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Gaps and bands of one dimensional periodic Schrodinger operators

JoHN GARNETT AND EUGENE TRUBOWITZ

1. Introduction

Let g(x) be the periodic extension to the whole line of a function in L0, 1],
the Hilbert space of all real valued square integrable functions on the unit
interval. The spectrum of the Schrodinger operator —(d?/dx?)+ q(x) acting on
L?*(R") is the union of purely absolutely continuous bands B, (q), n=1. The nth
band B, is the set

{v.(k,q): —3=k=3}.

Here v,(k, q), n=1, the nth eigenvalue (counted with multiplicities when k =
0,+3) of the boundary value problem

—y"+q(x)y = Ay

. (1.1)

y(x+1)=e**y(x), —o0< x < 0,

The eigenvalue v, (k) is a continuous function of k so that B, is a closed
subinterval of R'. The purpose of this paper is to study the following question:
When is a collection of closed subintervals of R' the set of bands corresponding
to a function q in L%[0, 1]?

It is well known that the bands may touch but never overlap. This property
makes it possible to reformulate the question posed above in a more suggestive
way. A tile is a closed interval. Tiles can be arranged in any way on the line so
long as they never overlap. They are, however, permitted to touch. Suppose we
are given a sequence of tiles. Can we place them in order on the line so that they
coincide with the sequence of bands for a q in L%[0, 1]?

Let a,(q), n=1, be the length of B, (q). It is a routine fact that

a,(q)=2n—1)7>+1*(n).

This research was supported in part by NSF Grant #MCS 80-02955
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The notation a, = b, +1*(n) means that Y., (a, — b, )*> <. What is more interest-
ing is that for each q in L[0, 1] the inequality

a, (q) = (2n - 1)772

holds for all n = 1. The result is even stronger. If a single one of the inequalities is
an equality, then they are all equalities and q is constant. These universal bounds
on the lengths of the bands will be established in Section 3 where they are shown
to be equivalent to facts about conformal mappings of slit domains. J. Moser [3]
also found them while studying the spectrum of certain limit periodic potentials.

Judging by the last paragraph, it would seem that a sequence of tiles must
satisfy rather subtle conditions in order to be a candidate for a set of bands. Also,
we do not know that the individual inequalities and the asymptotic restriction on
the lengths exhaust all necessary conditions. For these reasons we take a different
point of view towards characterizing the spectra of one dimensional periodic
Schrodinger operators. We hope to return, at another time, to the problem of
finding a complete set of necessary conditions on the bands.

From now on we assume that the bottom of the first band is at 0. All other sets
of bands are obtained from these by translation. The complement of the spectral
bands is a sequence of open subintervals of (0, <) called the forbidden bands or
the gaps. It is well known that for most potentials q (a set of the second category
in LZ[0, 1) no bands touch, so that there is a nontrivial gap between every two
bands. To each set of bands B, (q), n =1, we associate the sequence of nonnega-
tive numbers

Y1), v2(q), . . .

where v, (q) is the distance between the top of the nth band and the bottom of the
next.

An open title of length +y is an open interval of length y when v is positive and
a point when <y is zero. Open tiles may be arranged in any manner on (0, ©) as
long as none of them overlap. Now let vy, =0, n =1, be a sequence of nonnegative
numbers. We ask whether it is possible to place the sequence of open tiles of
length +v,, n=1, in order on the positive axis (0, ») such that the complement (we
regard points simply as marking places where two bands touch—they are not
removed) is the band spectrum of a q in L%[0, 1]? Our goal in this paper is to
describe the set of all possible configurations of bands by understanding the
distribution of gaps.

There is a simple necessary condition on the length of the gaps corresponding
to a q in L%[0, 1]. The sequence v,(q), n=1, isin [* i.e., Y1 y2<ce. It is also
sufficient.
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THEOREM 1. Let v,, n=1, be any sequence of nonnegative numbers
satisfying

Z 'Y%;<°°-

n=1

Then, there is a way of placing the sequence of open tiles of lengths y,, n=1, in
order on the positive axis (0,>) so that the compliment is the set of bands for a
function q in L%[0, 1]. In other words, the map

q—v(q)=(vw(q),n=1),

from L%[0, 1] to (I»)*, is onto.

Here, (I1*)* is the space of the nonnegative, square summable sequences
Yo B=1.

Theorem 1 tells us that there is no obstruction to a sequence of nonnegative
numbers being an actual gap sequence other than an explicit asymptotic condi-
tion. This is in marked contrast to the set of band lengths.

It is natural to ask how many different ways a sequence of open tiles, whose
lengths are v,, n =1, can be placed so that the complement is a set of bands. For
example, suppose that the tiles are properly arranged. If the first tile is moved,
even a very small amount, the complement may no longer be an actual band
spectrum. However, we can slide the (infinitely many) other tiles to try to
compensate for this. There could be a great deal of freedom.

THEOREM 2. There is just one way to place a sequence of open tiles, satisfying
the hypothesis of Theorem 1, on the positive real axis so that they are genuine gaps.

Thus, we have shown that (I%)* is a moduli space for all band configurations.
Equivalently, a band spectrum is uniquely determined by its gap lengths and all
gap sequences in (I*)* occur as gap lengths.

Theorems 1 and 2 are proved in Section 5. We are going to use a characteriza-
tion of bands due to Marcenko and Ostrovskii [2]. They identify band configura-
tions with slit quarter planes. In Section 4, we give a new approach to their
beautiful theory with the improvements that are necessary for our purposes.

Let w,.(q), n=1, and v,(q), n=0, be the Dirichlet and Neumann spectrum of
q in L%[0, 1], that is, the spectra of (1.1) for the boundary conditions

y©0)=0, y(1)=0
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and
y'(0)=0, y'(1)=0

respectively. If q is an even function (q(1—x) = q(x)) then v,(q) =|u1.(q) — v.(q)|,
n=1. We define the signed gap lengths of q in E,, the subspace of even functions

in L%[0, 1] with mean 0, to be the sequence (u,(q) — v,.(q), n > 1). In Section 5 we
prove

THEOREM 3. The map from q to its signed gap lengths is a real analytic
isomorphism between E, and 1°.

To indicate why this theorem is true we calculate the derivative at g =0. The
gradient of a Dirichlet or Neumann eigenvalue is the square of its corresponding
normalized eigenfunction. Consequently, the directional derivative of the nth
signed gap length at q =0 in the direction of the function ve€ R, is given by 2
(sin? nx — cos® nmx, v) = —2 {cos 2mnx, v). We see that the derivative of the map
from q to signed gap lengths is a boundedly invertible linear map between E; and
[?. The inverse function theorem shows that our map is a real analytic isomorph-
ism in a neighborhood of q=0. We are using the fact that the Dirichlet and
Neumann eigenvalues are real analytic functions of q. This is proved in [4].

To prove the global Theorem 3 we have to show that the conformal map of a
quarter plane with infinitely many slits to the upper half plane is a real analytic
function of the infinitely many slits. In fact we obtain three real analytic
isomorphisms between the three spaces E,, I? and I3, the space of real sequences
{h,} satisfying Y n*h2<o. In Section 2 we introduce the conformal mapping
6(A, q) from the upper half plane to the quarter plane with excised slits T, =
{nm+iy:0=y=|h,|}, and v,(q) is the length of 8 '(T,). When q € E,, we define
h.(q) =sgn (u,.(q) — v.(q)) |h,.(q)|, where |h,(q)| is the length of the n-th slit T,
determined by 8(A, q). Then all three maps in the diagram

Eyeqo{y, = u, (@) —v,(@}el?
{h.}el}

are real analytic, one-to-one, onto, and have real analytic inverses.
We thank Richard Durrett and Peter Jones for helpful discussions.

2. Preliminaries

In this section we introduce some notation and derive some simple facts which
will be used later.
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Let y,(x, A, q) and y,(x, A, q) be the solutions of
—y"+q(x)y = Ay (2.1
satisfying

y1(0, M) =y3(0,A) =1
Yi(07 A) = YZ(Os A) = Oa

and set
AMN) =AW, @) =y:1(1, M) +ya(1, D).
The sequence of roots
Xo<A=Ap<Az=A <

of A%(A)—4=0 is the spectrum of equation (2.1) with periodic boundary condi-
tions of period 2, ie. y(x+2)=y(x), —o<x<. Here equality means that
Aan—1 = Ay, is a double root or eigenvalue. The lowest eigenvalue A, is simple,
A(Ay) =2, and the corresponding eigenfunction has period 1. The eigenfunctions
corresponding to A,,_3, A,, have period 1 when n is even and they are an-
tiperiodic (y(x+1)=—y(x)) when n is odd. Also, A(A,,_;)=A4(A,,)=2(-1)",
n=1. We have the estimate”

1

Aon—1, Aop = n211-2+J q(x) dx +1%(n)
0

Finally, A, and A, are the bottom and top of B,, while A, and A; are the bottom
and top of B,, and so on.

We see from the discussion above that the problem of describing band
configurations is equivalent to the characterization of all periodic spectra, or in
another guise, all functions A(A) = A(A, q).

From now on, unless otherwise stated, we adopt the normalization Aq(q) = 0.

' a, =b, +1*(n) means ¥, ., (a, —b,)*><c.
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LEMMA 2.1. Let®

Y —Ap)

Ja—a%(m)

s =501 a)=

Then 8(\) is a conformal mapping of the upper half plane {Im A >0} to the slit
quarter plane

2h)={Rez>0,Imz >0}\ UT,
n=1

where
T,={nm+y:0<y<h,}

and

Y n2h2<o,

n=1

Moreover,
A(A)=2cos &§(A).

Proof. Let A,,n=1, be the zeros of A. It follows from Laguerre’s theorem
[S p. 266], that

)\2n——1s)‘nsk2m nzl,

because A(A) is entire of order 1/2 and the roots of A(A) ==+2 coincide with the
real sequence A,, n=0. Since

d cos“l(A(A))= —A(N)
dA 2 Ja—A%(A)’
we have

A(A)=2cos §(A).

