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Formules intégrales pour certains invariants locaux
des espaces analytiques complexes

FrANCOIS LOESER

Introduction

Soit f:(CN*',0)— (C,0) un germe de morphisme analytique 2 singularité
isolée en zéro. Un théoréme classique du a Langevin [L] dit que ’on a I’égalité:

: . w N N+1 N
timlim | G = M) (1)
la double limite signifiant que pour £ >0 fixé I'intégrale [p ~;) cn(T;) a une
limite quand t tend vers zéro qui a elle méme une limite quand ¢ tend vers zéro.
Ici w™*'"9 désigne le nombre de Milnor d’une section de f'(0) par un plan
général D' de codimension i passant par zéro, cy(T;) la N iéme forme de
Chern—-Weil du fibré tangent relatif aux fibres lisses f~'(tf) muni de la structure
hermitienne induite par celle de CN*! et B, la boule de centre zéro et de rayon «.
On en déduit aussitot I’égalité

lim lim Cz‘@—e(’l}/o*) — (g_ 1)N——i(u(N+1——i)+ “'(N-—i)). (1)1
e—0 t—0 gnf‘l(t)ﬂD‘

Il est tentant de demander pour p™*'"9 + u™~ une formule intégrale non plus
sur B, Nf (t)yN D' mais sur B, Nf (t). Le candidat naturel pour cela est la
formule:

. . w i N—is,  (N+1-i) (N—i) i
- = — + 3
llm 11m oo CN l( lf)/\w ( 1) (u, 7 ) ( )

® == 33 log ||z|P.
21T

204



Formules intégrales pour certains invariants locaux des espaces analytiques complexes 205

que Griffiths dans [Gr] déduit de la “formule de Crofton III” suivante:

Si X <CN*! est une variété analytique complexe de dimension d ne passant pas
par zéro, alors

j c::_i(nxm»ej (] cr;_i(nxm))dL
X G(N+1—i, N+1) X NH"

dL étant la mesure de Haar de masse totale 1 sur la grassmanienne G(N+1—
i, N+ 1) des plans H' de codimension i dans CN*' passant par zéro, cii_,(Qy) la
d—i iéme forme de Chern-Weil associée a la structure hermitienne de X et

cii(Qx ) celle associée a la structure hermitienne de X NH' induite par celle de
H'.

Malheureusement, la démonstration que donne Griffiths de cette formule de
Crofton III ne semble pas complete. Nous allons expliquer pourquoi déja le fait
qu’une telle formule est vraie asymptotiquement est non trivial: c’est le théoreme
de transversalité des variétés polaires relatives ([T1], [H-M]); en effet on peut
voir le terme de gauche de la formule de Crofton comme concernant des sections
planes d’espaces tangents relatifs et celui de droite comme concernant des espaces
tangents relatifs a des sections planes. Il nous faut en fait comparer ces espaces
seulement au voisinage de zéro: le théoréme de transversalité des variétés polaires
relatives permet justement de comparer les limites d’espaces tangents a des
sections de limites d’espaces tangents.

On est donc conduit a distinguer deux types de résultats en géométrie
intégrale: d’un c6té ceux qui permettent de montrer des formules du type (1) et
dont les analogues en géométrie analytique sont des résultats de transversalité
dimensionnelle permettant de mettre en position générale un objet mobile et un
objet fixe en utilisant le théoréme de Kleiman et la condition a) de Whitney, de
Pautre ceux qui tels la formule de Crofton III ont pour analogue en géométrie
analytique un résultat de transversalité fin comme le théoréme de transversalité
des variétés polaires relatives, qui permet de mettre en position générale deux
objets mobiles dépendant du méme parameétre, et utilise la dépendance intégrale
([T1]) ou la condition w) de Verdier ((H-M)).

En utilisant ce résultat de transversalité fin (qui il faut le remarquer semble
plus ““faible” que Crofton III) et les méthodes de Lé et Teissier dans [L&é-T] nous
démontrons (*)' dans la premiére partie du présent travail, dans un cadre un peu
plus général puisque nous remplagons CV*' par un espace analytique réduit
équidimensionnel quelconque, le terme de droite de (*) devant alors étre
interprété comme une multiplicité d’intersection de f '(0)N D' et d’une courbe
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polaire. Dans le cas i =0 une telle formule était déja connue ([L-L&], [Du]). Dans
[Ke] Kennedy a d’autre part donné une démonstration directe de la formule pour
n ™Y que 'on obtient en sommant les formules (*)'.

Dans la seconde partie nous expliquons comment griace au théoréme des
résidus de King on peut obtenir I'obstruction d’Euler locale des sections planes
générales d’un espace analytique comme limite d’intégrale sur 'intersection de cet
espace (et non de la section de cet espace) avec une sphére. On peut interpréter
cette formule comme un résultat concernant la structure de contact associée a une
singularité, dont I’é€tude plus approfondie serait intéressante. En codimension zéro
on retrouve un résultat énoncé par Varchenko dans [V] pour les surfaces a
singularité isolée dans C> et en codimension maximale le théoréme de Lelong-
Thie-Draper sur la multiplicité d’un ensemble analytique.

Dans la troisieme partie nous illustrons le principe que les formules intégrales
ne faisant pas intervenir de sections planes sont plus faciles a obtenir que les
autres. En effectuant un calcul d’obstruction a la Bott-Chern nous obtenons une
formule intégrale explicite pour I'obstruction d’Euler locale qui permet de re-
trouver directement et de comparer le théoréme de Langevin et la formule de
Varchenko généralis€e ainsi que de retrouver la formule de Gonzalez-Verdier.

