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On the Nehari univalence criterion and quasicircles

F. W. Gehring* and Ch. Pommerenke

1. Jordan domains

We assume throughout the paper that the function / is meromorphic and

locally univalent in the unit disk D. The Schwarzian derivative

is analytic in D. It satisfies

for &lt;p e Môb, where Môb dénotes the group of Môbius transformations.
Nehari [13] has shown that if

(l-|z|2)2|Sf(z)|^2 for zeO, (13)

then / is univalent in D.
The bound 2 cannot be improved because

f(z) 1(1+ z)/(l-z)r, e&gt;0, (14)

satisfies (1.3) with 2 replaced by 2(1 + e2) but assumes some values infinitely often
in D.

The univalent function

/*(*) logYrf UeD) (1.5)
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satisfies (l-z2)2Sf*(z) 2 and maps D onto the parallel strip

T=|w:-^&lt;Imw&lt;||. (1.6)

Hence /(D) need not be a Jordan domain in C under the assumption (1.3).
Duren and Lehto [5] asked for conditions of the form

(l-|z|2)2|Sf(z)|=ê2M|z|) (ro&lt;|z|&lt;l)

that imply that /(D) is a Jordan domain. They proved that À(r) 1 -f e/log (1 — r)
with e&gt;0 is a possible choice, and this was improved by Becker [3] to À(r)

We shall show that the function /* defined in (1.5) is essentially the only
exception.

THEOREM 1. Let f be meromorphic in D and let

(l~\z\2)2\Sf(z)\^2 for zeD. (1.7)

Then f has a spherically continuous extension to Ô and /(D) is a Jordan domain or
the image of the parallel slit T under a Môbius transformation. Moreover if z0 e dû
and f(zQ) ^ °°, then

|/(rz0)-/(z0)HO(dist(/(rz0),a/(e))1/2) as r-&gt;l-0. (1.8)

The estimate (1.8) means geometrically that the Jordan curve d/(D) can at
most hâve first order cusps (like two tangent circles).

In the second (exceptional) case, we can write

/ &lt;P °/* ° $ with &lt;p, ifj € Môb, i^(O) O.

Thus (l-|z|2)2|Sf(z)| 2 on some hyperbolic géodésie, by (1.2) and (1.5). Hence
we conclude from Theorem 1:

COROLLARY 1. //

(l-|z|2)2|Sf(z)|&lt;2 for z

then /(O) is a Jordan domain.
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The following more précise resuit will be stated under the normalization

THEOREM 2. Let the assumptions of Theorem 1 be satisfied and let f&apos;(0) 0.
Then either

(1.9)^^
or f has a homeomorphic extension to D with

(z,z&apos;eÙ), (1.10)

\f(reie)-f(el0)\ ^M2[dist (f(reie), a/(D))]1/2 (0^ r &lt; 1, 0^ 0 &lt;2ir) (1.11)

/or some constants M1 and M2.

As the proof will show (see (3.4)), it is sufficient to assume instead of (1.7) that

2
(1.12)2Sf(re)]^

in order to prove (1.10). This condition was considered by Steinrnetz [16] who

proved (1.10) with an extra factor 1 -2(1-r2)/log [8/(1-r2)] in (1.12).

2. Quasidisks

The Jordan curve F is called a quasicircle with constant M if

min[diamFl9diamr2}^M\w1 — w2\ for w1? w2€F (2.1)

where Fx and F2 are the components of F\{wl5 w2}. A domain bounded by a

quasicircle will be called a quasidisk. If / is univalent in D, the /(D) is a quasidisk
if and only if / has a quasiconformal extension to C as Ahlfors [1] has shown.

THEOREM 3. If f is meromorphic in D and if

(l-\z\2)2\Sf(z)\^b&lt;2 for z€D, (2.2)
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then /(D) is a quasidisk with constant

This resuit was proved by Ahlfors and Weill [2] except for the above estimate
for the constant M. When b&lt;2 the function

1/2

satisfies (2.2) while (2.1) holds for T 3/(O) only if

2 / b\&quot;1/2S()
Thus the order of the bound for M in (2.3) is best possible as b —&gt; 2.

We give an extension of the Ahlfors-Weill theorem.

THEOREM 4. Let f be meromorphic in D and let

limsup(l-iz|2)2|Sf(z)|&lt;2. (2.4)
|z|—1

Then f has a spherically continuous extension to D and there exists p &lt;°° such thatf
assumes every value at most p times in B. If p 1 then /(D) is a quasidisk.