2 A is an abbreviation for dA/dA.
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We now see that 8(\) is a conformal mapping from the upper half plane to
some quarter plane £2(h) and that § maps the gap (A,,_1, A»,) onto the slit T,, the
band (Azn, Azns1) ONto the interval (nr, (n + 1)) and the segment (—oo, 0) onto the
imaginary axis. It remains to check the estimate on the slit heights.

From the product representations [See 4]

Aon—1—A)Ag —A
4—A2(A)=4(A—A0)H( L 4(42 )
n=1 n'w
and
. A, —A
A\ = kil /o
( ) }—211 n’n?

we obtain the estimates
4—A%N) = A2 = M)A = A3,-1) O(1/1?), Ay 1 <A <Ay,
and

nsup |[AQ)|=1(n)

Agp—1=A =5,

Hence
W —Aw)
A = I
., G Aup

n |4 (w)| dpe
=0
(n)LZH_I ‘/('\2n —w)(p— /\2n——1)

so that

A

. 2 d
|h,|=O(n) . S:}I\)ﬂ IA(/\)\L JO, “M)ZL — Aoy

=O0(n) sup |A())|

Aon—1=SA=Agp
and ¥ n*h2<o, O

The idea of Marcenko and Ostrowskii is to use the slit heights as a set of
moduli.
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3. Lengths and harmonic measures

Write (I%)* for the space of sequences a,, n =1, such that Y a2< and a, =0,
and denote by (I3)* the space of sequences h,, n=1, such that ¥, ; n*h?< and
h,=0. Say he(1?)* is finite if h, =0 for n sufficiently large.

For he(I13)* let 02(h) be the slit quarter plane

2(h)={Re z>0, Im z>0}\ CJ T,
n=1

where

T,={nm+iy:0<y=h,}

is the n-th slit in 9£2(h), and let z = ¢, (A) be a conformal mapping from the upper
half plane U ={Im A >0} onto 2(h). By Carathéodory’s theorem [6], ¢, extends
to a continuous mapping from the closure U U{x} and the extended ¢, is
two-to-one over each non-trivial T, and one-to-one over the remainder of
002(h) U{~}. We normalize ¢, by

{%(0):0

(3.1)
@p () = oo,

which determines ¢, uniquely to within a positive multiple. When h is finite, @'
is by reflection meromorphic at o and

o (2)=az’+b+ O(ﬁi), |z| large,

with a >0. Replacing ¢, (A) by ¢,(A/a), we may further normalize ¢, so that
en ' (z2)=2*+b+0(1/|z]D, |z| large, (3.2

which makes ¢, unique when h is finite. If h is not finite, the truncations

h, n<k
h“"={ " .
" 0, n>k (3.3)

have domains Q, = Q(h®) decreasing to Q(h) and by Courant’s theorem (and its
proof [6 p.383]), their mappings ¢,~(A), when normalized by (3.1) and (3.2),
converge on AU U {}, uniformly with respect to the spherical metric, to conformal
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map ¢,: U — 2(h). In this way we have a uniquely determined map ¢, for all

h e (13)*. From now on ¢, denotes this unique conformal map. Set A, = 0; and for
n=1 define

A2n-1 = A2n—1(h) = ‘pgl(nﬂ'*) = }Zl{r(l) ‘pgl(nﬂ' - 8)

Aon=Aon(h) =@ (nm+) = lim ¢n(nm+¢)

a, =a,(h)=Az_1—Azn_2
and

Yn = ‘Yn(h) = A2n - /\211—1
Thus a,, is the length of ¢ '([(n— 1)+, nm—]) and v, is the length of ¢, (T),).
When A, n =0, is the periodic spectrum of (2.1), translated so that A, =0, ¢, ()
is the same as the map 8(A) defined in Lemma 2.1, and then «, is the length of

the n-th band B, and v, is the length of the n-th gap.
Most of our estimates of lengths depend on the following simple lemma.

LEMMA 3.1. Assume h is finite. Let u(z) be a bounded harmonic function on
£2(h) such that

u(z)=0, z€d(h), |z| large
and let U(A) = u(¢,(A)). Then for Lebesgue almost all teR, the limit

U(t)=1im U(t+in)
nlo

exists and is integrable, and
I U(t) dt = lim 2mx%u(x + ix). (3.4)

In particular, the limit in (3.4) is finite and it is strictly positive if u(z) is nonnegative
but not identically zero.

Notice that if u(z) is the harmonic measure of a bounded Borel set E < a£2(h),
then U(t) agrees almost everywhere with the characteristic function of ¢ '(E)
and the limit in (3.4) evaluates the length of ¢;'(E).
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Proof. The boundary value exists by Fatou’s theorem because U(A) is a
bounded harmonic function on %; it is integrable, in fact bounded and compactly
supported, because U(t)= U(g,(t))=0 if teR and |t| is large. Moreover, for
A=&+in,

LN I B
U(A)—W J =P U() dt,

so that by dominated convergence
j U@t) dt = lim mU(&+in),
0 n—s>o0

uniformly in |¢|=<C. By (3.2)
n=Im e, (x+ix)=2x2+0(1), X — ©
E=Re ¢ (x+ix)=0(1), X —> oo,

and since u(x+ix) — 0 (x — «), we therefore have

lim mU (& +in) = lim 2mx%u(x + ix)
T'-“fw 1]—)00

and (3.4). The limit is finite becuase the integral converges. If u(z) is nonnegative
but not identically zero, then U(t)=0 and U(A)>0 for all A € U, and the integral
representation of U(A) shows that [ U(t) dt>0. O

We shall later need this refinement of the lemma:
j U(t) dt = lim 2mxu(x +i(x +¢)) 3.5)
o n-—>

for any constant c¢. The proof is the same.
THEOREM 3.2. For all he(13)* and all n=1,
a,(h)=2n— x>

Equality holds for a single n if and only if h=0.
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Proof. If h =0 then ¢;'(z)=z? so that A,,_, =n?w?, Ayp_n=(n—1)*x? and
a, = (2n—1)7> Fix n, let h® be the truncation (3.3) of h and let u,(z) be the
harmonic measure of ((n— 1), nm) <982, =002(h™). By the maximum principle
w (z) — . 1(z) is harmonic, nonnegative and bounded on 2, ., and it is strictly
positive if h,,,>0. The lemma then applies to u, —u.,, to give

a,(h*) —a, (h** ) =0
and

o, (h*)~a, (R )20
if hy.1>0. Thus a, (h™) is nonincreasing in k and it jumps down at each k with
h, >0. Hence «,,(h*)=a,(0)=(2n—1)=2, with equality if and only if h®=0.
The theorem now follows because by Courant’s theorem a,(h)=
lim, . a,(h®). O

THEOREM 3.3. If he(I3)" then

vn(h) =4 Max (2@nh,,, h?), (3.6)

and

Y (yw(h)><647* Y, n?h2+ 16(2 nzhi)2

N=1 n=1 n=1

Note that if

vE(h) =sup v, (h®)
k

where h® is the truncation of h defined by (3.3), then by Theorem 3.3, we have
v¥ <4 Max (2mnh,, h?),
so that Y (y¥)2 <o,

Proof. The 1? estimate follows from the pointwise estimate because

sup h2/n®>< ), n?h? and ), h4s(sup h,z,/nz) Y n%h2

n=1 n=1 n=1
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In proving (3.6) we may, by Courant’s theorem, assume h is finite. So let h be
finite and let w,(z) be the harmonic measure of T, in 2(h). By the lemma

¥, (h) = lim 27x%w, (x + ix)

and by the maximum principle and the lemma, vy, (h)=<v,(h") where h,,= 8, .h,.
because replacing h by h’ does not decrease w,(z). So replace h by h'. Then
z — z? maps Q2(h) into U\I", where I, is the parabolic arc

I,={(n*m’—s*)+2mins:0=<=s=<h,}

and w,(z) = W, (J/z), where W, is the harmonic measure of I', in U\I',. Enclose
I, in a closed disc D, with center n>w*—h2 and smallest radius

r, = Max (2mh,, h2)

On U\D, the harmonic measure of the orthogonal semicircle U NJD, is

ey 2 m e
Wn(é)—ﬂLnD" (§-t)2+n2dt’ (=¢&+im

which is 2/7 times the angle of visibility of RN D, at the point . By the
maximum principle W, ()< W,({), {€ U\D,, and by the lemma

Y (h) = lim W, (in)
=< lim mW/(in)
‘n—)m
=2 meas RN D,)=4r,

which is (3.6). O

For the Marcenko-Ostrovskii characterization of spectra we need two further
estimates.

THEOREM 3.4. Let he(13)*. Then
(a) There is a constant ¢ = c(h) such that

Aon_1(h)=n’m?+c+1%(n)
Aon(h) =n?m%+c+1%(n)
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and
(®) Jim X (Ao (h®) =25, (h)? =0
where h™ is the truncation of h.