Je tiens a remercier vivement B. Teissier pour ses conseils précieux et ses
encouragements qui ont rendu possible ce travail.

lere Partie

Soit (X, 0)=(CN*',0) un espace analytique réduit équidimensionnel de di-
mension d défini au voisinage de zéro et muni d’'un morphisme analytique ouvert
f:(X,0)—(C, 0). On note:

e X(1)° la partie lisse de la fibre X(t)=XNf'(¢).

e X' la section de X par un plan D' de codimension i passant par zéro et au
demeurant assez général.

e I't une courbe polaire relative générale associée au morphisme
flx : (X%, 0)— (C, 0) (cf [T1] ou voir plus loin)

Comme f~1(0) N X" = X*(0) est une intersection compléte dans X* on peut définir
la multiplicité d’intersection de X'(0) et I'f en zéro dans X' par la formule

I 0)(I° }, X 0) = Z (=1 longe,, Tor?x‘.o(OFfi, Oxo)
=0

il est facile de voir (ce qui sera fait plus loin) que dans le cas présent les Tor;
sont nuls pour j>0.
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On note d’autre part:

e B, la boule fermée de centre zéro et de rayon .

o ¢j 1 (T;) la d-1-i eme forme de Chern Weil associée au fibré tangent
relatif T; sur X(¢t)° muni de la structure hermitienne fournie par le plongement de
X dans CN*!,

e » =i/2 30 log||z|* 'image réciproque sur CN"'\{0} de la forme de Kihler
sur PN
Le résultat principal de la premiére partie est:

THEOREME 1. Soit (X,0)=(CN"',0) un espace analytique réduit
équidimensionnel de dimension d défini au voisinage de zéro et muni d’un
morphisme analytique ouvert f:(X,0)— (C, 0). On a I’égalité, pour 0<i=d—1:

e —0 t—0

lim lim j ch 1T Aw' = (=D x5 X'(0)).
B, NX(t)°

Remarques. a) lorsque i =0 ce résultat est du a Langevin—-L& et Dubson
((L-Le], [DD.

b) lorsque X =CN*' et f présente une singularité isolée en zéro on a
Iix o)k XH(0)) = W N +170 4+ W N=D @’ apres Teissier ((T2]) ot w™*'7? est le nombre
de Milnor associé a2 X*. On retrouve donc le résultat de Griffiths ((Gr] 5.22) dont la
démonstration reposait jusqu’a présent sur la “formule de Crofton III”’. En som-
mant ces égalités on obtient la formule que démontre Kennedy dans [Ke]:

N
1+ (=D)Np®+D = lil:n0 Png I Z (T Ao
) € 0 JdB,.nx() i=0

Démonstration du théoréeme 1. On dispose du diagramme suivant:

XxXG
2 N\

XXP¥NXGoEN/(X) = Ni(X) - G

lu; l,,f

XXPNoEy(X) — X

l

PN
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G =G(d—1,N+1) est la grassmanienne des d —1 plans de CN*!

v : N;(X) — X est la modification de Nash relative (cf. [T1])

e:EyX)— X est I’éclatement dans X de I'idéal définissant {0}.

é: EgNi(X) — Ni(X) est I'éclatement dans Ny(X) de vy '(0).

vi: EgNi(X) — Eo(X) est donné par la propriété universelle de ’éclatement.

On considere dans EoN;(X):

o la transformée totale 9, de f~'(0): si f~'(0) est défini par I'idéal I de Ox,
le sous-espace ; est défini par TOg n(x) dans EoN(X).

o La famille (9),);.; des composantes irréductibles de ¥); dont la projection sur
X est réduite au point zéro et le cycle Dy =}, ., m; ¥, m; étant la multiplicité de 9);
au point générique de ¥)..

On remarquera que I’espace réduit sous jacent a D; est inclus dans {0} xP" x
G. Sur {0} xP" X G on considere les fibrés T et ¢ images réciproques respectives
des fibrés universels sur G et sur PN,

Si [Ds]e Hyx({0} xP™ x G) désigne la classe fondamentale du cycle Dy les classes
de Chern de T; et ¢ agissent par cap produit sur [D;]. On peut donc considérer
entier deg (cq_;_i(T}) - ¢,(&)' N[D;)).

Nous sommes maintenant en mesure d’énoncer la proposition suivante qui est
I’analogue relatif d’'un théoréme de L& et Teissier ((Lé-T], Th 5.1.1.)

PROPOSITION. On a l’égalité

deg (Cd~1~i(Tf) : Cl(f)i N [Df]) = ("Dd_lI(x*,O)(F}, Xi(o))

Plan de la démonstration. On voit tout d’abord le terme de gauche comme une
multiplicité d’intersection de cycles dans {0} PN X G que I'on calcule par une
série de réductions dans E,N.X puis dans la transformée stricte dans E,N;X
d’une section générique de X. Le théoréme de transversalité des variétés polaires
relatives permet alors d’effectuer ce calcul dans la modification de Nash d’une
telle section.

Démonstration. On considére un drapeau 9 : Dy, < - - < D, de sous espaces
vectoriels, avec D, de codimension i dans CN'!, et on lui associe le cycle de
Schubert de codimension k dans G:

¢ (D)={E€G|dim END,_, =k}.

Le théoréme de Kleiman (cf. [K1]) que nous utiliserons plusieurs fois nous permet
étant donnés deux sous espaces algébriques E=|J,ca E, et Z=gpZs de
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PN X G munis de stratifications de Whitney (E,)qca €t (Zg)gep daffirmer qu’il
existe un ouvert de Zariski dense U de GL(N+1,C) X GL(N +1, C) tel que pour
toute strate E, de E et tout y de U, le translaté yE, soit transverse a toutes les
strates de Z.

Cet argument prouve en particulier que si & est un drapeau assez général et
H' un plan de codimension i dans P" assez général également, alors {0} x H* X
Ca-1-1(D) coupe D; proprement dans {0} xPN x G.