The number p can be arbitrarily large because every function that is

meromorphic and locally univalent in D satisfies (2.4).
The last assertion was conjectured by Becker [4]. He proved it under the

additional hypothesis

limsup(l-|z|2)
f&apos;(z)

f&apos;(z)

If / is not injective on dD, then /(D) need not be a quasidisk as the example
/(z) e1TZ shows.

COROLLARY 2. If the meromorphic function f satisfies (1.7) and (2.4), then
/(PO is a quasidisk.
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This follows at once from Theorems 1 and 4; the exceptional case in Theorem
1 cannot occur because of (2.4).

Our next resuit is a quantitative version of a theorem of Sullivan [17]. It is a

conséquence of a resuit of Mané, Sad, and Sullivan [11] for which we give an
invariant version in terms of the cross ratio

(zi&gt; z2, z3, z4) (2.5)
zx — z4 z2—z3

The Jordan curve F&lt;=C is a quasicircle if and only if [l,p. 295]

\(Zl,z2,z3,z4)\^K0 (2.6)

for ail ordered quadruples zu z2, z3, z4 on F and some constant Ko.

THEOREM 5. Let the domain GcCfe bounded by a quasicircle F satisfying
(2.6). Let the function

be injective in z (for fixed A) and meromorphic in A (for fixed z). Let g(z, 0) z. If
ÀeD, then g(G, A) is bounded by a quasicircle g(F, A) with

l(wi, w2, w3, w4)|^—exp J(7r4-logKo) Y^jj (2.7)

for ail ordered quadruples wt, w2, w3, w4 on g(F, A).

Let now G be a simply connected domain and let pG dénote the hyperbolic
(Poincaré) metric of G. Let the functions / be meromorphic and locally univalent
in G. Ahlfors [1] and Gehring [8] hâve proved that, if and only if G is a quasidisk,
there is a constant a &gt; 0 such that

\Sf(z)\ ^ apG(z)2(z s G) implies / univalent in G.

It follows from the argument given in [8] that also the image /(G) is a quasidisk if
a is replaced by a smaller number.

We show now that the last fact holds in a much more gênerai context.

THEOREM 6. Let G be bounded by a quasicircle F satisfying (2.6) and let p
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be any positive function. Suppose that

\Sf(z)\ ^ ap(z)2(z g G) implies f is univalent in G. (2.8)

If 0^b&lt;a and

\Sf(z)\^bp(z)2 (zeG\ (2.9)

then f(G) is bounded by a quasicircle /(F) with

\(wu w2, w3, w4)|^—exp f(Tr + logKo)^-] (2.10)lo L a — bj

for ail ordered quadruples wl9 w2, w3, w4 on g(F).
In we choose G=D, p(z) (l-jz|2)~1 and a =2, then (2.8) becomes the

Nehari criterion. Hence we obtain a new proof of the Ahlfors-Weill theorem. It
turns out however that, for b close to 2, the bound is substantially larger than the
one obtained in Theorem 3.

Remark. A similar argument can be used to prove the following analogue of
Theorem 6. Let the functions / be analytic and locally univalent in the simply
connected domain G&lt;=C. If there is a constant a&gt;0 such that

^ ap(z)(z € G) implies / univalent in G (2.11)f(z)

and if 0 ^ b &lt; a, then

f&quot;(z)

f&apos;(z)
^ bp(z)(z e G) implies /(G) is a quasidisk. (2.12)

Martio and Sarvas [12, Theorem 4.9] hâve shown that (2.11) holds for some a &gt;0

and p pG if G is a quasidisk. Astala and Gehring hâve just established the

converse of this resuit, namely that (2.11) holds for some a &gt;0 and p pG only if
G is a quasidisk.

3. Proof of Theorem 2

(a) Let O^0&lt;2tt. The function

ew^4 (teT) (3.1)
e +1
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maps the strip T conformally onto D and

g f°h (3.2)

is meromorphic and (at least) locally univalent in T. Compilation shows that

|gWI=è(l-r2)|f(reie)| for teR, h(t) re«. (3.3)

Since Sh(f) -4, it follows from (1.2) and (1.12) that

ReSg(t) -i+ iQ- r2)2 Re [e2ieSf(rel6)]^0 (3.4)

for teU and h(t) re10.

We define

/2 for teU; (3.5)

this function is zéro at a possible pôle of g. We see that

XAÏl^} (3.6)
g&apos; v \vJ Ldtg&apos;J

and therefore

v&quot;(t) p(t)v(t) for teU (3.7)

(except where g has a pôle) where

(3.8)

by (3.4). Hence v is non-negative and convex in R; this is also true if g has a pôle
at toeR in which case v(to) 0.

