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§1. Introduction

By definition, the level s(A) of a commutative ring A is the smallest integer n
such that —1 is the sum of n squares in A. (If —1 is not a sum of squares in A, we
define s(A) to be «.) By a well-known theorem of A. Pfister, if A is a field and if
s(A) <, then s(A) must be a power of 2 (and any power of 2 is possible). This
result, however, does not extend to rings: in [DLP], it was shown that there exist
commutative R-algebras of any prescribed level, or, equivalently, for any integer
n, the “‘generic” algebra A, =R[x,,...,x,)/(1+x}+---+x2) has level exactly
equal to n.

The proof that s(A,)=n in [DLP] was based on a topological fact: the
Borsuk-Ulam Theorem. The idea of this proof suggested that there is a natural
and interesting relationship between the topology of spheres and the arithmetic of
sums of squares in rings. To study this relationship more formally, we defined in
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Levels in algebra and topology 377

[DLP], for any topological space X with involution ¢, the following two invariants

s(X)=inf {n: there exists an equivariant map X — S" '},

s'(X)=sup {m: there exists an equivariant map S™ ' — X},

called, respectively, the level and colevel of X. After [DLP] appeared in print, we
realized that these invariants had been introduced much earlier by topologists: up
to a constant 1, s'(X) and s(X) are the index and coindex (= B-index) of the
space (X, €) in the sense of Conner-Floyd [CF,, CF,] and C. T. Yang [Y,, Y,].
However, much of the past work on the index and coindex was focused on the
computation of these invariants for specific spaces and their applications in
topology; the potential applications of these invariants in algebra were not
explored. In [DLP], we found that there is a close relationship between the level
in topology and the level in algebra: for any space (X, ¢), the toplogical level s(X)
is always equal to the algebraic level s(Ay), where Ay denotes the R-algebra of
complex-valued functions f:X —C such that f(ex)=f(x) for every xe X. In
particular, taking X =S""', one gets immediately an R-algebra Ag--: of level n.

The discovery that s(X)=s(Ax) provided the basis of the present work, in
which we try to probe more deeply into the process of applying known results in
topology to prove new results in algebra. For instance, instead of using the
Borsuk-Ulam Theorem, one can try to use other homotopy properties of the
spheres. Thus, the property that odd (resp. even) mappings of S" ' to itself have
odd (resp. even) degrees can be used to show that, over the generic ring A,
defined above, not only is the level equal to n, but in fact the quadratic form
(n+ 1)) (=t3+t+---+t2) has no unimodular zero. Generalizing this idea
further, instead of working with spheres, one can work with the Stiefel manifolds
V,.m- On V, . consider the involution

(U], o wouy Um) - (Ub R S VP _vr+s)

where s >0 and r+ s = m; the resulting space with involution is denoted by V3.
By an argument inspired by a communication of M. Kerviare and W. Scharlau, we
show that, for any space with involution (X, €) the form n(l) over Ax has a
subform isometric to r(1) Ls(—1) iff (X, &) admits an equivariant map into V5,
(where, again, m =r+s). This result enables us to study decompositions of the
type n{1)=r(1) L s(—1) L ¢ over R-algebras by using equivariant properties of the
Stiefel manifolds V735,.. About the latter, of course, quite a bit is known in the
topology literature. By our general machinery, many of the known results in
topology about V5 can thus be utilized to yield parallel results in algebra
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concerning the structure of the forms n(1) over rings. To illustrate this point, let
us mention some of the most interesting applications:

(a) Adams’ Theorem on vector fields on spheres implies that there is no
equivariant map from S$"' to Vi for m>p(n) where p denotes the Radon
function. This, combined with our results, shows that over any ring A, if n(1)
contains a subform (—1), then it contains a subform p(n){—1), but it need not
contain a subform (p(n)+1)(—1).

(b) Assuming a forthcoming result in [LL], we show in (10.2) that V!, has
colevel s'(V&1,,)=n—gq. This, combined with our results, shows that over a ring
A, if n(1) contains q(1) L(—1), it need not contain (q+ 1)(1) L (—1). This implies,
in particular, that over a ring A, if an (r-fold) Pfister form ¢ is isotropic (having a
unimodular zero vector), it need not be hyperbolic (i.e. not =2"'(1,-1)),
contrary to the well-known behavior of Pfister forms over fields.

(c) For n=2'~1, one can also compute the colevel of Vyadii; again,
s'(Vail) = n—q. This computation implies that, over a ring A, if n(1) contains
q{—1), it need not contain (q+ 1){(—1).

To study the level and colevel more systematically, we define in §10 the notion
of o-levels and o-colevels. Thus, for any space (X, €) with an involution &, we
have two sequences of invariants {oy (X)}, {oi(X)} (k=0), with o,(X)=s(X),
ob(X)=s'(X) and

=0 (X)) =0 X)=sr=0i(X) = =0 (XD =0 (X)) = - =0y (X).

For commutative R-algebras A, we can define similar invariants {o, (A)}, {o.(A)}
(k =0) satisfying the same chain of inequalities, with o,(A)=s(A). Again, we
have the relation oy (X) = 0 (Ax) for all X, and o4 (X) = o.(Ax) holds for a large
class of spaces X with involution.

Several possible directions for future work seem to suggest themselves. One
direction would be to develop more topological machinery to help compute the
invariants s(X), s'(X) (and their higher analogues o, (X), o.(X)). Some of these
invariants have been computed for certain types of Stiefel manifolds, but compu-
tations for the general type V., seem to be very difficult. In fact, even for the
special type Vm, a full computation of the colevel would amount (essentially) to
solving the skew-linear version of the Hopf Problem [H], the immersion problem
of projective spaces into euclidean spaces, and the Generalized Vector Field
Problem of Atiyah-Bott-Shapiro [ABS, §15]. Some explicit computations of
s(V55) and s'(V}5,) will appear in [LL]. A second direction of work would be to
develop more purely algebraic techniques to attack quadratic form problems over
finitely generated k-algebras. When k is a formally real field, a natural idea would
be to go to a real closure k of k; over k, one can usually hope to get the same
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results as in the case over the real numbers (say by Artin-Lang, or by Tarski’s
Principle). However, in case k is non-real, this method will no longer work and a
completely different approach would be needed. It is quite remarkable, therefore,
that Arason and Pfister [AP] have succeeded, by using purely field-theoretic
techniques, to solve the ‘“level problem” algebraically: if k is any (possibly
nonreal) field, then the level of the generic ring k[x,, ..., x,)/(1+x3+---+x3) is
given by min {s(k), n}. It seems to us that this statement ought to be true for any
commutative ring k, so we raise it as the ‘“Level Conjecture” in §11. It is hoped
that this challenging problem will stimulate the development of further purely
algebraic techniques, in complement to the technique of using topological results
to solve algebraic problems over affine algebras over the real numbers.

In carrying out this research, we have benefited a great deal from consulitations
with many of our colleagues. In particular, it is a great pleasure to acknowledge
the valuable help and suggestions of P. E. Conner, I. M. James, A. Kas,
M. Kervaire, M. Knebusch, K. Y. Lam, C. K. Peng, W. Scharlau, A. N. Wang and
Q. M. Wang.

§2. Spaces with involution

In this section, we set the stage for the application of spaces with involution to
quadratic forms. We shall write (X, -) to denote a topological space X with an
involution ‘“‘bar” which is a homeomorphism from X to itself. If “‘bar” is given
and fixed, we shall often write X for (X, -). Whenever confusion is unlikely,
involutions in different spaces will all be denoted by ‘“bars”. A continuous map
f:(X,-)— (Y, -) will be called equivariant if f commutes with the involutions, i.e.
if f(i)=f(¥5 for all xe X. As a notational device, we shall write f: X =Y to
denote (continuous) equivariant maps.

Throughout this paper, we shall write € for the category whose objects are
(X, -) as above, and whose morphisms are continuous equivariant maps f: X - Y.
We shall often write X € Obj %4 to indicate that (X,-) is a space with a given
involution “‘bar.” A distinguished family of objects in € is given by the spheres S™
(n=0). Throughout this paper, whenever we talk about S", it will always be
assumed that it is given the antipodal involution: X = —x for x € §". Some other
interesting objects of the category € are as follows:

(2.1) The space R" with the involution x — —x. This contains (S"7',-) as a
subobject.

(2.2) The space C" with the involution (xi,...,x,)—(Xy,...,X,) given by
complex conjugation of the coordinates.
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(2.3) An affine variety X =V (A)=C" defined over R by an ideal UAc
Rlx, ..., x.]. (We give X the strong topology, not the Zariski topology.)

This variety is stable under complex conjugation, and is thus a subobject of
the object C" in (2.2).

(2.4) The Stiefel manifold V, ,, with the involution

Sr,s(vla CECRE Y Ura vr+1a se ey Ur+s) = (Ub e vy Ur’ _‘vr+1’ vevy ‘_Ur-i-s)

where m =r+s. The objects (V,, ., &, ) will play an important role in later
sections, and will be abbreviated by V5,. (Of course V,1=S8""")

For an object XeObj €, we attach the following two invariants, called,
respectively, its level and colevel:

(2.5 s(X)=inf{n:3X-S" '} (level of X),
(2.6) s'(X)=sup{m:3S™'-» X} (colevel of X).”®

In the former, if X does not map equivariantly into any sphere, we take s(X) =
by convention. On the other hand, if X is non-empty, we can always find S° - X,
so we have 1=s'(X)=<cx.

The invariants s(X) and s'(X) coincide essentially with the co-index (= B-
index) and index defined by Yang [Y,, Y,] and Conner-Floyd [CF,]; in fact
s(X)=coind X+ 1 and s'(X) =ind X + 1. For the purposes of the present work, it
turns out to be more natural and more convenient to work with s(X) and s'(X) as
defined in (2.5) and (2.6).

We have the following two lemmas: the first is clear, and the second is the
Borsuk-Ulam Theorem, in a notational disguise:

LEMMA 2.7. If there exists a morphism X - Y, then s(X)=<s(Y) and s'(X)=
s'(Y).

LEMMA 2.8. For any object X in €, we have s'(X)=s(X). Moreover,
s'(S" H=s(S""Y)=n for any n=1.

2We called this invariant the “sublevel” in [DLP] but it should really be called the colevel.
“Sublevel” shall mean a different invariant in this work: see §5.
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Note that the two invariants s and s’ are of interest only for objects (X, ~) of €
whose involution “bar” is fixed-point-free. In fact, if the involution has a fixed
point x € X, then for any n we have f:S" ' - X by f(S" ') =x, so s'(X)=. On
the other hand, we cannot have any X-o S"! so s(X)= also. Even if the
involution is fixed-point-free, we may still have s(X) = s'(X) = . Such an example
is provided by X =J;;_; S"7', where the spheres are imbedded into each other by
equator maps, and the involution is again the antipodal map. However, if X is a
finite dimensional separable metric space, then indeed s'(X) < s(X) < assuming
that the involution is fixed-point-free: see, e.g. [CF,]. The following easy Proposi-
tion gives an obvious upper bound for s(X) for a large class of spaces of interest:

PROPOSITION 2.9. Let (X,—) be a space with a fixed-point-free involution.

(1) Suppose X is a topological subspace of R". Then s(X)=n.

(2) Suppose X is a topological subspace of C" and the involution on X is
induced by the complex conjugation on C". Then s(X)=<n.

Proof. (1) Define f: X- S""! be f(x)=(x—x)/|x — x||. Equivariance is clear,
and so is continuity.

(2) Define g: X-= S""' by f(z)=(y,/8, ..., y./8), where z;=x; +iy; and & =
VyZ+---+y2. Again, equivariance and continuity are both clear. Q.E.D.

For later reference, we shall collect here some more elementary facts about s
and s'.

PROPOSITION 2.10. If X e Obj € is m-connected, then s'(X)=m +2.

Proof. This is a tautology when m = —1. For m =0, assume, inductively, that
s'(X)=m +1, i.e. there exists f:S™ - X. By the m-connectedness of X, f can be
extended continuously to ST*', the upper (m+1)-sphere. Now extend f to
f:8™1 e X by f(x)=—f(—=x) for xe S™*', the lower (m + 1)-sphere. (The con-
tinuity of fis easy to check.) This shows that s'(X)=m+2. Q.E.D.

In general, s'(X) may be strictly less than s(X).®® The following Proposition
gives a necessary condition for the equality of these two invariants:

31t is not difficult to exhibit spaces X with involution for which s(X)—s'(X) is arbitrarily large. In
fact, as pointed out to us by Professor P. Conner, for any given natural number n, there exist spaces X
with involution for which s(X)-s'(X)=n.
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PROPOSITION 2.11. Let XeObj4. If s'(X)=s(X)=k<ox, then the
homotopy group m,_,(X) cannot be a torsion group. In fact, m._,(X) has a quotient
group which is infinite cyclic.

