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Values of pseudoriemannian sectional cuvature

JouN K. BEEM and PHiLLiP E. PARKER

1. Introduction

In a Riemannian space (X, g) all two dimensional tangent planes are non-
degenerate and the sectional curvature is a continuous function. If p is a fixed
point of X, the planes of the tangent space T,X form a compact set and it follows
that the sectional curvature is bounded at p. If (X, B) is pseudoriemannian the
situation is quite different. In this case the sectional curvature is only defined on
nondegenerate planes and those of T,X form a noncompact subset of the
Grassmannian G,(T,X) whenever dim X =3. Thorpe [9] proved that the sectional
curvature can only be continuously extended to all null planes in the case of
constant curvature. In general, the sectional curvature will not be bounded on the
noncompact subset of G,(T,X) consisting of the nondegenerate planes. Kulkarni
[7] has shown that if dim X =3, then the sectional curvature function is either
bounded from above or from below at p only when it is a constant at p. Harris [6]
and Dajczer and Nomizu [4] noted that the sectional curvature function is
bounded both above and below on all timelike planes at p only when the space
has constant sectional curvature at p. Nomizu [8] has also investigated bounded-
ness conditions on the sectional curvature restricted to nondegenerate planes
which contain some fixed (spacelike) vector v of T,X. He has shown that if every
pencil of planes determined by a spacelike vector v has the property that the
sectional curvature of all spacelike (resp. timelike) planes in the pencil is bounded,
then (X, B) has constant sectional curvature at p. Sectional curvature of
pseudoriemannian manifolds has also been investigated in [3] and [5]. Spaces of
constant sectional curvature have been extensively studied by Wolf [10].

In this paper we study the sectional curvature of pseudoriemannian manifolds
(X, B) of dim= 3. Part of the original motivation for this paper came from our use
of sectional curvature in [2]. Our approach differs from previous studies in that we
begin by expressing the sectional curvature K; at some point p of a three
dimensional Lorentzian manifold (X, 8) as a rational function from RP? to R
which is a ratio of quadrics. The denominator Q, of this ratio is normalized as
x3—x3—x2 on RP? (resp. 1—x?>—y? on R?. The numerator Q, is a quadric
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320 JOHN K. BEEM AND PHILLIP E. PARKER

Ax?+ Bx;x,+ Cx3+ Dx;x3+ Ex,x;+Fx3 on RP? (resp. Ax?>+ Bxy+ Cy?+Dx+
Ey + F on R?) which may be degenerate. The null locus Q, =0 corresponds to the
set of degenerate or null planes in T,X. A point of the null locus where Q, is
nonvanishing corresponds to a null plane I < T,X where |Kg(II)| — « as I —
IT,. If Q, is not a scalar multiple of Q,, then a point where Q; and Q, both
vanish corresponds to a plane II, of T,X where the sectional curvature and its
absolute value are indeterminate in R' U{x} =RP* as IT — II,. We find that for a
fixed point p of a three-dimensional Lorentzian manifold there are at most 4 null
planes of T, X where the sectional curvature is indeterminate in R' U{x} =RP*.
Thus in dimension three the sectional curvature must become unbounded near all
null planes at p with at most four exceptions whenever K is not constant at p.
Corresponding to these (at most) 4 exceptions are (at most) 6 spacelike directions
in T, X such that the sectional curvature is constant on each pencil of planes
determined by one of these 6 directions. For all other pencils of planes deter-
mined by a spacelike direction the sectional curvature is unbounded. In higher
dimensions there may be infinitely many degenerate planes which are indetermi-
nate (but these lie in a set of codimension at least 3) and infinitely many spacelike
directions such that the sectional curvature is bounded on all planes containing
one of these directions. On the other hand, our three-dimensional results imply
that the set of spacelike directions which determine pencils of planes with
unbounded sectional curvature form an open dense subset of the set of all
spacelike directions. (It can be shown that the complement is of codimension at
least 2.)