L’interprétation classique des classes de Chern des variétés projectives lisses
comme classes d’obstruction nous permet alors d’écrire:

deg (Cd—l—i(Tf) : Cl(tf)i N [Df]) = (‘l)dgll{o}xp'“xo({o} X H' X Ci—1-i(D), Df)

ou Iigxpixg( , ) désigne la multiplicité d’intersection de cycles de dimensions
complémentaires se coupant proprement dans {0} xPN X G.

L’associativité de l'intersection sur les espaces lisses nous permet de calculer
cette intersection dans CN*!'xPN x G, i.e. d’écrire:

deg (cq—1-:(T) - (&' N [D;]) = (=D M gnvrprn g (CN T X H X ¢ (D), Dy)

Rappelons maintenant le lemme suivant qui résulte de l'ouverture de la
transversalité et des conditions de Whitney:

LEMME 1 ([L-T] 2.2.1.1). Soit X=J,ca X, une stratification d’un espace
analytique complexe qui satisfait les conditions de Whitney. Soient xe X et X, la
strate contenant x. Pour tout plongement local en x de X dans un espace euclidien
CP et pour tout sous espace non singulier Z. défini dans un voisinage de X dans CP
et transverse a X en X, il existe un voisinage U de x dans CP tel que, pour tout
ye U, Z soit transverse en y a toute strate Xg telle que XB 2 Xt

Supposons, ce qui est loisible, que E(N;(X) soit muni d’une stratification de
Whitney telle que D; et ¥); soient réunion de strates. Supposons de méme que
H Xcy_1_;(D) soit muni d’une stratification de Whitney. D’apreés le théoréme
de Kleiman tel qu’il a été rappelé, pour @ et H' assez généraux, les espaces
stratifiés {0} x H' X ¢;_,_;(D) et D; sont transverses dans {0} xP" X G.

D’aprés le lemme précédent pour un tel choix de H' et de 9, ¥; est transverse
a CV"'"XH'Xc; (D) sur un voisinage de {0} xPNxG dans CN*"'xPN xG.
Pour des raisons de dimension, sur un tel voisinage ¥; ne peut rencontrer
CN*'X H' X ¢y4_1-;(@) qu’en un nombre fini de points. Il y a donc un voisinage de
{0} xPN x G sur lequel §; ne rencontre CN*' x H' X ¢4_, (D) qu’en des points de
Dy. Quitte a choisir un représentant plus petit de X (dépendant de H et de &) on
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peut donc supposer que ¥, ne rencontre CN"' X H' X ¢;_; (D) qu’en des points
de Dy. Cest ce qu’on suppose dans la suite de ce travail.

Nous allons maintenant montrer que pour % et H' assez généraux
I=Ignoprg(CN T X H X ¢y_y_(D), Dy) est égal a la somme des multiplicités
de l'idéal J dans les anneaux locaux Og n.)nch+ixHixe, , (@) POUr p décrivant
D NCN*' X H' X ¢4_1_(D) que I'on note mult (TOg n )+ xErxe, ., (@) POUT
cela on remarque que I = Icvpryg(CN ' X H X cq_1;(D), Y;) et que d’apres le
théoreme de Kleiman pour H' et & assez généraux les hypothéses du lemme
suivant sont vérifiées avec Y=CN"'XPNx G, Z=CN*"'xH'Xcy_,_{(D), X=
EoNi(X) et D=9,

LEMME 2 (d’aprés [L-T] 5.1.3.7 et [H-M-S] 4.4.3.). Soit Y une variété
analytique lisse, Z et X deux sous-espaces analytiques réduits de Y et DX un
diviseur défini par I’idéal I. Soit n: X — X la normalisation de X, et A un fermé
analytique de D d’intérieur vide tel que:

1) D\ A est lisse

2) les points de n"'(D\ A) sont des points lisses de n"'(D\ A) et de X

3) la restriction de n a n”'(D\A) — D\A est étale
(un tel fermé existe nécessairement). Si Z ne rencontre D qu’en des points de D\ A
et ceci transversalement dans Y, alors 1y(D, Z) est égal a la somme des multiplicités
de l'idéal I dans les anneaux locaux Ox, p pour P décrivant ZND.

Démonstration. Soit (D,);.; les composantes irréductibles de D et m; la
multiplicité de D au point générique de D,. On a I,(D, Z) =Y., mm; si n; est le
nombre de points d’intersection de Z avec D, Mais ;. nm; est aussi égal au
nombre de points d’intersection de n”'(XN2Z) avec n (D) car le degré du
morphisme étale n '(D,\ A)— D,\ A est n,.

Vérifions que n (XN Z) est lisse au voisinage de ses points d’intersection
avec n~'(D): en effet au voisinage d’un point P d’intersection de Z et D on peut
trouver un systeme régulier de parameétres y,, ..., y, de Opp tel que Z soit défini
par y;=-:-=y,=0 au voisinage de ce point; comme au voisinage de
P, n (D) — D est étale les y; =y, o n forment un systéme régulier de paramétres
dans les 0,-1p, 5, avec n(P;) = P. Comme au voisinage de ces points X est lisse, les
y; font partie d’un systéme régulier de parametres de Ox p et donc n™ (X N Z) qui
est défini par y;=---=y,=0 au voisinage de P; est lisse au voisinage de ces
points.