Proof. By hypothesis there exist S*7'-% X-5 S*~!. This induces group
homomorphisms

-1 (S*71) - me-1(X) — -1 (S*7H).

The composition feg is an antipodal-preserving self-map of S*', so by the
theorem of Borsuk, it has odd degree, and in particular not null-homotopic. Thus,
(fe2)s = fx° g« is a nontrivial endomorphism of m_,(S* ")=7Z, and so im (f,) is
infinite cyclic. Q.E.D.

COROLLARY 2.12. Let XeObj €. If X is m-connected and ,,1(X) does
not have an infinite cyclic quotient group (e.g. ,,.1(X) is torsion), then s(X)=
m + 3.

Proof. By (2.10), we have s'(X)=m +2. If this is a strict inequality, then
s(X)=s'(X)=m + 3, as desired. Thus, we may assume that s'(X)=m +2. Apply-
ing (2.11) for k=m+2, we see that s(X)#s'(X), and so s(X)=1+s"(X)=
m+3. Q.E.D.

§3. The Level Theorem

The goal of this section is to show that the level s(X) of an object X € Obj €
can be computed in purely algebraic terms; in fact, it is given by the (algebraic)
level of a certain function ring canonically associated with X. We shall begin by
introducing this important function ring.

For X =(X,-)e Obj €, we define Ax to be the ring of continuous functions
f:X — C with the property that f(X) = f(x) for any x € X. Thus, Ay is the set of
all €-morphisms of X into C (with the complex conjugation as involution); it is a
ring under the usual addition and multiplication of functions. Constant maps of X
into R are in Ay, so Ax is an R-algebra. (In general, Ay is not a C-algebra).
Clearly, any equivariant map f:X-e Y induces an R-algebra homomorphism
*: Ay = Ax. Thus, the association X — Ay gives a contravariant functor from 4
to the category of commutative R-algebras. In the following, we shall call Ay the
function ring of X.

Note that Ay admits other algebraic structures as well. For instance, it carries
a natural involution: for fe Ay, we can define fe Ax by f(x)=f(x) (for every
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x € X). Also, in the case when X is compact, we can equip functions in Ay with a
“sup-norm,”’ thereby making Ay into a topological algebra. This kind of topologi-
cal algebras with involution had been studied many years ago by Kaplansky and
Arens [AK]. For the purposes of the present work, we shall be interested in Ay
mainly as an R-algebra.

For any function fe Ay, write f(x) = p(x)+iq(x), where p, q are real-valued
functions on X. The equation f(X)=f(x) gives p(X)+iq(X)=p(x)—iq(x), so we
have p(x)=p(x) and q(x)=—q(x) for every x € X. Thus, each fe Ax may be
thought of as a pair of real-valued (continuous) functions (p, q) where p is “even”
and q is “odd.”

Recall that s(A) denotes the level of a ring A. The following result computes
the (topological) level of a space X with involution in terms of the (algebraic)
level of its function ring:

LEVEL THEOREM 3.1. For any X € Obj 4, s(X) = s(Ax). In other words, the
following diagram commutes:

€ —2> {R-algebras}

st% ﬁam

N U {0}

Proof. Step 1. First, we note that s(Ag.-1)=<n. In fact, define f,:S""' —>C by
f;(x) = ix;, where x =(x,,...,x,)eS"", and i =+—1. Clearly fie Ax and

(Fi+: D)= (ix)*+- - -+ (ix,)* =—1,

SO —1=f2+---+f2in Ay, i.e. s(Ag1)=n.

Step 2. Let m be any integer <s(X), and let h(x,,...,x,) be any real
polynomial which does not represent —1 over R. Then h does not represent —1
over Ax. In fact, assume there exist f,, ..., f.. € Ax such that —1=h(f;,...,f.) €
Ax. Write f; = p; +ig; (1=j=m). Then the {g;} do not have a common zero on X.
For if x € X is such a common zero, then evaluation of h(f;,...,f,) at x gives
~1=h(p,(x), ..., pm(x)), a contradiction. Thus, we can define a continuous map
q:X—S™" ! by

q(x) = (q1(x)/8(x), . . ., gn(x)/8(x)),

where 8(x)=vq(x)*+- - -+ gm(x)*# 0. This is an equivariant map since the g;’s
are odd functions. This shows that s(X)=m, a contradiction.

Step 3. Applying Step 2 to h=x3+- - -+ x2, where m <s(X), we see that —1
is not a sum of fewer than s(X) squares in Ax. Thus s(Ax)=s(X). To show the
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reversed inequality, we may assume that n:= s(X) <. Take an equivariant map
X - S™!. This induces a ring homomorphism Ag-.-1— Ay. Therefore s(Ax)=
s(Ag-1)=n, by Step 1. Q.E.D.

From (2.8) and (3.1), we have s(Agn-1)=s(S" ') = n, so there exist R-algebras
of any prescribed level n. In particular, we have

COROLLARY 3.2. The generic algebra A, :=R[xy, ..., x, J/(1+xi+---+x32)
has level n (cf [DLP, Theorem 1]).

We close this section with some refinements and extensions of (3.2).

PROPOSITION 3.3. The level of an integral domain A and the level of its
quotient field F can differ by an arbitrary amount.

Proof. The example A =R[t,,..., t,)/(t3+- - -+t2) shows that we can have
s(A)=co, and s(F)=any prescribed 2-power (see [La;: p. 306]). Next, let
m=2'=n<owo. Changing notations, let A=A,[t;, ..., th /(tT+ - +12i)
(where A, is as defined in (3.2)), and F be its quotient field. Since there exist
homomorphism A — A, — A, we have s(A)=s(A,)=n by (3.2). Let F, be the
quotient field of A,. By Pfister’s Theorem [La,: p. 306], s(F,,) = m. Since F is the
quotient field of F,[ty,..., .. )/(ti+- - +t2.,,), the same theorem of Pfister,
applied once more, shows that s(F)=m. Q.E.D.

PROPOSITION 3.4. Let k be a (commutative) semireal ring in the sense of
[La,] (i.e. with s(k)=). Then the ring A =k[xy,...,x)/(1+xi++--x2) has
level n.

Proof. As is well-known (e.g. [La,, §2]), k has a real prime ideal, so k admits
a homomorphism into a formally real field, and therefore into a real-closed field.
Thus, we may as well assume that k is itself a real-closed field. In this case we can
deduce s(A)=n from (3.2) by Tarski’s Principle. Alternatively, following a
suggestion of M. Knebusch, we can proceed as follows: Assume that s(A)<n.
Then there exists an equation

(3.5) —1=fix)>+- -+ f1(x)*+ folx)A+xT+- - - +x2)

in k[x]=k[x4, ..., x,]. Pick a finitely generated Q-algebra R < k which contains
all the coefficients of fy, fy, ..., f.—1. By Lang’s Homomorphism Theorem [La,,
§5], there exists a ring homomorphism of R into R (in fact even into the field of
real algebraic numbers). Thus, an equation similar to (3.5) exists in R[x]=
R[x4, ..., x,], contradicting (3.2). Q.E.D.
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§4. The Colevel Theorem

In view of the Level Theorem (3.1), it seems natural to ask if one could also
find a suitable definition for the “colevel” of a ring such that the (topological)
colevel of a space X with involution is given by the (algebraic) colevel of its
function ring Ax. In this direction, we have only partial success. In the following,
we shall offer a definition for the colevel s'(A) of an R-algebra A: for any space X
with involution, we have an inequality s'(X)=s'(Ax); we can establish the
equality only for those X’s which arises as affine varieties defined over R (with
complex conjugation as involution).

DEFINITION 4.1. For any R-algebra A, the colevel s'(A) is defined by
s'(A) =sup {m =1:3 R-algebra homomorphism A — Agn-1}.
If there is no such m =1, we defined s'(A)=0.

Examples and Remarks (4.2)

(a) For any R-algebra A, we have s'(A)=s(A). this follows from the observa-
tion that, if there is a homomorphism A — Agm-1, then s(A)=s(Agm-1)=
m.

(b) If we have an R-algebra homomorphism B — A, then s'(B)=s'(A).

(c) Since s(Ag--1)=n, Ag-+ has no homomorphism into Ag.. Therefore
s'(Ag1)=n. By a similar argument, we have also s'(A,)=n where
A, =R[x,, ..., x J/(1+x3+---+x3).

COLEVEL THEOREM 4.3. For any space with involution (X,-), we have
s'(X)=s'(Ax). Equality holds if X is an affine variety defined over R, with
involution given by complex conjugation.

Proof. To provg the claimed inequality, we may assume that n = s'(Ayx) <. If
§'(X)=n+1, then by definition there is an equivariant map S™-e X. But then we
have an induced homomorphism Ay — Ag-; from (4.2)(b,c), we get s'(Ax)=
s'(Ag») =n+1, a contradiction. Therefore s'(X)=n =s'(Ax).

Next, we shall deal with affine varieties defined over R. Let 2 be an ideal in
Rlx;, ..., x,], and X = V() be the affine variety in C" it defines. As observed in
(2.3), we have (X,-)e € where “bar” is induced by complex conjugation. We
shall denote the real coordinate ring R[x;, ..., x, /2 by R[X]. (Actually this
depends not only on X but also on the choice of A. However we shall always
work with a fixed U so the notation is not likely to cause confusion.) Note that
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each feR[X] induces an equivariant function from (X, -) to (C,7), so there is a
natural R-algebra homomorphism from R[X] to Ax. Note that the following
statements are equivalent:

(@) sR[X]) <,

(b) s(X)=s(Ax) <,

(c) s'(X) <o,

(d) X has no real point.

In fact, (a)=> (b) is obvious since there is a homomorphism from R[X] to Ax;
(b)=>(c) follows from s'(X)=s(X); (c)=>(d) is obvious; finally (d)=>(a) follows
from the Real Nullstellensatz of Dubois and Risler (see e.g. [La,, §2]).

Now let (Y,-) be any space with involution, and consider any R-algebra
homomorphism g:R[X]— Ay. We shall show that such a g must “arise” from
some equivariant map v: Y- X. In fact, let & e R[X] be the coordinate functions
on X. For ye Y, we can define

v(y) = (g(€)(y), ..., g&)(y)eCm

This point lies in the affine variety X, since, for any polynomial a(x4, ..., x,) €,

a(fl’ sy gﬂ) = 0$ a(g(&l)! MM g(gn)) =0
= a(g(&)(y), ..., gl&)(y)=0.

It is routine to check that y: Y — X is continuous and equivariant, and that the
induced map y*: Ax — Ay “extends” the given homomorphism g:R[X]— A,.
In particular, we conclude that, for X (affine) and Y (arbitrary) as above,

Yo X

& 3 R-algebra homomorphism Ay — Ay
< 3 R-algebra homomorphism R[X]— A,.

Taking Y to be the unit spheres S™ ™!, we see now that

(4.4) s'(X)=5"(Ax)=s'RIXD.

Moreover, if X has no real points, then these numbers are <s(X)=n, by (2.9)(2).
(Otherwise, they are .)

For the level, we have s(X)=s(Ax)=s@®R[X]). Is the inequality actually an
equality? It turns out that equality does hold if n =1 (cf. (4.8) below), but may no
longer hold if n =2. In the latter case, we have s(X) = s(Ax)=n (assuming X has
no real points), but we may have s(R[X]) > n, as the following Proposition shows.
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PROPOSITION 4.5. Let y(x) be a real nonconstant polynomial such that
v(a)=1 for all acR. Let A be the principal ideal generated by y(x)*+y? in
R[x, y], and let X = V(A). Then s(X)=s(Ax)=2 but s(R[X]) = 3.

Proof. Clearly X has no real points, so s(X)=2. Geometrically X is the union
of the two curves y = +iy(x) which intersect at the points {(c, 0) € C*: y(c) =0}, so
X is connected. From (2.10) it follows that s(X)=2. Let A =R[X] be the real
coordinate ring of X. The quotient field of A has level 1 but we claim that A has
level 3. Let 6(x)=y(x)>*—1; by hypothesis 68(a)=0 for all a eR so we can write
0(x)=0,(x)*+05(x)*> for suitable 6,€R[x]. Then in A we have -1=
0,(x)*+ 0,(x)*+¥2, so s(A)=3. Assume s(A)=2: then we would have an equa-
tion

(4.6) —1=fi(x, y)*+folx, y)*+h(x, y)(y(x)*+y?.

We may assume that f; and f, are at most of degree 1 in y. Then clearly
h:=h(x,y) cannot involve y. Write f;=p;+yq; (p;,q;€R[x]). Plugging these
expressions into (4.6), we obtain the following three equations:

—1=pi+ps+h-vy?
(4.7) 0=p1g:+P29>
0=qi+q3+h.