2. Preliminaries

Let (X, B) be a pseudoriemannian manifold of type (s, n—s). This means B
can be represented at any point pe X as a diagonal matrix with s negative
eigenvalues and n—s positive eigenvalues. There is always an associated
pseudoriemannian manifold (X, —B) of type (n—s, s) and results for (X, 8) always
translate into corresponding results for (X, —B) after appropriate sign changes.
We shall always take dim X =3 and 2<s=n-—1. A vector ve TM is spacelike
(resp. null, timelike) if B(v, v) <0 (resp. =0, >0). There are always 2-dimensional
linear subspaces of each T,M which are negative definite, but there are positive
definite two dimensional linear subspaces of each T,M only when s=n-2 (i.e,,
n—s=2). Whenever 2=s=<n-—2 all of our results which hold for spacelike
vectors also hold for timelike vectors. But in the Lorentzian case (i.e., s=n—1),
this is not true.
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On RP? we shall use homogeneous coordinates (x;, X,, x3) and always take R?
to be the subset x;#0 of RP?. On R? we let x=x;/x; and y=x,/x;. The
Grassmannian of k-planes in R" will be denoted by G, (R"). Then RP*= G,(R?)
and, using the usual Euclidean inner product on R?, we may identify G,(R>) and
G,(R?) via the correspondence IT<> [1* where IT e G,(R?).

3. Sectional curvature of 3-manifolds

In this section (X, B) will always denote a three dimensional Lorentzian
manifold and thus have signature (— — +). We fix some point p € X and investi-
gate the sectional curvature K at p. We assume that local coordinates have been
chosen near p such that the metric tensor is represented by diag (—1, —1,4+1) at p.
Using the induced natural coordinates on the tangent space T,X =R?>, we obtain
two inner products B, and e, on T,X. If u, ve T, X have coordinate representa-
tions u=(u;, uy, u3) and v=(vy,v,,v3) respectively, then B,(u,v)=
—U;0; — UV, + Uzt is the Lorentzian inner product on T,X and e,(u, v)=
U Uy + U0, + U305 is the Euclidean inner product on T,X.

Let IT be a plane (i.e., a two dimensional linear subspace) in T, X. If II is
nondegenerate, then there is a Lorentzian orthonormal basis u, v of Il and the
sectional curvature [1, p. 409] of IT is given by

Kg(IT) = iz Ryjicn ;U 0. 3.1

Here we have assumed that v is spacelike (i.e., B,(v, v) = —1); the — sign is to be
taken if u is timelike, and the + if u is spacelike.

The plane IT is determined by a Euclidean normal (a, b, c). Since II is
nondegenerate we have —a®—b%*+c¢*#0. If II is spacelike, then (a, b, c) is
timelike and we have —a?—b?+¢2>0; if II is timelike, then (a, b, ¢) is spacelike
and we have —a’—b?*+ c*<(. Using w = (a, b, c) we have the following equations:

e,(w, u)=e,(w, v)=B,(u, v)=0; (3.2)

+B,(u, u)=B,(v,v)=-1. (3.3)

If IT is timelike we may assume w.l.o.g. that v3;=0, u;>0, v, =0, and v, =0
implies v,>0. In this case w is spacelike and a®+ b?# 0. Using equations (3.2)
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and (3.3) we obtain

au, + bu,+cu;=0,

av,+ bv, =0,

—ui—us+u3i=1,
. . —)

U0+ U0, =0,

Using these five equations we may solve for u,, u,, us, v;, and v, in terms of
a,b,c:

U, = lb|/m,
v3=a’/(a®+b?),
ui=a’*c*/(a®>+b>(a*+b*—c?),
us=>b?c?*/(a®>+b*(a*+b*-c?),
us=+va*+b?/va*+b*—c>

If ab <0, then v, is positive and the variables u; and u, have opposite signs. The
sign of u, is positive if bc =0 and negative if bc <0. If ab >0, then v, is negative
and the variables u, and u, have the same sign. Here u, is positive for ac =<0 and
negative for ac >(0. Using this information and well known curvature identities,
equation (3.1) yields the following formula for Kg(I1):