La multiplicité de J en chacun des 0,-1(xnz) p, €st donc un, et leur somme est
égale a 1. D’apres le théoréme de projection des multiplicités de Zariski-Samuel
[Z-S Th. 24 ch. 8] appliqué au morphisme fini: n”(XNZ)— XNZ on a donc
que I est égal a la somme des multiplicités de I dans les anneaux locaux Ox~z p
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pour P décrivant Z N D. D’autre part E\N;(X)NCN*"'"x H' X G est par définition
la transformée totale par v; de E,X NCN*' X H'. Si on appelle H" le plan passant
par zéro dans CN*' correspondant au plan projectif H', (E,X NCN*!'x H'),.4 est
par définition la transformée stricte de X N H'"* par ’éclatement e.

LEMME 3. Si H' est assez général (E;N{(X)NCN"'xH XG),.q est la
transformée stricte de (E,XNCN*'xH') par v;.

Demonstration. C’est mutatis mutandis celle du Lemme 5.1.3.2. de [Lé-T].

A~
Dans le cas ou la conclusion du lemme est vérifiée, si X} est le transformé
strict de (X N H"),q par v}, (EoNy(X)NCN"' X H' X G),q est le transformé strict
N
de X} par € car vy o é=e o vy
On pose x;= (EoNy{(X)NCN*! x H' X G),oq; 0n sait donc que pour H' général
le lieu exceptionnel de é | x;: x;— X} est de codimension au moins un dans xj}.
D’apres le théoreme de Kleiman et le lemme 1, quitte a choisir un
représentant de X plus petit, pour @ assez général E N(X)NCN*'x H' x
Ca—1-1(D) est une courbe dans x; qui coupe transversalement en des points lisses
le lieu exceptionnel de € | x}, c’est-a-dire en au plus un nombre fini de points.

Le morphisme & | x;Né ™ "'(vf ' (ca—1:(D))):

X;NE vy (cam1-i(D)) = XN y; (cam1 (D))
est donc fini si H' et @ sont assez généraux.

Dans ce cas d’apres ([Z-S] Th. 24 Ch. 8), on a, si I désigne I’idéal définissant
f(0) dans X:

mult (J Ox;né*‘(v,“(cdﬂ,_l(@))) = mult (' Oﬁm,"(cd_l_‘(@»)-
Le terme de gauche étant égal par définition a ce qui était noté

mult (T OEONf(X)ﬂC” +1 xH*xad_,_..(ez)) .

Mais on a le théoréme de transversalité des variétés polaires relatives de B.
Teissier ([T1] Th. 5.1.B et Prop. 5.3.1) qui permet de comparer les limites
d’espaces tangents 2 X en des points de X' aux limites d’espaces tangents a X":

THEOREME. Il existe un ouvert de Zariski dense de la grassmannienne des
plans de codimension i passant par I’origine dans C™*" tel que, si H" appartient a
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cet ouvert: :
a) si on pose c4 ;(H)={E€cG(d—1,N+1)/dimENH =d-i} on a

vi Hcqi(H) ﬂﬁzsb; on a alors un morphisme défini sur la partie de X' ou f est
lisse x — (X, Ty MH) a valeurs dans X' x G, G' étant la grassmannienne des
d—1-i plans de H" Y

b) Ce morphisme s’étend en un morphisme de X; sur X' xG' dont I’image dans
X'x G' est le modifié de Nash relatif associé a la restriction de f a X' noté N(X').

c) Le morphisme 5(?—> N¢(X") alors défini est un morphisme fini biméromorphe.
On en déduit, toujours d’apres Zariski-Samuel que:
mult (TOx;ny -1, , @) = Mult (TOy-1c,, @iy
pour H" assez général, ; étant le morphisme de Gauss: N;(X') — G; et D[i] un

drapeau de H" qui se prolonge en 9.
Il nous reste a montrer que

mult (TOyy)-(c, . @um) = Lx.0T{D), X'(0))
pour & général, mais pour cela il suffit de montrer que pour 9 général:
mult (g.@v;‘(cd_l(@)) = Iix.0)(I[$(2), X(0)).

Comme pour & général v;'(cy_1(D)) est une courbe et la restriction de v a
vf '(ca-1(D)) est un isomorphisme local sur un ouvert de Zariski dense de
v5 (c4-1(D)), d’apres le théoréme de Kleiman et le lemme 1, quitte a choisir un
représentant de X plus petit, la restriction de vy 2 vy '(c4_1(9)) est un morphisme
fini sur son image par v; qui est par définition la courbe polaire I;(%2). On a donc,
toujours d’apres Zariski-Samuel, ’égalité:

mult (9—0\,}|(Cdﬂ(g))) = mult (g’OF!(@)) pour )] général.
Il nous reste a montrer 1’égalité:

mult (FOrq)) = I x 0/ T (D), X(0)).

Comme (D) est une courbe réduite elle est de Cohen Macaulay. On a donc
mult (FOrq)) =longe, .. (Ora)/fOra)). D’autre part la suite exacte;

0 — Ox L O — Oy/fOx — 0
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donne sur I;(&) une suite exacte
0— Or/a) - @r,(@) > Or,(@)/ fOry@)— 0

puisque f n’est pas un diviseur de zé€ro dans Or ). On a donc Ix oI (%), X(0)) =
longe, .(Or«a)/fOr)) d’ou I’égalité puisque chacune de ces longueurs est égale a
dim¢ (Or,(@).o/ f@m@),o)-

Sur CN*'xPY x G on dispose de prolongements naturels T} et ¢ de T; et &
qui sont les images réciproques respectives sur CV ! X[PN x G des fibrés universels
sur G et PV; ils sont munis d’une structure hermitienne naturelle donnée par le
plongement de X dans CV*'.

