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Formules intégrales pour certains invariants locaux
des espaces analytiques complexes

François Loeser

Introduction

Soit /:(CN+1,0)—»(C, 0) un germe de morphisme analytique à singularité
isolée en zéro. Un théorème classique du à Langevin [L] dit que l&apos;on a l&apos;égalité:

lim lim f cJTO (-irVN+1)+ ^(N)), (1)f

la double limite signifiant que pour e&gt;0 fixé l&apos;intégrale $Bmnrl(t) cnCï}) a une
limite quand t tend vers zéro qui a elle même une limite quand e tend vers zéro.
Ici fjt(N+1~0 désigne le nombre de Milnor d&apos;une section de /&quot;&quot;^(O) par un plan
général Dl de codimension i passant par zéro, c^Tf) la N ième forme de

Chern-Weil du fibre tangent relatif aux fibres lisses f~x(t) muni de la structure
hermitienne induite par celle de CN+1 et Be la boule de centre zéro et de rayon e.

On en déduit aussitôt l&apos;égalité

lim lim f cX-XW (-DN-VN+1-l) + ni(N-l)). (l)1f

II est tentant de demander pour ju,(N+1~l) + fx(N~l) une formule intégrale non plus
sur Benf~1(t)DDl mais sur Ben/~1(r). Le candidat naturel pour cela est la
formule:

lim lim f
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J-âàlog||z||2.
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204



Formules intégrales pour certains invariants locaux des espaces analytiques complexes 205

que Griffiths dans [Gr] déduit de la &quot;formule de Crofton III&quot; suivante:

Si Xc=CN+1 est une variété analytique complexe de dimension d ne passant pas

par zéro, alors

f cï^Ox) aûi1 f f cï-XOxnHO) dL

dL étant la mesure de Haar de masse totale 1 sur la grassmanienne G(N 4-1 —

i, N+l) des plans H1 de codimension i dans CN+1 passant par zéro, Cd-,(ftx) la

d-i ième forme de Chern-Weil associée à la structure hermitienne de X et

Cd .(ftxnH1) cette associée à la structure hermitienne de XHH1 induite par celle de

H1.

Malheureusement, la démonstration que donne Griffiths de cette formule de

Crofton III ne semble pas complète. Nous allons expliquer pourquoi déjà le fait
qu&apos;une telle formule est vraie asymptotiquement est non trivial: c&apos;est le théorème
de transversalité des variétés polaires relatives ([Tl], [H-M]); en effet on peut
voir le terme de gauche de la formule de Crofton comme concernant des sections

planes d&apos;espaces tangents relatifs et celui de droite comme concernant des espaces

tangents relatifs à des sections planes. Il nous faut en fait comparer ces espaces
seulement au voisinage de zéro: le théorème de transversalité des variétés polaires
relatives permet justement de comparer les limites d&apos;espaces tangents à des

sections de limites d&apos;espaces tangents.
On est donc conduit à distinguer deux types de résultats en géométrie

intégrale: d&apos;un côté ceux qui permettent de montrer des formules du type (1) et
dont les analogues en géométrie analytique sont des résultats de transversalité
dimensionnelle permettant de mettre en position générale un objet mobile et un
objet fixe en utilisant le théorème de Kleiman et la condition a) de Whitney, de
l&apos;autre ceux qui tels la formule de Crofton III ont pour analogue en géométrie
analytique un résultat de transversalité fin comme le théorème de transversalité
des variétés polaires relatives, qui permet de mettre en position générale deux

objets mobiles dépendant du même paramètre, et utilise la dépendance intégrale
([Tl]) ou la condition w) de Verdier ([H-M]).

En utilisant ce résultat de transversalité fin (qui il faut le remarquer semble

plus &quot;faible&quot; que Crofton III) et les méthodes de Le et Teissier dans [Lê-T] nous
démontrons (*)&apos; dans la première partie du présent travail, dans un cadre un peu
plus général puisque nous remplaçons CN+1 par un espace analytique réduit
équidimensionnel quelconque, le terme de droite de (*)&apos; devant alors être
interprété comme une multiplicité d&apos;intersection de /&quot;1(0)nDl et d&apos;une courbe
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polaire. Dans le cas i 0 une telle formule était déjà connue ([L-Lê], [Du]). Dans
[Ke] Kennedy a d&apos;autre part donné une démonstration directe de la formule pour
^(jv+i) que yon oJ3tjent en sommant les formules (*)\

Dans la seconde partie nous expliquons comment grâce au théorème des

résidus de King on peut obtenir l&apos;obstruction d&apos;Euler locale des sections planes
générales d&apos;un espace analytique comme limite d&apos;intégrale sur l&apos;intersection de cet

espace (et non de la section de cet espace) avec une sphère. On peut interpréter
cette formule comme un résultat concernant la structure de contact associée à une
singularité, dont l&apos;étude plus approfondie serait intéressante. En codimension zéro

on retrouve un résultat énoncé par Varchenko dans [V] pour les surfaces à

singularité isolée dans C3 et en codimension maximale le théorème de Lelong-
Thie-Draper sur la multiplicité d&apos;un ensemble analytique.

Dans la troisième partie nous illustrons le principe que les formules intégrales
ne faisant pas intervenir de sections planes sont plus faciles à obtenir que les

autres. En effectuant un calcul d&apos;obstruction à la Bott-Chern nous obtenons une
formule intégrale explicite pour l&apos;obstruction d&apos;Euler locale qui permet de

retrouver directement et de comparer le théorème de Langevin et la formule de
Varchenko généralisée ainsi que de retrouver la formule de Gonzalez-Verdier.

Je tiens à remercier vivement B. Teissier pour ses conseils précieux et ses

encouragements qui ont rendu possible ce travail.