(b) We use now the hypothesis that /&quot;(0) 0. It follows from (3.2) that
g&quot;(0) 0. Hence (3.6) shows that t/(0) 0. Therefore v has its minimum at 0

where u(0)&gt;0, and we conclude that g(0^°° for teR.
Let first v&apos;(to) 0 for some to^09 say to&gt;0. Since v is convex, we conclude

that v&apos;(t) 0 for O^t^to and thus v&quot;(t) 0. Hence Re[g&quot;/g&apos;] 0 by (3.6) and

Im [g&apos;Vg&apos;] 0 by (3.4) and (3.8). We conclude that g&quot;(0 0 for 0 ^ t ^ t0 and thus
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for teT by the identity theorem. It therefore follows from (3.1) and (3.2) that /
has the form (1.9).

Suppose next that / is not of the form (1.9). Then the above argument shows

that i/(l)&gt;0 for each choice of the constant 6 in (3.1). It follows by continuity
that

for l^
for some constant a and therefore

v(t)^v(to) + a(t-to) for I^r0^r&lt;oo. (3.9)

In view of (3.5) this means that

i for 1SfcSr&lt;co- &lt;310)

(c) We obtain from (3.1), (3.3), and (3.10) that

|f(z)|^2a-2(l-|z|2r1(log^j-lV2 for |z|i^.\ l-|z| / e-4-1

Hence there are constants a and b such that

for

We apply now a standard method (see for instance [15]) to dérive (1.10) from
(3.11). It is sufficient to consider z, z&apos;eD because then (1.10) shows that / is

uniformly continuous in D and hence has a continuous extension to D. Let F be

the hyperbolic segment joining z and z&apos; in D. Then F has length I^tt |z-z&apos;|/2

and

,I-s)^|(l-|f|) (3.12)

for each £€F, where s is the length of the part of F between z and-£. We see
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from (3.11) and (3.12) that

-/(z&apos;)|^f \f&apos;(Ô\\d£\

because — (log—) is decreasing in (0,1).
x V xi

(d) We also obtain from (3.5) and (3.10) that

for l^to&lt;°o. Hence we see from (3.1), (3.2), and (3.3) that

1 Tl ~l1/2
\f(eie)-f(reie)\^-\~(l-r2)\f(rel6)\ (3.13)

a L2 J

and (1.11) follows from a conséquence of the Koebe distortion theorem
[14, p. 22]. This complètes the proof of Theorem 2 except for the statement that /
is injective on dD.

4. Proof of Theorem 1

There exists &lt;p e Môb such that (&lt;p °/)&quot;(0) 0. Hence it follows from Theorem 2

that &lt;p°f and therefore / has a spherically continuous extension to Ô.

Suppose now that / is not injective on dO. Since Sf is invariant under Môbius
transformations, we may assume that

f(z1) f(z2) °o, Zl,z2€dD, zxîz2. (4.1)

Let F be the hyperbolic géodésie joining z1 and z2 in D and let h map the strip T
conformally onto D such that h(U) r.
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We set g=f°h. Then g is analytic in T and we see as in part (a) of the proof
of Theorem 2 that

\g&apos;(tT1/2 (teU)

is convex and positive. Suppose that v&apos;(t0) / 0 for some t0 e R. If v&apos;(t0) a &gt; 0 then
we obtain (3.10) as in part (b) of the proof of Theorem 2. This implies g(+°°) ^°°
in contradiction to (4.1). Similarly v&apos;(tQ)&lt;0 leads to g(-°°) t^00 contradicting (4.1).
Thus 1/(0 0, g&quot;(t) O and geMôb. Hence /(D) is the image of T under the
Môbius transformation g.

5. Proofs of Theorems 3 and 4

We need the following characterization of quasidisks. We say that the domain
GcC has a c-accessible boundary if each zu z2edG can be joined by an open
arc A &lt;= G such that

min |z-z,|^cdist(z,dG) for zeA. (5.1)

It follows from (5.1) that c^l.

LEMMA 1. Let G be a Jordan domain in C. Suppose that there is a constant c
such that, for ail cpeMôb with &lt;p(G)c:C, the domains cp(G) hâve c-accessible
boundaries. Then dG is a quasi-circle with constant M^2c.

It easily follows from [9, Theorem III.2.3] that the converse holds except for
the constants.

Proof. We show first that each wu w2 e dG can be joined by an open arc B ci G
such that

Iw-Wil^Éc |wi- w2\ for wgB. (5.2)

We may assume that wl5 vv2 are finite and set

&lt;p(w) (w-w1)/(w-w2).

