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Radial growth of the derivative of univalent functions

J. G. CLuNIE and T. H. MACGREGOR

1. Introduction

Suppose that the function f is analytic and univalent in U={|z|<1}. A
classical distortion theorem says that

1+r
(1-r)

\f'(re)| =|f'(0) (1.1)
for 0=r<1. The Koebe function k(z) = z/(1— z)* shows that (1.1) is sharp with
equality occurring at z =r. However, for each fixed  in (0,2w), k'(re®®) is
bounded for 0=r<1.

In general, when suitable “exceptional” values of 0 are excluded the growth of
|f'(re*®)| as r— 1 is much more restricted than that allowed in (1.1). We are
specifically interested in exceptional sets of Lebesgue measure 0. The main result
in this direction is due to Seidel and Walsh [7, p. 141]; namely,

rl_lgl_ (1-r)'2f'(re®)=0 (1.2)

for almost all values of 6.

In [4] Lohwater and Piranian asked whether (1.2) holds when (1—r)'? is
replaced by a function tending to 0 more slowly. We provide a more or less
complete answer to this question. In Theorem 2 we prove that

1 / i0
iy Joglf(re™)| _

r—1-— (1 1 )’V
1y

for almost all 6, whenever y>3. A particular consequence of (1.3) is

0 (1.3)

rggl__ A-r>f(re®)=0 (1.4)

for almost all 8, whenever a >0.
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In preparation for the proof of Theorem 2 we show that there are positive
constants A, such that

27 ) 1 A2
j llog |f'(re*)| |* d6 <Ax(10g i_—r) (1.5)
5 _
for A>0,0=r<1, where f(z) is assumed to be univalent in U and f'(0)=1.

Given U the normalisation f'(0) = 1, inequality (1.1) together with the distortion
theorem

1—r
(1+r)?

If'(re®®)| = (1.6)

for 0=r<1, shows that

log |f (re®)| | = A Tog ——
r

for 0=r <1, for a suitable positive constant A, independent of f. Thus, (1.5) may
be viewed as an improvement of the “trivial” estimate where the right-hand side
of the (1.5) has the exponent A in place of A/2.

We show that the results given in (1.3) and (1.5) are precise in a suitable sense.
We also give a fairly complete answer to the question: in (1.3) and (1.5) how
necessary is univalency?

As we said above we are concerned with the radial behaviour of f'(re')
outside possible exceptional sets of measure 0. One can also consider whether or
not (1.2) remains true outside an exceptional set that is “smaller”’ than just being
of measure 0. Lohwater and Piranian [4] have shown that “measure 0 cannot be
replaced by ‘“‘logarithmic capacity 0 at any rate. They give an example of a
function f analytic and univalent in U such that

lim (1-n)"|f'(re”*)| = o

for all 6 in a set of positive logarithmic capacity.

Finally, it should perhaps be pointed out that if f(z) is analytic and univalent
in U, then lim,_,,_ f(re*®) exists finitely for almost all 6, and so there are really no
problems corresponding to those dealt with above for f(z) itself.
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2. Theorem 1 and proof

THEOREM 1. To A >0 corresponds A, >0 such that if f(z) is analytic and
univalent in U and f'(0) =1, then

2ar A2
L llog |f'(re™®)| |* dO = Ax(log %\) (2.7)

for 0=r<1.

Proof. The case A =2 of (2.7) was proved by Flett [2, p. 71]. We first give an
inductive proof of (2.7) for A =2,4,.... Assume then that A is an even positive
integer and write

2
Ix<r)=L (log |f (re)))* d. 2.8)

Then, by [6, p. 125],

d dI)\(r) _ 2 ’ iO\NA—2 f”(rew) 2

o [r o ] =rA(A—1) L (log |f'(re®)|) _——_f’(rew) de. (2.9)
Since f(z) is analytic and univalent in U,

') __ 4

|fr(z) =1__‘Z|(‘Z|<1)7 (2~10)

from [6, p. 21], for example. From (2.9) and (2.10) it follows that

d [rdIA(r)]< 16nA-1, 2.11)

dr g 1= (1-r?

for 0=r<1. If we inductively assume that
(-1)72
ha=AL(lee—)

and note that this hypothesis is valid for A =2, with A, =2, then (2.11) implies
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that

dl, (r)
r

r 1 1 Ya-bn2
A = -1).
S —=16A A1) AHL A7 (logl_p) dp. (2.12)