1ère Partie

Soit (X, 0)c:(CN+1,0) un espace analytique réduit équidimensionnel de

dimension d défini au voisinage de zéro et muni d&apos;un morphisme analytique ouvert

/: (X, 0) -&gt; (C, 0). On note:
• X(t)° la partie lisse de la fibre X(r) Xnfl(0.
• X1 la section de X par un plan Dl de codimension i passant par zéro et au

demeurant assez général.
• F} une courbe polaire relative générale associée au morphisme

/|x. : (X1, 0) -&gt; (C, 0) (cf [Tl] ou voir plus loin)

Comme /&quot;1(0)nXl =Xl(0) est une intersection complète dans X1 on peut définir
la multiplicité d&apos;intersection de Xl(0) et F) en zéro dans X1 par la formule

I(X,o)(r},X&apos;(0))= £ (-DMon^^Torfx-o^^^)

il est facile de voir (ce qui sera fait plus loin) que dans le cas présent les Tor,
sont nuls pour / &gt; 0.
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On note d&apos;autre part:
• Be la boule fermée de centre zéro et de rayon e.

• Cd~\~i(Tf) la d-l-i ème forme de Chern Weil associée au fibre tangent
relatif Tf sur X(t)° muni de la structure hermitienne fournie par le plongement de

X dans CN+l.

• a) illir ddlog||z||2 l&apos;image réciproque sur CN+1\{0} de la forme de Kàhler
sur PN.

Le résultat principal de la première partie est:

THÉORÈME 1. Soit (X, 0)c(CN+1,0) un espace analytique réduit

équidimensionnel de dimension d défini au voisinage de zéro et muni d&apos;un

morphisme analytique ouvert f :(X, 0)^»(C,0). On a Végalité, pour 0&lt;i&lt;d-l:

ao&gt;1 (-l)d-1-I(x..0)(rf, Xl(0)).

Remarques, a) lorsque i 0 ce résultat est du à Langevin-Lê et Dubson
([L-Lê], [D]).

b) lorsque X CN+1 et / présente une singularité isolée en zéro on a

J(x.,0)(r}, Xl(0)) |m(N+1-l) + /ul(n-° d&apos;après Teissier ([T2]) où ^N+1&apos;l) est le nombre
de Milnor associé à X1. On retrouve donc le résultat de Griffiths ([Gr] 5.22) dont la
démonstration reposait jusqu&apos;à présent sur la &quot;formule de Crofton III&quot;. En
sommant ces égalités on obtient la formule que démontre Kennedy dans [Ke]:

e—&gt;0 t—*Q

I » w T \

Démonstration du théorème 1. On dispose du diagramme suivant:

XxG

-^ Nf(X) -2-&gt; G

X
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OÙ

• G G(d -1, N+1) est la grassmanienne des d -1 plans de CN+1

• Vf : Nf(X) —» X est la modification de Nash relative (cf. [Tl])
• e:E0(X)-&gt;X est l&apos;éclatement dans X de l&apos;idéal définissant {0}.

• e : E0Nf(X) -* Nf(X) est l&apos;éclatement dans Nf(X) de vj\0).
• Vf&apos;. E0Nf(X) —» E0(X) est donné par la propriété universelle de l&apos;éclatement.

On considère dans E0Nf(X):
• la transformée totale % de f~ *(()): si f~l(0) est défini par l&apos;idéal ST de Ox(o)

le sous-espace §)f est défini par 3~€EoNfOC) dans E0Nf(X).
• La famille ©,)ieI des composantes irréductibles de ?)f dont la projection sur

X est réduite au point zéro et le cycle Df £ieI m,?),» mt étant la multiplicité de ?)f

au point générique de

On remarquera que l&apos;espace réduit sous jacent à Df est inclus dans {0}xPN x
G. Sur {0}x(PN x G on considère les fibres 1} et g images réciproques respectives
des fibres universels sur G et sur PN.

Si [Df]eH*({0}xPN x G) désigne la classe fondamentale du cycle Df les classes

de Chern de 7} et £ agissent par cap produit sur [Df]. On peut donc considérer
l&apos;entier deg^-^O» • c^)1 n[Df]).

Nous sommes maintenant en mesure d&apos;énoncer la proposition suivante qui est
l&apos;analogue relatif d&apos;un théorème de Le et Teissier ([Lê-T], Th 5.1.1.)

PROPOSITION. On a Végalité

deg (q-l.CI}) • dfé)1 n[DfD (-l)d-1I(XM»(rk X&apos;(0))

Plan de la démonstration. On voit tout d&apos;abord le terme de gauche comme une

multiplicité d&apos;intersection de cycles dans {0}xPNxG que l&apos;on calcule par une
série de réductions dans E0NfX puis dans la transformée stricte dans E0NfX
d&apos;une section générique de X. Le théorème de transversalité des variétés polaires
relatives permet alors d&apos;effectuer ce calcul dans la modification de Nash d&apos;une

telle section.
Démonstration. On considère un drapeau 3) : DN+l c • • • c Do de sous espaces

vectoriels, avec Dt de codimension i dans CN+1, et on lui associe le cycle de

Schubert de codimension k dans G:

ck(Q}) {E € G | dim E n Dd_k &gt; k}.

Le théorème de Kleiman (cf. [Kl]) que nous utiliserons plusieurs fois nous permet
étant donnés deux sous espaces algébriques E \JaeAE&lt;x et Z \J&amp;eBZ&amp; de
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PN x G munis de stratifications de Whitney (£«)«eA et (Z3)3eB d&apos;affirmer qu&apos;il

existe un ouvert de Zariski dense U de GL(N+1, C) x GL(N+1, C) tel que pour
toute strate JEa de E et tout 7 de U, le translaté yEœ soit transverse à toutes les

strates de Z.
Cet argument prouve en particulier que si 3) est un drapeau assez général et

H1 un plan de codimension i dans PN assez général également, alors {0} x H1 x
Cd-i-^S)) coupe Df proprement dans {0}xPN x G.