Writing « = p1+ p3, we have, by the 2-square identity

~—a - h=(pi+p3)qit+q3)
=(p1q1+ P2QZ)2 +(p1g2— p2Q1)2
=(p1q2— P2Q1)2-

But from (4.7), 1+ a =—hy? so

a(l+a)=—ahy*=(pq,— P2Q1)272-

Since a and 1+ « are relatively prime, each must be a perfect square, say a = ¢°,
14+a=¢> But then 1=y*—¢*=(+@)(Y—¢) implies that y+deR and so
¥, ¢, a €R. This clearly contradicts 1+« = —hvy? since vy is a nonconstant polyno-
mial. Thus s(A)=3. Q.E.D.

Finally, for the case n =1, we prove:
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PROPOSITION 4.8. Let A= (f(x)) =R[x] where f is a nonconstant polynomial
without real root. Then the monogenic R-algebra A =R[x]/A has level 1.

Proof. Write f=¢f] - - fix where € eR and f; are distinct monic irreducible
quadratic polynomials. By the Chinese Remainder Theorem, A =[[R[x]/(f]), so
it suffices to show that each A; =R[x]/(f}") has level 1. Now A is a local algebra
whose maximal ideal I = (£,)/(f}) is nilpotent, and A/M=R[¢]/(f;)=C, in which
—1 is a square. By Hensel’s Lemma, it follows that —1 is a square in A,. (For
instance, if A; =R[t]/(t*+ 1)?, the usual proof of Hensel’s Lemma using Newton’s
Method gives (t°+3t)/2 as a square root of —1 in A;.) Q.E.D.

§5. The sublevel of a ring

In this section, we shall define the sublevel of a ring. For any X € Obj € (a
space with involution), we shall establish a useful inequality ((5.11)) between the
colevel of X and the sublevel of its function ring Ax. In general, however, these
two numbers need not be equal.

DEFINITION 5.1. Let A be a commutative ring, and fe A[x;,...,x,.] be a
form (i.e. a homogeneous polynomial) of degree d over A. We say that f is
isotropic over A if f has a unimodular zero vector, i.e. if there exist a,,...,a,, €
A generating A as an ideal, such that f(a,, ..., a,)=0€ A. If f is not isotropic,
we shall say that f is anisotropic over A. For be A\{0}, we shall say that f
represents b over A if b={f(by,...,b,) for some b,,...,b, €A.

DEFINITION 5.2. The sublevel o(A) of a ring A is defined by
1=0(A):=min{n:(n+1)(1) is isotropic over A}.

Here, r(1) denotes the r-dimensional quadratic form x3+- - -+ x? over A. (More
generally, (b,, ..., b,) denotes the quadratic form b,xi+: - -+ bx2.)

DEFINITION 5.3. The pythagoras number P(A) of a ring A is the smallest
integer n such that any sum of squares in A can be written as a sum of n squares.
If there is no such integer n, we define P(A) = .

Remarks 5.4. (a) If we have a homomorphism A — B, then o(A)=0o(B).
(b) For any ring A, we have o(A) <s(A). In fact, assume that s =s(A) <co.

“ We thank George Bergman who suggested the use of Hensel’'s Lemma here.
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Then there is an equation 1+a%+---+a?=0, so (1,a,,...,a,) is a unimodular
zero vector for (s + 1)(1). This gives o(A)=<s = s(A) (hence the term ‘‘sublevel”).
If A is an R-algebra, we shall show later in this section that s'(A)<o(A).

(c) If A is an integral domain, with quotient field F, then s(F)=o(A)=s(A).

The level and the sublevel of a ring A are both related to the pythagoras
number of A, as the following Proposition shows.

PROPOSITION 5.5. Let A be a ring in which 2 is a unit, and o(A) <. Then
we have

s(A)=P(A)=1+(A) = P(A[t]).

Proof. The first inequality is obvious. For the second inequality, let n = o (A).
It is well-known that (under 2€ U(A))

(5.6) A (regular) quadratic form over A is isotropic iff it contains the hyperbolic
plane (1, —1) as an orthogonal direct summand.

Since (1, —1) represents all elements of A, the same holds for (n+1)(1), and so
P(A)=n+1. It remains only to prove the last equality in (5.5). First note that
og(A[t)=0c(A) (e.g. by (5.4)(a)). Therefore, by the second inequality in (5.5)
(applied to A[t]), we have

PA[tD=1+o(A[t)=1+0(A).

Next, suppose P(A[t])=m. Since s(A) <o, any element f(t)e A[t] is a sum of
squares, and therefore a sum of m squares. Write

m
f= Z @®+a’t+---+a¥P14)?, a}”eA,
i=1

Then we have

1Mz

m
a?=0 and 2 ) afa{’=1.

i i=1

Since 2€ U(A), (a’, ..., al™) is a unimodular zero vector for m(1) over A. By
definition, we have 0(A)=m—1so 1+o(A)=P(A[t]). Q.E.D.

COROLLARY 5.6. Let A be a PID with 2€ U(A). Let n be the level of its
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quotient field F. Then o(A) =n and s(A) € {n, n + 1}. (The latter is a special case of
a result of Baeza [Ba] for Dedekind rings.)

Proof. We may assume that n<<o. From s(F)=n, we have an equation
aj+---+a2=0 with a;€ A\{0}. After knocking out common factors, we may
assume that {a,, ..., a,} have no common factor. Since A is a PID, this means
that (ay, ..., a,) is unimodular, so o(A)= n. Given this, the Proposition implies
that s(A)=norn+1. Q.E.D.

EXAMPLE 5.7. There do exist rings with o(A)# s(A). For instance, A =
Qx, y)/(1+x%+2y?) is a PID with s(A)=3 (see [CLRR, (3.8)]). However, by
(5.6), 0(A) =s(F)=2 (and therefore, by (5.5), P(A)=3).

This example raises the following interesting

QUESTION 5.8. For n=1 what pairs (n,n), (n,n+1) can be realized as
(a(A), s(A)) for some commutative ring A?

The following Proposition shows that not all pairs (n, n + 1) can be so realized:

PROPOSITION 5.9. If s(A)=1, 2, 4 or 8, then o(A)=s(A).

Proof. Let us explain the proof first in the case when s(A)=4. Assume that
o(A)=3. Then there exist two equations: a3+ --+a3=0, a;b;+-:-+asb,=1
in A. Consider the classical 4-square identity

(3 xR+ D= (vt A,

where f,, fs, fs are bilinear forms over Z. Plugging in x;,=a;, y;=>b, and
transposing, we see that —1 is a sum of three squares in A, contradicting s(A) = 4.
The cases s(A)=2, s(A) =8 follow similarly from the 2-square identity and the
8-square identity. (The case s(A)=1 is trivial since, by definition, o(A)=
1.) Q.E.D.

The Proposition above shows that the four pairs (0, 1), (1,2), (3,4), (7, 8)
cannot be realized as (0(A), s(A)) for any ring A. Later, we shall show, however,
that, with these four exceptions, all pairs (n,n+1) and (n,n) (n=1) can be
realized as (g(A), s(A)) for some ring A. One of the key results needed for this is
the following:

THEOREM 5.10. Let (X,-) be a space with involution, and n=<s'(X). Let
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f(ty,...,t,) be a real homogeneous polynomial and g(t,,...,t,_,) be any real
polynomial.

(1) If f is anisotropic over R, then f remains anisotropic over Ax.

(2) If g(ay,...,a,_1)#0 for all a; eR, then g(d,,...,d,_1)F0 in Ax for all
d; € Ax.

Before we prove this important principle, let us first state some of its main
consequences. Applying (5.10)(1) to quadratic forms, we see that, for n <s'(X),
the forms n(1) are anisotropic over Ayx. Therefore, from the definition of the
sublevel, we deduce the following inequality:

COROLLARY 5.11. For any space with involution (X,-), we have s'(X) =<
O'(Ax).

We note, however, that s'(X) and o(Ax) may not be equal in general. In fact,
by (4.5), a(Ax) is at most one less than s(Ax) = s(X); since we have pointed out
(in an earlier footnote) that s(X) and s'(X) can differ by an arbitrary amount, we
see that 0(Ax) and s'(X) may also differ by a large integer.

COROLLARY 5.12. 0(Ag--)=0(A,)=n (where A,=R[x,...,x.]/
(1+x3+---+x2).

Proof. By (5.11) (plus (3.1) and (5.4)(b)), we have s'(X)=o0(Ax)=s(X).
Applying this to S" ! yields a(Ag~-1) = n. To get the similar equation for A,, note
that there is a homomorphism from A, to Ag-.-: by mapping the x;’s in A, to the
functions f; € Ag«- defined in the proof of (3.1). Therefore, by (5.4)(a), o(A,) =
o(Ag--1)=n. This must be an equality since we also have o(A,)=s(A,)=
n. Q.E.D.

Note that this Corollary already settles half of Question (5.8), since for n=1,
the pair (n, n) is realized as (o(A), s(A)) by taking A=A, (or Ag-). The
realizability of (n, n+1) for n# 1, 3, 7 depends on deeper topological facts, so we
shall postpone it to a later section.

COROLLARY 5.13. For any R-algebra A, we have s'(A)=c(A) (=s(A)).

Proof. We may assume that n =c(A)<w. If s'"(A)=n+1, then by definition
of the colevel there is a homomorphism A — Ag-. But then by (5.4)(a) and (5.12),
o(A)=0(Ag)=n+1, a contradiction. Thus, s'(A)=n=0(A). Q.E.D.
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Remark 5.14. In a later section, we shall give a purely topological definition
for the sublevel o(X) of any space X with involution, and shall prove a ‘“‘sublevel
theorem’ to the effect that, for any X, o(X)=0(Ax). Therefore, in view of
(5.11), we also have s'(X)=o(X)=s(X) for any space X with involution, in
parallel to (5.13).

With Choi and Reznick, we have shown earlier [CDLR] that there exist rings
with arbitrarily prescribed pythagoras numbers. However, the rings constructed in
[CDLR] are not integral domains. The last Corollary 5.13 enables us to show:

COROLLARY 5.15. There exist integral domains with any prescribed
pythagoras number n+ 1.

Proof. We may assume n>0. By (5.5) and (5.12) we have P(A,.[t])=
1+0(A,)=n+1. Q.E.D.

We shall now try to give the proof for Theorem 5.10. The key to the proof is
the following geometric fact:

COLLINEARITY LEMMA 5.16. Let (X,-) be a space with involution, and

let dy,...,d,e Ay, where n<s'(X). Then there exists a point z€ X such that
d,(z),...,d,(z2)eC are collinear on a line in the Gaussian plane passing through
the origin.

Proof. By definition there exists an equivariant map A:S" '-» X. We can
compose the functions d; with A to get n functions in Ag--.. Therefore, we may
assume that X = S"! in the following. Write, as usual, d;(z) = p;(z) +iq;(z) where
p;» q; are real functions on S"7'.

CASE 1. {g;} have a common zero z € S"™'. Then {d;(z)} all lie on the real
axis of C and we are done.

CASE 2. {p;} have a common zero ze€S""'. Then {d;(z)} all lie on the
imaginary axis of C and we are done as before.

CASE 3. We may now assume that {q;} have no common.zero on S"”!, and
also that {p;} have no common zero on Sm~1. After a normalization, each of these
defines a continuous mapping, say g, respectively p, from S"~! to S"'. Since g;
are odd functions, q is an odd mapping and hence has an odd (topological)
degree. Similarly, p; are even functions, so p is an even mapping, and hence has
an even degree. In particular, q and p cannot be homotopic, so there exists a
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point ze€ S"! at which q and p are antipodal, i.e. q(z) = —p(z). This means that
q;(z)=—-8 - p;(z) (1=j=m) for some nonzero real number & independent of j.
Therefore, the complex numbers {d;(z)} all lie on the line with equation y +8x =0
in the Gaussian plane, as claimed.

COROLLARY 5.17. In the notation of the Lemma, there exists a point z' € X
such that d(z'),...,d,_,(z") are all real.

Proof. This Corollary follows by applying the Lemma to the functions
{dy, ..., d,_4, 1}. Alternatively, it may also be proved by replacing X by S" ! as
before and applying the Borsuk-Ulam Theorem to the odd mapping
(@1, -5 Gn-1):S" ' —>R""', where q; are the imaginary parts of d. Q.E.D.

Finally, we proceed to the

Proof of (5.10). Note that (d,,...,d,)e A% is unimodular over Ay iff
{d,, ..., d,} have a common zero on X. (If there is no common zero, d,d,+- - -+
d,d., will be invertible in Ax.) Now assume f(d,, ..., d,) =0 where the notation is
as in (5.10)(1). By the Lemma, there exists a point z € X such that {d,;(z)} are
collinear on a line through the origin in C. Thus, there is an angle 6 such that
di(z)=re (1=j=n), where r,eR. Now we have

0=1f(d\(2),...,d.(2))
=f(re®, ..., r.e"*)

= (eie)kf(rl, e p rn)’

where k =deg (f). (The homogeneity of f plays an important role here!) This
implies that f(r,,...,r,)=0 and hence r,=---=r, =0 since f is anisotropic over
R. Therefore d;(z) =0 for all j, and the n-tuple (d,, . .., d,) cannot be unimodular
over Ax. This proves (5.10)(1).

