have a singular fiber containing an
exceptional curve of the 1st kind. Blowing down this new curve also gives a
P'-fibration, and so on until we get a minimal P'-fibration. Since each curve in the
Eg configuration has self-intersection-2 it can be easily seen that starting from ¢
the above process of blowing down exceptional curves will not yield a minimal
P!-fibration. This contradiction shows that the dual graph of X — V cannot be Ej.

Our next result is the following:

THEOREM 2. Let V be an affine, irreducible, non-singular surface/C. Assume
the following conditions:
(i) The co-ordinate ring I'(V) of V is a U.F.D. and all the unit in I'(V) are
constants.
(ii) for some non-singular, projective compactification V < X, P,(X)=0 and
(iii) the fundamental group at infinity of V is finite.
Then V=C? as an affine variety.
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COROLLARY. Let V be a nonsingular, contractible affine surface/C. If the
fundamental group at infinity of V is finite then V~C? as an affine variety.

Remark. The authors do not know whether a contractible affine nonsingular
surface is necessarily rational.

Proof of Theorem 2

Embed V < X where X is a nonsingular, projective surface such that the dual
graph of X —V is minimal and normal. I'(V) is a U.F.D. implies that Pic X is
generated by the line bundles [C,], .. .,[C,], where C; are the irreducible compo-
nents of X—V. Also Pic X is finitely generated implies that H'(X, 0)=(0)
(actually, it will follow soon that 7,(X) = (1)). Since I'(V) has no nontrivial units,
Pic X is freely generated by the line bundles [C ] <<, P,(X)=0 implies that
H?*(X, Z) is freely generated by the cohomology classes of the 2-cycles Cy,. .., C.

Let F=X~-V =Ji.; C. The fundamental group at infinity of V can be found
as follows. Let N be a sufficiently small tubular neighbourhood of F in X, such
that F is a strong deformation retract of N and N is a strong deformation retract
of N—F, where N is the closure of N. Then ,(3N) is the fundamental group at
infinity of V (see [CPR]). Since ;(N — F) surjects onto ,(N), by the hypothesis
it follows that 7r,(F) is finite. Hence each C,=P"' and (X, F) is a normal pair and
T=T(X, F) is a minimal tree. Note that the connectivity of F follows from the
affineness of V.

By Poincaré duality, it follows that the intersection form B(T) has determinant
+1. Hence abw,(T)=H,(8N) is trivial. Thus dN is a homology sphere of dimen-
sion 3. It follows that #(T) = m,(6N) is either trivial or P, the binary icosahedral
group.

If 7,(T)=(e) then by [CPR] V=C? We shall show that 7,(T)#P. So if
possible, let 7,(T)=P.

By Hodge index theorem it follows that B(T) has exactly one positive eigen
value. As seen above HY(X,0)=0 and hence T satisfies (H). Hence from
Theorem 1, it follows that T is equivalent to E, or E; for some i=1,...,8. The
latter cases are not possible by the above Proposition 2. Hence T is equivalent to
E, i.e. J/_; C; has the following configuration:

C, l l i with C?=-1, C53=-2, C3=-3
' ! I and C3=-5.
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C, can be blown-down to a smooth point on a projective surface X,. The image
of C, in X, is an exceptional curve of the 1st kind, which can be blown-down to a
smooth point on a smooth projective surface X,. Here the image of C; is an
exceptional curve of the 1st kind. Blowing-down this curve, we get a smooth
projective surface X; in which the image of C, is a rational curve C with exactly
one singular point p. C is defined locally at p by Z1—Z3=0. Also C*=1. Now
X;—C =YV, so Pic X; is generated by [C]. P,(X5)=0 and the topological Euler-
characteristic of X3 is 3. From these observations, we deduce easily that X;=[P?
and C is a line in P2, a contradiction. This completes the proof of the theorem.

Proof of the Corollary

Assume that V is contractible, nonsingular and affine. It was proved in [G]
that under these hypothesis I'(V) is a UFD and for any smooth compactification
Ve X, P(X)=0. Clearly m,(V)=(1), hence I'(V) cannot have nontrivial units.

Now the corollary follows from Theorem 2.

§3. A result of Miyanishi

THEOREM 3. (See [G] and [MI]). Let V be a normal, affine surface/C and
C? 2> V be a proper morphism onto V. Then

(i) V=C? as an affine variety if V is nonsingular.

i) If {p1,...,p,} is the set of singular points of V(r=1) then = (V-
{py- - * p,}) is nontrivial.

(iii) V=C?/G, where G is a small finite subgroup of GL(2,C) (acting in the
obvious manner on C?).