L&apos;interprétation classique des classes de Chern des variétés projectives lisses

comme classes d&apos;obstruction nous permet alors d&apos;écrire:

deg (c-i-.O}) • Cl(£)&apos; H [Df ]) - (-D^WnxgKO} x H1 x cd.H(9), Df)

où I{0}xpnxg( 1 désigne la multiplicité d&apos;intersection de cycles de dimensions

complémentaires se coupant proprement dans {0} x PN x G.
L&apos;associâtivité de l&apos;intersection sur les espaces lisses nous permet de calculer

cette intersection dans CN+1xPNxG, i.e. d&apos;écrire:

deg (cd^t(Tf) - c^Y H [Df]) (-l)d-%N+,xPNXG(CN+1 x H1 x q^O), Df)

Rappelons maintenant le lemme suivant qui résulte de l&apos;ouverture de la
transversalité et des conditions de Whitney:

LEMME 1 ([L-T] 2.2.1.1). Soit X=U«6AXa une stratification d&apos;un espace

analytique complexe qui satisfait les conditions de Whitney. Soient x e X et Xa(x) la
strate contenant x. Pour tout plongement local en x de X dans un espace euclidien
CD et pour tout sous espace non singulier Z défini dans un voisinage de X dans CD

et transverse à X^ en X, il existe un voisinage U de x dans CD tel que, pour tout

y gII, Z soir transverse en y à toute strate X3 telle que X3 ^Xa(x).

Supposons, ce qui est loisible, que E0Nf(X) soit muni d&apos;une stratification de

Whitney telle que Df et %)f soient réunion de strates. Supposons de même que
H1 XQ-i-.CS) soit muni d&apos;une stratification de Whitney. D&apos;après le théorème
de Kleiman tel qu&apos;il a été rappelé, pour 3) et H1 assez généraux, les espaces
stratifiés {0}xHlxcd_H(3) et Df sont transverses dans {0}xP&gt;NxG.

D&apos;après le lemme précédent pour un tel choix de H1 et de S, %)f est transverse
à C^xffxcd.nia) sur un voisinage de {0}xPNxG dans CN+1xPNx&amp;

Pour des raisons de dimension, sur un tel voisinage $)f ne peut rencontrer
CN+1 x H1 x Q-x-^SO qu&apos;en un nombre fini de points. Il y a donc un voisinage de

{0}xPN x G sur lequel % ne rencontre CN+1 x H1 x cd_1_l(S) qu&apos;en des points de

Df. Quitte à choisir un représentant plus petit de X (dépendant de H et de S) on
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peut donc supposer que ?)f ne rencontre CN+lxHl xq,^,^) qu&apos;en des points
de Df. C&apos;est ce qu&apos;on suppose dans la suite de ce travail.

Nous allons maintenant montrer que pour 3) et H1 assez généraux

/ I€N+ixpNxG(CN+1xHlxcd_1_l(^), Df) est égal à la somme des multiplicités
de l&apos;idéal ?f dans les anneaux locaux ©EoNf(x)ncN+1xHixcd x-m),v pour p décrivant
DfnCN+1xHlxcd_1_l(S) que l&apos;on note mult (ST0EoNf(x)ncN+1 xH,XCd xSm). Pour
cela on remarque que 1 Icn+ixPnxG(Cn+1xH1 xcd_H(9), $)f) et que d&apos;après le
théorème de Kleiman pour H1 et 2) assez généraux les hypothèses du lemme
suivant sont vérifiées avec Y CN+1xPNxG, Z CN+1xH&apos;

LEMME 2 (d&apos;après [L-T] 5.1.3.7 et [H-M-S] 4.4.3.). Soit Y une variété

analytique lisse, Z et X deux sous-espaces analytiques réduits de Y et D^X un
diviseur défini par Vidéal ST. Soit n:X—&gt;X la normalisation de X, et A un fermé
analytique de D d&apos;intérieur vide tel que:

1) D\A est lisse

2) les points de n~1(D\A) sont des points lisses de n~a(D\A) et de X
3) la restriction de n à n&quot;1(D\A)-&gt;D\A est étale

(un tel fermé existe nécessairement). Si Z ne rencontre D qu&apos;en des points de D\A
et ceci transversalement dans Y, alors IY(D, Z) est égal à la somme des multiplicités
de Vidéal ?f dans les anneaux locaux Cxnzp pour P décrivant ZHD.

Démonstration. Soit (D,)ieI les composantes irréductibles de D et mx la
multiplicité de D au point générique de Dx. On a IY(D, Z) £ieI nlml si n, est le
nombre de points d&apos;intersection de Z avec Dt. Mais Xier n,mt est aussi égal au
nombre de points d&apos;intersection de n~l(Xf\Z) avec n~l(D) car le degré du

morphisme étale n~1(Dl\A)-*Dl\A est nI.

Vérifions que n~1(XnZ) est lisse au voisinage de ses points d&apos;intersection

avec n~l(D): en effet au voisinage d&apos;un point P d&apos;intersection de Z et D on peut
trouver un système régulier de paramètres yu yp de &lt;9DjP tel que Z soit défini

par yi • • • yp 0 au voisinage de ce point; comme au voisinage de

P, n~x(D) —» D est étale les y[ yt ° n forment un système régulier de paramètres
dans les Cn-i(o) Pj avec n(Pj) P. Comme au voisinage de ces points X est lisse, les

y[ font partie d&apos;un système régulier de paramètres de €xypt et donc n~1(XC\Z) qui
est défini par yi * • * yp 0 au voisinage de Pi est lisse au voisinage de ces

points.

La multiplicité de ST en chacun des On-i(Xnz),p, est donc un, et leur somme est

égale à I. D&apos;après le théorème de projection des multiplicités de Zariski-Samuel
[Z-S Th. 24 ch. 8] appliqué au morphisme fini: n~l(XnZ)-^Xf)Z on a donc

que I est égal à la somme des multiplicités de 3&quot; dans les anneaux locaux
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pour P décrivant ZHD. D&apos;autre part E0Nf(X) DCN+rx HlxG est par définition
la transformée totale par v&apos;f de £0XnCN+1xHl. Si on appelle Hn le plan passant

par zéro dans CN+1 correspondant au plan projectif H\ (EQXC\£,N+l&apos;xHl)Ted est

par définition la transformée stricte de X Pi H&apos;1 par l&apos;éclatement e.