Proof. Part (a). Since vy, = Ay, — Ay, €17, it is enough to consider A,,. We
first reduce the proof to showing

A = A, (W) = n2m?+c(h) + 1*(n), (3.7)

where h™ is the truncation (3.3). Write u®™’(z) for the harmonic measure in
Qn = 2(h™) of 802y N{0<Re z =< nr}, so that

AR =N, (h™) = lim 2mx2u™(x +ix),
X —>0C

and let do™(z, ) be the element of harmonic measure for z ey, ¢cafdn.
Comparing boundary values, we see that for N> n,

ul(z) =u®M(z)+ ) J ul(Q) do™(z, 0),
T,

k=n+1 k

z € (), from which Lemma 3.1 and Courant’s theorem give

0=A%) = Azn = lim (AZ)—ASY

< ¥ (sup u@ ) (sup w (h™).

k=n+1 MeT N=n

For (€T, k>n,

hy
k—n’

u®™(¢) 3—2— arctan ( ) = Const.
17

_mé
(k—n)m

because the middle term is the harmonic measure at ¢ of {nm+iy:0<y <o} in
the quarter plane {y >0, x >n=} and this harmonic measure dominates u{"(¢) on
042,. Also, by Theorem 3.3,

sup v, (h™)=vyiel?,

N=n
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and hence
oo h, ¥
|Asn — ALY =Const. ). Yk _ Const. S, (3.8)
k=n+1 k—n

But 8, € I? since

1 1
b=~ X khyt=—(LK*hD"(X (DI

k=n+1

Therefore proving (3.7) will prove part (a).
Now consider

1 an,,z Im (z?) dt
0

o(2) = (t—Re (z2)%+ (Im (292

which is the harmonic measure of {0 <x<nw} in the quarter plane 2(0)=
{x>0, y>0}. By the lemma

A —n2%m? = lim 2mx2(u™(x + ix) — v, (x + ix)),

X —>»00

while by integrating boundary values, we have

n

u@-v,2= ¥ [ 10,0 do"(z 0

k=1
Write 1—v,(¢) = V(&) + VEV(£), where

2
Vi(§)= ‘7; arg {

is the harmonic measure of {iy:y>0} in £(0), and

e L[ Im (£?) dt
V= L ((—Re (@) + (Im (P’
and let

A, = lim 27x? i

k=1

J Vi(0) do™(x +ix, {), (3.9)
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and

B, = lim 2mx? i j V() do™(x +ix, £). (3.10)
T

x> k=1

Then AyY —n?#2= A, +B,, and (3.7) will be proved by establishing that B, € [*
and that for some constant ¢ = c(h),

{A,—c(h)}el”

First consider B,. At {€ T, we have

V(&) = Const. i , k<n
n—k

and

V) =i  k=n

Consequently
%k n—1 h *
Yk
B, =—=+ Const E
" 2 ons kZ——:l n—k

By Theorem 3.3, y*e[?, and since k(n—k)=n—-1, 1=sk=n-1,

£ hky’: 1 %
kél n~k5n-1 Z khievi
1
=—7 QL k*hD"Q (0D,

and hence B, € I°.
To study A,, observe first that because V,({)=2h/n’k, { € Ty, we have

2h
lim 211'x7‘j Vi(0) do™(x +ix, )= zk vE.
X —>00 T, ar k

By the maximum principle the limit is nonnegative and it is nonincreasing in n.
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Therefore the limit

—»00 X —P0

a = ILim lim 2'n'xzj Vi) do®™(x + ix, {)
T,

k

exists. The constant in (3.7) will be c(h)=Yr_, a,. Now

A,—c(h)= z (—ak+ lim 2fn~xzj
k=1 x> Ty

V(&) do™(x + ix, {))

-~ Y a=C,+D, (3.11)

k=n+1

Since a, =(2h,/mw?*k)y¥, Theorem 3.3 shows that both series D, and c(n)=—D,
are convergent and also that

Y D<o,
n=1
because
Const. <« Const.
= k e
P, &, O

Finally, we have

C,= 2": lim lim 277sz Vi(O(do™(x+ix, ) — do™(x +ix, ),

k=1 N-—»00 x —»00

and by the maximum principle dw™(z, {)—dw®™(z, {)=0 on T, so that
YT (n) (N)
C, =Const. Z —’;—211_1_1)100 (Y& =y ).
k=1

LEMMA 3.5. For n=k,

oo

() _ A (N)y Z hiy7
sup (vi¥ — vk ) =Const. L4

= Const. 6,
N>n j=n+1] 7 k

where §,, is defined in (3.8).



274 JOHN GARNETT AND EUGENE TRUBOWITZ

Accepting this lemma for a moment, we use it to note that

o0

C, =Const. ( Z %) - O,

k=1

and hence that C, € I? because, as we showed above, 8, € I°.
To summarize, we now conclude that A,—c(h)=C,+D,cl? and conse-
quently that ASY —n?nw?—c(h) e I?. That proves (3.7) and part (a).

Proof of Lemma 3.5. Write «{"({) for the harmonic measure at {2, =
Q(h™) of the set T, <9,, k<n. Then

N
Vi’ =i = lim 2arx® 2 j (0 do™(x +ix, {).
T,

i=n+1

For {€T, j>n, we see, comparing w{’({) to the harmonic measure of {k +
iy, 0 <y <o} in the quarter plane {x >k, y >0}, that

w{M(¢) =Const. ;—% , LeT,

Consequently
=) h‘ *
v — v < Const. Z "’l'— = Const. §,.
j=n+1]__

Part (b). As in the reduction of part (a) to (3.7), we have for k =n,

IAE £, | =< i (sup uﬁ“(())ﬂg

i=k+1 eT;

=< ) Const. hy*.

ji=k+1

And for k <n we have

AL —Aonl= 2 (Sup u&"’(C))v’}‘+ i sup (1-ul(Q)v}

j=n+1 \eT; i=k+1 LT
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If k is so large that h;=<1, j>k, then sup,.r (1—ul’({))=Const. h;, because
1—u®(¢) reflects to be harmonic on {¢:|{—jw|< =} and u®(s)=1. Hence we
have

|/\(2'§,)—)\2n|_<_C0nSt. Z hi'YT
i=k+1

for all n if k is sufficiently large, and since

. .
(Z hﬂ’}‘) =i & D 0,

(b) is proved. O

4. The Marcenko-Ostrovskii Theorem

We say q € L3[0, 1] is even if q(x) = q(1—x) and we let E denote the subspace
of even functions in L3[0, 1].

THEOREM 4.1. Let he(I3)* and let ¢, be the conformal mapping from the
upper half plane to the slit quarter plane 2(h) (normalized as in §3 above). Then
there exists q € E such that

en(A) =8(A, q).

Except for the fact that the potential q is even, this theorem was proved by
Marcenko and Ostrovskii (see Theorem 5.1 of [2]) by a different method. In this
section we give an alternative proof, using the estimates of §3,and some ideas
from [4], and we prove that q can be chosen from E.

We first consider the roots

(@) <palq)<---

of y,(1, A, q) =0. The sequences u,,, n =1, is called the Dirichlet spectrum of q, it
is the set of eigenvalues of (2.1) with Dirichlet boundary conditions y(0) = y(1) =
0. It is well known [7] that A,,_; =, =A,,, and so the Dirichlet spectrum satisfies
the estimate

1

Un =2+ J q(x) dx +1*(n).
0



276 JOHN GARNETT AND EUGENE TRUBOWITZ

It is also well [7] known that q(x) is even if and only if u,(q) = A,,.-1(q) or A,,.(q)
for all n=1. We need the following characterization of Dirichlet spectra. Let S be
the Hilbert manifold of all increasing sequences o, = n>w>+1%*(n), n=1, and let
E,< LZ([0, 1]) be the subspace of even functions with mean 0. The fact we need
is that all Dirichlet spectra are obtained by translating sequences in S:

THEOREM 4.2. The map from E, to S defined by

Ey3q— (11(q), n2(q), .. JES
is one-to-one, onto and bianalytic.

Proof. See the Appendix for a proof of Theorem 4.2.

We next make a list of all possible functions A(A, q).

LEMMA 4.3. Let o€ S, i.e. o= (04, 0,,...) is any strictly increasing sequence
of real numbers satisfying

o, = n’w>+1%(n).
Then the series

A,(N\)=2cos JA+ Y. 2[(-=D)" —cos Vo] |1 Om —A

n=1 m#*n Om — Oy

converges, uniformly on bounded subsets of C, to an entire function. Moreover there
is an even function q(x)e L([0, 1]) with 3 q(x) dx =0 such that A(A, q) = A, ()
and o, = u.(q), n=1. Conversely, if qe L? is even and [ qdx =0, then A(), q) =
A, (\) where pw= (w4, Ko, - . .) is the Dirichlet spectrum of q.

Proof: First suppose q(x) is even and fg q(x) dx =0. Then

tm A
A(A, q)—-2cosJ)\=O(e : )

and @, = (@) = m?m?+1%(m), so that the contour integral

IN()\):A— A(z,q)—2cos\/z< m?m? )dz

2mi J|zl=(1\l+1/2)2-1r2 zZ=A m=1 Mm (q) -z
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tends to 0 as N — . Direct application of the residue theorem yields

2
m?2m?

0=(A\)—2cosVvA) []
m=1 “‘m—)‘
— Y (A(u,)—2cos Vi) n'm IT-==

n=1 “’n—'\m#n“‘m““’n.

Multiplying both sides by [I.=1 (.. —A)/m?*7?), we obtain

AL @) =2cos VA + Y (M) —2 cos Ji) T[] 2m—2

n=1 m#n fm ™ Hm
‘Lm_)\

=2 cos VA + Z 2((=1)" —cos Vi, H —_—
n=1 m#n fm — M

because w,(q)=A,,-1(q) or A,,(q), n=1. Therefore, A(A, q)=A,(A).

Conversely, if o,, n=1, is a sequence satisfying the hypothesis of the lemma,
then, by Theorem 4.2 there is a q € E, such that o, = n,(q), n=1. It follows from
what we have already shown that

A,(A) =4, (M) =A(A, q).
The proof is finished. O

Unfortunately, the manifold S of all sequences o which satisfy the hypotheses
of Lemma 4.3 is not a moduli space for functions A(A), nor a fortiori spectra,
because many sequences in S yield the same function. In fact, A,«(A)=A(A, q),
q € E,, for any sequence N* = (A% = A,,(q) for A,,_1(q), n=1). It is for this reason
that we must consider the conformal mappings 8(A) and ¢,(A).