If the integral on the right-hand side of (2.12) is integrated by parts, the integral
part may be dropped since

d ( 1 )(x—l)/z
— |log —— =0.
dp og 1-p =0

In other words,

_ (A—1)/2
(AL () _16A(A-1) AH(log 1 ) (2.13)
dr 1-r I-r

Suppose that 3=r<1. By integrating (2.13) we find that
4 1 M2

Since, by a well known distortion result,

1+|z|
1 ’ <]
llog |f'(2)| | <log 112
(2.14) implies that (2.7) holds when 0=r<1. This completes the inductive
argument.
Now, assume only that A >0. Let n denote the smallest even integer not less
than A and put p = n/A. By Holder’s inequality we have

in U,

2w 2 1/p
|| g ireedo= ([ hog 7 e 1 do) @m0

1 n/23A/n 1 A2
= {An(log i r) } (2P = Ak(log i r) i

3. How precise is Theorem 1?

We now show that Theorem 1 is precise in an appropriate sense. If u is a real
valued function in U, we write u*=2%(lu|+u) and u™ =3(u|—u). We show that
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there is a function f(z) for which both the positive and the negative contributions
of log |f(re'?)| to the integral on the left-hand side of (2.7) grow as the right-hand
side of (2.7). Although we are primarily interested in the growth of f'(re’) to o,
inequality (2.7) and the statement below concerning the negative contributions
give exact information on how f'(re*®) may tend to 0 as r — 1.

THEOREM 2. There is a function f which is analytic and univalent in U and
satisfies

24 ) 1 A2
L (log* |f'(re**))* d6 = B, (log -1—_-—;) (3.15)
and
2m . 1 A2
L (log™ |f'(re’®)))* d6 = B, (log 1—_—;) , (3.16)

for 0=r<1, A >0 and where B, >0.

Proof. Let f denote the function constructed in [1]. There it was proved that f
is analytic and univalent in U, satisfies (3.15) for A =1 and if F(6)=F(0,r)=
log |f'(re*?)|, then F has the form

F0)=a i r<" cos (k"9), (3.17)
n=1

where a >0 and k >3.
Define u =1log" |f'|. If A >1, then Holder’s inequality and the validity of (3.15)
when A =1 implies that

1 12 2 i0 1—(1/A) 2 i\ N
B, (log—l—t—r < u(re®®) do<Q2m) ( (u(re')) dﬂ) .

Thus, (3.15) holds when A =1.
Since [3™ F(6) dg =0 it follows that

2

fﬁlog“ IF'(re'®)| do = L “log" |f (re®)| do
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and so (3.16) holds when A = 1. By the same kind of argument as the preceding it
follows that (3.16) is correct whenever A = 1.

We next consider the case when 0 <A <1, though the argument we use is

actually valid for 0 <A <2. The series in (3.17) is a lacunary trigonometric series
and therefore [8, p. 216] there corresponds to each positive 8 some Cg >0 so that

( f“ F@)F do) = cﬁ(f“u:(o)ﬁ o) .

If we use Theorem 1 in the case A =2 and (3.15) in the case A =1, we obtain

2 ) 1/8 27 ) 1/2 4
( (u(re*®))® d()) = Ca( (log |f'(re')|)? dﬂ)
1 \1/2 CB A 512 sz o
= e | =2 i
= CB(Az log . r) =", u(re*) de.

Therefore, there is a positive number D, so that
27 ) 2
j u(re'®) do gDB(L (u(re®))® de)Ve. (3.18)
0
If 0<A <2 and B =2-A, then (3.18) implies that
2 2
L u(re') do = L (u(re®)™? - (u(re'®))' "2 de
f 21T - 1/2 2ar ‘ 1/2
_S_( (u(re®) dO) - ( (u(re®))* d())

0

( P2t o g )1/2 1 ( 2w 0 2-1)/2
s 1 0 . —_— 1 .
| wee) B2 L u(re )de)

Therefore
27 21 A
J; (u(re’®))* do = E)\(J; u(re') d()) , (3.19)

where 0 <A <2 and E, is positive and depends only on A. Since (3.15) is valid
when A =1, (3.19) implies that (3.15) holds whenever 0 <A <2.
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A proof of (3.16) for the case 0 <A <2 may be given in a similar way based on
the fact that (3.16) holds when A =1.