LEMME 3. Si H1 est assez général (E^Nf(X)HCN+1 xH&apos;xG)red est la
transformée stricte de (E0XnCN+1 xH1) par v\.

Démonstration, C&apos;est mutatis mutandis celle du Lemme 5.1.3.2. de [Lê-T].
Dans le cas où la conclusion du lemme est vérifiée, si X) est le transformé

strict de (XnH/l)red par v&apos;f9 (£0Nf(X)nCN+1xff x G)red est le transformé strict

de X) par ë car vf ° ë e ° v&apos;f.

On pose xlf= (E0Nf(X) DCN+1 x H1 x G)red; on sait donc que pour H1 général

le lieu exceptionnel de ë \ x):x)~* Xlf est de codimension au moins un dans x)-
D&apos;après le théorème de Kleiman et le lemme 1, quitte à choisir un

représentant de X plus petit, pour 3) assez général E0Nf(X)nCN+1xH&apos;x

Cd-i-X®) es* une courbe dans x) Qui coupe transversalement en des points lisses
le lieu exceptionnel de ë \ x), c&apos;est-à-dire en au plus un nombre fini de points.

Le morphisme ë \ xrfnc~1(7f&quot;1(cd_l_l(S))):

est donc fini si H1 et S sont assez généraux.
Dans ce cas d&apos;après ([Z-S] Th. 24 Ch. 8), on a, si &amp; désigne l&apos;idéal définissant

f~\0) dans X:

mult (9~Cxtpé Hyf ifc^a»)) mult

Le terme de gauche étant égal par définition à ce qui était noté

Mais on a le théorème de transversalité des variétés polaires relatives de B.
Teissier ([Tl] Th. 5.1.B et Prop. 5.3.1) qui permet de comparer les limites
d&apos;espaces tangents à X en des points de X1 aux limites d&apos;espaces tangents à X1 :

THÉORÈME. Il existe un ouvert de Zariski dense de la grassmannienne des

plans de codimension i passant par Vorigine dans CN+1 tel que, si H&apos;1 appartient à
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cet ouvert:
a) si on pose cd_1(H&apos;1) {EeG(d-l,N+ l^dimEnH&apos;^d-i} on a

Yf~1(cd_,(H&apos;1))nX1f 0; on a alors un morphisme défini sur la partie de X1 où f est
lisse x—»(x,T{ itf^nH&apos;1) à valeurs dans X&apos;xCG1 étant la grassmannienne des

d-l-i plans de H&apos;1 ^b) Ce morphisme s&apos;étend en un morphisme de Xi sur X1xG1 dont Vimage dans
X1 x G1 est le modifié de Nash relatif associé à la restriction de f à X1 noté Nf(Xl).

c) Le morphisme XJ —&gt; Nf(X*) alors défini est un morphisme fini biméromorphe.

On en déduit, toujours d&apos;après Zariski-Samuel que:

mult (3&quot;0x;n7f Hcd t
,&lt;&lt;&amp;)) mult (3~G(y}) »(Cd t

t(25[l])))

pour H&apos;1 assez général, 7} étant le morphisme de Gauss: Nf(Xl) —&gt; Gt et 3)[i] un
drapeau de Hn qui se prolonge en 3).

Il nous reste à montrer que

pour 3) général, mais pour cela il suffit de montrer que pour 3) général:

Comme pour 3) général 771(cd_1(S)) est une courbe et la restriction de vf à

yjx(cd-i(3))) est un isomorphisme local sur un ouvert de Zariski dense de

yf1(cd-i(3))), d&apos;après le théorème de Kleiman et le lemme 1, quitte à choisir un
représentant de X plus petit, la restriction de vf à yJ1(cd^1(3))) est un morphisme
fini sur son image par vf qui est par définition la courbe polaire Ff (3)). On a donc,
toujours d&apos;après Zariski-Samuel, l&apos;égalité:

mult (&amp;Oyf -(Cd l(ao)) mult (9^»)) P°ur ® général.

Il nous reste à montrer l&apos;égalité:

mult (POr^) I(X,o)(rf(3)), X(0)).

Comme f}(25) est une courbe réduite elle est de Cohen Macaulay. On a donc
mult (^©r^si)) longor (ma(€rf(m/fÛrfCm). D&apos;autre part la suite exacte;
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donne sur Ff(25) une suite exacte

0 -*

puisque / n&apos;est pas un diviseur de zéro dans Qr+&amp;y On a donc I(x,o)(-O(®)&gt;
d&apos;où l&apos;égalité puisque chacune de ces longueurs est égale à

Sur CN+1 xPN x G on dispose de prolongements naturels T&apos;f et £&apos; de 7} et £

qui sont les images réciproques respectives sur CN+1 xPN x G des fibres universels
sur G et PN ; ils sont munis d&apos;une structure hermitienne naturelle donnée par le
plongement de X dans CN+1.

On dispose alors sur CN+lxPNxG de la forme différentielle &lt;p de type
(d-1, d — ï) produit de formes de Chern-Weil:

Posant 3£e t (vf ° ëY^(BB nX(t)) on sait d&apos;après un théorème de Barlet ([B]) que
linv^o Jït

t
&lt;p =Lef()&lt;P&gt; ^ théorème de convergence dominée montrant alors que

lim (p \

e) &apos;(())

et puisque [?)f C\(vf ° e) l(0)]\Df est de dimension strictement inférieure à celle
de Df, nous avons montré le

LEMME 4.

lim lim I
&lt;p

I cp

On a d&apos;autre part le lemme suivant:

LEMME 5. Si 0&lt;|t|«e«l alors J^ &lt;p (-l)1 JBenx(t)oC^_1_1(Tf)Ao)1,

X(t)° désignant la partie lisse de X(t), Tf le fibre tangent relatif défini sur X(t)°
et ex) i/2ir aâ log ||z||2.