2 2
¢’R3121 +a°Rsp35+ b*Riy31 +2(acRy3,+ beR 1231 — abR3;3))

K (1) = c2—a’— b2

(3.4)

A similar calculation for the case of a spacelike plane I yields the same final
equation (3.4). Thus this formula is valid for all nondegenerate planes at p. We
define two quadratic forms Q; and Q, on R? by

Q, = Ax?+ Bx;x,+ Cx3+ Dx,x5+ Ex,x5+ Fx3
and Q,= x§~ x%-— x%. Here A = R3335, B=-2R3335, C=R3y31, D=2R53,, E=

2R3, and F= R,;,;. Restricting these forms to the unit sphere in R® and
identifying antipodal points we may regard Q; and Q, as being defined on RP2.
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Then

Q, (x4, X5, X3)

KH un= Qy(x4, X5, X3)

where II* is the one-dimensional vector space perpendicular in the Euclidean
sense to IT with homogeneous coordinates (x;, x,, x3). Taking x; =0 as the line at
infinity in RP?, we obtain

Ax*+Bxy+Cy*+Dx+Ey+F
1 _x2_y2

KB(H)‘—‘—

where x = x,/x; and y = x,/x5.

Two conics N and H may be defined on RP?> by N={(x;, X,, X3);
Qy(x1, X3, x3) =0} and H ={(x;, X5, x3); Q;(xy, X5, x3)=0}. The conic N is an
ellipse which is represented in R? by x*+y?>=1. We call N the null locus since
each point of N represents a null plane in T,X. The second conic H will be called
the homaloidal locus, since the nondegenerate planes in it are flat. Unlike N, H
may be degenerate: it may be all of RP?, an ellipse, two lines in RP?, one line
(counted twice), a single point, or the empty set. From classical projective
geometry the (real) intersection NN H may be N, four points (counted with
multiplicity), two points (counted with multiplicity) or the empty set. If NNH =
N, then Q; is a scalar multiple of Q, and Kg(IT) is constant at p.

DEFINITION 3.1. (a) If II,e N\H, then |Kg(IT)]— « as the plane IT ap-
proaches the plane II,. The point Il is called a pole of Kg.

(b) If II,eNNH and NNH#N, then II, is called an indeterminate or
ambiguous point.

An indeterminate point II, may have a positive even multiplicity (two or four)
or else an odd multiplicity (one or three). At an indeterminate point of odd
multiplicity, N and H have a nonempty transverse intersection.

The spacelike planes of T,X correspond to the set S={(x;, x5, X3);
x3> x2+ x3} of RP? which lies “inside” the conic N and the spacetime planes (of
signature (—+)) correspond to the set T ={(xy, x,, X3); x5 <x3+x3} of RP? which
lies “‘outside” N. The spacelike image set I, := Kz(S) will be the values of the
sectional curvature on the spacelike planes and the timelike image set I,:= Kg(T)
will be the values on the spacetime planes. The gap set will be G:=R\(I,UL,).

Remark 3.2. Each of the sets I, and I, is the continuous image of a connected
set and is thus connected.
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A simple transverse intersection of N with H willl be a transverse intersection
of multiplicity one. If NN H has a point of multiplicity three, then they must have
an intersection of total multiplicity four, and thus N N H has a point where N and
H have a simple transverse intersection. We will prove that I, = I, =R whenever
N and H have a simple transverse intersection. The set H may be an ellipse which
meets N two to four times, or a pair of distinct lines at least one of which meets N
at two points.

PROPOSITION 3.3. If the null locus N and homaloidal locus H have a simple
transverse intersection at I1,, then I, = I, =R. Furthermore, for each neighborhood
U(I1y) of I1, and each real number a €R there exist points I1,, II, € U(I1,)\ N such
that I1, € S, I, e T, and Kg(I1,) = Kz(I,) = a.

