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Cohomology of classifying spaces of complex Lie groups and related
discrete groups

Eric M. FrIEDLANDER'Y and GuiDO MISLIN

To Armand Borel on the occasion of his 60th birthday

We prove the following theorem, special cases of which have been proved in

[4], [6], [8].

THEOREM 1.4. Let G be a reductive complex Lie group, let p be a prime, and
let F, denote the algebraic closure of the prime field F,. Then there exists a map
BG(F,) — BG which induces isomorphisms

H.(BG,),Z/n) > H(BG,Z/n), (n,p)=1

where G(F,) is the discrete group of F,-rational points of a Chevalley integral group
scheme associated to G.

The anticipation of Theorem 1.4 led the first author to ask whether the
identity map G® — G induces isomorphisms H,(BG?® Z/n)— H,(BG,Z/n) for
any n, where G® denotes the complex Lie group G viewed as a discrete group (cf.
[9]). As discussed in Section 2, this conjecture is equivalent to the case of the
complex field of what we call the “Generalized Isomorphism Conjecture” (Defini-
tion 2.1), and our Theorem 1.4 corresponds to the case of the field ﬂ_:p of this
conjecture (Proposition 2.3). In considering this Generalized Isomorphism Con-
jecture we prove the generalization to any algebraically closed field of theorems
of M. Feshbach and J. Milnor for the complex field. Our proof uses Theorem 1.4
and avoids use of Becker-Gottlieb transfer.

In Section 3 we show for any algebraically closed field k and any linear
algebraic group G, over k that our Generalized Isomorphism Conjecture is

@ Partially supported by N.S.F.
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348 ERIC M. FRIEDLANDER AND GUIDO MISLIN

equivalent to the Finite Subgroup Conjecture which asserts for every non-zero
x € H*(BG(k), Z/n) with (n,char (k))=1 that there exists some finite subgroup
m < G(k) such that x restricts non-trivially to H*(Br, Z/n).

The first author gratefully thanks the Max Planck-Institut (Bonn) and the ETH
(Ziirich) for their warm hospitality.

1. Reductive groups over F,

We begin our proof of Theorem 1.4 by recalling the “cohomological Lang
fibre square” associated to the Lang map 1/¢?: Gy — Gy. We refer the reader to
[1], [7] for a discussion of the Chevalley integral group scheme associated to a
reductive complex Lie group. We refer the reader to [6] for a discussion of etale
cohomology H%,(X,Z/n) of a simplicial scheme X.

THEOREM 1.1 ([5; Thm. 2.9] or [6; Thm. 12.2]). Let G=G(C)*®? be a
reductive complex Lie group, let G; be an associated Chevalley integral group
scheme, let p be a prime and let Gg, = G,®F,. A choice of embedding of the Witt
vectors of Fp into C determines a commutative square in the homotopy category for
any prime l# p and pth power q = p*:

BG(F,)—> (Z/1).(BG)
Dql 1A (1.1.1)
1xXpa

with the property that some map on homotopy fibres fib (D,) — fib (4) = (Z/1).(BG)
associated to (1.1.1) induces an isomorphism

H,(fib (Dy), Z/1)= H,(fib (4), Z/1)

In Theorem 1.1, G(F,) is the finite group of [F,-rational points of Gg;
(Z/1)(BG) is the Bousfield-Kan Z/l-completion of the singular complex of BG;
¢? is associated to the geometric Frobenius ¢ :Gg, — Gg,; A is induced by the
diagonal G — G’?; and G(C)*” stands for the group of C-rational points of G,
with the strong topology.

To apply Theorem 1.1, we require the following corollary of Theorem 1.1
whose proof can be found in the proof of [6; Cor. 12.4]. The map D, : BG(F,) —
(Z/1)(BG) considered in (1.2.1) below is the left vertical arrow of (1.1.1); the
map i:BG(F,) — BG(F,) is induced by the inclusion G(F,) — G(F,).
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COROLLARY 1.2. Assume the notation of Theorem 1.1. For any q'=q° =
p% and any prime l# p, there is a natural map of fibration sequences

fib (D,) —> BG(F,) —> (Z/1).(BG)

li l‘ ll (1.2.1)

fib (D,) —> BG(F,) — (Z/1)..(BG)

such that the map j*:H™*(fib(D,),Z/l)— H*(fib (D,),Z/l) can be identified
with the map 0*:H:(Gg,Z/l)—> H:(Gg,Z/l) induced by 6=
wo(1X X+ xpa): Gg, — Gg,, where p :(Gg,)* — Gg, is the product map.