On dispose alors sur CN*"'XPNx G de la forme différentielle ¢ de type
(d—1,d—1) produit de formes de Chern—-Weil:

¢ = C:;—-l—i(T}) N C‘f’('f’)i

Posant X, , = (v = €)"'(B. N X(t)) on sait d’apres un théoréme de Barlet ((B]) que
lim,_,, j{ ¢ =fxm ¢, le théoreme de convergence dominée montrant alors que

iy | =L 9
=0 Jx D) N\(vs o e) 1(0)

et puisque [Py N (v © €)7'(0)]\ D; est de dimension strictement inférieure a celle
de Dy, nous avons montré le

LEMME 4.

lim I =
e 00 (0 L ¥ L ®

f

On a d’autre part le lemme suivant:

LEMME 5.8 0< ‘t‘ Keg«1 alors Ji{u Q= (“1)l jBeﬂX(t)o C‘(,iv-l—i(Tf) N wi,
X(1)® désignant la partie lisse de X(t), T; le fibré tangent relatif défini sur X(t)°
et w =1/27 83 log |lz|.

Démonstration. Si 0<|t|«< e« 1 la restriction de v; o € a X, est un isomor-
phisme sur B, N X(¢)® en dehors d’un fermé de codimension réelle au moins deux.
Le lemme résulte alors de ce que les structures hermitiennes choisies sont
compatibles avec I'image réciproque et de ce que le diagramme suivant est
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commutatif:

E,NX\Y; —> PN

|

X\{0}

ainsi que des égalités: —¥(Q2) = c7 (&) et 75(0) = w, 2 étant la forme de Kihler
sur PN

LEMME 6. On a I’égalité (5, ¢ =deg (cq_1i(Ty) - ¢,(£)' N[Dx])

Démonstration. Sur une variété projective lisse telle que {0}xPNxG les
classes duales aux classes de Chern par la dualité de Poincaré sont représentées
dans la cohomologie de De Rham par les formes de Chern-Weil ((G-H] p. 413)
et a l'intersection des cycles dans I’homologie correspond le cup produit dans la
cohomologie de De Rham ([G-H] p. 59).

La conjonction des trois lemmes et de la proposition prouve le Théoreme 1.

Remarque. Soit a,=a,=---=a; une suite décroissante d’entiers naturels
avec ) i< a; =d —1—i. Pour un drapeau & de G on définit le cycle de Schubert:

Oaran...a @) ={E€ G/dim ENDy_,_;,, =j V1=j=<I}.

A la suite a4, ..., a; on associe la suite duale a¥%, ..., a qui est par définition la
plus petite suite d’entiers naturels pour ’ordre lexicographique telle que a¥;, = j pour
tout 1=sj=I1L
Pour & général, v;(y; (0, (D)) définit un sous espace de X vide ou de

codimension pure d —1—i noté 3, (D) et appelé variété polaire relative de
symbole aq, ..., a;.

La démonstration que nous avons donnée dans le cas ou a;,=:--=q;, =1,
[ =d—1-i, peut s’adapter sans changement, comme le lecteur le vérifiera, pour
donner:

.....

THEOREME 1'. On a:

timlim [ (T ne’ = (D o (S, a0 X0)
B, NX()°

e—0t—0 ). ~wro T T e e
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ou c«(Ty) est donnée par la formule de Giambelli:

C::*(Tf) = det \C:,’"~j+k(Tf)\

I=j=m
I=k=m

X' est une section de X par un plan général de codimension i passant par
I’origine.

3 a,...a €St une courbe polaire relative générale de symbole a,, . . ., a, associée au
morphisme f|y.: X —C.

2eme Partie

Dans cette partie nous démontrons un résultat absolu qui généralise la formule
de Lelong-Thie-Draper ([Th], [Dr]) ainsi que celle de Varchenko ([V]).

THEOREME 2. Soit (X, 0) un espace analytique réduit équidimensionnel de
dimension d plongé dans (C",0). On a la formule suivante pour 0<k=d—1:

1 dz -
Euy(XND*)= lim-—_J' <——Z2—z>/\c:»1_k(@)/\wk
e=0 2ri Jyons, Izl

N

ou:

e C" est muni de la structure hermitienne standard, le produit hermitien étant
noté (.) et S, ={zeCV/|z||=¢}.

o Euy(X N D¥) désigne 1’obstruction d’Euler locale en zéro de X N D* ou DX
est un plan passant par zéro générique de codimension k (voir [MP], [Lé-T)).

e O est le sous-fibré de rang d —1 du fibré tangent a la partie lisse X° de X
dont la fibre en chaque point est composée de I'unique (d —1) plan complexe
tangent a X et a la sphére centrée en zéro passant par ce point.

e ci-1-x(®) désigne la d — 1 —k éme forme de Chern-Weil associée a la struc-
ture hermitienne sur @ donnée par le plongement de X dans CV.

e »=i/27 03 log||z|]* est 'image réciproque sur CX{0} de la forme de Kihler
sur PN,

Corollaires

1) Dans le cas ou N=3, d =2 et X a une singularité isolée en zéro, @ est un
fibré en droites et 27/i ¢,(@) est égal a la courbure de @. On retrouve donc le
résultat énoncé par Varchenko dans [V] car dans ce cas Euy(X)=1—- @, @
€tant le nombre de Milnor d’une section hyperplane générique de X (d’apres la
Proposition 6.2.2 de [Lé-T], ou [Pi], [Kato], [Du]).
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2) Dans le cas ot k=d—1, on a Euy(XND*") =mult, (X) d’apres [Lé-T]
5.1.2, et d’autre part

2
= ( ! )dj (dz - dz)?
2ﬂ€2 XNB,

or {dz - dz)*/(—2i)?d! coincide avec la forme volume sur XN B, et we%¢/d!=
vol (B, N H) ou H est un plan de dimension d passant par zéro On retrouve donc
la formule de Lelong—Thie-Draper:

. vol(XNB,)
Ity (X) =1lim —m8—.
multo (X) = lim C  (HNB.)