Proof. Given U(Il,) and a€R we shall prove the existence of II,. The
existence of II, may be demonstrated by the same method. Assume (as we may)
that U(I1,) =R? and choose a curve vy :[0, 1]— R? given by v(t) = (x(t), y(¢)) with
1—x%—y?=0 and equality iff t =0, 1. Since N and H have a nonempty transverse
intersection at II, we may choose vy such that y(t)e U(II)\II, for 0=t=<1;
y()e{(x, y)| Qi(x, y, 1) <0} for t<3, and y(t)e{(x,y)| Q:(x, y,1)>0} for t>3.
Then Kg(y(t)) is a continuous function of t for 0<t<1 with Kg(y(t)) = —= as
t— 0" and Kg(y(t)) = +o as t — 17. Thus there is some II; =~(t;) with 0<t, <1
and Kg(II))=ca. O

The intersection N N H is empty when H is empty, a point of either T or S, a
line in T, two lines in T, an ellipse in T or an ellipse in S. In all these cases I, and
I, are closed half-lines which are disjoint and point in opposite directions.

PROPOSITION 3.4. If HNN = ¢, then I, and I, are closed oppositely oriented
half lines and R\(I; U L) is a nonempty open interval.

Proof. Since NN H = ¢, the value of Q; must be always positive or always
negative on N. We assume that Q, is always positive on N, the other case being
similar. Then K uniformly approaches +o as II approaches N through points of
S (inside N) and K uniformly approaches —o as IT approaches N through points
of T (outside N). Since Kj is continuous on S and T, it follows from a collaring
argument that there must be some minimum b of Kz on S and maximum a of Ky
on T. Using Remark 3.2 we find I, =(—, a] and I, =[b, +).

In order to prove that a <b let II; be a point of S where Kg(II;) =b and let
I, be a point of T where Kg(II,)=a. By making a projective change of
coordinates which leaves N fixed as a set, we may map II, to (0, 0, 1) correspond-
ing to the origin of R?, and II, to a point of the projective line containing the
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x-axis of R?. The value of K, along the x-axis is then

A'x’+D'x+F
1—-x2

fx)=

where the coefficients A’, D', F' may be different from the original, A, D, F. The
derivative of f is

D'x*+x(2A’'+2F)+ D’
(1—x?)? ’

f'x)=

Since K; has a minimum at the origin, f'(0) =0 and consequently D'=0. Thus
f(x)=(A'x*+ F)(1—x%"'. Using the fact that A'x*>+ F' is positive at x ==+1, we
obtain A’'+F' >0 and hence F'>—A'. Since the minimum of f on —1<x<1
occurs at x =0, we find b =f(0)=F'. Elementary calculus shows that the sup-
remum of f on |x|>0 corresponds to the limiting value of f as x —oo. Thus
a = f(o)=—A'. Consequently, F'>—A' implies b>a and R\(I;UI,) must be a
nonempty open interval. [

There are three ways in which HN N may be a single point of multiplicity
four. If H is nondegenerate, then H can be an ellipse “inside” the ellipse N or
else H can be an ellipse which is “outside” N. If H is degenerate, then H must be
a single line (counted twice) which is tangent to N.

PROPOSITION 3.5. If the null locus N and homaloidal locus H intersect in a

single point of multiplicity four, then I, is a closed half line and I is the complement
set R\ L.

Proof. We shall give only the proof for the degenerate case in which H is a
single line which is tangent to N at Il,. By a projective change of coordinates, we
may move H to the line which intersects R? in the line x = 1. Then Q; must be a
nonzero multiple of the quadric x3—2x;x5+ x3. Thus in the xy-plane the sectional
curvature is given by

flx, y) =S 2%+ D (3.5)
J=yi—y

where ¢ # 0. Since the argument is the same for positive or negative ¢, we consider
only ¢>0. If y=0 and —1<x <1, then equation (3.5) shows that the interval
(0, %) is contained in I,. Letting y=0 and x eR\[—1, 1] shows that the interval
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(—o, 0) is contained in I. Since f(x,y)=0 on x=1, it follows that I, at least
contains the closed interval (—oc, 0]. It only remains to show that NI, =¢. If I,
and I, were not disjoint, then the above arguments together with Remark 3.2
would yield some point (x,, y;) inside the disk {(x, y); x>+ y><1} with f(x, y)=0.
But equation (3.5) shows that this cannot happen. [

There are several ways in which HNN can consist of a single point of
multiplicity two. If H is nondegenerate, then all but one point of H may be
contained in the set S or all but one point of H may be contained in the set T. If
H is degenerate it may be a single point of N or it may be two lines (one tangent
to N and one disjoint from N).