Proof of Theorem 4.1. We first treat the case of finite h. Let A=A, (h%),
where h™ is the truncation (3.3) of h. By Theorem 3.4 there is a constant
a. = c(h®) such that AS)=n?m?+¢, +1%(n). By Theorem 4.2 there is an even
function q, € L3[0, 1] with [} q. dx = ¢, such that

I‘Ln:u'n(qk)zl\gn> nzl

and

A, qi) = A, ).
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We now show

Afl = An(qk)

(So far all we know is that A%, is either A,,_;(qy) or A (qy).)
Let ¢ (A) = @,(A) be the (normalized) conformal map from the upper half
plane to 2(h™). Then cos ¢, (A) is entire and by (3.2)

1
oA =(A—¢)"?+ O(‘“I\—‘m>, |A| large,
so that

e\ImAI
2 cos @A) =2 cos /(A —c)+ O(W\)’

for large |A|. Consequently, just as in the proof of Lemma 4.3,

1

; k
2 ‘[Iz|=(N+1/2)2w2 zZ—A i=1A2—2

2 cos ¢ (z)—2 cos J(z —¢;) (H j2m? )dz

tends to 0 as N — «, and

: AS,.—
2cos g (z)=2cosvVz—c + Z 2[(=1) —cos VAL — ¢ ] H m

k k
i=1 m¢j)\2m_)\2j

since cos ¢ (A%;) = (—1). But applying Lemma 4.3 to g, — ¢, which has zero mean
and Dirichlet spectrum w;(q —c) = ;(q) — ¢ = A5;— ¢, we obtain

A(z,q)=A(z— ¢, G — i)

k
=2cosVz—c + Y, 2[(—1) —cos VA5~ ) T1 Aim"2

k k *
i=1 ma&j)\zm—)\zj

Therefore 2 cos ¢, (z) = A(z, q,.) and )\,5‘= Ai(qy) for all j, and from this it follows
that

e (M) =8(A, qu).

The general case now follows by approximation. By part (b) of Theorem 3.4,
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the sequences
= (i =wlq) =A%, j=1)
converge in the space S to
n=Ay(h),j=1).
Hence by Theorem 4.2, g, converges to an even function qe L3[0, 1] and

1i(q) =A,(h),j=1. But then since 5(A, q) converges to 8(A, q) uniformly on
compact subsets of the upper half plane we have

and the proof is finished. [

The theorem can also be proved without using the approximations q,. The
proof of Theorem 3.4 shows that

o (2)=z%*+c(h) +O(‘—;)

when he(I3)* and z €dQ(h), Re z>0. A reflection across the positive imaginary
axis and a Phragmén-Lindelof argument then gives

en(A) = (A —c(h))2+ o(ﬁ—‘) A—s,

and hence we have

eIImJ)\I
2cos<ph()t)=2cosJ(A—c(h))+O( N )

even when h is not finite. The proof now follows as in the finite case.

S. Proofs of Theorems 1, 2 and 3

Write RY={xeRY:x,>0,1=n=N} and regard R} both as the subspace
{h,=0, n>N; h,>0, n=N} of (13" and as the subspace {y,=0, n>N;
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Y. >0, n =N} of (I*)*. Then we have defined a mapping h — v, (h) from RY into
RY because, as we have seen, v, =0 if and only if h, =0. Theorems 1 and 2 are
consequences of

LEMMA 5.1. From RY to RY the map h — v,(h) is real analytic. It satisfies

0Yn Vi

—=>0, —<0, k 5.1
o, o, #n (5.1
OV + Z i9—-1-,1°—> Const. ne”™M+hJ)/2, (5.2)
ahn k;k¥*n ahn

where M =max{h,:n=1,2,.. .}.
The main use of the lemma is the observation that the Jacobian of v, (h) is
never zero, since by (5.1) and (5.2) the diagonal entry of each column dominates

the absolute sum of the rest of that column.

Proof. Real analyticity will be proved in the next section. For h eRY, z € Q2(h)
and 1=n <N, write

w,(2) = w,(h, 2) = w(2(h), T,, 2),

the harmonic measure of T,, at z, relative to the domain £2(h), so that by Lemma
3.1,

Yo (h) = lim 27x%w, (x + ix).

By the maximum principle, an increase in h,, will increase w,(z) and thus v, but it
will decrease w,(z) and v, k# n. Hence we have the weak form of (5.1),

a’Yn a‘Yk
=0, —=(, k # n.
oh,, oh,, #n

Fix n, let e, be the unit vector (e,); =8, ;, let t>0 and consider the positive
harmonic function

Vit 2) =2 Y (e (h + tew, 2)— wnlh, 2))

k=1
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ze(h+te,). We bound V,(h, z) from below. Let I, be the segment
L={nm+ilh,+s):0<s=<t}
and let Q%(b), b>0, be the slit strip

Q¥b)={|lx—nn|<m y>0}\{nm+iy:0<y=b}

with base
B,={(n—-Dr<x<(n+1mw}

On 002%(h, +1t) we have

1 N
Vit 0= (1- L ok 0@
== w(@3(h,), B 0, (0) 5.3)

where xg denotes the characteristic function of E. The estimate of
o(Q%h,), B,, {), €1, is in two cases.

Case 1. h,+t=m/2. In terms of the coordinate w = (z/7)—n, 2%*(h,)) contains
the slit half disc

D={w|<1,Imw>0\{iy:0<y<h,/=},

which has diameter B, and which contains 1. The mapping 7(w)=
{(m*w?+ h?)/(7*+ h2w?)}'? sends the slit half disc into the full half disc {|7|<1,
Im 7 >0} so that B, corresponds to the two segments

C.=7(B,)=[-1, —h/w]U[h,/m, 1]

and so that Z = {(s)=nm+i(h, +s)e I, falls on

172
w=io(s)= i'nw/s{ 2h, + s }

m*—hZ(h, +s)?
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Therefore

4
i) —— arctan o(s).
h,, T

o(Q%(h,), B,, £(s))=w(D, C,, io(s)) 2—72; arctan

) o))
= A=) +oll—) )
= Const (hn) O h

with a positive constant.

Case 2. h,+t=xn/2. From a comparison with the half strips {jwr <x<
G+ 0<y<o}, j=n—1, n, we have w(Q%(h,), B,, z)=e™ |sin x|, and hence
w(Q%(h,), B,, z)=const. e ™ on the two horizontal segments {m/4<|x —nm|<
3w/4, y = h, —1}. Repeating the argument of Case 1 with the slit half disc

{lz—(mm+i(h, - )|<my,y>h,—1\{nw+iy:y=<h,}
then yields

w(Q%(h,), B,, £(s))=Const. e "+s.
Together the two cases give us

w(Q23(h,), B,, {(s))= A(h,)Vs

with
Const./vh,, h,, small

Const. e ", h, large.

A(h,) = {
Now take z, =nmw+i(h,+1), 0<t<h,/2 and let
g(t) = w(nt(hn + t)a It\It/27 Zn)~

If h,=m/2, a comparision with the slit half disc {|z—nw|<w}\{nmr+iy:0<y<
h, +t}, gives

g(t) = Const. Vh,t.
If h,>mn/2, a compérison to the slit disc

{lz—(mm+ih)|<nm2\{nm+iy:h,—w2<y<h,+t},



Gaps and bands of one dimensional periodic Schrodinger operators 283

yields g(t)=Const. Jt. Therefore (5.3) gives us

1
Vi(h, zn)Z;  inf o(Q%h,), B, {)g(t)

= Const. e ™,

in both cases. Harnack’s inequality gives the same lower bound, with a somewhat
smaller constant, on {|z—z,|<3} and a final comparison with the strip

{lx—nw|<m, y>h,+1}
then yields
V(h, z) =Const. e ¥*h)/2 |x — nm| < /2, y>h,+1.

Finally, let W be the quarter plane {x >0, y>1+ M = 1+max h,}. Applying
Lemma 3.1 to W, we see that

lim 2mx?V,(h, x +i(x + M)) = Const. ne"™*h"2,

X —>»0C

and hence by the remark following the statement of Lemma 3.1

lim 27x?V,(h, x +ix) = Const. ne”™*"/?,

X —>»00

which proves (5.2).

The proof that the inequalities (5.1) are strict is a very similar argument, with
Vi(h, z) replaced by (1/t)(w,(h + te,, z) — w (h, 2)), and we omit the details.

Notice that the proof of (5.2) remains valid if we permit h; = 0, for some j# n,
and just delete the term dv,/0h,, which is zero anyway.

The proof of Lemma 5.1 can also be used to show that v, (h) is Lipschitz.
Since we will need that fact, as well as the upper bound for 9v,/dh,, in the next
section, we pause to prove it now. By (5.1) and (5.2)

Y v (h+te,) = i () =y (h + te,) — v, (),

k##n
t>0, so we only consider v, (h+te,)—v,(h). If h, =0, then by (3.6)

Yo (h+te,)—v,(h)<=8mnt, t>0.
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Assume h,, >0. Then, for t>0,

v, (h +te,) — vy, (h) = lim 2mx*{w, (h + te,, x + ix) — w, (h, x +ix)}.

The difference is the harmonic function on Q(h + te,) with boundary value
(1= w,(h, O)x, () = 0(27%(h,), 3Q25(h )\ T,,, Oxi, (D).

Comparing Q%(h,,) to the slit disc
{lz = (nm +ih,)|=Min (1, h)\{nm+y:0<y=<h,}

gives

sup w(Q27(h,), 825 (h )\ T,, {)

el

= Const. Max (1, h;V?)t"2.

Let §=Min (1, h,/2) and let ze Q(h+te,), |z—(nm+ih,)|=8. Then
o(Q(h+te,), I, z) <Const. (1/86)"?, t<8/2,

by a comparison with a slit half plane. For the same choice of z we also have
w, (h, z)=const., and hence by the maximum principle

w, (h+te,, x +ix)— w, (h, x +ix) = Const. Max (1, 1/h,)w, (h, x +ix) - t.
Therefore by (3.6), we have

Yn(h +te,) — va(h)
t

< Const. Max (n, nh,,, h2), (5.4)

and v, is Lipschitz.
Proof of Theorem 1. Let vy, be any sequence in (I*)* and set

1
Max ('yn, W)’ n=N

0 n> N.

o=
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By the lemma the Jacobian of the map

h—y(h)=(yi(h),. .., y(h))

from RY to RY is never zero. Hence, by the Inverse Function Theorem v is a
diffeomorphism in some neighborhood of every point of R so that v is an open
mapping from RY to RY. Also, the map is proper because

(const.)nh, <4v, =<4 max (nh,, h2). (5.5)

It follows that y maps onto RY, because a proper open map is onto. In
particular, there is h™ eRY such that

YR T) =

for all n=1. By (5.5) the sequence {h™, N=1} is bounded in the Hilbert space
I3. If helf is a weak limit point of the sequence, then for some subsequence,

A —h,,  (j—),
for all n, so that he(I)* and by Courant’s theorem

Yu(h) = li}n YR =Y,

for all n.