Démonstration. Si 0&lt;|r|«e« 1 la restriction de vf ° ë à 3£et est un isomor-
phisme sur Be H X(t)Q en dehors d&apos;un fermé de codimension réelle au moins deux.
Le lemme résulte alors de ce que les structures hermitiennes choisies sont

compatibles avec l&apos;image réciproque et de ce que le diagramme suivant est
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commutatif:

ainsi que des égalités: -tt^({}) c?(£) et TrfCO) &lt;o, O étant la forme de Kâhler
sur PN

LEMME 6. On a Végalité JDf &lt;p - deg (c^^OQ • dfé)1 H [Df])

Démonstration. Sur une variété projective lisse telle que {0}xPNxG les

classes duales aux classes de Chern par la dualité de Poincaré sont représentées
dans la cohomologie de De Rham par les formes de Chern-Weil ([G-H] p. 413)
et à l&apos;intersection des cycles dans l&apos;homologie correspond le cup produit dans la

cohomologie de De Rham ([G-H] p. 59).

La conjonction des trois lemmes et de la proposition prouve le Théorème 1.

Remarque. Soit a1^a2^&apos; • -^a{ une suite décroissante d&apos;entiers naturels
avec Ei^j^i a, d -1 - i. Pour un drapeau 2&gt; de G on définit le cycle de Schubert:

cVa* -ai(®)= &amp; e G/dim E HDd_!_J+aj &gt;/ VI &lt;/ &lt; l}.

A la suite au ,at on associe la suite duale a%,..., a* qui est par définition la
plus petite suite d&apos;entiers naturels pour l&apos;ordre lexicographique telle que a^ &gt; / pour
tout 1&lt;/&lt;J.

Pour 3) général, VfiyJ1^^ ,0,(20)) définit un sous espace de X vide ou de
codimension pure d-l-i noté Sau ,a,(®) et appelé variété polaire relative de

symbole al9..., ax.

La démonstration que nous avons donnée dans le cas où ai - • &apos;

ax \,
l d — l-i, peut s&apos;adapter sans changement, comme le lecteur le vérifiera, pour
donner:

THÉORÈME V. On a:

lim lim f
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où C*(Tf) est donnée par la formule de Giambelli:

X1 est une section de X par un plan général de codimension i passant par
Vorigine.

-Sa,, ,a, est une courbe polaire relative générale de symbole a1?..., ^ associée au
morphisme flx^X1—&gt;C.

2ème Partie

Dans cette partie nous démontrons un résultat absolu qui généralise la formule
de Lelong-Thie-Draper ([Th], [Dr]) ainsi que celle de Varchenko ([V]).

THÉORÈME 2. Soit (X, 0) un espace analytique réduit équidimensionnel de

dimension d plongé dans (CN, 0). On a la formule suivante pour 0&lt;k&lt;d-l:

J_f (dz ¦ z)

où:

• CN est muni de la structure hermitienne standard, le produit hermitien étant
noté et Se={z g CN/||z|he}.

• Euo(XnDk) désigne l&apos;obstruction d&apos;Euler locale en zéro de XC\Dk où Dk
est un plan passant par zéro générique de codimension k (voir [MP], [Lê-T]).

• 0 est le sous-fibré de rang d -1 du fibre tangent à la partie lisse X° de X
dont la fibre en chaque point est composée de l&apos;unique (d — 1) plan complexe
tangent à X et à la sphère centrée en zéro passant par ce point.

• Ca-i-k(@) désigne la d -1 - fc ème forme de Chern-Weil associée à la structure

hermitienne sur © donnée par le plongement de X dans CN.

• o&gt; H2tt dâlog ||z||2 est l&apos;image réciproque sur C^{0} de la forme de Kâhler
sur PN-\

Corollaires

1) Dans le cas où N 3, d 2 et X a une singularité isolée en zéro, S est un
fibre en droites et 2iT/i cx(@) est égal à la courbure de ©. On retrouve donc le
résultat énoncé par Varchenko dans [V] car dans ce cas Euo(X) l-fx(2), jul(2)

étant le nombre de Milnor d&apos;une section hyperplane générique de X (d&apos;après la
Proposition 6.2.2 de [Lê-T], ou [Pi], [Kato], [Du]).
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2) Dans le cas où fc d-l, on a Euo(XnDd~l) multo(X) d&apos;après [Lê-T]
5.1.2, et d&apos;autre part

-î-7 f ^^ACO-1 (-^Y f
2-n-i Jxnse Ni \2-rre / JxnSe

&lt;Z

(dz&apos;dz)d

or (dz - dz)d/(-2i)dd\ coincide avec la forme volume sur XDBe et irde2dld\
vol (Be D H) où H est un plan de dimension d passant par zéro On retrouve donc
la formule de Lelong-Thie-Draper:

La démonstration est similaire à celle du théorème 1 mais moins fatigante car
on dispose du Théorème 5.1.1 de [Lê-T].

Considérons le diagramme:

E0N(X)
\ê où: • N(X) -% X est la modification de Nash de X

• E0N(X) -U NX est l&apos;éclatement dans NX de Y, la
transformée totale de zéro par v.

• est le diviseur exceptionnel ë~l(Y).

X
D&apos;après le Corollaire 5.1.2 de [Lê-T] on a:

Euo(X HDk)= 2- (-l)^1&quot;1&quot;

i=0

où Pi-i-.-k est une variété polaire générale de codimension d-l-i-fc dans
xnDk.

Mais d&apos;après le lemme de transversalité des variétés polaires ([Lê-T] 4.1.9.), si

Dk est suffisamment général la multiplicité de Pa-i-,-^ en zéro est aussi celle de

Pd-i-x-k en zéro, où Pd_1^l^k est une variété polaire générale de codimension
d -1 - i - k de Xn D k. Par définition g) est une sous variété de {0} x P^&quot;1 x G, G
désignant la grassmanienne des d plans de CN. Si on appelle T et £ les fibres sur
{0}xPN~1xG images réciproques respectives des fibres tautologiques sur G et
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N-1, on peut écrire d&apos;après le théorème 5.1.1 de [Lê-T], si Dk est assez général:

k)= t (-i)1+kEuo(xnDk)= t (-i)1+kdeg(cd_1_,_fc(T)-c1(£rkn[g)])

le degré étant calculé dans {0}xPN~1 x G.