For (5.10)(2), assume that g(d,, ..., d,_;)=0€ Ay, where d,,...,d, 1€ Ax.
By (5.17), there exists a point z'€ X such that a; =d;(z')eR for 1=i=n—1.
Evaluating at z', we get g(a;,...,a,_1)=0in R. Q.E.D.

Let A be any R-algebra which is contained in some formally real field K.
Then, for any anisotropic form f(t, ..., t,)€R[t, ..., t.], we can conclude from
Tarski’s Principle that f has no nontrivial zero over K, and hence also no
nontrivial zero over A. However, the function rings Ax are a very different kind
of rings. For reasonable spaces X, they have finite level, and so cannot be mapped
into formally real fields. It is somewhat surprising, therefore, that certain forms of
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the “Transfer Principle’” (namely (5.10)(1), (2)) survive in this context. Note,
however, that we cannot hope for the same ‘“‘strong” transfer as in the formally
real case, i.e. even though the form feR[t,, ..., t,] has no nontrivial zero in R", it
may well have a nontrivial zero in A%. (Our Theorem (5.10)(1) guarantees only
the nonexistence of a unimodular zero.) To give an example of this, take an
integer n such that 2' <n<2'*' and take X =S8""'. The homomorphism A, —
A g1 constructed in the proof of (5.12) can be easily checked to be an injection.
Since the level of the quotient field of A, is 2' by Pfister’s theorem, the form n(1)
does have a nontrivial zero over A, and hence also over Ag--: (although it does
not have a unimodular zero over either ring).

§6. Affine varieties X < C" with level n

In this section, we continue to consider affine varieties X < C" defined over R,
with involution given by complex conjugation. If X no real points, we have,
from (2.9)(2), s(Ax) = s(X)=n. In this section, we shall construct large classes of
examples of X for which this inequality becomes an equality. (This will enable us
to construct many quotient rings of R[x4, . .., x,.] with level exactly equal to n.) In
view of the inequality s'(X)=s(X), the natural way to get such examples is to
look for varieties X for which s'(X)=n.

EXAMPLE 6.1. Let fi(t),...f.(t) be nonzero real polynomials each of
which has at least one real root, and let X=V(g)cC" where g=
1+ fi(x) +fa(xx) +- - - +£.(x.). Then s'(X)=n.

To show this, we must construct an equivariant map H:S" ! -» X. We shall
construct maps h;:[—1, 1]—C and obtain H by the formula

(62) H(ala 5808y an) = (hl(al)a LN hn(an))

for (a,, ..., a,)eS" . To define the h;’s, fix a real root §; for the polynomial f;.
We shall first define h; on [0, 1] and then extend h; to [—1, 0] by “reflection.” In
detail, we define h;(0)=8§,, and for a €[0, 1], we define h;(a)=b where b is a
complex root of f;(tf)=—a> depending continuously on a. For a'e[-1,0], let
a=-—a'€[0,1], and b=h;(a); then define h;(a’)= b. (This is also a root of
f;(t)=—a'? since a is a root of f;(t)=—a>) Our definition ensures that h,(—a) =
W for all a e[—1, 1]. Moreover, for (a,,...,a,)e[—1,1]", we have

filhi(a))+- - -+ fu(ho(a,)) =—(ai+- - - +ap).
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Thus, if (a,,...,a,)€S"", the pont H(a,, ..., a,) in (6.2) lies on the hypersur-
face X = V(g). By construction we have H(—a,,...,—a,)=H(a,,...,a,), so
H:S"'-e X is the desired equivariant map.

COROLLARY 6.3. Let f; (1=j=n) be as above. Then the ring A=
Rlxi, ..., X, J/(A+fi(x)*+ - -+ f.(x,)?) has level n.

Proof. The affine variety Y defined by 1+ f;(x,)*+- - - +f,(x,)*=0 over C has
no real points, so, by (6.1), s(Y)=s'(Y)=n. Therefore s(A)=sR[Y]) =s(Ay)=
s(Y)=n. On the other hand we have clearly s(A)=n, so equality follows.

To better understand the construction of the equivariant map H in (6.2), let us
examine it more closely in the special case f;(t) = t", where all r, >0. Here, the §,’s
are all zero, and the ring in question is A =R[x,,..., x, J/(1+xp+: -+ x%). For
a€[—1, 1], b= h;(a) is supposed to be a root of t" = —a”. Fixing a primitive 2r;-th
root of unity, say ¢, we can define b explicitly as follows:

2y\1/r, :

(6.4) b= {Q(az),,,' i a=9,

i(a®)'"n if a=0.
This, of course, depends continuously on a. Note that, in the special case when all
r; =2, the definition above boils down simply to b=i-a (i= Vv—1), irrespective of
the sign of a. Note that a — i - a was exactly the map exploited in the proof of
s@[xy,...,x,/(1+x3+---+x2))=n given in [DLP], though this crucial
equivariant map was disguised there as a ‘‘substitution of variables” x; — ix;.

EXAMPLE 6.5. Let qeR[x,, ..., x,] be a nonconstant, absolutely irreducible
polynomial, Y= V(q)cC" and A=R[Y]=R[x,,...,x,.1/(q). If the projective
closure of Y is nonsingular, then s'(Y)=n. In particular, the conclusions of (5.10)
are applicable to A and to Ay. If Y has no real points, then n=s'(Y)=s(Y) =
$(Ay)=s(A) <.

To show this, use the fact that, under the stated hypotheses, the affine
hypersurface Y has the homotopy type of a bouquet of (n—1)-spheres (see [M],
[GH, p. 486]). In particular, Y is (n—2)-connected. By (2.10), we have therefore
s'(Y)=n.

To construct the next family of examples, we shall need the following result on
the function ring of a space X which is in some sense ‘“‘dual” to (5.10). We thank
M. Knebusch who suggested to us the statement of this result as well as the key
ideas for its proof.
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THEOREM 6.6. Let (X,-) be a space with involution, with s(X)<n. Let
p(ty, ..., t,) be a nonconstant, absolutely irreducible real homogeneous polynomial.
If p is anisotropic over R, then p represents all (nonzero) real numbers over Ax.

(For the terminology used here, see (5.1).)

Proof. Since an equivariant map X -» S"~! induces an R-algebra homomorph-
ism Ag.-1— Ay, we may assume in the following that X =S""!. Note that the
degree of p must be even, and p cannot be indefinite on R". Therefore, we may
assume that p is positive definite (i.e. p(R"\{0})>0); in this case it will be
sufficient to prove that p represents —1 over Ax. The proof will be carried out in
two steps.

Step 1. We assume here that p is a regular form, in the sense that the partial
derivatives dp/dx;, . . ., dp/dx,, do not have a nontrivial common zero in C". Since p
is absolutely irreducible, clearly so is

qx1, ..., %) :=14+p(xq,...,Xx,).
Consider the affine hypersurface Y:= V(q) =C". We claim that
(6.7) The projective closure Y of Y is nonsingular.

If this is the case, then by (6.5) there exists an equivariant map X =S""'-e (Y, -)
(“bar” = complex conjugation), and we have R-algebra homomorphisms

R[xla seey xn]/(q) - AY —> AX'

Since p represents —1 in R[x, ..., x,]/(q), it follows that p also represents —1 in
Ay, as desired. To prove the claim (6.7), let us assume, instead, that Y does have
a singular point (ag:a,:- - :a,) in CP".

CASE 1. a,#0, say a,=1. Then (a,..., a,) kills all the partial derivatives
0q/dx; = dp/dx;. By Euler’s formula it follows that p(a,,...,a,)=0. But then
q(aq,...,a,)=1+p(ay,...,a,) =1, a contradiction.

CASE 2. a,=0. Since Y is given by the homogeneous equation x&+
p(x4,...,x,)=0 (d=degp), we must have p(a,,...,a,)=0. Meanwhile, the

Jd d ap .
— (x§+p(xy, ..., =— (I=i=n),
ox (xo+ p(xy X)) ox, (I=i=n)
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so (a,...,a,) is a nontrivial common zero of dp/dx,, . .., dp/dx,, a contradiction
to the regularity of p.

Step 2. In the general case, we know by algebraic geometry that p can be
approximated arbitrarily well (coefficient-wise) by a regular, absolutely irreduci-
ble (n-ary d-ic) form p. Moreover, if the approximation is good enough, the form
p will also be positive definite. By Step 1, we know that p represents —1 over Ay,
say —1=p(Ay,...,A,), where A\;e Ax. Let ¢:=—p(Ay,...,\,)€ Ax. Since X =
S"~ ' is compact, by choosing p sufficiently close to p (coefficient-wise), we can
insure that the function ¢ : X — C takes only values near 1, say within an open
ball of radius 3 around 1. Then, ¢ is a d-th power in Ax. In fact, consider the
binomial expansion

(1+2)¥¢ =) (lﬁd)z" for |z|<3.
i=0

1/d

Taking z=¢(x)—1 (xe€ X), we see that ZT’:O( .
I

)((b(x)—l)f is a d-th root of

. ) 1/d . . .
é(x). The resulting function ¢{1:=Z‘;°=0( j )((b-—l)’ is clearly in Ax since all

coefficients in the summation are real, and we have

Yi=d==py,...,A).

Since ¢ is nowhere zero on X, we get —1=p(A{/¢, ..., A /), so —1 is rep-
resented by p over Ax. Q.E.D.

The result above leads to one more large family of affine varieties Y =« C" with
s'(Y)=s(Y)=n.

EXAMPLE 6.8. Let p(xq,...,x,)€R[xq,...,x,]\R be a form which is posi-

tive definite and absolutely irreducible. Let Y=V (1+p) and A=R[Y]=
R[x4, ..., x,]/(1+p). Then the conclusions of (5.10) are applicable to A and to

Ay, and we have
n=s"(Y)=s(Y)=s(Ay)=s(A)<ox,

In particular, p is not a sum of n—1 squares of real polynomials.

In fact, since p represents —1 over Ag~-:, we can find an R-algebra
homomorphism from A to Ag.-i. As we have seen before in the proof of (4.3),
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this gives rise to an equivariant map S™ ! -e Y, so s’(Y)=n. Since Y has no real
points, we also have s(Y)=n by (2.9)(2). Now the rest follows as usual.

Note that the assumption that p be absolutely irreducible is essential for both
(6.6) and (6.8). This can be seen by considering the form

p(Xy, ..., X)) =x1+(x3+ - -+ x>

This form is positive definite, irreducible but not absolutely irreducible. For n =3
the conclusion in (6.8) is clearly false since p is a sum of two squares in

Rlxq, ..., Xx. )

§7. Level and colevel of V:,, V2,

Let V, ., denote the Stiefel manifold of orthonormal m-frames in the real
euclidean space R". In this and the next section, we shall be interested in two basic
fixed-point-free involutions of V, ,, denoted by ¢ and 8. These are defined as
follows:

(71) {8{01, ey Um}:{vl’ ey Ut "“Um}’

6{vl’ et vm}:{_vb e moay —vm}'

The resulting spaces with involutions (V,,,, €), (V,. ., 8) will be denoted in the
sequel by V£, and V2. In this section, we shall focus our attention on the case
m =2, and regard n as fixed. Therefore, to simplify the notations, we shall write
(throughout this section) V*© for V;,, and V? for V.,. In the first half of the
section, we shall compute the level and colevel of V* and V?; in the second half,
we shall then study the algebraic implications of these computations.

We note, in passing, that there is actually a third natural involution &’ on V, ,,
defined by £'{v,, v2}={v,, v,;}. However, it is easy to see that, as a space with
involution, (V, ,, €') is isomorphic to V*. In fact, the homeomorphism h:V* —
(V,.2, €') defined by

h{vy, v} ={(v, - Uz)/‘/Z, (v, + Uz)/‘/z}

is easily checked to be equivariant with respect to the two specified involutions.
Therefore, there is no need to consider €’.

To begin our computations, note that the ‘“projection map” V, , - S" ! given
by {v,, v} v, is equivariant with respect to both £ and 8 on V, ,. This map will
be used freely in the following computations. It shows that s(V*) and s(V?) are
both =n.
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THEOREM 7.2.

n if n is even.
n—1 if nis odd.
(2) s(V3)= n for all n.