Proof of Theorem 2. Fix distinct h and h in (12)*. We show y(h) # y(h). Now
because v, =0 if and only if h, =0 and because (5.2) remains valid when we
delete these indices j for which h; =y; =0, we may assume h, # 0 for all n. Choose
N so large that K™ # R™ and let a eRN be the unit vector

(N _ 3, (N)
h h

a=m=(auaz,---,a~)

where | || is the euclidean norm (¥ h?)'? in RN. Set

N

YO = L

n=1 ‘an|

ay

Yn(h),

heRY.
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Then
. 1 d .
,Y(a)(h(N)) — ,Y(a)(h(N)) — L _‘_i_t_ (,Y(a)(h(N)+ t(h(N) - h(N))) dt

1 N N
= ||h™ - h(N)nj ( Z ng_‘ "‘"g—‘Z: (h™ + (RN — h(N)))) dt
0 k=1 kin=1

._>.“H(N)__h(N)"J Z ‘an\(a%, Z a'Yk)(h(N)+t(h(N) h ™) dt

0 n=1 kk#nh*n

= Const. e ™~ |[h™ — R™N)| Z nlo,|

n=1
=Const. e ™~ |[|[h®™ — R™)|,
by the lemma, where

my = Max {max (h,, h,), 1=n=<N}.

Thus the maps is one-to-one over R}, and the Cauchy-Schwarz inequality gives
the estimate

-—m,

nv(h‘Nb—y(EW’)MZConst.f@'—“nh‘”’—ﬁ‘“’n. (5.6)

LEMMA 5.2. If he(1)* and if N is large, then

R e P

Accepting Lemma 5.2 temporarily, we see that for constants C, and C,,
{i h)—va(h 2}1/2 e i h z}m
—_ ZC —_— —
P N R PR
12
2h2+n? 2} 5.7
«/N{ Y (w?hi+n?h) (5.7)

If N is large the second term is smaller than the first term and that proves
Theorem 2.
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Proof of Lemma 5.2. This resembles part of the proof of Theorem 3.4. Let
M>N. Then v,(h®)—+,(h™) corresponds via Lemma 3.1 to the harmonic
function on 2(h™”) having boundary values

M

.= Y @K™, T, Oxn (0.

k=N+1

In Section 3 we saw that for k >n,

h
sup o(Q2(h™), T,, {) < Const. —=
LeTi k—n

and that if N is so large that h, <k, k>N,
Yk (h(M)) = 8’7Tkhk.

Therefore

) (N) S khi
Y (h™) =y, (R™)<Const. ), —=

k-n+1 k—n’
and by Courant’s theorem,

™ v khi
Yo () = v (h™) =Const. Y, :

b
k=N+1 K—n

1=n=N.

Let YV ¢t2=1. Then

N (N) o < khk
Y t(ya(h)— v (h™)=<Const. . t, 2.
n=1

no1 k-n+1K—n
oo N tn
=Const. 9, kh? Y.
k=N+1 no1k—n
o N 1 1/2
= Const. kh? { }
k=§+1 « ngl (k— n)2
=) k2h%
= Const. ,
ZL N

and the lemma follows.
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Proof of Theorem 3. It is shown in [4] that the maps

q— n(q)=(p.(q),n=1)

and

q—v(q)=(v.(q),n=1)

from E; to S are real analytic. So, vy is real analytic.

Suppose y(q) = v(q) for some q, 4 € E,,. Then, by Theorem 2, q and 4 have the
same periodic spectrum since |y, (q)| =|v.(§)| n = 1. Using the additional informa-
tion sgn vy,(q)=sgnv,(4), n=1, we may conclude that w,(q)=pu,.(q), n=1,
because they must both lie at the same end of the nth gap. However, as noted in
Theorem 4.2, two even functions with the same Dirichlet spectrum are equal.
Therefore the map is one to one.

Let ye 1% By Theorems 1 and 2 there is a unique periodic spectrum A, =0,
A, n=1with A, —A,,_1=|v.|, n=1. For each n =1 choose w, = A,, or A,,_; and
V, = Agn_1 OT Ay, so that vy, = u, —v,. It is shown in [4] that there exists a unique
even function whose Dirichlet and Neumann spectrum are u,, n=1 and 0, v,,
n =1 respectively. Thus, the map v is onto 12

It remains to show that y~! is real analytic. Let y € 1% and let A,=0, A, be the
endpoints of the gaps for the conformal map corresponding to |y|=(|y,.|, n=1).
Set

’\2n {0 = O

. 5.8
)‘Zn——l Yn =0 ( )

mn(y) = {

We will show in Section 6 that w(y) is a real analytic map from I* to S. Let
e(w)(x) be the unique even function with Dirichlet spectrum w. It is shown in [4]
that e is a real analytic function u. Therefore, ey(vy)=e(u(y))(x)—[e(n(v))],
where [f]=J3 f dx, is a real analytic map from I? to E,. By construction, e, is the
inverse of y. The proof is finished. [

6. Analyticity

To complete the proof of Theorem 3 we must show the map w,(y) from [* to
S, defined by (5.8), is real analytic. This will be done first by mapping <y to the slit
lengths h,,. For h e [? defined |h|e (13)* by |h|, =]|h,| and define

Yo (h) =sgn (h,)v,(|h)).
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Because v, (|h|) =0 if and only if h, =0, the proofs of Theorem 1 and Theorem 2

show that h<> y(h) is a homeomorphism from I} onto I? (bicontinuity follows
from (5.6) and (5.7)). Also define

Aan (D), h, =0

Aon—i(h]), R, <O (6.1)

()=

Then because A,, =A,,_, if and only if h, =0, w, is continuous on [%. In this
section we prove: (See Note added in proof p. 312).

THEOREM 6.1. (a) The map h — y(h) and its inverse are real analytic.

(b) The map h — {u,.(h)—c(h)} where c(h) is defined by Theorem 3.4, is a real
anlytic map from 13 into S.

Together (a) and (b) complete the proof of Theorem 3; and they show that all
three of the maps we have defined between E,, I* and [ are bianalytic.

Recall that a map F from an open subset V of a complex Hilbert space K, to a
complex Hilbert space K, is analytic if at each x,€eV there is a ball
{x:llx — x| <e}= V on which F is bounded and if, whenever ye K, and xe
K4, |lx|l<e, the K,-inner product

z = (F(xo+2x), y) (6.2)

is analytic on {z € C :|z| < 1}. A map from one real Hilbert space H; to another H,
is real analytic if it can be extended to an analytic mapping from a neighborhood
V of H; in CQ H, into C® H,. The map is bianalytic if it is a bijection and if both
it and its inverse have such extensions. By the Inverse Function Theorem, a
bijective real analytic map from H, to H, is bianalytic if its Jacobian is invertible
at each point of H;.

We begin the proof by showing that the harmonic function which gives rise to
v,.(h) is analytic in any finite number of variables, using a Schwarz iteration. Fix n
and fix N>n, and write

w,(h, w) = 0(2(h), T, w),

weQ(h), heRY. Also fix numbers 0<8]<8;<8,<8,<1, to be determined
later, and set g, = 81/2k.

LEMMA 6.2. The function

RYsh — w,(h, w)
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extends to a function w,(t, w) analytic in
{teCV:|Im ¢ | <&}

and harmonic in

we Wy =0Q(Re t!)\ G A (1)
k=1

where |Re t|=(Re t|, |Re t,, . .., |Re ty]) eRY, and A, (t) is the disc in the w plane
|w— k| < §,/k, |IRe t,|<81/k
A(t)=
lw—(km+i|Re t|)| <83/k |Re |=81/k

The extension is odd as a function of t, and even as a function of t, k# n. It is
bounded in we Wx(t) and it vanishes on

N
aWN(t)\(TnU U aAk(t))
k=1
Proof. Fix heRY. We extend w, (-, w) one variable at a time, beginning with
h,. Let r, =8,/n and b, = 8,/n
Case 1. h,<b,. Let A, be the slit half disc
A ={z:|z|<r,, Imz>0}\{iy:0<y=t},

0=t<b,, and let P,({, z) |d{| be the element of harmonic measure for z € 4, on
the semicricle

I''={z|=r,, Imz>0}<sA,.

with respect to A,. Then

(z/r)*+(tr,)? }1’2

wi(z) = {1 +(z/r,)*(Yr,)?

is a conformal map from A, to the half disc D={A|<1, ImA >0} and
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consequently

dw,(2)

Pt(C’ Z)ZK(W,(Z), Wt(z)) dt

where K(o, A) is the Poisson kernel for A € D. Using the map ((1+A)/(1—A))?
from D to the upper half plane, we see that

1 2
(1+A>2_(1+0)2 1-0?’
1—-A 1-0

A€ D, o €dD, so that by inspection P,({, z), {€I';, is the sum of a power series
convergent in {teC:|t|<|z|}. By continuity

1
K(o,\)=—1Im
T

sup sup L Pz, 2) ldZ| =1

[tl<b./2 |z|=b,
if 8,/8,=b,/r, is small. Now set
W= (—nm+ Q(h)) N{jz|>b.}
and
I'n={z|=b,,Imz>0}coW,

and let Q(z, w) |dz| be the element of harmonic measure for we W on [, relative
to the domain W. Comparing {2(h) to a half plane gives

sup j Q(z, w)ldz| = C5./5,, 6.3)
T,

wel'y Jr,

with constant C independent of n and h. Therefore the operator

Afw=| j FOP.L 2) |dz] Q(z, w) |dz]