La démonstration est similaire a celle du théoréme 1 mais moins fatigante car
on dispose du Théoréme 5.1.1 de [Lé-T].
Considérons le diagramme:

E,N(X)

lé ou: e N(X)-35 X est la modification de Nash de X
e E,N(X) 4> NX est ’éclatement dans NX de Y, la

N(X) transformée totale de zéro par v.
lv e 9 est le diviseur exceptionnel é'(Y).
X

D’apres le Corollaire 5.1.2 de [Lé-T] on a:

d—k—1

Eu, (XNDY)= Y (=D  multy (P14

i=0

ou Py, ; , est une variété polaire générale de codimension d—1—i—k dans
X N Dk

Mais d’apres le lemme de transversalité des variétés polaires ([Lé-T] 4.1.9.), si
D* est suffisamment général la multiplicité de P, ,_,_, en zéro est aussi celle de
P, i i en zéro, ou P,_; ; , est une variété polaire générale de codimension
d—1-i—k de XN D", Par définition ¥ est une sous variété de {0} xPVN"'x G, G
désignant la grassmanienne des d plans de C". Si on appelle T et ¢ les fibrés sur
{0} xPN"'x G images réciproques respectives des fibrés tautologiques sur G et
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PN-1 on peut écrire d’apres le théoréme 5.1.1 de [L&-T], si D* est assez général:

Eug(XNDY= Y (=1)"** deg (caorie(T) - (&) N [D)

d—-1-k
i=0
le degré étant calculé dans {0} xPN"'x G.

Si on considere T et £ comme des fibrés hermitiens, la structure hermitienne
étant donnée par le plongement de X dans C", on en déduit pour les raisons
invoquées dans la démonstration du lemme 6 de la premiére partie que pour D*
assez général on a:

Euo(X N D¥) = (~1)* I
pJ)

d—1—k
(T oer i macier)
i=0
les c¢(T) et c'(§€) étant les formes de Chern—Weil associées aux fibrés hermitiens
T et & D’apres un lemme classique de Whitney ([G] 4.4.3.), sur ¥), £ est un sous
fibré de T. Quitte a remplacer X par un représentant plus petit du méme germe
on peut supposer que sur E,N(X) la projection orthogonale de & sur T (sur
EyN(X) T et & sont tous deux des sous fibrés hermitiens de I'image réciproque du
fibré tangent 4 CN par v o € munie de sa structure hermitienne naturelle) définit
un sous fibré de rang un &' qui coincide avec £ sur ¥). On peut prolonger £ en un
fibré hermitien qui continue a s’appeler & sur un voisinage tubulaire de ¥) dans
CNXPN"!'x G et donc obtenir une forme différentielle « C* & support compact
qui coincide avec cf_;_ (T | &) AcY(£)* sur un voisinage de ¥ dans CN xPN~1x
G.
Comme £ et & coincident sur 9, on a:

Euy(XND*)= (——1)"L a.

Rappelons maintenant 'utile théoréme des résidus de King ([K]):

THEOREME. Si X est un sous-espace analytique réduit de dimension pure k
de I’espace analytique W de dimension pure n>k et est le lieu des zéros d’une
section holomorphe s d’un fibré holomorphe sur W, posant n = (1/27ri) 8 log ||s||* et
®=9m, on a:

1) les formes nA@w™ ! et ™ * sont localement intégrables sur W

2) il existe des nombres complexes n; tels que I’on aie I’égalité de courants:

k—1

Z ni[Xi] == d(”n /\w“—k_l) _ wn“k
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les X; étant les composantes irréductibles de X et d(n Aw" ¥ ') le bord du courant
défini par n A" * !
3) n; est égal a la multiplicité de s en un point général de X,.

Remarques. a) I’assertion 1) du théoréme peut se voir comme un énoncé de
finitude sur un espace analytique complexe. On peut la rapprocher du résultat en
apparence évident suivant qui est en fait la difficulté principale dans la
démonstration du théoreme de Thie: si x est un point d’un espace analytique
X cCN et V(e) est '’ensemble des points d’intersection de la sphére de centre x
et de rayon & avec les sécantes joignant x a un point de X situé a une distance au
plus £ de x, alors le volume de V(&) a pour limite zéro quand & tend vers zéro. Ce
résultat a lui méme un air de famille avec le résultat de Barlet utilisé dans la 1ére
partie: si X est un espace analytique de dimension n+1 et f un morphisme
analytique ouvert de X dans le disque unité alors pour toute forme C* ¢ de type
(n, n) et a support f-propre on a

lim i @ = I @.
=0 Je-1p) t-1(0)

Remarquons enfin qu’en appliquant ce dernier résultat a la déformation sur le
cOne normal on peut également retrouver le théoréme de Thie.

b) d’autre part I'ingrédient clef de I’assertion 3) est le théoreme de Thie-
Draper (King dit seulement des n;, qu’ils sont entiers, mais il suffit dans la
démonstration de 3) d’appliquer le théoréme de projection des multiplicités pour
les obtenir comme multiplicités). Comme nous n’utilisons le théoréme de King
que dans le cas ou X est une hypersurface de W, il suffit de connaitre le théoreme
de Thie-Draper dans le cas des courbes, cas pour lequel nous donnons une
démonstration directe dans la troisieme partie puisque pour les courbes la
multiplicité est égale a I’obstruction d’Euler locale.