(iv) V is isomorphic to the affine surface X*+ Y*+2Z°=0in C?, if (V) is a
UFD (and V is singular).

Proof of (i). Assume V is nonsingular. Under these hypothesis it is proved in
[G] that V is contractible, Since 7 :C*— V is a proper morphism, the fundamen-

tal group at infinity of V is finite. Now appeal to the above corollary to conclude
that V=C=.

Proof of (ii). So, if possible let V'=V —{p, - - - p,}, r=1, be simply connected.
Since Pic (C2—; w Yp,---p}) is trivial, it follows that Pic V' is finite. Any
nontrivial torsion line bundle on V'’ defines a nontrivial unramified cover of V'
Since V' is simply connected it follows that Pic V' is trivial. This implies I'(V) is a
UFD.
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It is proved in [G] that V is contractible. Let U; be a small neighbourhood of
p;in V, i=1---r. Let U=UJi., U. Then V=V'UU, and using the Meyer—
Vietoris sequence for the couple {V’, U} it is easily seen that H,(V')=0= Hx¢(V’),
and Hi(U—{p, - - p,})=0. Hence H,(U;—{p;}) =0. As before (U, —{p;}) are
finite and nontrivial (since = is a finite proper map). Thus it follows that
m(U; —{p:;}) = P. It is also known that under these circumstances, the singularities
p; are locally defined by x*+y>+2z°=0 and the weighted dual graph of the
minimal resolution of singularity at p; is Eg.

Let V<X be a normal projective, compactification such that X is smooth
outside p,, ..., p, and X — V has minimal, normal dual graph. Let ¥:Y — X be
a minimal resolution of singularities of X, F, =¥ '(p)i<r, F,.,=¥ Y(X-V)
and F=U/I1F. Since ¥:Y-F=V' is an isomorphism, H,(Y-F)=
H,(Y—-F)=0. By Lefschetz duality H*(Y,F)=0=H?*(Y,F). Hence by the
cohomology exact sequence of (Y, F) it follows that H*(Y)— H*(F) is an
isomorphism. In particular, the intersection matrix of the curves in F is unimodu-
lar. Since each F; is a connected component of F, it follows that the intersection
matrix of the curves in F; is unimodular, for each i. Also by Hodge index theorem
it follows that the intersection of F,,; has exactly one positive eigen value.
Further, it follows that the fundamental group at infinity of V is m,(dN), for a
sufficiently nice neighbourhood N of F,.,, and m;(0N)=(e) or P. If m;(0N)=(e)
then using the result of [CPR] (viz. the proposition and Lemma 5), we can assume
that F,,,=P' with self intersection F~,, = 1. Using the fact that P, (Y)=0=q(Y)
and using Riemann—-Roch theorem, we see easily that the rational map given by
the linear system |F,.,| on Y gives an imbedding of Y =P? such that F,,, is a line.
Then Y —F is C? which means V is nonsingular.

Now let 7,(0N)=P. By Theorem 1, the weighted dual graph of F,,; can be
assumed to be E, or EY for some i =1 - - - 8. By the Proposition 2, EJ’ are ruled
out. Thus we can assume that the weighted dual graph of F,,, is E, and as in the
proof of Theorem 2, by successive ‘‘blowing-down” at F,,; we obtain a smooth
surface Y’ containing a rational curve C with C*= 1, with a unique singular point
q € C, such that C has local equation zi—z3=0 at q. Also Y'-C=Y—F,,;. As
before, we see that the linear system |C| has dimension at least 2 (i.e.
dim H°(Y’, 0(C))=2). Take a 2-dimensional linear subsystem & <|C| contain-
ing C. Since C is irreducible, C*=1, & has a unique base point which is a simple
point of every member of £. Blow-up this base point to get a projective surface
Y. Let E be the new exceptional curve and C be the proper transform of C so
that €2=0. Using &, we get a morphism Y -5P". ¢ is an elliptic fibration and C
is a (scheme theoretic) singular fiber. Since E - C=1, E is a section of ¢. Since
Y~((~?UE):= Y - F,,,, we can treat F; as systems of curves on Y(1<i<r). Let
Si...., S, be the singular fibers of ¢ other than C. Then it follows that each F,
(for 1=<i=<r) is contained insome S; (& hence [=1).
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Now xtop(?)=4+8r, because HX(Y) is freely generated by C, E and the 8r
irreducible curves in |J/_; F. Also one has the formula, xp(¥Y)=
b1 Xtop(S) + Xeop(C). If one of the singular fiber S; contains some of the
F,,...,F, say s of them, then from the list of singular fibres of ¢ given by
Kodaira in [K] it follows that S; should have at least one more curve so that
Xiop(S;)) =8 - s +2. Since xmp(é)=2, the equality 4+8r=Y}_, xtop(Sj)+me(C)
shows that there is exactly one singular fiber S, (other than ¢) and all F,1=<si<ry,
are contained in S;; and there is exactly one more curve L in S; other than
Ui, F, ie. S;=U/_; FUL. Since S; is connected, L should meet each F,
transversally. Again looking at Kodaira’s list of possible fibers of ¢, it is easily
inferred that r=1 and S, has the following configuration:

with each curve having self-intersection —2. Let ¢(C)=peP!, ¢(S,) =qeP’,
then clearly for any small neighbourhood U, of q in P, ¢ '(U,) is a strong
deformation retract of Y—C. Since E is a section, ¢ '(U.)—E is also a strong
deformation retract of Y—(CUE). One can choose U, such that ¢ Y(U.)=
U,UU, where U, is a tubular neighbourhood of L and U, is a tubular
neighbourhood of F;. Also it is easily arranged that U,NE =, and U, N U, is a
strong deformation retract of U,;—E. Hence it follows that U, is a strong
deformation retract of ¢ '(U,)—E. Hence m,(Y—(CUEUF))=m,(¢ Y(U.)—
(EUF))=m(U,~F;)=P. But Y-(CUEUF,)= V' and hence is simply con-
nected by assumption. This contradiction completes the proof of (ii).

(iii) Suppose pi,...,p, are the singular points of V. Then C?*-
a Yp, - p}t>V—{p,- - p}is a proper morphism. Since C>— 7 *{p, - - - p,} is
simply connected, it follows from Hopf’s theorem that the fundamental group of
V—{p, - p}is finite. Let W’ be the universal covering space of V—{p; - - - p,}-
The map = factors as C*— 7 {p, - p} > W —>V—{p,---p}. W can be
imbedded in a normal affine surface W such that =’ extends to a proper morphism
C?— W (since W — V is a finite, proper morphism and C? is normal). From (ii),
it follows that W is nonsingular. From (i) it follows that W =C?2. Hence the group
of covering transformations G of W' extends to a group of algebraic automorph-
isms of W and V is the quotient.

But any finite group of automorphisms of C? can be conjugated to a subgroup
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of GL(2,C). It is also well-known that G can be assumed to contain no
pseudoreflections.

This completes the proof of Part (iii) of Theorem 3.

(iv) Now assume that V has a singular point and I'(V) is a UFD. By Part (iii)
above, V=~C?/G, G < GL(2,C) and G contains no pseudoreflections. Clearly the
point p in V which is the image of 0 eC? is the unique singular point of V. For a
small neighbourhood U 3 p, =(U—p) is finite.

Let V< X be an embedding such that X is smooth in a neighbourhood of
X—V and X is a minimal, normal compactification. Let Y % X be a minimal
resolution of singularity at p. Then all topological 2-cycles on Y are algebraic and
using the fact that I'(V) is a UFD, we see easily that Pic Y is freely generated by
the line bundles given by the irreducible curves occurring in ¥ '(p) and
v i(X-V).

As before, we see that the dual graph of ¥ '(p) is Eg and w,(U—p) is
isomorphic to P. From the known list of finite subgroups of GL(2,C), we know
that G=P and C?/G is the affine surface given by X*+Y>+Z°=0 in C°.

This completes the proof of Theorem 3.

§4. Some examples

(1) Consider the affine normal surface V given by X>+Y>+Z°=0.1If X is a
minimal, normal compactification of V, then the weighted dual graph of X -V is
equivalent to E,.

For, by using the arguments before, we see that the fundamental group at
infinity of V is either trivial or isomorphic to P. If it is trivial, we can get a
contradiction as in the proof of part (ii) of Theorem 3. But the dual graph cannot
be equivalent to EY’ for i=1,...,8 by the Proposition 2. Thus it is equivalent
to E,.

(2) Consider the curve C:X?-Z-Y?>=0 in P> Choose simple points
D1, ..., pg on C such that no three of the p; lie on a line and no six of the p lie on
a conic. Blowing-up P2 at p,,...,ps we get a nonsingular rational surface X
containing the proper transform C' of C, C?*=1. The map C'—=C is an
isomorphism. Also X — C’ is an affine surface V. By blowing up X at the singular
point of C' and then at suitable infinitely near points on the blow-up, we get a

configuration of curves C, }C2}C3 !C“ with weights as in the E, tree. Thus we

get a smooth projective surface Y and an E, configuration on Y such that
Y- %, G is a nonsingular, affine surface.
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