Then cp(G)ciC with 0, &lt;^edcp(G). By hypothesis there is an open arc A joining 0
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and oo in &lt;p(G) such that

|w|^cdist(w,a&lt;p(G))^c|w-l| for weA

because l£&lt;p(G). If weB &lt;p~1(A) we deduce that

Now fix wl9 w2edG and suppose that

min (diam Fl5 diam F2) &gt; 2c |wx - w2|

where Fx and F2 are the components of dG\{w1? w2}. Then we can choose z, € F,
with

^mn2|zJ-wk|&gt;c|w1-w2|. (5.3)

Let C be the open segment (w1? w2) and suppose first that Cf]dG 0.
If Cc= G then we join z1? z2 by an open arc AcG satisfying (5.1). Since C

séparâtes zx and z2 in G we can choose zsAf]C in which case

Thus, by (5.1),

min |2,~Wfcl^-lw! —w2| + |z —wfc|^c |wx-w2| (5.4)

where wk is the endpoint of C nearest to z.

If C&lt;=C\G let B be an open arc joining wu w2 in G for which (5.2) holds.
Then BUCisa Jordan curve which séparâtes zt and z2, and hence

minlz, —Wil^ max |w-Wi|^c Iwi-w2l
1 1,2* J weBUC1 &apos; &apos; L X

by (5.2). Together with (5.4) this shows that

min \Zj — wk|^ic \wt — w2\ (5.5)

whenever CHdG 0.
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Thus we see from (5.3) that CC\bGf 0. Let Cx and C2 dénote the compo-
nents of dG\{zu z2}. For / 1,2 we choose w^eCCiQ such that

|w[ - w2| - dist (CH Q, C H C2)

and let C (w&apos;u w2). Then Zx and z2 lie in différent components of dG\{w[, vv2}.

Since C&apos;DdG 0 it follows from (5.5) that

|wi~ w2|.
l,k l,2

It is easy to see that this is a contradiction to (5.3). Thus dG is a quasicircle with
constant M^2c.

Proo/ of Theorem 3. We show first that G is c-accessible. We verify (5.1)
where it is sufficient to consider zx=f{—\), z2 /(l) because of (1.2).

We employ the notation of Section 3 with 6 0. It follows from (2.2) and from
(3.4) through (3.8) that

v&quot;(t)^a2v(t) for -oo&lt;r&lt;œ (5.6)

where a2 (2-b)/S. For given f0 we may assume that i/(fo)^O; otherwise we
replace g(t) by g(-f).

We compare the differential inequality (5.6) with the initial value problem

u&quot;(t) a2u(t)(t ^ to)9 u(t0) v(t0), u&apos;(t0) 0

which is solved by

u(t) v(t0)cosha(t-t0).

From a well-known comparison theorem, or directly from

dv(t) v&apos;(t)u(t)-

dt u(t) u(t)2

u(t)-2 [ (v&quot;u - vu&quot;) ds + v&apos;(to)v(to) â 0

for tâf0, we deduce that u(0^u(0 for tâto- Thus, by (3.5),

f°° 1
f ë |g&apos;(to)l [cosh a(t - to)T2 dt - \g&apos;(to)\.dt
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If zoe(— 1, +1) is given, we choose t0 such that zo= h(t0) and obtain

min \z, -/(zo)| s- |g&apos;(to)l S- dist (/(z0), &amp;G)

1=1.2 a a

by (3.3) and the Koebe distortion theorem. Thus (5.1) holds with

(5.7)

Since the Schwarzian derivative is Môbius invariant, we therefore conclude that
the assumption of Lemma 1 is satisfled with (5.7) and G=/(D). Thus /(D) is a

quasidisk with constant

-1/2

Proof of Theorem 4. By (2.4) there exist ô&gt;0 and rl&lt;\ such that

(l-|z|2)2|Sf(z)|&lt;2-5ô for r!^|z|&lt;l. (5.8)

Let a&gt;0. The function

maps D conformally onto a wedge of vertex -ia and angle tt(1 - ô) that lies in the
right-hand halfplane and has [—ia, — foo] as one boundary Une. Hence

(5.10)

maps D conformally onto a domain H in D bounded by an arc of d D together with
a circle through eie and eie(a — i)/(a + i) that forms the angle tt(1 —S) with
âD. Hence we can choose a so large that H&lt;= {rx &lt;\z\ &lt; 1}. We see that, for some
fixed j3 &gt; 0 independent of 6,