Si on considère T et £ comme des fibres hermitiens, la structure hermitienne
étant donnée par le plongement de X dans CN, on en déduit pour les raisons

invoquées dans la démonstration du lemme 6 de la première partie que pour Dk
assez général on a:

les c?(T) et c™(£) étant les formes de Chern-Weil associées aux fibres hermitiens
T et £. D&apos;après un lemme classique de Whitney ([G] 4.4.3.), sur £ est un sous
fibre de T. Quitte à remplacer X par un représentant plus petit du même germe
on peut supposer que sur E0N(X) la projection orthogonale de £ sur T (sur

EqN(X) T et £ sont tous deux des sous fibres hermitiens de l&apos;image réciproque du
fibre tangent à CN par v°ê munie de sa structure hermitienne naturelle) définit
un sous fibre de rang un £&apos; qui coincide avec £ sur On peut prolonger £&apos; en un
fibre hermitien qui continue à s&apos;appeler £&apos; sur un voisinage tubulaire de g) dans
(ÇN xpN-i x G et donc obtenir une forme différentielle a C°° à support compact
qui coincide avec c^^k(T\ f)Ac^)k sur un voisinage de g) dans CNxPN~1x
G.

Comme £ et £&apos; coincident sur f), on a:

Euo(XnDk) (-

Rappelons maintenant l&apos;utile théorème des résidus de King ([K]):

THÉORÈME. Si X est un sous-espace analytique réduit de dimension pure k
de Vespace analytique W de dimension pure n&gt;k et est le lieu des zéros d&apos;une

section holomorphe s d&apos;un fibre holomorphe sur W, posant t\ (l/27ri) d log||s||2 et

(o dr), on a:
1) les formes r]Aa)n~k~l et a&gt;n~k sont localement intégrables sur W
2) il existe des nombres complexes nt tels que Von aie Végalité de courants:

X nJX] d(r, aco11&quot;^1) - co
n~k
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les X, étant les composantes irréductibles de X et d(rj aw&quot;^&apos;1) le bord du courant
défini par t) ao)&quot;&quot;1&apos;&quot;1

3) n, est égal à la multiplicité de s en un point général de Xt.

Remarques, a) l&apos;assertion 1) du théorème peut se voir comme un énoncé de
finitude sur un espace analytique complexe. On peut la rapprocher du résultat en

apparence évident suivant qui est en fait la difficulté principale dans la
démonstration du théorème de Thie: si x est un point d&apos;un espace analytique
X&lt;=CN et V(e) est l&apos;ensemble des points d&apos;intersection de la sphère de centre x
et de rayon s avec les sécantes joignant x à un point de X situé à une distance au
plus e de x, alors le volume de V(e) a pour limite zéro quand e tend vers zéro. Ce
résultat a lui même un air de famille avec le résultat de Barlet utilisé dans la 1ère

partie: si X est un espace analytique de dimension n + 1 et / un morphisme
analytique ouvert de X dans le disque unité alors pour toute forme C°° &lt;p de type
(n, n) et à support /-propre on a

lim
Jf-\t) Jr1(o)

Remarquons enfin qu&apos;en appliquant ce dernier résultat à la déformation sur le
cône normal on peut également retrouver le théorème de Thie.

b) d&apos;autre part l&apos;ingrédient clef de l&apos;assertion 3) est le théorème de Thie-
Draper (King dit seulement des n, qu&apos;ils sont entiers, mais il suffit dans la
démonstration de 3) d&apos;appliquer le théorème de projection des multiplicités pour
les obtenir comme multiplicités). Comme nous n&apos;utilisons le théorème de King
que dans le cas où X est une hypersurface de W, il suffit de connaitre le théorème
de Thie-Draper dans le cas des courbes, cas pour lequel nous donnons une
démonstration directe dans la troisième partie puisque pour les courbes la
multiplicité est égale à l&apos;obstruction d&apos;Euler locale.

Revenons à la démonstration. Si r\ (ë ° v)*((1/2ttO d log ||z||2) on a d&apos;après le
théorème ci-dessus

I a I 7]Ada— I

% «feoN(X) -feoN(

mais comme l&apos;orientation de (v ° ë) 1(Se) comme bord de (v ° ë) 1(X\Be) est

l&apos;opposée de celle induite par l&apos;orientation de X H Se, on a d&apos;après le théorème de

Stokes:

I

kv o ê)&quot;1(
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comme dr\ dr\ puisque â°â 0on obtient donc

lim f 7]Aa

puisque

lim I dr\ Aa —7] ada =0
e—&gt;0 \v oê) !(Be)

vu que dr)Aa et r]Ada sont intégrables et que lime_&gt;0vol {{v ° ë)~1(Be)) 0.

Pour e &gt; 0 assez petit, Se est transverse à une stratification de Whitney de X et
donc la restriction de v ° ë à (v ° ê)~1(^nSe) est un isomorphisme sur son image
en dehors du complémentaire de fermés de codimension réelle au moins deux. On
a donc pour e&gt;0 assez petit:

&lt;xk
1 f &lt;dz

-^&gt;

&apos;(xnsj° lizll

Ztti

puisque:
• T | £&apos; se projette par v°ë en ® sur (XHSJ0
• les structures hermitiennes choisies sont compatibles aux images réciproques
• le diagramme

E0N(X) -^-* PN~X

v » ë\ y/1 est commutatif

X\{0}

et l&apos;on a -ttÎ(X2) c^(ê) et co tt$((Ï) où f2 est la forme de Kâhler sur PN~\ En
joignant (*) à (* *) on obtient le résultat désiré.