(1) s'"(Voo) = {

Proof. First assume n is even. We can construct a map f:S" ' — V? by

f(U) z{(vl’ L vn)a (02, U5 .-.5 Uy, _vn—-l)}

for v =(vy,...,v,)€S" . It is easy to check that f is an equivariant map, so we
get s(V?)=5s'(V?®)=n. In the following, we may, therefore, assume that n is odd.
In this case, the idea used above gives an equivariant map g:S" 2 -e V, namely

g(th ceey tn—l) z{(tb sees tn~—1’ O), (tZ, —-tl’ IR ) tn—la _tn—2, 0)}
for (t;,...,t,—,)€S" 2. We claim that
(7.3) There does not exist an equivariant map V®- S" 72,

For, if such a map exists, then we would have s'(V?)=s(V®)=n—1 and so by
(2.11) m, 5(V,,) would have an infinite cyclic quotient group, contradicting
Stiefel’s Theorem that (for n odd) m,_,(V,,)=Z, [St: p. 132]. This proves (7.3),
and therefore s(V?®)=n. For the colevel, the existence of the map g already
shows that s'(V®)=n — 1. To show that this is an equality, we need to show that

(7.4) There does not exist an equivariant map S™ ' -» V2.
Indeed, if such a map exists, then we would have s’(V?)=s(V?®)=n and so, by

(2.11) again, m,_,(V, ) would have an infinite cyclic quotient group, contradicting
Whitehead’s Theorem [Wh]® that, for n odd:

Zz lf n> 3
n-1(V, E{ ) E.D.
maVnd =1y op=3 @
Next we shall compute the level and colevel for the space V= V7 ,.

5 Another argument showing s'(VZ,)=n-1 for n odd, without using homotopy, will be given in
(8.3)(1).
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THEOREM 7.5.
() s'(Vi=n—1.

ey |n ifn#2,4,8,
(2) (Conner-Floyd) s(V:,) = {n— 1 ifn=2,4,8

Proof. First, note that there is an equivariant map S" %-» V° defined by
v —{e, v}, where e is a fixed vector, and v ranges over the unit sphere in the
orthogonal complement of e. Therefore, we have s'(V°*)=n — 1. To show that this
is an equality, we need to show that there does not exist f:S" ' -» V*. Indeed,
assume such an equivariant map exists, say f(v) ={p(v), q(v)}. Then p is an even
map and q is an odd map from S""' to itself. Since p(v)Llq(v), these two
mappings must be homotopic, and hence have the same degree. However, deg (q)
is odd and deg (p) is even, a contradiction.

To compute the level s(V*®), first let n =2, 4, 8. Using the properties of the
complex numbers, quaternons and Cayley numbers, it is easy to construct an
equivariant map V®-» S" 2, 50 s(V®)=n—1 in these cases. Now assume n# 2, 4,
8. If n is odd, we can get s(V*®)=n by the same argument used before to prove
(7.3). If n is not necessarily odd, the same conclusion is considerably deeper: the
proof given in [CF,]® uses Adams’ Theorem on the nonexistence of Hopf
invariant one, plus a certain construction of Milnor and Spanier. In the following,
we shall present a more “‘elementary’ proof sketched to us by I. M. James which
uses only Adams’ Theorem but not the Milnor-Spanier construction.

Assume there exists an equivariant map f: V- S" 2. Let e be the “north
pole” of S"' and S" 2 be the ‘“equator” of S"'. By identifying z € S"~2 with
{e,z}, S"? is equivariantly imbedded in S™'. By restriction, f induces
fo:S" 2 S""2 We now define a map ¢:S" 'xS"'— 8" as follows. If
{x,y}e V..., we set &(x,y)=f{x,y}eS"?>cS""'. Next consider (x,z)e
S~ 1x 8", Choose y coplanar with the vectors x, z such that z makes an acute
angle (<w/2) with y, and write z = x cos 8 +y sin 0, where 0 is the angle between
z and x (0= 60 =). One then sets

&(x, z)=p(x, x cos 0+ y sin ) = e cos 0 + f{x, y} sin 6.

It is easy to check that ¢ is well-defined and has the following properties:
(@) o(x,x)=e;

¢ Conner and Floyd used the involution &':{v,, v,} = {v,, v,}. But, as pointed out before, (V,,,, ¢")
is isomorphic as a space with involution to our V*.
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(b) Let ¢, :S" ' — S"! be defined by ¢.(z) = (e, z). Then ¢, | S" 2= f,, and
¢. maps the upper (resp. lower) hemisphere of $"~! into the upper (resp.
lower) hemisphere of S™!.

Now let d=deg(fo)=deg(d.|S"® which is an odd integer since f, is
equivariant. Property (b) above implies that deg(¢,)=deg (¢, | S"?)=d, and
Property (a) implies that ¢,:S""' — S"™! defined by ¢.(x) = ¢(x, ) has degree
—d. Thus ¢ has bidegree (d, —d). Since d is odd, Adams’ Hopf Invariant One
Theorem implies that this is possible only for n =2, 4, 8. Q.E.D.

(Professor James has further pointed out to us that the construction of ¢ from
f above is made possible by the fact that S* !X S""' may be viewed as the
“fibre-suspension” of V,,, with respect to the natural fibration V,,— S"7'))

Next we shall study the applications of the topological results above to

algebra. Look at R[x, y] where x = (x4, ..., %.), y=(y1,..., y,.); let A¢ and A° be
the following ideals:

(7.6) A== (1—2 x,-z, 1+Z y7, Z x,-y,-),
(7.7) A= (l +Z x7, 1+ Z y7, Z x,-y,-),

and let B:,=R[x, yJ/A°, B5,=R[x, y}/A°. Note that B, is a ‘“‘generic”’ R-
algebra over which n(1) contains an orthogonal direct summand (1, —1) (i.e. n(1)
is isotropic), and B}, is a generic R-algebra over which n(l) contains an
orthogonal direct summand (—1, —1). In particular, we have s(B;,;)=<n, o(B; ) =<
n—1 and s(BZ,)=<n. In the following we propose to compute the invariants s
(level), s’ (colevel) and o (sublevel) for the rings B, and B{,. Since n will be
held fixed, we shall henceforth write B° = B¢, and B®>=B2,.

Remark 7.8. We can also look at a third algebra B =R[x, y]/% where A=
(X x7,Y x;y;—1). But since this is also a generic R-algebra over which n(l) is
isotropic, there exist algebra homomorphism B°® — B — B*®. Therefore, the re-
sults obtained below for the ring B°® will hold equally for the ring B.

To relate the rings B®, B® to the Stiefel manifolds with involutions V* and
V2 let Y° and Y? be the affine varieties defined, respectively, by 2A° and UA® in
C*". These have no real points and are, as usual, given the involution defined by
complex conjugation. We can construct an equivariant map V* — Y* by {u, v}—
(u, iv), and an equivariant map V®— Y?® by {u, v} (iu, iv), where i=+-1.
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Therefore, we have the following R-algebra homomorphisms:

(7.9) B®*— Ay. —> Ay,
(7.10) B8 "—)AYB -')AVB.

THEOREM 7.11.
(1) S'(Bf;,z) = O'(Bfu,z) =n—1.

n ifn2,4,8
) waio-
@ sBL=1,-1 ifn=248

(Note that this computation, in particular, completely settles Question (5.8),
since for n# 2, 4, 8, (¢(B*), s(B®)) realizes the pair (n—1, n).)

Proof. From (7.9) and (5.11), we have o(B®)=c(Ay-)=s'(V*®). Using
(7.5)(1), this gives o(B®)=n—1 and hence o(B®)=n—1. For the colevel, we
have from (7.9) and (4.3):

sS'(B%)=s'"(Ay:)=s'(V*)=n—1.

On the other hand, (5.13) gives s'(B°)=<co(B®)=n—1, so we also have s'(B*) =
n—1. for the level, (7.9) and (7.5)(2) give

n if n#2,4,8,
)= )= f)=
s(BY)=s(Av-)=s(V7) {n-1 if n=2,4,8.
Therefore s(B®)=n if n# 2, 4, 8. On the other hand, if n =2, 4, 8, we must have
s(B®)=n—1 for otherwise s(B°) would be n and (5.9) would give o(B®)=
s(B*®) = n, contradicting the conclusion in part (1). Q.E.D.

Next we proceed to the computation of the invariants for the ring B®. Here we
can also completely determine the level and colevel. However, the sublevel turns

out to be more difficult: we can determine o(B?) only for n even (and later for
n=23,7).

THEOREM 7.12.

’ 8~= n if n is even,
(1) s'(Bnpo) {n— 1 if nis odd.

(2) s(B%,) = n for all n.
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n if nis even

(3) G(B‘Z,z)z{n_l ifn=3,17.

Proof. From (7.10) and (7.2)(2), we have s(B®)=s(Ays)=s(V?®)=n. There-
fore s(B®)= n, proving (2). Similarly

5 rrv n if n is even,
o(BY)=o(Av)=s(V )={n-1 if n is odd,
and the same inequalities hold with o replaced by s'. Therefore, if n is even, we
clearly have o(B®)=s'(B®) = n. Next, assume n is odd; then s'(B?) is either n or
n—1. If it is n, there would be an R-algebra homomorphism from B® to Ag«-1.
Hence, over Ag.-», the form n(1) admits an orthogonal direct summand (-1, —1).
By a later result (cf. (9.6)), this implies that there is an equivariant map
$" ' V® But this is impossible since s'(V®)=n-—1 by (7.2)(1); therefore
s'(B®)=n—1 for n odd. For n=3 or 7, we shall show (cf. (9.17)) that n(1) is
isotropic over B, ,, so in these two cases o(B3,)=n—1. Q.E.D.

For n odd # 3, 7, we conjuecture that o(B?%,) = n, i.e. n(1) is anisotropic over
B?,. This will be proved later modulo a certain conjecture on equivariant maps
(cf. end of Section 10).

§8. Colevel of V; , and the Hopf Problem

In this section, we shall consider the problem of computing the colevel s’ of
V? . It turns out that this problem amounts precisely to the “skew-linear’” version
of the Hopf Problem on the existence of nonsingular maps from R” XR? to R"
(IH])). The following lemma is due to K. Y. Lam [L;: (3.1)]; we include its
statement and proof here for the sake of completeness.

LEMMA 8.1. A (continuous) equivariant map f:S°"'-» V2, gives rise to a
(continuous) nonsingular skew-linear map ¢ :R°XR*—R", and conversely.
(“Nonsingular” means that ¢(x, y) =0=>x =0 or y =0. “Skew-linear”’ means that

é(=x,y)=—ad(x,y) and ¢(x, ay +a'y") = ad(x, y)+a'¢d(x, y").)

Proof. For x € S*~!, we think of the q (column) vectors of f(x) as forming an
n X q matrix, again denoted by f(x). For x eR” and y e R? we can then define ¢



404 Z. D. DAI AND T. Y. LAM

(the “adjoint” of f) by

0 y) = {f(x/HxH) 'y it x20,
0 if x=0.

Here, y is written as a column vector, and the dot denotes matrix multiplication.
Clearly ¢ is nonsingular and skew-linear. Conversely, if such a ¢ is given, and
x € SP7', consider {¢(x, e)), . . ., d(x, e,)}, where {¢;} are the unit vectors in R*. By
the linearity of ¢ in the second variable, and the nonsingularity of ¢, the ¢(x, ¢;)’s
are linearly independent in R". Therefore, we can define f(x) to be the Gram—
Schmidt Orthonormalization of {¢(x, e,), . . ., d(x, e,)}. From the orthonormaliza-
tion formulas, it is easy to check that the skewness of ¢ in the first variable
implies the equivariance of f:S*™'— V3,. Q.E.D.

For given p,q=1, let p # q be the least integer n for which there exists a
nonsingular skew-linear map ¢ :R° XR?*—R". The lemma above says that
s'(V3,)=p iff p # q=n; from this, we conclude that

COROLLARY 8.2. 5'(V?2 ) is the largest integer p such that p#q=<n.

In the notation of [L,], we have therefore s'(V.,) =s(n,q—1), where the
latter is the largest number of independent sections for the n-fold Whitney sum of
the Hopf line bundle on RP4.

From the known results on p # q in the literature, we can record the following
consequences on the computation of s'(V}):

COROLLARY 8.3. (1) s'(V},)=n, with equality iff q=p(n) (the Radon
function). (This subsumes, in particular, (7.2)(1).)

(2) Let “neg” denote the involution on the orthogonal group O(n) defined by
M — —M. Then s'(O(n), neg) = p(n). If n is even, then s'(SO(n), neg) = p(n).

Proof. The equivariant map VZ,— S"”' obtained by projection to the first
vector shows that s'(V2,)=s(V3 ) =n. The rest follows from (8.2) and Adams’
solution to the Vector Field Problem [Ad].