(1]

from L=(I";, |dz|) to the space of bounded harmonic functions on W has a power
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series expansion in {teC:|t|<b,/2} and

sup |Af(w)|=Const. (8,/8,) sup If(O (6.4)

wel,

The extended function A,f(w) is jointly continuous in t and w, and since A, is an
integral, s — A,(f,)(w) remains analytic in any complex parameter for which
s — f, is analytic. Hence by Hartog’s Theorem

Aff(w)=A, -+ Af(w)

is analytic in {teC:|t|<b,/2}.
Now let v(t, z) = w(4, [0, it], z) and vy(t, w) = fr, v(t, 2)Q(z, w) |dz|. Then for
0=t=<é6,/2n and we W,

u(t, w)=o(Q@h™-h.e, +te,), T,, w+nm)

= I u(t, 2)Q(z, w) |dz|
r.

o

= oolt, W)+ [ j u(t, Pz, ) dZ| Q(z, w) |dz],

I, 1

because u(t, z)—v(t, z) = [, u(t, )Pz, {) |d¢|, z € I'y. Therefore
u(t, W)= Y. Akug(t, w),
k=0

where the series converges uniformly {|t| <&,/2n} by (6.4). Because

t/r

v(t, z)= j " K(x, w,(2)) dx, (6.5)

—t/r,

v(t, z) is analytic in {t e C:|t| <|z|}. Hence vy(t, z), z € Iy and u(t, w), w e W, have
power series representations convergent in {teC:|t|<b,/2}. By (6.5),
supr, |v(t, z)|=C |t|/r,, so that by (6.3)

sup |vg(t, w)|=C t| b,/r7

lwl=r,
and thus

sup |u(t, w)| =|tl/r,, (6.6)

WEF]
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by (6.4) if 8,/8,=b,/r, is small. Notice that on W, w — u(t, w) vanishes except
an I'; and that by (6.5) and by the form of w,(z), v(t, z), and hence u(t, w), are
odd functions of t.

Case 2. h,=b,=8,/n. Let a,=81/n, s,=865/n and let A, be the slit disc
{lz—th, | <s \{iy:h,—s, <y<t}, h,—a,<t<h,+a,, and let P z)|d¢| be
harmonic measure for z € A, on the curve I'y ={|{ — ih,| = s, } © 44, relative to A..

Using
(hn + iz) (t - hn) Fi
+
Sn Sn
(t - hn>(h,, + iz)
1+
Sn Sh

for the conformal map from 4, to the half disc D, we see that P,(, z) is the sum of
a power series convergent in {teC:|t—h,|<|z —ih,|} and that

Wt(z):

sup sup J |P.(Z, 2)| |d¢|=1

lt-h,l<an/2 lz—ih,|=a, I,
if 61/85 is small. Set

W= (—nm+Q(h))N{z—ih,|>a,}
and
Iy={z:|z—ih,|=a,} =oW,

and let Q(z, w) |dz| be harmonic measure for we W on I',. Then

sup I Q(z, w) |dz| = Const. (a,/s,)'"?
Io

wel,

and

afw=| [ 1P 2)1dl 0 wldz),

I I

fe L=y, |dZ)), is analytic in {teC:|t— h,|<a,/2}, and harmonic in we W, and

sup |Af(w)|=Const. (a,/s,)"? sup |f ().

wel, r,
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Let
u(t, w)=w(@h+((—-h,e,), T,, w+nm)
and

uo(w) = o(W, [0, i(h, — a,)], w).

Then for |t—h,|<a,/2,

ut Wy =uow+ ||t O 2)1dt] Gz ]

I, Iy

=Y Akuy(w)
k=0

with convergence uniform in t. Thus u(t, w) extends to be analytic on {teC:|t—
h,|<a,/2} and harmonic on W. If a,/s, is small, then

sup |u(t, w)|=3/2

w—ih,|=s,
and u(t, w)=0, we aW\I,, so that if §; is small

sup |u(t, w)|=2u(h,, w). (6.7)

jw—ih,|=s,

uniformly in ¢

That extends w(2(h), T,, z) to {t,€C:|Imt,|<e, Ret,>—¢,} &,=81/2n,
because if two of the power series constructed have intersecting domains, they
coincide on the positive reals and hence everywhere. Since u(—t, w)=—u(t, w), ||
small, a reflection defines the function on {t, €C:|Imt,|<e,}.

Next let k#n and let u,(h,w), h;=0, j#n, [Imh,|<e,, be the analytic
continuation of w(h™, T,, w), made already. We repeat the above reasoning to
obtain analyticity in t = h,.

Case 3. h,<b,=8,/k. As in Case 1 we have a slit half disc 4, =
{lzl<n =8,/k, Imz>0\{(y:0<y=t}, 0<t<b, semicircles I'j={z|=r,
Im z >0}, and I'o={|z| = by, Im z>0}, a domain

W= ((n—k)m+ Wy) N{|z|> b},
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where

W - (—n'n')+ﬂ(h))ﬂ{|z‘>rn}, hn<bn
0 (—nm+Q(h))N{lz —ih,|>s,}, h,=b,

is contained in the domain of the first extension u;(h, w), and kernels P,({, z) for
A, and Q(z, w) for W. The operator

afw=| | 1P 2ld e wldz]
r

I, 1

again satisfies (6.4) and Af(w) analytic in {teC:|t| <b,/2}.

Now let ug(w) be the solution to the Dirichlet problem in W with boundary
value u,(z) = u;(h —he, z+kw) on dW\I', and u,=0 on I'y. When 0 <t =<b,, we
then have

u(t, wy=u,(h— h.e, +te, w+km)

= up(w)+ J u(t, w)Q(z, w) |dz|

Ty

because both sides have the same values on dW. Then since u(t, z) is harmonic on
A, and u(t, {)=0 on A\ T,

u(t, w)=ug(w)+ L L u(t, P, z) |dz| Q(z, W) |dz|

AJ;“O(W)’

(et

]

is analytic in {teC:|t|<by/2}. And since u,(z)=0 on 3Q2(h) N{Re w—k | <w},
we have by (6.3)

sup luo(z) — uy(2)| = C(8,/8,) sup lua(2)|.

Therefore (6.4) gives the estimate
Sup |U(t, W)‘ = (1 + C81/62) Sup ‘ul(z)‘, (6-8)
ry r,

uniformly in {teC:|t|<b/2}, if 8,/8,=b./r. is small. Note also that u(t, w)=



296 JOHN GARNETT AND EUGENE TRUBOWITZ

u,;(w) on {{w|>nr}NoW. In this case u(t, w) is even as a function of t, because
uo(w) is independent of t and because, by the formula for w,(z), P,({, z) is even in
t.

Case 4. h=b,. We take a, = 81/k, s, =83/k and proceed as in Case 2, but
with domain

W=((n—k)m+ Wo) N{|z —ih|>a},

where W, is as defined in Case 3, and with uy(w) the solution to the Dirichlet
problem on W with boundary value 0 on I'y={|z — il | = a, } and u,;(h, w+ k) on
dW\I,. Then

ult, w)=uglw) + j j u(t, DP.(L 2) |dZ] Q(z, w) dz|

FO 1

= 2 (Alug)(w)

is analytic in {teC:|t—ih|<a,/2} if §1/85=a./s. is small. We now have the
estimate

sup |lu(t, w)|=(1+c(81/82)") sup lus(2)], (6.9)

uniformly in t. In this case u(t, w)=u,(w) on {{w—ih,|>s NIW.

By reflection the even function u(t, w) has now been defined and is analytic in
{t, eC:|Im t,|<e, =81/2k}. By Hartog’s theorem w,(h, w)=w(2(h), T,, w) has
been extended to be analytic in {(, t,) € C*:|Im | <&, |Im t,| <&, } and harmonic
in we W. Now repeat the arguments of Case 3 and Case 4 for the remaining
variables h;,. The continuation is well-defined because it agrees with w,(h, w)
when h e RY and because an analytic function in {teC" :|Im | | <&, 1=k =N} is
determined by its values on RY. The construction shows that w,(t, w) is bounded
and harmonic in w € Wy (t) and that its boundary values vanish except on T,, and
the circles or half circles 34, (1) NoWy(t). O

By Lemma 6.2, and a normal families argument,

v.(h) = lim 27x’w, (h, x + ix)

has analytic extension from RY to {teC":|Imt|<g.}. We now make some
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estimates which will permit us to send N to o and simultaneously control

Y v (0.

LEMMA 6.3. Let M>0, and let 1=n=N. If heR" and if Y. k*h? < M?, then
there are &,(M)<&,(M), independent of n and N, and &1(h)<85(h)<§,(M),
depending on h but not on n and N, such that on {teCN :|t, — h.| <&, = 81(h)/2k},

l¥a (DI =vi(h + e,e.) + CIn®, (6.10)

Before giving its proof, we use Lemma 6.3 to show that the map

li3h —>{y.(h)}el?

is real analytic. Fix helf and let

V,={teC®I2: Y k2|t — h|><(8}(h))*/4}. (6.11)
Let
(N = ; =N
0 j>N.

By (6.10) and Theorem 3.3, {y,(t™): N=1} is bounded in C®I%.® Hence it has
a weak limit v, (t) e C®1?, still satisfying (6.10). Thus we have a locally bounded
map F from a neighborhood of I3 in its complexification to C® 1. When h is real,
F(h) ={y,(h)} since vy,(h™) converges in norm to v,(h) by Lemma 3.5 and by
reflection. To prove analyticity, let x,€ V, and let xeC®I? be such that
{xo+2zx:z€C,|z|<1}= V,, and let y={y,}eC®I> Then by weak convergence

(F(xo+2x), y)= lim 3 Juva((xo+ 22)) =lim fiu(2).

By Lemma 6.2, (6.10) and Theorem 3.3, {fx(2)} is a bounded sequence of analytic
functions on {|z| < 1}. Therefore (6.2) holds and the map is analytic.