We consider the direct limit indexed by pth powers of the homological Serre
spectral sequences associated to (1.2.1)

E%,= H,(BG, lim H,(8b (D,).Z/)) 3 H,.(BG(,),Z/) (1.2.2)

We conclude that EZ,=0 for t# 0 by applying the following lemma.

LEMMA 1.3. For any q = p%, there exists some q' = q° with the property that the
self-map on the Z/1-dual Hopf-algebra of H(Gg,, Z/1)

jx: HE(Gg,, ZI1)* = Hy(fib (D,), Z/1) — H(fib (D,), Z/1) = H¢(Gg,, Z/1)*

induced by j:fib (D,) — fib (D,) of (1.2.1) satisfies

(a) if xe HE(Gg,, Z/1)* is primitive, then j,(x)=0

(b) if xefli‘t(GE, Z/1)* is such that j.(x)#0 whereas j.(y)=0 for all y with
homological degree deg (y) satisfying 0 <deg (y) <deg (x), then j.(x) is primitive
in H:(Gg,, Z/1)*.

Proof. We identify j, with the dual of 0*: H:(Gg,Z/l)— HE(Ge,, Z/1). It
x € H%(Gg, Z/1)* is primitive, then

jx(X)=x+¢g(x)++ -+ Piodio - odl(x)

where ¢ is the dual of d)“*:HZ‘t(Gﬁ, Z/1) — He(Gg,, Z]1). If ¢4 has order m as
an automorphism of the finite dimensional Hopf-algebra HE(Gg, Z/ )*, then
jx(x) =0 provided that x is primitive and q’' = q° is such that e = Im. To prove (b),
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assume that x satisfies the conditions of b) and that e = Im. Write A,(x)=1&Qx +
x®1+3x,®x; in H:(Gg, X Gg,, Z/1)*. Then

+3]4(x) @4 (%) = 1@ (x) +j4(x)®1

so that j.(x) is primitive as asserted.

Proof of Theorem 1.4. Clearly it suffices to consider n =1 a prime different
from p. We apply Lemma 1.3 to conclude that for each q = p¢ there exists some
q'=q° such that j,:H,(fib(D,),Z/l)— H,(fib (D,), Z/l) is the 0-map. Conse-
quently, (1.2.2) collapses to imply that

(lim D,): Hy(BG(F,), Z/1) = lim H.(BG(F,), Z/1) > H.(BG, Z/1)

is an isomorphism. Because ﬁ*(BG(Fp);@) =H *(BG(FD), Z/p) =0, Sullivan’s
arithmetic fibre square technique [11] implies the existence of a (unique) lifting

S
-
-
-
""’
.
5
Ll
_-=" {limD }
-

BGEF,)—— [ @/).(BG)

I#p

This lifting induces the required isomorphisms

H*(BG(ﬂ?p)a Z/n) -:} H*(BG’ Z/n), (n’ p): 1‘

Remark. We correct an error in the proof given in [7] that HY (BG,, Z/n)=
H%*(BGg, Z/n) for (n,p)=1, an isomorphism implicit in the formulation of
Theorem 1.1. The error occurs in the reduction to G semi-simple for a general
reductive complex Lie group. Let G'=[G, G], the semi-simple commutator
subgroup of G and let R =rad (G), the radical of G. Then G is the quotient of
G’ X R by the finite central subgroup H = G'N R. As pointed out by O. Gabber,
the associated central subgroup scheme H; < G% X R; is not etale over specZ as
claimed in [7]. Write H=H'x H" with H' a p-group and p / |H"|. Then HX is
etale over spec A, where A denotes the Witt vectors of k, so that the proof given
in [7] is valid for G"=(G' X R)/H". Because (n,p)=1, G”"— G = G"/H' induces
isomorphisms HZ¥/(BGg, Z/n) > H%(BG{,Z/n); because G}— G, is a purely
inseparable isogeny, BG|— BG, induces isomorphisms H?*(BG,,Z/n)>
Hﬁt(B Z, Z/VI)
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If w < G is an inclusion of discrete groups and if A is a G-module, then a class
x€ H*(Bm, A) is said to be stable for ge G if the images of x under the two
compositions