Note that if g =8, p# q has been completely determined by Behrend [B]. In
fact, in this case, p # q just coincides with the poq defined in Pfister’s paper [Pf]
in connection to the composition of a sum of p squares with a sum of q squares in
fields. For p’, q =8, the computation for p’ # q=p’eq is easy, and for p=8m +p’
(m=0,1=<p’'=8), we simply have p# q=pe°q=8m+p’oq. Similarly, using the
fact that p(16) =9, one can show that p # q = p°q also holds for q = 9. Therefore,
(8.2) leads to a complete determination of s'(V3,) for q=9.
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For the reader’s convenience, we compile in the following table the known
values of p# q for q=p=17:

1011111213 |14|15}16|17

| =
=}
—
N9
W
L
W
o)}
~
o
o

W3 n A WK -
00NN AW
o sJe cle ke P S S ]

9 || 911011 |12{13|14(15(16(16

11 1111212121516 (16 |16|16|17 {17
12 §12(12112112|16(|16116 |16 16| 17|17 |17
13 13|14 |15|16{16|16 |16 |16|16{19119(19|19
14 14|14 |16 (16| 16|16 |16 |16 16| 20}20]20{23 |23
15 J15[16]16(16}16|16 |16 |16{16]|20(20|20|23{23|23
16 |16[16116]16|16|16 16 |16|16] 22|23 1231232323 (23
17 [17118]19 (20] 2122|2324 |25]26(27(28]29|30(31|32}32

Here, the first eight columns follow from Behrend’s computation, and the ninth
(up to p=16) follows from p(16)=9. The rest follows from the work of K. Y.
Lam [L,-L,] and J. Adem [A,;~A;]. Note that in this table, if p=2'+1, then
p#q=p+q—1 for all q<p. This follows easily from the work of Hopf [H].

From this table and from (8.2), we can easily read off the s'(V},,) table on the
next page.

Finally, we make an observation on a lower bound for s'(V},). Translating
Hopf’s upper bound p# q=p+q—1 [H], our (8.2) implies that, for all n, q,

8.4) s'(Vi)=n—q+1.

In fact, the map obtained by sending v =(vy, ..., U,_q41)€S™ * to the Gram-
Schmidt Orthonormalization of the g (linearly independent) row vectors of

..............

--------------
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Table of Values for s'(V3 )* (n=19)

qll 1] 2] 3| 4|5|6| 7| 8| 9/t0|11]12|13]14|15]|16] 17[18]19
n

1 [

2 {1212

3 13]2]1

4 ||4| 4| 4] 4

s {|s5|4]a]4af1

6 ||6]6]| 44|22

7 1716|543 2]1

8 || 88| 8|8|8| 8|88

9 lo|8|8|8|8|8|8|8|1
10 ([10{10| 8| 8| 8| 8| 8| 8| 2| 2
11 |1t {10] 9| 8| 8| 8| 8| 8| 3| 2| 1
12 |12 (121212 | 8| 8| 8| 8| 4| 4| 4| 4
13 |13 ]12{12112| 9| 8| 8| 8| 5| 4| 4| 4| 1
14 |14 14|12 (12 |10]10| 8| 8| 6| 6| 4| 4| 2| 2
15 |15 (14|13 |12 |11{10| 9| 8] 7| 6| 5| 4| 3| 2| 1
16 |[16 16|16 |16 |16|16|16|16]|16|10| 9| 9| 9| 9| 9] 9
17 17 ]16]16 |16 16|16 |16 |16 |16 [12]12| 9| 9| 9] 9| 9| 1
18 [18 18|16 |16 [16|16|16|16]16|12]12|12| 9| 9| 9| 9| 2| 2
19 119 {18]17 |16 |16|16 |16 |16 |16 {13|13[13[13]| 9| 9| 9| 3| 2| 1

*From the definition of s'(V? ), it is easy to check that, in this table, the rows must be
nonincreasing, and the columns must be nondecreasing.

(undesignated entries are zero; see [Ls]) is evidently an equivariant map from
S"™9 to V5, From our table of values for s'(V],), one finds that there exist
various pairs (n, q) for which (8.4) is actually an equality: this is the case, for
instance, when n =7 or n=15. More generally, we have the following

PROPOSITION 8.5. Let n=2'—1. Then, for all q,s'(V},)=n—q+1.

Proof. In view of (8.4) and (8.2), it is enough to show that p#q=p+q—1 if
p+q=2"+1. If this is not the case, there would exist a nonsingular skew-linear
map R’ XR?*—R". Since p+q—n=2, there is exactly one integer k strictly
between n—p and q. By the Hopf Condition on the existence of nonsingular

(biskew) maps [H], the binomial coefficient (Z) must be even. However, since
n=2"—1 has only 1’s in its dyadic expansion, Lucas’ Lemma implies that all

binomial coefficients (n) are odd (see [B]), a contradiction. Q.E.D.
)
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There are also values (n, q) with n#2'—1 for which s'(V3,)=n—q+1; for
instance, for q =5, this equality holds not only for n=7,15,..., but also for
n=>5,6,12, 13, 14, 15, etc. In general, it can be shown that s'(V3)=n—q+1 iff

the binomial coefficient (qf 1) is odd. The proof of this criterion will appear in
[LL].

For the level s(V?2,), computations seem to be more difficult (for q =3). Some
partial results are given in [LL].

§9. Equivariant maps into Stiefel manifolds

In the remaining sections of this paper, we shall study certain generic rings
which are generalizations of the rings A,, B, and B2, defined before in §§3, 7.
These generic rings, denoted by B}, (where m =r+s), are defined as follows:
they are generated over R by commuting variables (x;) (1=j=m,1<=k=<n)
subject to the relations dictated by the matrix equation:

9.1) (x].k>(x,-k>'=(f,' —018)'

Let B=B7’, and let x; (1=j=m) be the jth row of (x;), viewed as a vector in
B™, the free B-module of rank n. With respect to the quadratic form n(1)
(:=t3+---+t2) on B™, we have the inner-product relations:

0 ifj#j,
(9.2) X; X = 1 ifj=j'=r,
-1 ifj=j>r
Therefore, the vectors x4, ..., x,, are linearly independent, and span an inner

product subspace r(1) L s(—1) in n{1). This leads to an orthogonal decomposition
9.3) n(D=r1)Ls(-1)1L o

over B, where ¢ is the inner product space given by the orthogonal complement
of 3, B - x;. If m(=r+s)>n, the decomposition above implies that B =0, but if
m =< n, it will be clear that B is nonzero. In the following, we shall always assume
that m=n and s=1.

Let C be any commutative R-algebra. If there is an orthogonal decomposition
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of the type (9.3) over C (for some C-inner-product space ¢), we shall write
n{1)=r(1) L s{(-1) over C.

Clearly this is the case iff there is an R-algebra homomorphism of B = Bj;, into
C. To refer to this property, we shall say that B is the generic ring for which
n(1)=r(1) L s(—1). Note that By} = A, is the generic ring of level n in (3.2), and
B)3, BY3 are respectively the rings denoted by BZ, and B3, in §7 (cf. (7.6),
(7.7)).

Now let Y=Y;, be the affine variety in C" defined by the polynomial
equations given by (9.1). This variety is defined over R, and B = B3, is its real
coordinate ring. Since s =1, Y has no real points; as usual, we equip Y with the
(fixed-point-free) involution given by complex conjugation.

To study B}, and Y},, we shall use the Stiefel manifolds V7, defined in
(2.4), with the involution

(9'4) (Ul, s ewy Um) —> (vl, I % S PRI —vr+s)-

Note that Vi "=V, Vam=V?,, and Vy1 is just the unit sphere S"~' with
the antipodal involution.

LEMMA 9.5. There exists an equivariant map f: V5. - Y5,

Proof. We define f by sending an orthonormal m-frame (v4, ..., v,,)€ V;;, to
the m-tuple of n-vectors x,,..., x,, where

{v,- if 1=sj=r,
=1 . :
Toliy i r<j=m,

and i =+/—1. Clearly the vectors x; (1=j=m) satisfy the inner product equations
(9.2), so their coordinates (x; ) define a point in Y}5,. Clearly f is an equivariant
map from V; to Y;5,.. Q.E.D.

(This Lemma, incidentally, shows that Y5, # &, so, in particular, B;5, # 0 for
m=n.)

We now come to the basic result of this section, which relates the behavior of
the form n(1) over the function ring Ax of a space X with involution to the
existence of equivariant maps of X into the Stiefel manifolds V5. We are greatly
indebted to M. Kervaire and W. Scharlau for a valuable communication which
was instrumental to the inception and proof of the following result.
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THEOREM 9.6. For any space X with involution, we have n{1)=r(1) L s(—1)
over Ax iff there exists an equivariant map from X to V5, where m =r+s.

nm

Proof. First assume there is an equivariant map X-» V5. Composing this
with the map f constructed in the proof of (9.5), we get an equivariant map
X-» Y:= Y5, This induces an R-algebra homomorphism Ay — Ax. Composing
this with the standard map B}, — Ay, we get a homomorphism B;j5, — Ax.
Therefore, we have n(1)=r(1) Ls(—1) over Ax.

Conversely, assume that n{1)=r(1) L s(—1) over Ax. Let (,) denote the inner
product given by n(1) over any ring, and let F; (1=j=m) be vectors in A% giving
an orthogonal basis (w.r.t. {,)) for the orthogonal summand r(1) L s(—1). We think
of each F; as a vector function, and decompose it into its real and imaginary parts,
say F; = G; +iH,. Then the coordinates of G; are “‘even’ functions and those of H;
are ‘“‘odd” functions (from X to R). Our next step is to express the inner product
properties of the F;’s in terms of the G;’s and H;’s.

(1) Let j# k. Then

0= <1:p Fk>= <Gj +lI_Ip Gk + lHk>
= (Gp Gk)’“(I'I,', Hk>+ i((Gp Hk>+<Gka H]))

Therefore, for j# k, we have
(9.7) (Gp Gy = <I'Ip H,),
(9-8) <Gja Hk) = ‘“(Gk, I‘L)

(2) For j=k, we get instead

(F;, F)=(G;, G;)—(H,, H;)+2i(G;, H)).
Therefore, we have

1 if 1=sj=r,

(9.9) <G,-,G,->—<Hf’Hi>={_1 if r<j=m,

(9.10) (G;, H)=0.
Now consider the map

(911) X —> (Gl(x)a R Gr(x)a Hr+1(x)9 L ] Hr+s(x))

m m
X R"x...xR"xR"x...xR"

\ o J
g v

r-copies s-copies



410 Z. D. DAI AND T. Y. LAM

We claim that, for any x € X, the m vectors listed above are linearly independent in
R". In fact, fix a point x € X and assume that

Y wGi(x)+ Y AH(x)=0.

1=j=r r<k=m

where u;, A, €R. Let

(9.12) p:= Z “’jI_Ij(x)_ Z MG (x).

1=sj=r r<k=m

To simplify the notations, we shall suppress the (fixed) point x in the following
computations, and always assume that the indices j, j’ range from 1 to r, while k,
k' range from r+1 to m. For any j', we have

O = <Z lJ"jGj + Z Aka, Gj'>
j k

= 2 (G, G+ wd Gy, Gy + 2, M(Hi, Gy
k

=i’
Using (9.7), (9.8) and (9.9), we get

0= wi(H;, H)+ p(1+(H;:, H)— X M(Gy, Hp)
i*i’ k

=yt <Z w;H; _g MG, ff;)
1

= ;- +<{p, H;")

Therefore, u; =—(p, H;;) (for 1=<j'=<r). Similarly, for r <k’=m, we have

0= <Z [.LjG]- + Z Aka, Hk'>
i k

= Z “‘1’<G1" Hy )+ Z M A(Hy, He)+ MeAHy, Hyo)
j

k#k’

= =Y w(H, G+ Y. MdGi, G+ M1 +(Gy, Gi)
i

k#*k'

= Ak’ - (p’ Gk’)-
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Therefore, A\, ={p, G,-) (for r<k’'=m). We have then

{p: p)= <p, Z wiH; — Z )\ka>
= Z wi{p, Hy)— Z Mdp, Gio)

- (Zui+Zaz)=o

Since p is a real vector, this implies that the y;’s are all zero, and the A, ’s are all
zero. Therefore, we have proved that, for any x € X, the m vectors in (9.11) form
an m-frame in R". Let V:;fm be the space of (not necessarily orthonormal)
m-frames in R", with involution given again by (9.4). Since the G;’s are even
functions and the H,’s are odd functions, (9.11) defines an equivariant map
X - VIS Therefore, we are done by the following

LEMMA 9.12. There exists an equivariant map g: V%S, - V&S,

Proof. We define g by sending an m-frame {u,, ..., u,}e V%, to its Gram-
Schmidt Normalization {vy, ..., v,.} € V5. A routine computation with the stan-
dard normalization formula shows that g is an equivariant map with respect to the
involutions defined in (9.4). We suppress the details here. Q.E.D.