Proof of Lemma 6.3. We shall use some facts from the proof of Lemma 6.2.
By symmetry we may assume he€RY. Set k, =n and write u,(t, w) for the first

* For n>N take v, (t™)=0.
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extension of w,(-, w). The j-th extension y;(t, w) is with respect to the variable b,
Thus {k,, . .., ky} is a reindexing of {1, . .., N} with k; = n. Then u; is harmonic
on

WO = WO(h) = O(h)\ L;ll A ()

and % =0 on I(WIN(T, UL, 84, (k). Moreover, u,;=u; on
I(WI*D))\a4, (k) and u;,, is constructed from u; via Case 3 or Case 4 of the
proof of Lemma 6.2.

Let a;= sup sup{lu,(t, w):wedW?PN(T,UdA,(h))} and
fta—hy,l<e,

a; =sup {|y;(t, w)|: w el (h), lt, — | <&, 1=1=j}.

Then
N :
un(t, 2) < a0 (h+ 6,6 2) + ), (W, 34,, 2).
j=2

If x=xy,(M), then
w(Wﬁ), aAkj, x+ lX) = C(!)(O(h + Skjekj), Aki ﬂﬁﬂ(h + Sk‘ek’_), X+ IX)

Therefore, by the Lipschitz estimates (5.4),

N

Y (8)| < @1 ¥n (h + £,6,) + C ), & Max (M2, k;) diam (4,,)

i=2

N
<a;v.(h +e.e,)+CM? Z a;, (6.12)

i=2

with C independent of M and n.
We have a;=2 by (6.6) and (6.7). Let n>0. Then if 8,/8, and 81/85 are
sufficiently small, (6.8), (6.9) and induction give

i-1
a;=<(1+7) !; o, (6.13)

4 It will not matter which ordering of k;, j=2 is chosen.
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where

o’= sup w(WP, oW N(T, Va4, (h), 2)

z€A(h)

and

o= sup o (W® 34, (h), 2), 2=l=j.

z€90A (h)

We estimate the o}".

Case 1. h, <8,/kj, h =<8,/k,. Let WO ={x>0, y>0N\A.(h) and use the map
z — z? as in the proof of Theorem 3.3. That gives

0 H0) C33
w’ = sx;lA) (WP, 94, Z)Sm-
z €34y i

Case 2. h,>8,/k, h,=8,/k;. Since ki, =M, the proof of Theorem 3.3 now
gives

(1)(1)5 C(M)62
INCETHE

because |z%—kiw?=C8,, z € A,.
Case 3. h > 8,/k;, h,=8,/k.. Again using the map z— z> we see that

- C(M)é
o’ Sszlp w(WO, 04y, z) 5(_,;;:7(—[2325 :
ki 1

Case 4. hy, > 8,/kj, by, = 8,/k;. Since k*hi=M?, there are at most M*/87 pairs
(k;, k;) for which this case applies. Thus there is a constant B(h, 8;) such that

B(h, 6
sup (U(W(l)(h), Tk[ UaAkl(h), Z) = 2( 21)2
lz —(kjmr +ihy)| (k,- - kl)

for all such pairs. But the above harmonic measure vanishes on Ty, so that we
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have

(-I)SB(h’ 61)(83)1/2
’ (k7—k?)?

Let 8 >0. Choosing small §,(M) and 8,(M) first, and then taking &1(h) and
65(h) very small, we obtain

: é
w;: =

INCET (e-19

in all cases.
By (6.13), (6.14) and induction,

1

Zj o= S(H")Z(kz &

1 1
+28%(1+1)?
WL Ry

+2 ) 8°(1+n)P y IE[——_l—

2 2
p=3 2=j1<jp<- - *<j,=N a=1 (kio. .”aw])

with j,= 1. But

1 A
L @

k#n n
k=1

and consequently

P ] AP
Lo aarTe

2=5j1<ir< - <jp a=1 n

Hence if A8<1/2, we have

=(C8§/n?

1oz
8

1

independent of N. With (6.12), that proves Lemma 6.3. [
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The Jacobian of y(h) is the linear operator J(h):13 — I> represented, with
respect to the basis {e,}, by the infinite matrix

A(h) ={9vi/ohn b n=1-

Because h — y(h) is real analytic, J(h) is bounded for each h e I3.

LEMMA 6.4. For each hel},J(h) is one-to-one and onto, and hence
invertible.

By the Inverse Function Theorem, Lemma 6.4 implies that h — y(h) is
bianalytic.

Proof. Fix hel? and let Ay(h) be the finite square matrix

{aYk/a;ln}lsk,nSN

The proof of Theorem 2, and a reflection if h; <0, show that Ax(h) is invertible
and that

c1(h)

lAn(h)xl|;2 =7

Haxlly, - (6.15)

where c,(h) does not depend on N.

Also, by (5.2) and (5.4) and by the fact that v, is an odd function of h,, we
have

cy(h) s% 0Yn/0h, = 1/cy(h) (6.16)

for some positive constant c,(h).

We now estimate the off diagonal entries dv,/dh,, k# n for Max (k, n) > N and
we choose N =N(h) so that |jhj|=1 if j=N. Because we will be bounding
|0yi/3h,,|, we assume h; =0. Let

I,={zeQ(h):|z—(nm+ih,)|=1},
and

(xk,nsé Sup w(n(h)’ Tks Z)-

zel,
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The argument used to prove (5.4) shows that
|0vi/dhy | = Cati ¥ 5 (h).
Using the map z — z?, we get the majorization

_ o)
k.n = (k2_ n2)2

where c;(h) depends only in sup; |jh;|, and hence

lavk/ahnl-——“(-'—‘—)z—)a ) 6.17)

if Max (k, n)> N, with c4(h) independent of N.
Let x €12 and write A(h)(x)

(2:53 (DNI?;VI(::)(P;)) (xN)

where xy =Y7 Xi€, Xk = Yn+1 %€, Bn has N rows, Cy has N columns, Dy is the
diagonal matrix {8v,/dh,},=~ and Ry ={3vi/0h,}nrink=n- Then

awei= 3 (% P V< §{ T (L2 b

k=1 ‘n= N+lahn k=1 “n=N-+1 ahn

where ||xl,, = (Z,,ZNH n2x2)Y2. So by (6.17) and Theorem 3.3,

Cs(h)

|Bn (h)x &dliz = === [|x Mliz.

And for the same reasons,

lnondt= T (£ 25) = 5 {3 (3 il

k=N+1 n=lahn k=N+1 n
so that

cs(h)

|G (B)xnlle ===~ N2 llenelliz,
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and

IR ()l =202 .

Write

JNZ(A]B(M D,?(h))’ SNZ(CNO(h) ﬁ:iﬁ;)

Then ||Sx|l=cs(h)/N?, while (6.15) and (6.16) show Jy is invertible and |Jx!||=
ce(h)N'?, where the norms are those of B(I%,1?) and B(I%, 1) respectively.
Hence we see that

A(h)=Iy+Sy= ]N(I'*'JEIISN)
in invertible, by taking N large. [

That finishes the proof of part (a) of Theorem 6.1. The proof of part (b) is
much like the arguments behind Lemma 6.2 and Lemma 6.3, and we only outline
it.

Let u,(h,w)=w(Q(h), 0=Re z=nm w) and v,(h, w)=u,(h, w)—w,(h, w).
Then for heRY, N<x

Aon(h) = lim 27x%u, (h, x + ix)

Azn_1(h) = lim 27x%v,(h, x + ix).

Take 0<61<8,<8,<8,, g =81/2k as before and let Wy(t) be the domain
defined in Lemma 6.2.

LEMMA 6.5. The functions u,(h, w) and v, (h, w) on RY extend to be analytic
in

{teCN:|Imt|<g, 1=k=N}N{Ret,>-¢,}

and harmonic in w € Wy(t). Moreover u,(t, w) and v,(t, w) are even functions of
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tv, k# n. As functions of t, they satisfy

u(t, wy=v,(—t,w),  |t|<e,, (6.18)
Consequently
O
v, (—t, w), Ret, <0

defines a function analytic on {tcC" :|Imt,|<eg, 1=k =N}
By (6.18) and (6.1), w,(h)=1lim,_. 27x*U,(h, x + ix) is real analytic on R".

Proof: Write F, ={(k—12)r=x=<(k+1/2)m, y=0} and

o (h, w)=w(2(h), F, w), 1=k=n-1.
ogo(h, w)=w(2((h),0<x<m/2, w)
a,(h, w)=w(Q2(h),(n—-12)m<x<nm, w).

Then w,=Yr_ o0k +Yr-1 0 (h,w) and v, =u, —w,(h, w), and it is enough to
extend each o, analytically.

If k# j the extension of o, with respect to h; proceeds as in Case 3 or Case 4
of the proof of Lemma 6.2, and if h, =b, = 8,/k, then so does the extension of oy
with respect to h,. If h, <b, and if k# n, we repeat Case 1 of that proof, except
that we start with the function v,(t, z)=w(4, RNJA, z).® Thus for k#n
o (h, w) has an extension analytic in {tcCN :|Imt,|<¢, 1=k =N}. Note that
o.(t,w) is an even function ¢, j# k, and that if we continue oy +w, through
h, =0, we start with the sum v_(t, )+ v(t, z). Instead of (6.5) we have

1

v,(t, 2)+v(t, 2z)= J K(x, w,(2)) dx,

-1

which, since t — w,(z) is even, is an even function of t. It follows that for k#n,
o (t, w)+w (t, w), and consequently u, (¢, w) and v, (t, w), are even functions of .

> The contribution to o, from F, \4, can be extended in h, using Case 3 or Case 4 of Lemma 6.2.
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To continue o, (h, w) through h, =0 we use Case 1, but we start with

—tr,

ve(t, z)= J’ K(x, w,(2)) dx. (6.19)

—~1

Then the proof of Lemma 6.2 yields analytic extensions of u, and v, to

{Re t, > —¢,}N{|Im t | < &, 1=k = N}. Since the other terms are even in t,, (6.18)
holds if and only if

0'n(tm W) +wn(tm W) = O-n("_tm W)-

But, expanding K(x, w,(z)) in powers of x and w,(z) and using (6.5) and (6.19),
we obtain v_(t, z)+v(t, z) = v.(—t, z), which implies (6.18).