H*(Bm, A) — H*(Bmr N % A),
H*(Bm, A) S H*(Bw®, A) —» H¥(Bm N=%, A)

are equal, where c is induced by the conjugation isomorphism sending y € 7w® to
gyg '€ . Similarly, a class x e H*(Bm, A) is said to be stable with respect to
m < G if x is stable for each g € G. The subgroup of stable elements of H*(B, A)
with respect to w < G will be denoted H*(Bm, A). If w< G is an inclusion of
topological groups, then H*(Bm, A)®> €« H¥(Bm, A) for any my(G)-module A is
defined similarly.

PROPOSITION 1.5. Let Gg, be a reductive algebraic group over F,
Ng, = Gg, be the normalizer of a maximal torus. Then the restriction map

and let

H*(BG(F,), Z/n) - H¥BN(,), Z/n)
induces an isomorphism onto those elements stable with respect to N(Fp)c G(ﬂ—:p)

H*(BG(F,),Z/n) > H*(BN(F,),Z/n)5, (n,p)=1.

Proof. We recall that Gg, is of the form GZ®U—:p and Ng < Gg, is of the form
(Nz <= G7)®F,, where Gy is a reductive group scheme over Z. The group N(F,) of
[F,-rational points of N; contains an [-Sylow subgroup of G(F,) for any prime
l# p [10], so that the restriction maps

H*(BG(F,), Z/n) — H*(BN(F,), Z/n)® (1.5.1)
are isomorphisms for any pth power q, any integer n not divisible by p [2]. Using
the isomorphism H*(BN([F ), Z[n) ——>11m H*(BN(F,),Z/n) and the fact that

G(IF )=U G(F,), we conclude that the inverse limit with respect to q of the
isomorphisms (1.5.1) is the asserted isomorphism.

2. Generalized Isomorphism Conjecture

We recall for a simplicial set S and an algebraically closed field k that the
simplicial scheme S ® spec (k) (defined by (S ® spec (k)),. =I_IS“ spec (k) with the
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simplicial structure induced from S) has the property that H* (S ®spec (k), Z/n)
is naturally isomorphic to H*(S, Z/n). If p: D — G(k) denotes a homomorphism
of a discrete group D into the group of k-rational points of an algebraic group
Gy, then there is an induced map

p:D, =D ®Qspec (k) = G,

of goup schemes over k, where D, is regarded as a group scheme in the obvious
way. Moreover, p induces a morphism of simplicial schemes Bp: BD, — BG,
giving rise to an induced map

Bp™*:H*(BG,,Z/n) — H*(BD, Z/n)

We now introduce the Generalized Isomorphism Conjecture (GIC), incorpo-
rated into the following definition.

DEFINITION 2.1. Let k be an algebraically closed field and let n be a
positive integer invertible in k. For any algebraic group G, over k we say that G,
satisfies the Generalized Isomorphism Conjecture with respect to n (which we
abbreviate by GIC,) if the natural map of group schemes G(k), — G, G(k) the
discrete group of k-rational points of Gy, induces an isomorphism

H?(BG, Z/n) = H*(BG(k), Z/n).

We say that G, satisfies GIC if it satisfies GIC,, for every n prime to char (k).

As we proceed to show, the Generalized Isomorphism Conjecture is valid for
a connected linear G, if and only if it is valid for its maximal reductive quotient.

PROPOSITION 2.2. Let k be an algebraically closed field and G, a connected
linear algebraic group over k. Then G, satisfies GIC, if and only if the reductive
group G,/Gy satisfies GIC,, where G} denotes the unipotent radical of G,.