4. The main theorem
THEOREM 3. If f(z) is analytic and univalent in U and if y>3, then

’ i0
i Joglf (re®)|

it (lo e )«,
g1—r

for almost all 6.

0 (4.20)

L ]

Proof. Suppose that « >0, B is a positive integer, and that 0 <r <1. We define

G(r, 0)= (log 1—£;) ) (log |f'(re®|)®

and

H(r, ) =6G§:’ 6

Because of (2.10),

et

d )
_] ! i6 i =
ar Og ‘f (re )l f!(re;()) € 1_r

Therefore,

4 1\ |
H o) =7 (o - ,) llog |f(re*)| |°*

a

1 \ 1! ‘
+(log ) " hog fre]
1-r 1-r

and so Theorem 1 implies that

21 4 B —a+(B—1)/2
L |H(r, 6)| d6 < BAg 1(1og11 )

1—-r —-r

CtAB( 1 )—a—1+(3/2)

+ 1
1-r %81

4.21)
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Suppose that r,=1—1/e and r,=r<1. Then log (1/1-r)=1 and so for real p, q
and p=q we have (log (1/1—r))? = (log (1/1 —r))%. Therefore, if ro<r<1, (4.21)
may be written

A 1

—7 1 \>-®2+172°
(log >
1-r

fﬂ]H(r, )| do < (4.22)

where A is a suitable positive number. Since the integral

0 log —

LI | 1
[ 1-r ( 1 )8 dr
converges whenever 6 >1, (4.22) implies that if a > (B +1)/2, then

1 1 {sz\H(r, o) do} dr <o, 4.23)

By the Tonelli-Hobson theorem, (4.23) implies that

f“ {jl H(r, 0) dr} do <o, (4.24)

0

In particular, (4.24) implies that

r |H(r, 6)| dr <o (4.25)

for almost all 6 in [0, 27]. Therefore, if B is a positive integer and a > (8 + 1)/2 then

there is a set @ contained in [0, 27r] and having measure 27 for which (4.25)
holds whenever 6 € 0.

Suppose that B is a positive integer, a>(B+1)/2 and choose a’ so that

a>a'>(B+1)/2. The pair B, o' determine a set @ as described above. If r,<r<1
and 0 € @ then

|G(r, 8)— G(ry, 9)| = f ‘?%PPL-Q\ dp

0

= [ 1. 0 do= [ 1HG, 0 dp=D <

o 0
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Writing E=D +|G(r,, 8)| we find that

log|fre®)| 1 1

1 )a ( 1 )a—a"
—— 1 i
logi=)"  loeg

This shows that

’ i6 B8
o log I re)|®

0 (4.26)

whenever 6 € @. Since (4.26) is the same as

. loglf'(re®)
rl_iIR_ 1 alB
(log --—-—)

1—r

we see that (4.27) holds for almost all 6 if 8 is a positive integer and a > (8 +1)/2.
The inequality o > (8 + 1)/2 is the same as a/B >3+ (1/28) and so the conditions on
a and B allow a/B to take on any value y>21. This completes the proof of
Theorem 3.

0 4.27)

5. How precise is Theorem 3?

The next theorem shows that the condition y >1 in Theorem 3 is necessary in
so far as it cannot be replaced by vy =3.

THEOREM 4. There is a function f analytic and univalent in U such that

) log |f'(re®®)
(l B1_ )
1-r

for almost all 6.

>0 (5.28)

Remark. In the above statement ‘almost all’ is essential. See § 10.2 of [6].
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Proof. Let f be the function used for the argument in Theorem 2. Suppose
that ® [0, 27r] and |@|, the measure of 0, is positive. Because log |f'(re*®)| = F(9)
is a lacunary trigonometric series when 0 <r<1, the argument given in [8, pp.
119-122] shows that if we drop a finite number of terms from the beginning of
the series to form a truncated series T(6), then

27
j IT(O)] dO;AL IT(0) de (5.29)
(]

The positive number A depends only on @ (and the value of k in (3.17)) and the
number of terms that may have to be dropped is independent of r. Hence, there is
a positive number B, depending only on 6, so that

2
j (log|f'(re®)|)* do =B L (log |f'(re'®)))? de. (5.30)
o

Theorem 2 (with A =2) and (5.30) imply that

J- (log |f'(re'®)])* do = C log 1 , (5.31)
o 1-r

where C>0 and C depends only on 6.
Assume that Theorem 4 is false and let @ with |@|>0 be the set of 6 such that

log |f'(re®)|

( 1 \12
o8 7
0gl—r

We recall from (2.10) that

-0(r—1-).