3ème Partie

Dans cette partie nous montrons comment un calcul d&apos;obstruction à la
Bott-Chern dans une désingularisation dominant la modification de Nash permet
d&apos;obtenir très simplement une formule exacte pour l&apos;obstruction d&apos;Euler. Cette
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formule explicite nous permet de comparer directement les formules de Langevin
et de Varchenko et de retrouver la formule de Gonzalez-Verdier.

Rappelons la définition de l&apos;obstruction d&apos;Euler locale (cf [G], [M-P]):
• Si (A,B), BcA est une paire d&apos;espaces topologiques, JE un fibre vectoriel

réel de rang r sur A et s une section de E au dessus de B qui ne s&apos;annule pas, on
définit une classe d&apos;obstruction appartenant à Hr(A, B) de la manière suivante: si
S est le fibre en Sr-1 sphères associé à E, s définit une application de B dans S et
l&apos;image réciproque s*l/ de la classe de Thom U appartenant à Hr&quot;l(S) est un
élément de Hrl(B) dont l&apos;image par l&apos;application bord appartient à Hr(A, B):
c&apos;est par définition la classe d&apos;obstruction associée à s.

• (X, 0) est un espace analytique plongé dans (CN, 0) de dimension pure d

réduit. N(X) -A X est la modification de Nash; E0N(X) -4 N(X) est l&apos;éclatement

dans N(X) de la transformée totale de l&apos;idéal définissant 0 dans X par v et

X-^E0N(X) est une désingularisation de E0N(X). §) est la transformée totale de

zéro par v ° ë.

Sur X on dispose de la restriction E du fibre tangent à CN, sur N(X) du fibre
tangent de Nash T et sur E0N(X) du fibre £ normal à Le plongement de X
dans CN munit E, T, £ et leurs diverses images réciproques de structures her-
mitiennes naturelles.

• la section radiale p de T est la projection orthogonale sur T de la section
v*OM de v*E. Les conditions de Whitney entraînent que pour e &gt;0 petit p ne
s&apos;annule pas sur v~~1(XC\Se). La construction précédente nous donne une classe

d&apos;obstruction appartenant à H2d(v~1(BenX), v~1(SBDX)) et on peut définir
Eu0X comme l&apos;évaluation de cette classe sur la classe fondamentale de [v&quot;x(Be H

Remarque. Vu la fonctorialité de la classe de Thom pour les images

réciproques de fibres et comme le degré d&apos;une modification analytique est

toujours égal à un, on peut remplacer dans la définition de Eu0X la modification
de Nash par n&apos;importe quelle autre modification la dominant:

si X-% N(X) est une modification de N(X), pour e &gt;0 assez petit ç*p est une
section de cp*T qui ne s&apos;annule pas sur (v ° ç^iXDS^ et l&apos;évaluation de sa

classe d&apos;obstruction sur [(v ° cp)~1(XnBe), (i&gt; ° cp)~1(XnSe)] coincide avec

Eu0X.

D&apos;après un lemme classique de Whitney ([G] Prop. 4.4.3.) la restriction de £ à

§9 est un sous fibre de ë*(T). Quitte à remplacer X par un représentant plus petit
du même germe on peut supposer que sur E0N(X) la projection orthogonale de £

sur ë*T définit un sous fibre de rang un f&apos; de é*T qui coincide avec £ sur £&apos;x

l&apos;orthogonal de £&apos; dans é*T se projette sur la partie lisse de X en le fibre 0
défini dans la deuxième partie. Remarquons enfin que ê*p est une section de £;.
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LEMME 1. Soit p&apos; la section de T au-dessus de N(X)\v~\0) définie par
p&apos;(x) ||i&gt;(x)||/||p(x)||p(x) alors, pour e&gt;0 assez petit, p&apos; est une section de T
au-dessus de ^~1(XflSe) qui ne s&apos;annule pas et l&apos;évaluation de sa classe d&apos;obstruction

sur [v~l(XDBe), v~\XnSe)] coincide avec Euo(X).
Démonstration. Comme

1

-,

toujours d&apos;après le même lemme de Whitney, pour e &gt;0 suffisament petit, p et p&apos;

sont homotopes parmi les sections de T sur v~1(XDSe) qui ne s&apos;annulent pas.

LEMME 2. H existe une section s de (ë ° yu)*T sur Xe (v ° ë ° jul)1 (XflBJ
qui coincide avec (ë ° ja)*p&apos; sur dXe =(v°êo jx)&quot;1 (XHSe) et n&apos;a que des zéros
isolés à l&apos;intérieur de Xe.

Démonstration. On peut prolonger (ê ° ii)*pr en une section p&quot; de /x*£&apos; sur Xe

qui ne s&apos;annule que sur jut,&quot;1^): si a est une fonction C°° qui vaut un au voisinage
de dXe et zéro au voisinage de /x&quot;1®) il suffit de prendre p&quot;

a(ë © fx)*p&apos; + (ê ° jut)*p car ê*p et é*p&apos; sont par définition de l&apos;éclatement des

sections de g. D&apos;autre part en utilisant le théorème de Sard et des partitions de
l&apos;unité on obtient une section a du fibre jll*(^;±) nulle au voisinage de dXe et ne
possédant que des zéros isolés à l&apos;intérieur de Xe. On peut alors poser s &lt;r + p&quot;.

Rappelons maintenant un lemme classique de théorie de l&apos;obstruction:

LEMME 3. e étant choisi suffisament petit pour que (ë ° n&gt;)*p ne s&apos;annule pas
sur dXe, l&apos;évaluation de sa classe d&apos;obstruction sur [Xe, dXj est égale à la somme
des indices des zéros isolés de s dans X6.

La conjonction des lemmes 1 et 3 et de la remarque nous permet d&apos;identifier

Eu0X à la somme des indices des zéros isolés de s dans Xe.

LEMME 4. Pour e &gt;0 assez petit dXe est lisse.