PROPOSITION 3.6. Assume HN N consists of a single point of multiplicity
two. Then I and I, are oppositely directed open half lines and R\ (I, U I,) is a single
point.

Proof. We shall give only the proof for the case where H is a degenerate conic
consisting of two lines, one of which is tangent to N and the other disjoint from
N. We first make a projective change of coordinates which leaves N fixed and
maps H to a pair of lines, one of which intersects R? in the euclidean line x = 1.
The quadric Q, is then a scalar multiple of (x —1)(ax + by +¢). The fact that the
line of H given by ax+ by +c¢ =0 does not meet N means ax +by+c is either
always positive or always negative on S U N. Assuming (as we may) that ax + by +
¢>0 on SUN, then |a|<c. The sectional curvature (in R?) is given by

(x—1(ax+by+c)

K;(x,y)=R
B(x y) ]_x2__y2

where R#0. Let us assume R >0, the case R<0 being similar. Along the
euclidean line y =m(x —1) the value of the sectional curvature is

(x—1D(ax+bm(x—1)+c) R(ax+bmx+c—bm)

K -1))= = .
B(x’ m(x )) R 1__x2__‘m2(x_])2 (__1___m2)x+m2_.1

(3.6)

The intersection of S with y=m(x —1) corresponds to {x; (m?*—1)/(1+m?»)<x<
1}. Using equation (3.6), we find that the sectional curvature has image
(—o0, —R(a + ¢)/2) on this interval. Notice that the image is independent of m (and
b). Hence I, = (—», —R(a + ¢)/2). The intersection of T with the line y =m(x—1)
corresponds to {x; x <(m?—1)/(1+m?) or x> 1}. It follows, using equation (3.6),
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that the image of K;; on the intersection of T with the projective line correspond-
ing to y = m(x — 1) is the open interval (—R(a + ¢)/2, +=). Again the image is inde-
pendent of m (and b). The image of K; along the projective line corresponding to
x =1 is {0} and |a|<c yields 0 e (—R(a+c)/2, +=). It follows that I, is the open
half line (—R(a+c¢)/2, +x). O

In the above proof of Proposition 3.6 we made essential use of the fact that
the line y = m(x — 1) intersected N in two points and exactly one of these (namely
(1,0)) was a point of H. Using the same types of techniques as above we can
establish the following result.

LEMMA 3.7. Let L be a projective line which intersects HN N in exactly two
points. Then the sectional curvature is a constant on the set L\(H N N).

In the case of HNN consisting of exactly two points, each of which has
multiplicity two, the proof used in Proposition 3.6 must be modified slightly to
take into account the fact that one of the lines of the form y = m(x —1) intersects
HNN in two points.

PROPOSITION 3.8. If HN N consists of exactly two points and each has
multiplicity two, then I, and I, are oppositely directed closed half lines with a
common endpoint. The gap set G =R\(I; U L,) is empty.

In dimension three the six components R,51, R3335, Ray31, Ra132, Ri3; and
R;,3, are all independent. Given any six numbers one may always construct a
Lorentzian manifold (X, B) with a point p such that the given six numbers are
equal to the respective components R,,51, R335, R3131, R2132, Ri231 and Rjy5, at
p. It follows that all of the forms of I, and I, given in Propositions 3.3, 3.4, 3.5,
3.6, and 3.8 actually occur in examples.

4. Higher dimensional results

In this section we consider pseudoriemannian manifolds (X, B) of arbitrary
dimension =3. At each p € X there will exist nondegenerate planes of signature
(+ —) and (— —). If (X, B) does not have Lorentzian signature, there will also be
nondegenerate planes of signature (+ +). We let I, _ be the image under Kj of all
planes of signature (+ —) and in similar fashion define the image sets I__ and I,.
In the Lorentzian case, =I1,_, [[=1__, and I, = ¢.