Proof. The fact that G“(k) is a successive extension of k, vector spaces, k, the
prime field of k, implies that G*(k) is acyclic for cohomology with Z/n coeffi-
cients, n invertible in k. Consequently, the natural map

H*(BG/G*"(k), Z/n) — H*(BG(k), Z/n)

is an isomorphism. The fact that G, — G,/Gy is an affine bundle implies that
G, — G /G and thus also BG; — BG,/Gi induce isomorphisms in etale
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cohomology with Z/n coefficients. Thus the proposition follows from the natural-
ity of the map

H*(BG,, Z/n) - H*(BG(k), Z/n).

As we check in Proposition 2.3, the validity of GIC for Gg, is merely a
restatement of Theorem 1.4.

PROPOSITION 2.3. Let p be a prime, and Gg, a connected linear algebraic
group over [F,. Then Gg, satisfies GIC.

Proof. By Proposition 2.2, it suffices to assume Gg, reductive and it follows
that we can assume Gg =G,®F, Then the map lim D, :BGF,) —
(Z/1)(BG(C)*?) occurring in the proof of Theorem 1.4 is induced by the map
G(F,)r, > G¢, and a choice of embedding of the Witt vectors of F, into C
determining isomorphisms H%(BG¢, Z/n) = H%(BGg, Z/n)= H*(BG(C)*®, Z/n).
Consequently, the proposition follows directly from Theorem 1.4 and the exis-
tence of a commutative triangle

H*(BGg, Z/n) = H*(BG(C)**", Z/n)

N/

H*(BG(F,), Z/n)

We next show in Proposition 2.4 that the validity of GIC for G¢ is equivalent
to what J. Milnor calls the isomorphism conjecture for G(C)*® ([9]).

PROPOSITION 2.4. Let G¢ be a complex algebraic group and n a positive
integer. Then there exists a natural commutative triangle

H%(BGg, Z/n)=H*(BG(C)*®, Z/n)

NS

H*(BG(C)? Z/n)

in which the isomorphism is given by the classical comparison theorem and the other
two maps are induced by G(C)& = G(C)c — G¢ and 1:G(C)® — G(C)*°®. Conse-
quently, G¢ satisfies GIC if and only if the identity map induces isomorphisms
Hy(BG(C)% Z/n) = Hu(BG(C)*®, Z/n).

Proof. The isomorphism H¥(BGg, Z/n)=H*(BG(C)*®?, Z/n) is induced by
maps (BGg)e, < (BGg)s.e: — Sing (BG(C)'*P) ([6], 8.4). We readily verify that the



354 ERIC M. FRIEDLANDER AND GUIDO MISLIN
corresponding maps for BG(C)¢
(BG(C)¢)er < (BG(C)e)s.et — BG(C)?

are weak equivalences. Thus, the proposition follows from the naturality of these
maps with respect to BG(C)c — BGe.

The following theorem gives a partial description of the map H* (BG,, Z/n) —
H*(BG(k), Z/n) occurring in GIC.

THEOREM 2.5. Let k be an algebraically closed field, n a positive integer
invertible in k, G, a connected linear algebraic group over k, and N, < G, the
normalizer of a maximal torus in G,. Then GIC,, holds for N,, and the composition

HZ(BGy, Z/n) — HE(BN,, Z/n) = H*(BN(k), Z/n)

is an injection with image the stable elements H*(BN(k),Z/n)® with respect to
N(k)< G(k).

Proof. As argued in the proof of Proposition 2.2, we may assume G, reductive
by replacing G, by G,/G} (leaving unchanged N, and the subgroup of stable
elements of H*(BN(k), Z/n)). Using the map of fibration sequences

BZ" — B(C")® — BT(C)®
|
BZ — B(C')" — BT(C)

together with the Z/n acyclicity of B(C")® and the contractibility of B(C")"®, we
conclude the natural isomorphism for a maximal torus T, of G

H*(BT(C)*?, Z/n) => H*(BT(C)% Z/n) *

Employing the map of fibration sequences

BT(C)®> — BN(C)®> - BW

|

BT(C)*® — BN(C)*®* - BW
we conclude the natural isomorphism (compare also [9])

H*(BN(C)*®, Z/n) = H*(BN(C)? Z/n) (2.5.1)