COROLLARY 9.13. There exist equivariant maps V5, Y. 5. - V5.

Proof. The first map has been constructed in (9.5). To show the existence of
the second map, let Y = Y;5,.. The natural homomorphism B}, — Ay shows that
n{l)=r(1) L s(—1) over Ay. Therefore, Theorem (9.6) implies the existence of
Y- V5. QE.D.

COROLLARY 9.14. For given integers n, m, r, s and n', m', r', s’ with
m=r+s and m'=r'+s’', consider the following statements:

(1) Owver B}, one has n'(1)=r'(1) Ls'(—1).

(1) Owver any R-algebra A, n{1)=r(1) Ls(=1)>n'(1)=r'(1) Ls'(-1).

(2) There exists an equivariant map V55, - V5.

(2') Over any R-algebra of the type Ax (X a space with involution), n{l)=

r{1)Ls(-1)=>>n'(1)=r (1) Ls'(—1).

We have (1) (1)=> (2o (2).

Proof. (1)&(1')=>(2') are obvious, and (2)¢<(2) follows easily from
(9.6). Q.E.D.
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The implication (2)=> (1) is probably not true, though we won’t try to construct
an example to show this. The point is that there may exist equivariant maps
Vis. - V7.5 which may not be expressible in algebraic terms. Whenever we can
construct an equivariant map V.5, -» V... “algebraically,” we can usually use
the construction to show (1). In the following, we shall give several examples to
illustrate this.

(9.15) There is a well-known map f: V,,—> V; ; given by vector products in R’
(cf. [E: p. 339]). We think of R’ as the space of Cayley numbers without
a real part and take

flu, v}={u, v, u - v},

where u - v is the Cayley multiplication in R®. It is easy to see that
u,veR’ and u L v imply that u - veR’ and that u - v is perpendicular to
both u and v. This gives two equivariant maps:

(9.16) V72 V73 and V73— Vi3

Since the Cayley multiplcation can be defined over any commutative ring A, the
construction of f actually shows the following: If 7(1) over A contains a subform
(a, b) where a, b are units, then the orthogonal complement of {a, b) contains
(ab). In particular, we have the following algebraic analogues of (9.16):

(5.17) (D=1, -1 71y =(1, -1, —1).
‘ 71y =(-1,-1)>7(1)=(1,-1,-1) (over any A).

(Similar conclusions can be drawn for 3(1), but for this form the conclusions are
already clear by determinant considerations.)

(9.18) There is also a vector product for three vectors in R® which has been
explicitly determined by G. Whitehead and P. Zvengrowski (W], [Z]). In
the case of an orthonormal 3-frame {u, v, w}, the vector product turns out
to be —u(dw), and this is perpendicular to each of u, v, w. This leads to
three equivariant maps:

(9.19) V@i Vi,  Vegi= V@i and Vg3l Vi

For inner product spaces, this construction implies that, over any commutative
ring, if 8(1) contains (a, b,c) where a, b, ¢ are units, then the orthogonal
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complement of {a, b, ¢c) contains {abc). In particular,

81)=(1,1,-1) =>81)=(1,1,-1,-1),
(9.20) < 81)=(1,-1,-1) =>81)=(1,1,-1,-1),
8(1)y=(-1,-1,-1)=>8(1)=(-1,-1, -1, —1).

(9.21) By the Hurwitz-Radon Theorem, we have an equivariant map S™'
(= V31— V2 ) It is well-known that the Hurwitz—-Radon equations
can be solved over Z and hence over any commutative ring A. Therefore,
if we apply the Hurwitz-Radon Theorem to n(l) over A, we conclude
that, for any unit a € A,

(9.22) n(1)=(a)=> n{l)=p(n)a).

The power of (9.14) lies in the fact that it enables us to show that, in general, the
statement (9.22) is already the best possible. In fact, for a=—1 and A=A, =
B, we have n{1)=p(n){—1), but n{1)#(p(n)+ 1){—1). If n{1)=(p(n)+1}-1)
over By, (9.14) would imply that there is an equivariant map S" ' - V3 .. . 1;

this contradicts the fact (8.3)(1) that s'(VZ 1) <n.)

n,p(n

(9.23) We can get similar negative results by using the values of s'(V,)
tabulated earlier for n = 19. For instance, take n = 6. There is a decrease
in s'(V2,) when q goes from 2 to 3 and when q goes from 4 to 5.
Therefore we cannot have equivariant maps V¢, - V25 or V¢, - V2.,
This implies that, for R-algebras A, 6(1)=2(—1) need not imply 6(1)=
3(—1) (take A = B¢3), and 6{1)=4(—1) need not imply 6(1)=5(—1) (take
A =Bg3). If we take n=2'—1, we can say a lot more since, by (8.5),
s'(V} ) decreases at every step as q goes from 1 to n. This implies that
there is no map VI, - V3,,,. Therefore, for n=2'—1 and for any g,
n{1)=q(—1) does not imply n{1)=(q+1){(—1); in fact, over Byd, n(l)
contains q copies of (—1), but not q+1 copies.

(9.24) Let A be any ring with 3€ A, and let W(A) be its Witt ring. Then we
have

s(A)=24W(A)=0,
S(A)=4=>8W(A)=0,
s(A)=8=>16W(A)=0.
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In fact, assume s(A)=<8. Then, over A, we have 8(1)=(—1). Since
p(8) =38, we get 8(1)=8(—1) and hence 8(1)=8(—1). This gives 16(1)=
0e W(A), so 16 W(A)=0. The other cases are dealt with similarly.
Unfortunately, this argument does not extend to higher levels since
p(2")= 2" holds only for i =1, 2, 3. In the case when s(A) <, it is known
that 2"W(A) =0 for some n ([K;: Chapter 3]); bounds on n in terms of
s(A) seem to depend on topological K-theory.

Over a field, we know that if the n-fold Pfister form 2"(1) is isotropic,
then it is in fact hyperbolic. But over a commutative ring A, this is not the
case. We shall deal with the case of general n in the next section after
developing some more machinery; here, let us give counterexamples
for n=2 and 3. For n=2, consider the generic ring A =B} over
which 4(1) is isotropic; we claim that 4(1)#(1,1,-1) (a fortiori
4(1)#(1,—-1)L {1, —1)). In fact, if 4(1)=(1,1, —1), there would exist an
equivariant map V;,-» V7 (by (9.14)). Since there also exists a “forget-
ful” map Vj;;-o V3,, these two spaces would have the same level and
colevel. Using (7.5), we have therefore s(V}3)=s(V:3)=3 and so by
(2.11) m(V,43) has a quotient group =Z. This is a contradiction since
15(V,3) =0 (by [Wh]). Similarly, we can see that, for the generic ring
A =Bg), though 8(1) is isotropic, 8(1)#(1,1,—1) (a fortiori
8(1)#4(1, —1)). In fact, if 8(1)=(1, 1, —1), we would get, as before, that
s(V§3)=5'(Vg3) =7 and that m¢(Vy3) has a quotient group =Z. This is
again a contradiction since m¢(Vg3)=7Z/2Z by [Wh].

§10. Colevel of V; ; o-levels and o-colevels

In an earlier section, we have given some partial computations for the colevel

of V2,

The full computation of this colevel will probably remain unknown for

some time since it would amount to the solution of the ‘“‘skew-linear’” version of
the Hopf Problem on nonsingular pairings (cf. (8.2)) which is well-known to be a
tough problem. However, if we replace the involution 8 by the involution &, the
computation of the colevel of V;, , turns out to be completely feasible. The crucial
fact is the following:

THEOREM 10.1. For n=q=1, there is no equivariant map from S" %*' to

£
Via

The proof of this theorem (and other related results) will appear in [LL]. Note
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that, for g =1, (10.1) is just the Borsuk-Ulam Theorem. For q =2, (10.1) can be
proved by the homotopy argument used in the proof of (7.5)(1). For q=3, the
proof of (10.1) proceeds by induction on gq; therefore, the theorem may be
regarded as a common generalization of the Borsuk-Ulam Theorem and
the homotopy facts used in the proof of (7.5)(1).

As the main consequence of (10.1), we have

COROLLARY 10.2. s'(V.)=n—q+1. If q>1 and n—q is odd, then
s(Vag>n—q+1.

Proof. For a fixed orthonormal frame {vy,...,v,4}, let S"79 be the unit
sphere in the orthogonal complement of Y¢-{ R - v,. We have an equivariant map
S§"9-e V7, by sending v to {v;, ..., V-1, v}, 50 s'(V}; ,)=n—q+1. Using (10.1),
we have therefore s'(V;,,)=n—q+1. Now assume q>1 and n—q is odd. If
s(V5 o) is also equal to n—q+1, it would follow from (2.11) that =, _,(V,,) has a
homomorphism onto Z. This is impossible since m,_,(V,,)=Z, [St: p. 132].
Therefore, s(V; )>n—-q+1. Q.E.D.

COROLLARY 10.3. There exists an equivariant map Vy, ,- V., only if
m—p=n—gq. In particular, there exists an equivariant map V, ,-» V| , iff p=q,
and there exists an equivariant map V;, .- V. iff m=n.

Proof. This follows from (10.2) and (2.7).
We shall now record the algebraic consequences of the results obtained above.

COROLLARY 10.4. In general, over a ring B, n{1)=q(1) L{(—1) does not
imply n(1)=(q+1)(1) L{-—1).

Proof. Consider the generic ring B = B®!,, over which we have n(1)=q(1)L
(=1). If n(l)=(q+1)X1)L(—1) over B, there would exist (by (9.14)) an
equivariant map V; .., - V| ,.,, contradicting the last Corollary. Q.E.D.

A special case is the following.

COROLLARY 10.5. Over B, the form n(1) has Witt index 1. In particular,
over B3}, (r=2), the r-fold Pfister form 2'(1) is isotropic, but not hyperbolic.

(Here, we use the following definitions: The Witt index of a form ¢ over a ring
B is the largest nonnegative integer i such that ¢ =i(1, —1) over B. A form ¢ is
called hyperbolic if ¢ =r(1,—1) for some integer i.)
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COROLLARY 10.6. Qver the ring A, =R[x,,...,x, /(1 +x3+---+x3), we
have m(1)=q(1) L(—1) iff m =q+ n. Suppose m =n. Then over A, the form m(1)
has Witt index =m — n. In particular, if 2" <n <2', then 2°(1) is isotropic but not
hyperbolic.

Proof. The ““if” part is trivial. Conversely, assume m(1)=q(1) L{(—1) over A,.
Let X = Vc(1+x3+:--+x2), with involution given by complex conjugation. By
(9.6) we have an equivariant map X-» V.., so s'(X)=s'(V, ,.+1) = m—q. Since
s'(X) = n, we get m = q + n. The rest follows easily from this inequality. Q.E.D.

Motivated by the success in computing s'(V}; ), it seems useful to use the
V.4s as “model” spaces, in generalization of the use of the spheres in the
definition of levels and colevels. To formulate these generalizations, let k =0 be
any integer. For any space X with involution, we define

(10.7) o (X)=inf{n:3X-e V; .1},
(10.7)  oWX)=sup{n:3 Vi, = X}

We call {03 (X): k =0} the o-levels and {o}(X): k =0} the o-colevels of X. Since
£.=8""1, we have oy,(X)=s(X) and o{(X)=s'(X), so the o-levels and o-
colevels subsume the level and colevel discussed in the earlier sections.

THEOREM 10.8. For any space X with involution, we have
=0 (X =c(X)=s-r=0h(X)= =0 (XD =g (X)) = - - =0o(X).

Moreover, o (X)=0} 1(X)+1 and g . (X) =0, 1(X)+1 for every k.

Proof. If there exists X-» V., .1, then by (10.1) there cannot exist S" - X
and so s'(X) = n. This shows that ¢{(X) = s'(X) = 0. (X) for every k. Next consider
the standard imbedding V., i+1- Viiki1k+2- Using definitions we get
o X)=0oi(X) and oy 1(X)=0(X). Similarly, using the forgetful map
Vitks1k+2=® Virnskk+, We see that oi(X)=o0}(X)+1 and o (X)=
g..1(X)+1. Q.E.D.

As algebraic analogues of (10.7) and (10.7"), we can define the o-level of a
(commutative) ring A and the o-colevel of a (commutative) R-algebra B as follows
(where k is any nonnegative integer):

(10.9) o (A)=inf{n:(n+k)1)=k(1)L(—1) over A},
(10.9') oi(B)=sup{n:3R-algebra homomorphism B — Ay.

n+k.k+1}'
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As in the topological case, we have oy(A) =5(A) and oy(B) = s'(B) (the latter was
first introduced in §4). Moreover, o,(A) is just the “sublevel” ¢(A) introduced in
§5. We have the following algebraic analogue of (10.8):

THEOREM 10.10. The inequalities in (10.8) remain true with the space X
replaced by any commutative R-algebra B.