One consequence of the classification given by Propositions 3.3, 3.4, 3.5, 3.6
and 3.8 is the following theorem for n-dimensional Lorentzian manifolds.
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THEOREM 4.1. Let p be a point of a Lorentzian manifold of dimension =3. If
the sectional curvature is not constant at p, then both I, and I, are intervals of infinite
length.

Proof. Propositions 3.3, 3.4, 3.5, 3.6 and 3.8 clearly imply this result for
dim X = 3.

If dim X >3, we first note that I, and I, must be connected subsets of R?
because the sectional curvature is continuous on the set of timelike planes and on
the set of spacelike planes and these are both connected sets of G,(T,X). If either
L, or I, were not of infinite length, then the sectional curvature would be constant
on every nondegenerate three-dimensional subspace of T,X with Lorentzian
signature. We claim that the value of this sectional curvature constant is the same
for all three-dimensional subspaces of this type. If V and W are such subspaces,
let V and W have orthonormal bases {e,, e,, e5} and {u,, u,, us}, respectively,
where e; and u, are timelike. Define V,=V, V,=span{e,,e,, u,}, Vz=
span {e;, u,, us}, and V,=W. Each V, is a linear subspace of dimension at least
two and is nondegenerate since it contains a time-like vector and the metric on
T,X is Minkowskian. Each V; N V,,, contains at least one nondegenerate plane,
so the sectional curvature constant is the same for V; and V,,,. Consequently, V
and W have the same sectional curvature constant. The result now follows from
the fact that every nondegenerate plane at p lies in some nondegenerate three-
dimensional subspace of T, X with Lorentzian signature. [l

Consideration of the sectional curvature on three-dimensional subspaces of
Lorentzian signature can also be used to establish the following pseudoriemannian
result.

THEOREM 4.2. Let p be a fixed point of the pseudoriemannian manifold
(X, B) of dimension =4. Assume that (X, B) is not Lorentzian. Then the sectional
curvature is constant at p iff any of the following three conditions holds:

(1) the sectional curvature is bounded above and below on planes of signature
(+ -) (i.e., I._ has finite length);

(2) the sectional curvature is bounded above and below on planes of signature
(++) (i.e., L., has finite length);

(3) the sectional curvature is bounded above and below on planes of signature
(— ) (i.e., I__ has finite length).

We now consider the sectional curvature on the collection of all nondegener-
ate planes containing some spacelike vector v e T, X. The results of Section 3
show that if (X, B) is a Lorentzian manifold of dimension three, then for each
spacelike vector v € T,X the sectional curvature restricted to the pencil of planes
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containing v must be constant or must be unbounded. The sectional curvature is
constant on the pencil exactly when the line in RP? corresponding to this pencil
intersects the null locus N in two points which also lie on the homaloidal locus H.
If N is not a subset of H, then HN N can have at most four points and thus there
are at most six pencils of planes (each determined by a spacelike vector) such that
the sectional curvature is constant on each pencil. If the sectional curvature is not
constant on a pencil of planes determined by a spacelike vector v e T, X, then the
results of Section 3 show that the sectional curvature is unbounded either above
or below on all spacetime planes containing v and also is unbounded either above
or below on all spacelike planes which contain v. We now show that the sectional
curvature restricted to the pencil of planes containing a spacelike vector v is
either constant or unbounded in any pseudoriemannian manifold.

LEMMA 4.3. Let p be a point of the pseudoriemannian manifold (X, B) and
assume v is a spacelike vector in T, X. The sectional curvature is either constant on
all nondegenerate planes containing v or else is unbounded on this pencil. If the
sectional curvature is unbounded on this pencil, then it is unbounded either above or
below on the set of spacetime planes which contain v and unbounded either above or
below on the set of spacelike planes which contain v.