Revenons 2 la démonstration. Si = (€ o v)*((1/2i) dlog||z|*) on a d’apres le
théoréme ci-dessus

j a=j n/\da—L mAa,
D EoN(X) SN

mais comme l'orientation de (v o €)7}(S.) comme bord de (v o &) '(X\B,) est
Popposée de celle induite par 'orientation de X N S,, on a d’apres le théoréeme de
Stokes:

J n/\a=-J (dnrhna—mAada)
(v - &)"%(S,) (v » &)Y (X\B,)
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comme dn =9dmn puisque 9 > =0 on obtient donc

e—0

lim j nAa =(—1)*Euy,(X N D*) (*)
(veé) ‘(S,,)
puisque

limj dnra—nAda=0
(v &) '(B,)

e—0

vu que dnAa et nada sont intégrables et que lim,_,, vol (v o €)"*(B,))=0.
Pour £ >0 assez petit, S, est transverse a une stratification de Whitney de X et
donc la restriction de v 2 € a (v » €)"'(X N S,) est un isomorphisme sur son image
en dehors du complémentaire de fermés de codimension réelle au moins deux. On
a donc pour &£ >0 assez petit:

1 dz -
(1) j Wz 2) v (@) nw
(XNS,)

2mi I1z1l*
.__1___. o~_1<__—dZ'Z) v ’ k ok
il e A (T ) re® (+%)

puisque:
e T|¢ se projette par voé& en @ sur (XNS,)°
o les structures hermitiennes choisies sont compatibles aux images réciproques
e le diagramme

E,N(X) —> pN-!

ve él / est commutatif

X\{0}

et Pon a —m¥(Q2) = c}(¢) et w = 75(2) ou Q est la forme de Kahler sur PN, En
joignant (*) a (**) on obtient le résultat désiré.

3eme Partie

Dans cette partie nous montrons comment un calcul d’obstruction a la
Bott-Chern dans une désingularisation dominant la modification de Nash permet
d’obtenir trés simplement une formule exacte pour 'obstruction d’Euler. Cette
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formule explicite nous permet de comparer directement les formules de Langevin
et de Varchenko et de retrouver la formule de Gonzalez-Verdier.

Rappelons la définition de Pobstruction d’Euler locale (cf [G], [M-P]):

e Si (A, B), B< A est une paire d’espaces topologiques, E un fibré vectoriel
réel de rang r sur A et s une section de E au dessus de B qui ne s’annule pas, on
définit une classe d’obstruction appartenant a H (A, B) de la maniere suivante: si
S est le fibré en S"! spheres associé A E, s définit une application de B dans S et
I’image réciproque s*U de la classe de Thom U appartenant 3 H " '(S) est un
élément de H''(B) dont I'image par I’application bord appartient a H (A, B):
C’est par définition la classe d’obstruction associée a s.

e (X, 0) est un espace analytique plongé dans (C", 0) de dimension pure d
réduit. N(X) % X est la modification de Nash; E;N(X) -5 N(X) est I’éclatement
dans N(X) de la transformée totale de I’idéal définissant 0 dans X par v et
X E,N(X) est une désingularisation de E,N(X). 9 est la transformée totale de
zéro par v ° é.

Sur X on dispose de la restriction E du fibré tangent a CV, sur N(X) du fibré
tangent de Nash T et sur E,N(X) du fibré £ normal a ¥). Le plongement de X
dans CY munit E, T, ¢ et leurs diverses images réciproques de structures her-
mitiennes naturelles.

e la section radiale p de T est la projection orthogonale sur T de la section
v*OM de v*E. Les conditions de Whitney entrainent que pour & >0 petit p ne
s’annule pas sur v~ (X NS,). La construction précédente nous donne une classe
d’obstruction appartenant 3 H>*!(v (B, N X), v (S, N X)) et on peut définir
Euy,X comme I’évaluation de cette classe sur la classe fondamentale de [v (B, N
X), v (S, NX)].

Remarque. Vu la fonctorialit¢ de la classe de Thom pour les images
réciproques de fibrés et comme le degré d’une modification analytique est
toujours égal a un, on peut remplacer dans la définition de Euy,X la modification
de Nash par n’importe quelle autre modification la dominant:

si X-% N(X) est une modification de N(X), pour & >0 assez petit ¢*p est une
section de ¢*T qui ne s’annule pas sur (v o ¢) ' (XNS,) et I'évaluation de sa

classe d’obstruction sur [(v° @) Y(XNB,), (v°¢) ' (XNS,)] coincide avec
EuyX.

D’aprés un lemme classique de Whitney ([G] Prop. 4.4.3.) la restriction de £ a
® est un sous fibré de &*(T). Quitte a remplacer X par un représentant plus petit
du méme germe on peut supposer que sur E,N(X) la projection orthogonale de ¢
sur é*T définit un sous fibré de rang un & de é*T qui coincide avec £ sur 9, &~
lorthogonal de &' dans é*T se projette sur la partie lisse de X en le fibré @
défini dans la deuxiéme partie. Remarquons enfin que é*p est une section de £'.
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LEMME 1. Soit p’ la section de T au-dessus de N(X)\v '(0) définie par
p'(x) =|lv@)lpx)l| p(x) alors, pour € >0 assez petit, p' est une section de T
au-dessus de v~ (XNS,) qui ne s’annule pas et I’évaluation de sa classe d’ obstruc-
tion sur [v ' (XNB,), v ' (XNS,)] coincide avec Euy(X).

Démonstration. Comme

X
i @I
ve—-0 [[p(x)||
toujours d’apres le méme lemme de Whitney, pour £ > 0 suffisament petit, p et p’
sont homotopes parmi les sections de T sur v '(XNS,) qui ne s’annulent pas.

LEMME 2. Il existe une section s de (& o w)*T sur X, =(vo&o u) ' (XNB,)
qui coincide avec (& o w)*p’ sur 0X,=(vo&o u)™ ' (XNS,) et n’a que des zéros
isolés a l’intérieur de X..