Proof. The inequalities oy ,,(B)=<0,(B)<0,.,(B)+1 and o},:(B)=0i(B)=
oi+1(B)+1 follow as before. (The former, of course, holds for any commutative
ring.) To show that s'(B) = o{(B) = 0y (B), we may assume that n = g3 (B) <o and
so (n+k)1)=k(1)L{(—1) over B. If s'(B)=n+1, there would exist a ring
homomorphism from B to Ag- and hence (n+ k){1)=k(1) L(—1) also over the
latter ring. But then by (9.6) there would exist an equivariant map from S™ to
Vi ikk+1, contradicting (10.1). Therefore, s'(B)=n=0,(B). Q.E.D.

The algebraic o-levels and o-colevels are related to their topological counter-
parts by the following theorem:

THEOREM 10.11. For any space X with involution, we have o (X) = g, (Ax).
If X is an affine variety defined over R with involution given by complex conjuga-
tion, then o (X) = o (Ax).

Proof. The first statement follows from (9.6). With the additional assumption
in the second statement, any R-algebra homomorphism Ay — Ay. ‘“arises”
from an equivariant map Vi, .1 - X, as we have shown in the proof of (4.3).
Therefore o (X)=0l(Ax). Q.E.D.

We shall now conclude this section by checking the following values of the
invariants ¢, s', o, and s for the spaces S"°!, VZ, and V.,, where k is any
integer =1.

o1(X) s'(X) o (X) s(X)

1,3,7 | n—1 n

X n_l{n# ’ ’
3 n=1,3,7 n n
n¥2,4,8 | n—-1 n—-1 n—-1 n

X:Vs{ 9y b
“?ln=2,4,8| n-1 n—-1 n-1 n-—1
= -1 n n n

X = b {n even | n

"2ln=3,7 | n-1 n-1 n-1 n
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Since s'(X) =0, (X) =0,(X) for any space, it is sufficient to work with the case
k =1 in the following.

(I) X=8""'. We have s'(X) = s(X) = n, so we need only compute o/(X). By
(7.5)(2), we have Vi, ,,-» S" liff n=1, 3, 7. Therefore, (S" )=nif n=1, 3,
7, and o{(S" H=n—-1if n#1, 3, 7.

(I) X=V;,. The identity map X - X shows that n—1=0{(X)=0,(X)=
n—1, so o1(X)=5'(X)=0,(X)=n—1. the computation of s(X) is in (7.5)(2).
(IlI) X =V?,. In view of (7.2) we need only compute ¢4(X) and o(X). First
assume n=7. By (9.16), we have equivariant maps V5,-e V5,-» V5,. This
implies that 6 <o{(X)=0,(X)=6s0 o (X)=0,(X)=6=n—1. The case n=3 is
similar. Now assume n is even. In this case we have s'(X)=s(X)=n so we are
done if we can show that ¢1(X) <s'(X) = n. Assume, instead, that o{(X) = n. By
definition, this means that there is an equivariant map V5., X = V;,. By (2.7),
we have s(VE_;,)=s(V2Z,); by (7.2) (2), this boils down to n + 1 < n, a contradiction.
In case (III), we have not been able to compute ¢(X) and o ,(X) for odd
integers n# 3, 7. We conjecture that they are given as follows:

oi(X) s'(X) oX) s(X)

X=V%,(n=0dd#3,7)| n—-2 n-1 n n

Stated more explicitly in terms of equivariant maps, this conjecture says that

(10.12) For nodd #3,7, there are no equivariant maps between V%, and V3.

For n =3, 7, we have already pointed out that there exist VZ, - V3,-o Vi,
For n even, there exists V5, - V3, but not V3, -e V;,. Therefore, only the case
n odd #3, 7 remains to be of interest. In this case V:, and V3, both have level n
and colevel n — 1; therefore, in order to distinguish their “equivariant types,” it is
not enough to compare them with the spheres, but it will be necessary to delve
more deeply into their equivariant properties.

Note that if the Conjecture (10.12) is true, we will be able to compute the
sublevel of the R-algebra B? , (with generators x;, ..., X,,, ¥, - - . , ¥, and relations
Y x?=Y y?=—1"and ¥ x,y;=0) in the case n odd, n# 3, 7. (This is the missing
case in (7.12).) In fact, if there is no equivariant map V3,-» V:,, (9.14) will
imply that n{l) is anisotropic over B3,, so o(B2,)=n, for n odd #3,7.
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§11. Open problems

While the topological methods developed in this paper have helped solve some
of the basic problems concerning the level of rings, there still remain a number of
other difficult problems which we are not able to solve. Aside from problems
concerning the level, there are also problems concerning quadratic forms, or-
thogonal groups and equivariant maps between spaces with involution. In the
following we shall state and comment on some of these open problems in the
hope of stimulating future work.

The first problem concerns the level of the generic ring A,(k)=
k[xy,...,x,]/(1+x7++--+x2) where k is an arbitrary commutative ring. We
venture the following

(11.1) Level Conjecture. s(A, (k))=min{s(k), n}.

To lend credence to this Conjecture, we note the truth of the Conjecture in
the following important cases:

(A) By (3.4), the Conjecture is true for all semireal rings k.

(B) The Conjecture is clearly true if s(k)=<n. In fact, in this case, we have
homomorphisms k — A, (k) — k, so s(A)=s(k)=min{s(k), n}.

(C) The Conjecture is true in the important case when k is itself the generic
ring A,,.(R). For this choice of k, we have

A, (k)= R{X1, -+ oy Xy V1o oo+ Y]
" (I+xi+-+xi, 1+yi+---+y2)

By the symmetry of the x’s and the y’s, we see from (B) above that s(A,(k))=
min {m, n}=min {s(k), n}.

(D) By an algebraization of the method used in [DLP] (and further field-
theoretic techniques), Arason and Pfister [AP] have shown the Conjecture (11.1)
to be true for all fields k (see also [K,]). Unfortunately, this does not seem to
imply the truth of the Conjecture for all rings k, since, when we map a ring into
a field by a homomorphism, the level usually decreases.

Our second problem concerns the level of the tensor product of two commuta-
tive algebras. To be more specific, let A, B be commutative R-affine algebras.
Since A, B are both subalgebras of A @y B, we have, of course, s(A ®z B)=
min {s(A), s(B)}. It seems natural to ask:

(11.2) Is it true that sS(A®g B) =min {s(A), s(B)}?
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This turns out to be true in all the cases in which we can make a determination
of s(A @ B). We record some of these cases below.

(A) The formula in (11.2) is true if there exists an R-algebra homomorphism
f: A — B. For, f induces homomorphisms A &z B — B @z B — B, from which
we see that s(A Qg B)=s(B)=min{s(A), s(B)}.

(B) The formula in (11.2) is true if the R-affine algebra A is semireal. For, in
this case, there exists an R-algebra homomorphism A —R< B [La,: Th. 6.2], so
we can use (A) above.

(C) Let A=A,([R). Then the formula in (11.2) is true for any R-albegra B
such that né¢(s'(B), s(B)). For, if n=s(B), then there exists an [R-algebra
homomorphism A — B so we can use (A) above. On the other hand, if n <s'(B),
then there exists an R-algebra homomorphism B — Ag.-i. Using this together
with the homomorphism A — Ag--:, we get a homomorphism A &z B — Agn-,
which implies that s(A ®z B)=s(Ag--1)=n=min{s(A), s(B)}.

The next problem concerns the relationship between the level of an R-affine
algebra A and its number of generators. More specifically, we raise the following
question:

(11.3) Suppose A =R[x, ..., x, /A has finite level. Does there exist a function
a(n) of n such that s(A)=a(n) (independently of A)?

The answer to this question is “yes” in the case n = 1; in fact, we can choose
a(1)=1 according to Proposition 4.8. However, the case n =2 already seems to
be open. We only know, from Proposition 4.5, that a(2) =3, if it exists.

The last problem on levels we want to mention is connected with Hurwitz’
Problem of determining the least number of squares needed to express (x7+- - -+
x2)(y?+- - -+y?) as a sum of squares in R[xy, ..., X, ¥1,...,ys]. Let this number
be denoted by r#*s. Then one can ask:

(11.4) Is the level of the ring C=R[Xy, ..., %, Y1, ..., ysJA+Tio1 x7 - Y51 ¥))
equal to r*xs?

Since there exist surjections of C onto A,(R) and A,(R), it follows that

max (r, ) =s(C)<=r=*s.
In particular, in the “classical”’ case when r=<p(s) (p the Radon function), we
have s(C)=r=*s =s. It seems natural to expect that s(C) should still be equal to

r*s in the non-classical case, but we have not been able to give a proof.
Even for the ring A, = A,,(R), there remain difficult problems concerning, for
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instance, the behavior of quadratic forms and orthogonal groups. We shall
mention two specific problems.

(11.5) Suppose we have an orthogonal decomposition n{l)=p(n){—1).L ¢ over
A,. Is the form ¢ uniquely determined (up to isometry)? Is the form ¢
orthogonally indecomposable?

(We only know, from the results in this paper, that ¢ cannot split off a
one-dimensional subform {(a) for any a €R.)

(11.6) If —-1=f(X>*+ - -+f,(X)* in A,=R[xy,...,x.JA+Y~,x7), is
(fi(x), ..., f.(X)) conjugate to (X,,...,X,) under the action of the or-
thogonal group of n(1)? What can we say about the structure of this
orthogonal group?

This question was raised by W. Scharlau and M. Kervaire. The following
observations were made by Kervaire in a letter to Scharlau in July, 1980.

(A) The first half of the question (11.6) has an affirmative answer for
n=1,2,4,8. Consider, for instance, the case n =2. For (f, f,) as in (11.6), it is
easy to check that the matrix

=G )
fi

is in the special orthogonal group SO,(A,), and that 1,(361):(

X2 2
we can construct T similarly by using the matrices arising from the multiplication
law of quaternions and Cayley numbers.

(B) If we let (fy, f») =(x;, —x,) in (11.7), we obtain the matrix

). For n=4, 8§,

xI-x3 2xx
! ! ! 22) € SOz(Az)

11.8 J=(
( ) o —2X,Xy X3—X3

It has been shown by M. Kervaire that SO,(A,) is the direct product of SO,(R)
and the infinite cyclic group generated by the matrix J,. Consider the matrix

1 0 (1+2x% 2x1x2)
11.9) J:= = O,(A,).
(11.9) 7 (o —1)J° 2xyx, 1423/ € 044D

We have det (J) = —det (J;) = —1 and J?>=J'J = L Since SO,(A,) = SO,(R) X {Jy), it
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follows immediately that O,(A,) is generated by O,(R) and the (symmetric)
matrix J.

For arbitrary n, we can generalize the definition of J by taking J,, = (§;; + 2xx;),
where (§;) are the Kronecker deltas. It is easy to see that J, € O,(A,) and that
det (J,,) = —1. To make the second part of Question (11.6) more specific (and in an
attempt to generalize the case n =2), one can ask: is O, (A,) generated by O, (R)
and the (symmetric) matrix J for arbitrary n?

Finally, there are various open problems concering equivariant maps between
Stiefel manifolds whose solutions will be of importance in studying quadratic
forms over R-affine algebras. Stated in the most general form, the ultimate
problem is that of determining all quadruples (n, g, r, s) and (n’, q', r', s) for which
there exists an equivariant map from V% to V7. In this general form, however,
the problem is perhaps too difficult. We shall state below two special cases of it
which should be more tractable:

r.s

(11.10) If there exists an equivariant map V3 - V.7 does it follow that
n=n'?

An affirmative answer to this would represent an interesting generalization of
the Borsuk-Ulam Theorem. By (10.5), we know that the answer is indeed
affirmative in the special case when s = 1.

(11.11) Let n be a given integer. For what pairs q<q' will there exist an
equivariant map V5, - V} 2

For q =1, we known from Adams’ solution of the Vector Field Problem that
such a map exists iff g’ =p(n). For q>1, we also know from the work of G. W.
Whitehead [W] that there exist cross-sections V,, ,— V, . for the natural fibration
V24— Vo, only for a few specific values of n, q and q'. However, it is
conceivable that there exist various equivariant maps V- V7 which are not
cross-sections. Solution of this problem (as well as (11.10)) will be of interest in

the study of the decomposition of n{1) into r{(1) L s(—1) 1L ¢, by the results of §9.

Note added in proof. K. Y. Lam informed us that the question (11.10) above
has been answered affirmatively by Duane Randall in a recent preprint entitled
“on equivariant maps of Stiefel manifolds.” The algebraic implication of Randall’s
result is the following (cf. (9.14)): Over the ring B2, one has n(1)=q(-1), but
n'(1)#q{—1) for any n'<n.
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