(5.11)
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We obtain from (1.2), (5.10), and (5.9) that

2 (feD). (5.10)

Since ^(D) Hc:{r1&lt;|z|&lt;l}, it follows from (1.2), (5.8), and (5.12) that the
function Ji=/°i/&gt; satisfies

(2-58) + 4fi 2-8

for zeD. Hence we see from Theorem 3 that h maps D topologically onto a

closed quasidisk with constant M 8(2/ô)1/2.
Since the domains H are congruent for ail 6, it follows from (5.11) that some

annulus {r2&lt;\z\ &lt; 1} can be covered by finitely many domains H. Hence we obtain
from the last paragraph that / has a continuous extension to D and assumes every
value at most p times in D&gt; for some p&lt;oo.

Assume now that p l. Then F f(dO) is a Jordan curve. We may assume
that diam F^l because the Schwarzian is Môbius invariant. Then there exists
d&gt;0 such that

\f-\w)-f-1(wf)\^- if w,w&apos;er,|w-w&apos;|i^d.

Choose w1? w^eT and let Fu F2 dénote the components of r\{wl5 w2}.

Let first |w1-w2|^d/(2M). We show that

min (diam Fl9 diam F2) ^4M |wx - w2|. (5.13)

Otherwise we could find points ztGru z2eF2 with

|zi-w1| 2M|w1-vv2|^d (5.14)

and a domain H such that zl9 z2, wl5 w2edf(H). Then zu z2 would lie in différent

components of d/(H)\{w!, w2} and (5.14) would contradict the fact that d/(H) is a

quasicircle with constant M
If |w1~w2|^4/(2Ai) then

2M
diam Fx ^ 1 =—r&quot; Iwi ~

a
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Hence we see from (5.13) that f is a quasicircle with constant
max (2M/d, 4M).

6. Proofs of Theorems 5 and 6

Theorem 5 is an immédiate conséquence (with A G) oi the following lemma
which is a quantitative and Môbius-invariant version of the surprising &quot;A-lemma&quot;

of Mané, Sad and Sullivan [11].

LEMMA 2. Let A be any set in C and let the function g g(z, A) : A x D -» C
be injective in z (for fixed A) and meromorphic in A (for fixed z). Let g(z, 0) z.

Then g(z, A) has a spherically continuous extension to Â xD that is meromorphic in
AeO and satisfies

|(wl9 w2, w3, w4)| ^— exp (tt + log+ |(zl5 z2, z3, z4)|) -—r-r (6.1)
16 L 1 — IAIJ

for every quadruple zu z2, z3, z4 in Â where w, g(zp A).

Proof Fix distinct points z}eA (j&apos; 1, 2, 3,4). The function

MA) (g(zl9 A), g(z2, A), g(z3, A), g4(z, A)) (A eO) (6.2)

is meromorphic and omits the values 0, 1 and o° because the points g(zp A) are
distinct. Hence we obtain

(6.3)

from the précise form of Schottky&apos;s Theorem proved by Hempel [7] (see also [6]).
Since h(0) (zx, z2, z3, z4) this is our assertion (6.1) for the case z}eA. The
gênerai case will follow from the next paragraph by continuity.

Let now zoeÂ and let £n, £&apos;n be distinct points in A\{z2, z4} with £n —» z0,

fi-^zoasn-^oo. The meromorphic functions

KM (g(L, A), g(z2, A), g(C A), g(z4, A)) (A gO)

omit 0,1, oo and therefore form a normal séquence. Since hn(0) (£m z2, Cm z4) —&gt;

0 as n —&gt;oo5 it follows that hn(k) —&gt; 0 locally uniformly in A eO. Hence g(^, A) has
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a limit as £ —&gt; z0, £e A, and it follows that g has a continuous extension toÂxO
which is meromorphic in A.

Proof of Theorem 6. Choose a point zoeG with z0 ^ &lt;». Since the Schwarzian

is Môbius invariant we may assume that /(z0) z0, /&apos;(z0) 1, /&quot;Uo)= 0- Let A gD.
Smce G is simply connectée, it follows from the theory of linear differential
équations [10] that the initial value problem

S^z) Àl Sf(z), g(z0) z0, g&apos;(z0) 1, g&quot;(z0) 0
b

has a unique solution g g(z, À) which is meromorphic in A. Note that

/(z). (6.4)

We see from (2.9) that |Sg(z)|^ap(z)2 for z g G so that g(z, A) is univalent in G
by condition (2.8). Hence our assertion follows from (6.4) and Theorem 5.
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