Démonstration. Si r est la fonction distance 21 x z^zx nous allons montrer qu&apos;il

existe un voisinage V de juT1©) tel que v ° ë ° jll ° r n&apos;a pas de points critiques
sur VX/ul&quot;1©)-

Si X est le lieu critique dev°ê°jUL°r d&apos;après ([H], théorème p. 215) on peut
munir X et son image Z par v © ë ° jul de stratifications sous analytiques réelles

ea et (Za)aeA telles que pour chaque a de l&apos;ensemble fini A la restriction de
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v o ë ° jul à Xa soit une submersion sur son image Za. Il suffit alors de montrer
qu&apos;il n&apos;y a pas de strate Ztt passant par zéro de dimension réelle strictement
positive. Pour cela il suffit de remarquer que si Za est une telle strate la sphère Se

est transverse à Ztt pour e assez petit, et donc qu&apos;au voisinage de zéro dr ne
s&apos;annule identiquement sur aucun plan tangent à Za et donc v ° ë ° jll|^ étant une
submersion, la restriction de (v ° ë ° jul)* dr aux plans tangents à Za ne s&apos;annule

identiquement sur aucun plan tangent à X^ au voisinage de iui&quot;1®) ce qui
contredit la définition de X.

Nous pouvons maintenant appliquer la théorie de Bott et Chern, la Proposition

6.4. de l&apos;article [B-C] nous permettant d&apos;écrire pour e&gt;0 assez petit:

f f *¦ - 2 f
Jxe Jaxe 4ir

&quot;

Jôxe

où:

• Ca((ê « jul)*T) et Cd_!(|x*£&apos;x) sont les formes de Chern-Weil associées aux
fibres hermitiens (ë ° jll)*T et /x*!&apos;^

Xa&gt;0

où:

~Ù{^e) et y
sont respectivement la courbure de jul*€/j&quot; et celle de (ê ° jll)*T restreinte à jll*£&apos;x

et det (A + kB) Ia&gt;0 A&quot; det&quot; (A, B).
On obtient donc pour e &gt; 0 assez petit pour que Se soit transverse à une

stratification de Whitney de X (cf. la 2ème partie), vu que ||s(x)|| \\v ° ë ° ()||

Eu0X= f c%(T)+ f TL(d-d)log||x||2Acï_1(e)+ f
J(xnBe)° •&apos;(xnsj0 47T J(xnse)°

avec iI/ 1/4it (d-d) (Ia&gt;o a&quot;1 det&quot; (f2(@), fl0(T)-«(©)) où (27r/ï)fl(®) et

(2ir/i){le(T) sont respectivement la courbure de 0 et celle de T restreinte à @, T
étant le fibre tangent à la partie lisse de X, ce que l&apos;on peut réécrire:

THÉORÈME 3. On a Végalité:
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Application 1. Comme sur X les formes différentielles i//&apos; et c^({ê ° jui)*T)
sont localement bornées on a

lim I i// lim f c%((ë ° fJL)*T) 0

car les volumes de Xe et de dXe ont pour limite zéro quand e tend vers zéro.
On retrouve donc directement la formule:

ïm ~—: I
—o 2Tri J(xnsF)°

et le théorème des résidus de King, nous permet en effectuant en sens inverse le
cheminement de la deuxième partie d&apos;obtenir directement la formule de

Gonzalez-Verdier :

Eu0X deg f
les notations étant celles de la deuxième partie.

Application 2. Nous allons montrer ici le lien entre la formule (*) et la
formule de Langevin (cf. [L]) lorsque X est une hypersurface à singularité isolée
en zéro définie par l&apos;équation / 0 dans CN+1.

Dans ce cas on peut faire le calcul d&apos;obstruction sur la fibre de Milnor. Plus
précisément:

Soit e&gt;0 et t^O avec 0&lt;|r|«e« 1 Fte =BeO{f= f}, sur Fte on dispose du
fibre tangent T muni d&apos;une section radiale p&apos;(x) ||x||/||p|| p au-dessus de
Fte \{zéros de p}, p étant la projection de OM sur T. Pour s petit et |t|« e, dFte et
Se sont transverses donc p&apos; ne s&apos;annule pas sur dFte. Comme de plus p&apos; pointe vers
l&apos;extérieur de 6Fte la théorie classique de Gauss-Bonnet nous dit que l&apos;entier

d&apos;obstruction de p&apos; est égal à xC^v)- Comme p&apos; est un champ de vecteurs sur
Ft F\{zéros de p} il existe sur Fte un champ de vecteurs à zéros isolés qui coincide
avec p&apos; sur un voisinage de dFt e.

On peut donc à nouveau appliquer la théorie de Bott-Chern pour obtenir:



224 FRANÇOIS LOESER

avec

—id

«k =T-(5-a)( I «&quot;Met&quot;

47T \a&gt;0

f désignant le fibre engendré par p&apos; sur dFt e et £&apos;x son orthogonal dans T.

Soient e &gt;0 et fo€C\{0} choisis tels que si |f|^fo&gt; {/= *} soit transverse à Se.

Alors T^ Uo^x^i dFXto&gt;e est une variété lisse compacte dont le bord est réunion
de XHSe et de dF^. Il est alors clair que le volume de T^ a pour limite zéro

quand t0 tend vers zéro.
D&apos;après le théorème de Stokes i/^ et i//2 étant bornées au voisinage de

X H Se on a donc puisque

lim vol ^ 0, lim 1^1 + ^2= ^1

Comme d&apos;après Milnor x(^rt,e) l + (&quot;&quot;l)N^(N+1)(-X) et que nous avons vu que
Jxnse «A2 0, on obtient:

1 + (-1)VN+1)(X) lim f *x + lim lim f c&amp;T)

ce qui prouve que deux des trois résultats suivants permettent de retrouver le

troisième:
1) La formule de Langevin

lim lim I c}5(T) (—1

2) La formule

1 f
-—;lim I
ZTTl *-*O JxnSe

3) Euo(X)
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