Moreover, by Proposition 2.4, we can reinterpret (2.5.1) as the isomorphism

HZX(BNg, Z/n) > H*(BN(C)?, Z/n) (2.5.2)
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Choose a prime p not dividing n and let R = C denote the strict Henselization at p
of Z,y={m/n; p | n} (provided with an embedding into the complex field). Thus,
R has residue field F, and quotient field contained in Q. The maps F, < R —
@ — C determine the following commutative diagram of schemes

N(F,)z, < N(R), = N(R)g < N(R)g = N(@)g < N(@)c — N(C)c

| T e

N, > N € Ng « N¢

By Hensel’s Lemma, the kernel of the surjection R* — F¥ is uniquely n-divisible,
as are the cokernels of the injections R* — Q* and Q* — C*. Consequently, the
maps BT(F,) < BT(R) — BT(Q) — BT(C)® each induce isomorphisms in Z/n
cohomology and, since (spec R)., is contractible the maps on classifying spaces
associated to the upper horizontal maps of (2.5.3) all induce isomorphism in Z/n
cohomology. We obtain therefore a commutative diagram in cohomology

H*(BN(F,), Z/n)= H*(BN(R), Z/n) = H*(BN(Q), Z/n) = H*(BN(C)°, Z/n)

T

H%(BNg,, Z/n) < H%(BNg, Z/n) — H%(BNg, Z/n) — H¢(BNg, Z/n)

The lower horizontal maps are induced by the appropriate base changes and are
therefore isomorphisms. By (2.5.2), we conclude the natural isomorphisms

H%(BNg,Z/n) = H*(BN(F,),Z/n), and H%(BNg,Z/n)
= H*(BN(@Q), Z/n) (2.5.5)

Let L/K be an extension of algebraically closed fields. This extension induces
isomorphisms H*(BT(L), Z/n) — H*(BT(K), Z/n) because L*/K* is uniquely
divisible, and thus also isomorphisms

H*(BN(L),Z/n) = H*(BN(K), Z/n) (2.5.6)

Etale cohomology base change theorems imply that N, — Ng induces isomorph-
isms H*(BNg,Z/n)— H*(BN,Z/n). Therefore, (2.5.5) implies the natural
isomorphism

HE(BN,, Z/n) = H*(BN(k), Z/n)

for any algebraically closed field containing 1/n; thus N, satisfies GIC,.
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The natural map
H*(BN(F,), Z/n)’ — H*(BN(R), Z/n)® (2.5.7)

is injective by (2.5.4); we will show that this map is actually an isomorphism.
Suppose x € H*(BN(R), Z/n) is stable for ge G(R). Then the corresponding
element in H*(BN(F,),Z/n) is stable for the image ge G(F,) of g, since
H*(BNF,)NN(F,)? Z/n) > H*(BN(R)NN(R)%,Z/n)  (the  kernel  of
N(R)NN(R)® — N(F,) N N(F,)? is uniquely n-divisible). Observe that since R is
Henselian, the map G(R) — G(ﬂ_:p) is surjective, and we conclude the surjectivity
of the map (2.5.7).

From the diagram (2.5.4) and the morphism of group schemes Ny — G, we
obtain then the following diagram

H*(BN(F,), Z/n)* = H*(BN(R), Z/n)S < H*(BN(Q), Z/n)$

(2.5.8)
H{(BGg, Z/n) < H¢(BGg, Z/n) = H(BGg, Z/n)
Theorem 1.4 and Proposition 1.5 imply the isomorphism
H%(BGg,, Z/n) > H*(BN(F,), Z/n)* (2.5.9)

for p not dividing n. Therefore, all vertical arrows in (2.5.8) are isomorphisms. In
particular, we have

H*(BGg, Z/n) > H*(BN(Q), Z/n)’ (2.5.10)

Let now k be an arbitrary algebraically closed field and ko< k the algebraic
closure of the prime field. Applying (2.5.9) or (2.5.10), the base change isomorph-
isms in etale cohomology give rise to the commutative diagram

H:t(BGk(,’ Z/n) = Htt(BGk, Z/n)
H%(BN(ky), Z/n)® <> H*(BN(k), Z/n)®
The injectivity of the bottom arrow follows from (2.5.6). We conclude therefore

the asserted isomorphism HZ(BG,, Z/n) = H*(BN(k),Z/n)® for any algebrai-
cally closed field k containing 1/n.
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If we specialize Theorem 2.5 to the case k =C, we obtain the following result
proved (for any generalized cohomology theory) by M. Feshbach [3].