_a_ 4 i0 ‘< 4
o log | (re®) |=1—.

We also deduce from Egorov’s theorem applied to the sequence

r((-3))

(log 2n)1/2

log
f.(6)=
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defined on @ that there is a subset ® < @ with |@|>0 such that

log |f'(re®®)|

1 )1/2
(log 1-r

uniformly on @. Hence it follows that

-0 (r—>1-)

L (log |f (re)))? do

1
1 IR,
Og1—r

-0 (r—>1-)

and this contradicts (5.31). This proves Theorem 4.

6. Some consequences of the main theorem

The first of our two corollaries relates the result of Theorem 3 to that of Seidel
and Walsh.

COROLLARY 1. Suppose that f is analytic and univalent in U. If v >3, then

lim [exp (—~ (log T%)y) . f’(re“’)] =0 (6.32)

r—1—
for almost all 6. Also, if a >0, then

l_ig]_‘ (1=r)*f'(re’®)=0 (6.33)

for almost all 6.
Proof. Both (6.32) and (6.33) can be deduced immediately from (4.20).

Our next result says that in Theorem 3, radial limit can be replaced by Stolz
and angle limit.
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COROLLARY 2. Let f be analytic and univalent in U. If y >3, then for almost
all 0, if A, is a Stolz angle with vertex { = e,

i —1og ()]

z—¢{ (10 1 )y
zely g 1"“2‘

=0.

Proof. If {=e'* let A, be a Stolz angle with vertex {. There is a positive K
depending on 4, such that for ze A, we have

{—z|
1-|z|

IA

K. (6.34)
If z=re® €A, then

log |f'(z)| —log |f'(re**)| = Re [log f'(z) —log f'(re**)]

_ f(w)
=Re L (o) dw,

where L is the segment [re'®, z]. From (2.10) and (6.34) we obtain

llog |f'(2)| | = llog |f'(re"®)| | +—— |re** — 2|

1—r

= llog f/(re")| |+ (re" — e + 12— 2)

=l|log|f (re'®)| |+ 4(K +1).

The result of Theorem 3 together with the above gives Corollary 2.

Remarks. (1) From the proof one sees that a Stolz angle at { can be replaced
by a larger domain in £ that is tangential to {|z|=1} at £

(2) In (6.32) and (6.33) one can replace radial limit by Stolz angle limit or
limit within a domain of the kind referred to in (1).

7. Concluding remarks

Without being too discursive we shall make a number of remarks and
observations which anticipate some questions that naturally arise from our results.
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In Theorem 3 the numerator of (4.20) is

log |f'(re’®)| = Re [log f'(re*®)]

and so one can ask if the theorem remains true when log |f'(re®®)| is replaced by
llog f'(re*®)|. The answer is “yes” since the proof we give will still be valid
provided that the result corresponding to (2.14) still holds; and, given the form of
the proof of (2.14), this is the case by Riesz’s result on conjugate functions [8, p.
147].

As far as widening the class of functions in the hypotheses of Theorem 3 one
must in our presentation take (2.10) into account. Hence within our context
perhaps the largest “natural” class consists of functions analytic in U which are
locally univalent and strongly finitely valent [S]. In this connection the example
given in §3.4 of [3] is instructive.

When one considers results like those of Theorem 1 and Theorem 3 more
generally, then clearly some restrictions must be placed on the functions consi-
dered. It would therefore seem appropriate to consider functions analytic in U
which are locally univalent and of bounded characteristic. It is easy to show in this
case that one has (2.7) with the index A/2 on the right-hand side replaced by A
and one has (4.20) with A >3 replaced by A > 1. That these results are essentially
best possible can be seen by considering functions f(z) with

f'(z)=exp<c Z log )\nz*n) (z]<1),
n=1

where C is small and positive and (A,) is very gappy. In this case fe H”, but for
the results we are dealing with one expects ‘“bounded characteristic’” and
“bounded” to be more or less equivalent.

We are grateful to the referee for the careful way he read our manuscript and
for a number of valuable observations.
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