Proof. Assume that the sectional curvature is not constant on the set of
nondegenerate planes which contain v. The results of Section 3 imply we need
only show that there is some three-dimensional linear subspace L of T,X such
that ve L, the metric tensor on L has Lorentzian signature, and Kz is not
constant on the planes of L containing v. Choose two nondegenerate planes II;
and IT, containing v with Kg(II,) # Kz(II;). Both may be spacetime planes
(signature (+ —)), both spacelike (— —), or one spactime and the other spacelike.
We consider the case where both are spacetime planes, the others being similar.
Choose a spacelike plane II; containing v. If Kg(I15) # Kg(I1,), let L =11, + I13; if
Kg(I15) = Kg(I1,), let L=1I,+11;. U]

The conclusion of Lemma 4.3 is valid when v is a timelike vector in a
pseudoriemannian manifold of signature (s, n —s) with 2=<s=n—2. On the other
hand, the situation when v is a timelike vector in a Lorentzian manifold (of
arbitrary dimension =3) is quite different. In this case all planes containing v are
nondegenerate and thus the sectional curvature restricted to planes containing v is
a continuous function defined on a compact set. Consequently, the sectional
curvature is bounded both above and below on the pencil of planes determined by
a timelike vector in a Lorentzian manifold.

We now obtain a generalization of some of the results of Nomizu [8]. We show
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that generically the sectional curvature is unbounded on the set of spacelike
vectors.

PROPOSITION 4.4. Let (X, B) be a pseudoriemannian manifold of dimension
at least three which has signature (s,n—s) with 2<s=n-1. If the sectional
curvature is not constant at p € X, then the set of spacelike vectors v € T, X such that
the sectional curvature is unbounded on the pencil of planes containing v forms an
open dense subset of the collection of all spacelike vectors in T, X.

Proof. Let W be the set of spacelike vectors v such that K is unbounded on
the pencil of planes containing v.

We first prove W is dense in the set of all spacelike vectors at p. If v, is a
spacelike vector not in W, then Lemma 4.3 shows K is a contant k, on the set of
planes containing v,. Since Kz is not constant on T,X, Theorems 4.1 and 4.2
imply there is a spacetime plane II; with Kg(II,)=k;# k,. Then v¢Il; and
Kg(IT) # k, for all planes IT sufficiently close to II; in the usual topology on
G,(T,X). By redefining II, if necessary, we may assume w.l.o.g. that the three
dimensional linear subspace L containg v and I, is nondegenerate. Since v is
spacelike and II, is a spacetime plane, the subspace L is either Lorentzian of
signature (+ — —) or Lorentzian of signature (+ + —). In either case, k,# kg
implies that Kz is not constant on L and this yields the existence of at most six
spacelike directions in L such that K is contant on the pencils in L determined
by these directions. It follows that there are spacelike vectors in L arbitrarily close
to vy such that Kj; is not constant on the pencils determined by these vectors. It
follows that v, is in the closure of the set W.

That W is open follows easily from the fact that if Kz is unbounded on the
nondegenerate planes containing v,€ W, then K cannot be constant on any
pencil determined by a spacelike vector v sufficiently close to v,. [

Remark 4.5. The conclusion of Proposition 4.4 remains valid for timelike
vectors v as well as spacelike vectors v provided the signature (s, n—s) satisfies
2=s=n-2.

If dim X =4, then there may be uncountably many spacelike vectors v such
that the sectional curvature is bounded both above and below on the set of
nondegenerate planes containing v. Let (X, B;) be any two-dimensional Lorent-
zian manifold with R,,,,# 0 at some point pye X,, and let X = X,xR""? have
the Lorentzian product structure B,@(—dx3—---—dx2). At peX of the form
(po, X3, - - ., X,,), all components of the curvature tensor will vanish except for
Ri212 = R3121 = —Rj3; = —R511, # 0. It is easy to check that if v € T,(X) is tangent
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to R" 2, then any nondegenerate plane containing v must have sectional curva-

ture zero. The set of all such ve T, X clearly forms a codimension-2 linear
subspace.
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