COROLLARY 2.6. Let G¢ be a connected linear complex algebraic group and
n a positive integer. Then the restrcition map induces a natural isomorphism

H*(BG(C)*?, Z/n) = H*(BN(C)'*®, Z/n)®

Proof. As argued in the proof of Proposition 2.4, the isomorphism given by
the classical comparison theorem H*(BGg, Z/n)=H*(BG(C)*?,Z/n) fits in a
commutative square

H?(BGg, Z/n) = H*(BG(C)*", Z/n)

1 l (2.6.1)

H*(BN(C)% Z/n) < H*(BN(C)**®, Z/n)

The naturality of the isomorphism (2.5.1) implies that for ge G(C),
H*(B(N(C)NN(C)®)*?, Z/n) - H*(B(N(C)NN(C)®)?, Z/n) is an isomorphism.
Therefore, we obtain from (2.5.1) the isomorphism H*(BN(C)*?, Z/n)S >
H*(BN(C)3, Z/n)S. Fitting this isomorphism and Theorem 2.5 into (2.6.1), we
conclude the corollary.

The following corollary of Theorem 2.5 sharpens a theorem of J. Milnor in the
special case k =C, [9].

COROLLARY 2.7. Assume the notation of Theorem 2.5. Then the following
triangle commutes

H*(BG,, Z/n) = H*(BG(k),Z/n)

N

H*(BN(k), Z/n)®

in which the horizontal map is that of the GIC, the left slant map is the isomorphism
of Theorem 2.5 and the right slant map is the restriction homomorphism. In
particular

HZ(BG;, Z/n) = H*(BG(k), Z/n)
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is split injective and the splitting is given by the algebra map v~ 'B. Furthermore

H*(BG(k), Z/n) ———— H*(BN(k), Z/n)®

is split surjective, with splitting the algebra map ay™.

Proof. The commutativity of the triangle follows from the naturality of the
map H%(BGy, Z/n) — H*(BG(k), Z/n).

Finally, we obtain the following equivalent form of the GIC. The proof is
immediate from Corollary 2.7.

COROLLARY 2.8. Assume the notation of Theorem 2.5. Then G, satisfies
GIC, if and only if the restriction map

H*(BG(k),Z/n) — H*(BN(k), Z/n)®
is an isomorphism, if and only if the restriction map

H*(BG(k),Z/n) - H*(BN(k), Z/n)

is injective.

3. Finite Subgroup Conjecture

As with the Generalized Isomorphism Conjecture, we incorporate the Finite
Subgroup Conjecture (FSC) in a definition.

DEFINITION 3.1. Let k be an algebraically closed field and let n be a
positive integer invertible in k. For any algebraic group G, over k we say that Gy
satisfies the Finite Subgroup Conjecture with respect to n (which we abbreviate
by FSC,) if for any non-zero x e H*(BG(k), Z/n) there exists some finite sub-
group 7 < G(k) such that x restricts non-trivially to H*(Bmw, Z/n). We say Gy
satisfies FSC, if G, satisfies FSC,, for every n prime to char (k).

THEOREM 3.2. Let k be an algebraically closed field and let G, be a
connected linear algebraic group over k. Then G, satisfies GIC, if and only if it
satisfies FSC,,.

Proof. If G, satisfies GIC,, then H*(BG(k), Z/n) — H*(BN(k), Z/n) is injec-
tive by Corollary 2.8. In case char (k) =p>0 we choose an embedding H_:,, c k,
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which will induce isomorphisms
H*(BN(k), Z/n) = H*(BN(F,), Z/n) = lim H*(BN(F,), Z/n).