The extension to N variables is exactly the same as in the proof of Lemma
6.2. O

Lemma 6.5 shows that u,(h) is a real analytic function of finitely many
variables. To complete the proof of Part (b) of Theorem 6.1, we must show

i (h) = p,(h)—c(h)—n’x?

is a real anlytic map from [7 into 1%. Recall from the proof of Theorem 3.4 that
c(h) =3¥i-1 ac(h), where

—»00 X —»00

2
a,(h)= I}Iim lim 211-x2J’ = arg { do™(x +ix, {);
T,

k

h e (13)*. With small changes, the proofs of Lemma 6.2 and Lemma 6.3 show that

whenever hel} and V, is defined by (6.11), a,(h) has a continuation a(t)
analytic on V, and

sup |a, (1) =Const. (|h. |+ & )(v¥(h + g ) + c/k?). (6.20)

tEV,,

Consequently the series defining c(h) converges uniformly on V,, and so c(h) is a

real analytic function in 13, and (i, (h) is real analytic in the first N variables. Now
define

u¥(h) = sup sup |, (™).
N>0teV,
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LEMMA 6.6. If he l%, then
Y |uXh)P<e.
n=1

By an argument like the one immediately after the statement of Lemma 6.3,
Lemma 6.6 implies that (&, is a real analytic map from [ into [?, which is
statement (b) of Theorem 6.1.

Proof of Lemma 6.6. By (6.10) and (6.1) we may assume h, =0, so that

fin(h) = A5, (h) — c(h) — n’x>.

By (3.8) and the proof of Lemma 6.3,

sup sup |Az, (1) = A5, (1™)] e 12,
N>0teV,

and by (6.20), supn-o |c(t™)—c(t™)| e I2.
In the proof of Theorem 3.4 we obtained the decomposition.

Aon(h™)—n2m2—c(h™)=B,+C,+D,,

given by (3.9), (3.10) and (3.11). Using (6.10) and the estimates on B, and C,
from Section 3, we get

sup sup |B,(t)+ C,(t)| e 12,

N>0teV,

and (6.20) includes such a bound for D,. That proves Lemma 6.6. [

7. A final remark

In this section we want to give a different approach to the analysis of the
mapping

{band spectra} — {gap lengths} < I%.

In fact it was the following line of reasoning that led us to conjecture Theorem 2.
« Let w,(@),n=1 and »,(q),n=1 be the Dirichlet and Neumann spectra
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respectively of q € L3[0, 1]. We have the real analytic map
qe€={qeL{0,1]|q(x)=q(1-x),0=x=<1, and A(q) =0}

(uln(q) —v,(q), n=1)el?

The numbers p,(q)—v,(q), n=1 are the signed gap lengths of q € E,, because u,
and v, lie at the ends of the nth gap when q is even. € < E, the even subspace of
L%[0; 1], is a real analytic hypersurface since (8/0g)Ao=fz never vanishes. The
aim is to try to use a covering argument to verify that the map is one-to-one.

Let €5 < € be the subspace of all qe€ € with w,(q) =v,(q) for all n> N. The
gradients'®

3
5 (n —v,) = g2(x, @) — hi(x,q), n>N,

are normal vectors to €5 at q. They are independent in the sense that no one of
them is in the closed linear span of all the others. It is easy to check this
independence by verifying the orthogonality relations

[ @2 rehy dxo

and
1
j (g%~ h2)(goha) dx =0
(4]

for all m# n. A simple Fredholm argument now shows that &, is an N dimen-
sional real analytic submanifold of &.
Consider the restricted map

qeéy
|
(un(q)—va(q), n=N)eR".

The fiber of this map over 0 R" consists of just one point, namely q = 0. This is a

®h,, is the normalized eigenfunction corresponding to Ve
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classical result of Borg [see 1]. Next we observe that the identity from [7]

q(t) = Ao+ Z Aon tAgn_1—2u,(1),

n=1

where w,(t) = u,(T,q) and Tq(x)=q(x+1t), gives us a bound on the supremum of
|q| in terms of the gaps lengths. Precisely, if g€ &,

SuPl lq()|= Z |A2n = Azn—il

O=t=< =

= ; Yn(Q).

It follows that the fibers are compact since they are closed and bounded by the
above estimate. Finally, the invertibility of the Jacobians proved in Section 5 can
be used here to show that the map is a local homeomorphism. Therefore the map
is globally one to one by a covering argument.

Appendix

Let E, be the subspace of all even functions in LZ[0, 1] with mean zero, i.e.,
f6qdx =0, and S the Hilbert manifold of all strictly increasing real sequences
o,, h=1, of the form

o, =n’r*+a4,
where Y, ., 62<cw. The manifold structure on S is induced from [ by the
correspondence between o and . The purpose of this Appendix is to sketch, for
the convenience of the reader, part of the proof of

THEOREM 4.2. The map

q— n(q) = (p1(q), 12(q), . ..)

is an analytic isomorphic between E, and S.

We are going to follow the presentation given in [4] which contains a full
proof. We will limit ourselves to verifying that the map is onto.
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Proof. The first step is to compute the Jacobian of our map at q =0. That is,
the linear transformation

Eo=(T(E))q-03 v = (doptn (v), n=1) € T(S)(n2rz nmry =12,

where dy(u,)(v) denotes the directional derivative of w, at q =0 in the direction
v; 1.e.

d
dottn (v)= (—i; l-’vn(ﬁv)le =0-

Let g.(x,q), n=1, be the normalized Dirichlet eigenfunction, with g,(0, q)>0,

corresponding to w,(q). Denoting (d/de)g,(x, £q)|.-o and (d/de)u,(eq)|.—o bY £,
and @, we have

_g::+ vg, = ‘:"ngn + p“ngn
Taking the inner product of both sides of the equation with g,(x, 0) we obtain

(—gns )+ (0, 82) = (8 &)+ o (&rs 80)-

But

(—8n 8) = (&n —80) = 1 (0)(&,, 81)
so that

fin = (v, g7)-
Therefore,

1

dow, (V) = J v(x)2 sin? nwx dx

0

1
= - J’ v(x) cos 2mwnx dx.
0

since g,(x, 0)=+/2sin nwx and [jv(x) dx =0.

It follows from elementary Fourier theory that the Jacobian has a bounded
inverse. Therefore, a neighborhood of 0 in E, is mapped onto a neighborhood of
(n*m%, n=1) in S by the Inverse Function Theorem.
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Of course, the preceding argument is formal in the sense that we have not
checked that w(q) is actually a differentiable function of q in the topologies on E,
and S. However, it can be shown that u is actually real analytic. Briefly, each
individual eigenvalue u,(q), n=1, is, by the Implicit Function Theorem, a real
analytic function of g, because

y2(1, n.(q), @) =0

and

d
:97\- YZ(la )\a Q)l)\=u.“(q) # 0'

Here y,(x, A, q) is the solution of —y”+ gy = Ay with initial data y(0)=0, y'(0)=1.
To go on and show that the map

qeE;,— u(q)eS

is real analytic one simply notices that the estimate
2_2 1
pn(q) = n*°m*—(cos 2mnx, q) + 0| —
n

holds uniformly on a complex neighborhood of every point in E,. It then follows
that the map is locally bounded and hence real analytic, by the uniform bounded-
ness principle.

We have seen that an open neighborhood of the sequence (n?w? n=1) is
covered by u. To see that all of S is covered we construct flows on E,,.

Let ge E,, and set

yl(la “’n)~ Y1(19 o + t)
YZ(17 Ko + t)

M (x, ¢, q)=y(x, p, +1)+ ya(x, w, +1),

n=1, for all t such that
l‘"n—l(q)sl“‘n(q)+t<‘-"n+l(q)3

(take wo(q) =—) and set?

wn (x’ t’ q) = [nm y2(" “‘n)]'

If, gl=fg'-f'g
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An important property of w, is its strict positivity, i.e. w,(x,t, q)>0. The
argument is by contradiction: suppose w, vanishes at a point (x, t) with (x, u,, +
)€ [0, 11x (w,., pns1)—the case of a root in [0, 1]x(u,_;, ) can be handled in the
same way.

Let A be the smallest point in (i, i, ;) such that for some %, w, (%, A)=0. It is
easy to see that w,(-, A) has a local minimum at %, i.e.,

(% X)=0.
But
(%, X) = (A = 1) ga (X) M, (X, X)

Thus, either g,(X) or m,.(X, A) vanish, since A # p,.. But the roots of g, and 7, (-, )
being all simple,

0= w, (% A) = g, (X)X, X) — gn(®)mn (%, A)
implies that both g, (%) and 7, (X, A) vanish. This further implies that
un(x, A) = c(x — %)*+0(|x — %)

with ¢ # 0 by Taylor’s rule. But this contradicts the fact that w/(-, A) has to change
sign at X.

Thus, w, has no roots in [0, 1} X (mp—1 Bps1)-

It is now possible to define the flow

2

d
V.(q)=q(x)—2 e log w,(x, t, q)

for w,_1(q) < pn.(q)+t<pn.1(q). By direct calculation it can be checked that
(D) ¥.(q)eE,

(2) m(P(@) = o (@) + Bpunt
Even though it is not too hard to verify the last statement we will not do so here it

would take us too long
We are ready to prove that uw maps E, onto S. For any sequence o € S, define
the modified sequence o™ by

N | mia? m=N
o=

O, m>N
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If N is chosen large enough o™ will be inside the neighborhood of (n*#?, n=1)
given to us above by the Inverse Function Theorem. Therefore,

Ul:zan(q)’ nzl,

For some qe€ E, near q=0. Now use the flows ¥}, (cj=N) to move j>’w? to o,
However, care must be taken to avoid crossing of eigenvalues. To be safe, first
shift 72, ..., N?#? to the far left, i.e., all below o, and then move them into the
desired positions beginning with ux.

Added in proof: The approach in Section 7 can be carried through to yield a
simpler proof of the analyticity in Section 6. See [4].
(Feb. 9, 1984)
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