Thus, the mod n cohomology of G(k) is detected by the family of finite subgroups
N(F,) = G(k). On the other hand, if char (k) =0, we first choose a prime p which
doesn’t divide n and which is prime to the order of the Weyl group W of G,.
Then we choose an embedding of the strict Henselization R of Z,, into k, giving
rise to maps

F, «R—k

which induce isomorphisms (cf. proof of Theorem 2.5)
H*BN(F,), Z/n) > H*(BN(R), Z/n) < H*(BN(k), Z/n)

Because R* —[F¥ admits a (unique) splitting with uniquely | W|-divisible cokernel,
this splitting F¥ — R* induces a W-equivariant map T(F,) — T(R) inducing the
inverse H*(BW, T(F,)) > H*(BW, T(R)) to the reduction isomorphism
H*(BW, T(R)) > H*(BW, T(F,)). In particular, the reduction map N(R)—
N(F,) (interpreted as a map of extensions of W whose classes are related by the
reduction isomorphism HZ?*(BW, T(R)) = H*(BW, T(F,))) admits a splitting
N(F,) — N(R) which induces an isomorphism

H*(BN(R), Z/n) > H*(BN(F,), Z/n)

The composite map N (Fp) — N(R) — N(k) — G(k) detects the mod n cohomol-
ogy of G(k) and, since the mod n cohomology of N(F,) is detected by the finite
subgroups N(F,)= N (Fp), we conclude that G(k) satisfies FSC,,.

Conversely, assume G, satisfies FSC,,. By Corollary 2.8 it suffices to prove that
the restriction map H*(BG(k),Z/n)— H*(BN(k),Z/n) is injective in order to
conclude that G, satisfies GIC,. To prove this injectivity, it clearly suffices to
assume n =1[? for some prime [ invertible in k. Let x e H*(BG(k),Z/1*) be a
non-zero element and choose a finite subgroup = < G(k) such that x restricts
non-trivially to H*(Bm, Z/1%). Replacing 7 by an [-Sylow subgroup, we may
assume that = is an l-group. Such an l-group 7 < G(k) consists entirely of
semi-simple elements and thus normalizes some maximal torus of G(k) (cf. [10],

5.17). Thus, 7 is conjugate to a subgroup of N(k) so that the restriction of x to
H*(BN(k), Z/n) is non-trivial.
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As an easy corollary we conclude the following.

COROLLARY 3.3. Assume the notation of Theorem 3.2 and let k =\ k,
where each k, is algebraically closed. Then Gy satisfies GIC,, if and only if each
Gy_ satisfies GIC,.

Proof. Suppose that Gy satisfies GIC,, and let k, < k be a fixed algebraically
closed subfield. Then k =|J Ag where each Ag is a finitely generated k,-algebra
and thus admits a k,-algebra map Az — k,. Therefore it follows that the natural
map

H,(BG(k,),Z/n) — Hy«(BG(k),Z/n)=lim H(BG(Ap), Z/n)
B

is injective. This implies that the restriction map
H*(BG(k), Z/n) — H*(BG(k,), Z/n)

is surjective. Using (2.5.6) and Corollary 2.8 we conclude that
H*(BG(k,),Z/n) — H*(BN(k,), Z/n) is injective and thus GIC, holds for G, _.

If each G, satisfies GIC,, and therefore FSC,, we see that G, satisfies FSC,,
since

H*(BG(k), Z/n) = lim H*(BG (k,), Z/n)

Therefore, Gy satisfies GIC,, by Theorem 3.2.
Corollary 3.3 may be used to show that it suffices to prove GIC, for one

“sufficiently large” field of each characteristic in order to show that GIC, holds
for all fields.

COROLLARY 3.4. Assume the notation of Theorem 3.2 and let k be an
algebraically closed field of infinite transcendence degree over its prime subfield. If
G, satisfies GIC, then G satisfies GIC,, for every algebraically closed field L with
char (L) = char (k).

Proof. Write L =|J L, where each L, is algebraically closed and of finite
transcendence degree over the prime subfield. Then every L, admits an embed-
ding into k and thus G;_ satisfies GIC, by Corollary 3.3. Since L ={J L,, we
conclude that G, satisfies GIC, by Corollary 3.3.
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