Démonstration. On peut prolonger (é » u)*p' en une section p” de w*¢’ sur z
qui ne s’annule que sur u'(¥): si @ est une fonction C* qui vaut un au voisinage
de 0X. et zéro au voisinage de p '(®) il suffit de prendre p’=
a(€ow)*p'+(é o w)*p car é*p et é*p’ sont par définition de I’éclatement des
sections de ¢&'. D’autre part en utilisant le théoréme de Sard et des partitions de
I'unité on obtient une section o du fibré p*(¢'*) nulle au voisinage de 9X, et ne
possédant que des zéros isolés a I'intérieur de X,.. On peut alors poser s = o + p".

Rappelons maintenant un lemme classique de théorie de 1’obstruction:

LEMME 3. ¢ étant choisi suffisament petit pour que (€ ° w)*p ne s’annule pas
sur 3X,, I’évaluation de sa classe d’obstruction sur [X,, 9X,] est égale a la somme
des indices des zéros isolés de s dans X..

La conjonction des lemmes 1 et 3 et de la remarque nous permet d’identifier
Eu,X a la somme des indices des zéros isolés de s dans X..

LEMME 4. Pour € >0 assez petit 0X, est lisse.

Démonstration. Si r est la fonction distance Y-, z;Z; nous allons montrer qu’il
existe un voisinage V de p (Y) tel que v © € o w o r n’a pas de points critiques
sur VAu~'(®).

Si X est le lieu critique de v © € o w o r d’aprés ([H], théoréme p. 215) on peut
munir 3 et son image Z par v o € o u de stratifications sous analytiques réelles
(Zo)aca €t (Z,)oca telles que pour chaque a de ’ensemble fini A la restriction de
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veéou al, soit une submersion sur son image Z,. Il suffit alors de montrer
qu’il n'y a pas de strate Z, passant par zéro de dimension réelle strictement
positive. Pour cela il suffit de remarquer que si Z, est une telle strate la sphére S,
est transverse a Z, pour £ assez petit, et donc qu’au voisinage de zéro dr ne
s’annule identiquement sur aucun plan tangent a Z, et donc v o & o pu|s_étant une
submersion, la restriction de (v © € o w)™ dr aux plans tangents & Z, ne s’annule
identiquement sur aucun plan tangent 3 3, au voisinage de u '(Y) ce qui
contredit la définition de 3.

Nous pouvons maintenant appliquer la théorie de Bott et Chern, la Proposi-
tion 6.4. de I'article [B—C] nous permettant d’écrire pour £ >0 assez petit:

EuoX=L e wr D+ | -L@-aoglsPaciawren+ [ w

% 4 a

~

ou:
o ci((é o w)*T) et clj_1(n*E™) sont les formes de Chern—Weil associées aux
fibrés hermitiens (€ o w)*T et p*¢'t

’ l £y - a ' ~ '
W= G- T a7 det (QHE), Oyepn((@ - W T) - 2wt
a>0
ou:
2w 2 _
ra Q(u*g) et - O, p((€ 0 n)*T)
sont respectivement la courbure de u*¢'* et celle de (€ o w)*T restreinte & u*&'™*
et det (A+AB)=)_., A" det* (A, B).
On obtient donc pour € >0 assez petit pour que S, soit transverse a une
stratification de Whitney de X (cf. la 2&éme partie), vu que ||s(x)|| =|lv ° & o w(x)||:

Euy,X = J

(XNB,)°

e+ |

(XNS,)°

G- loglkPaci @+ w

(XNS,)°

avec ¢=1/47 (3—98) (Yoooa 'det* (2(O), Qe(T)—2O)) ou (2u/i)UO) et
(27/i)42¢(T) sont respectivement la courbure de @ et celle de T restreinte a @, T
étant le fibré tangent a la partie lisse de X, ce que I'on peut réécrire:

THEOREME 3. On a I’égalité:

EuoX = j cg(T)—&-—l— J Az, Z>Ac$_1(@)+j P

(XNB,)" 2 Jixns, e |z H2 (XNS,)°
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Application 1. Comme sur X les formes différentielles ¢’ et c}((é o w)*T)
sont localement bornées on a

1 e Yle o * e
lim L_( ' =lim _L ci((€°n)*T)=0

car les volumes de X, et de 39X, ont pour limite zéro quand & tend vers zéro.
On retrouve donc directement la formule:

. 1 J’ (dz - z)
lim — ———Ach_1(0)= Eu,X. (*)
e—0 20 Jxns,yo ”2”2 -l °

et le théoreme des résidus de King, nous permet en effectuant en sens inverse le
cheminement de la deuxieme partie d’obtenir directement la formule de
Gonzalez-Verdier:

BugX = deg ( L (-1 (csrr (1) - 1Y) N1D1).

i=0

les notations étant celles de la deuxi€éme partie.

Application 2. Nous allons montrer ici le lien entre la formule (%) et la
formule de Langevin (cf. [L]) lorsque X est une hypersurface a singularité isolée
en zéro définie par ’équation f=0 dans CN*'.

Dans ce cas on peut faire le calcul d’obstruction sur la fibre de Milnor. Plus
précisément:

Soit € >0 et t#0 avec 0<|t|« e« 1 F,, =B, N{f=1t}, sur F,, on dispose du
fibré tangent T muni d’une section radiale p'(x)=|x|l/llpllp au-dessus de
F,. \{zéros de p}, p étant la projection de OM sur T. Pour ¢ petit et |t|< &, oF,, et
S. sont transverses donc p’ ne s’annule pas sur dF, .. Comme de plus p’ pointe vers
Pextérieur de 9F,, la théorie classique de Gauss-Bonnet nous dit que I’entier
d’obstruction de p' est égal a x(F,.). Comme p' est un champ de vecteurs sur
F, \{zéros de p} il existe sur F,, un champ de vecteurs a zéros isolés qui coincide
avec p’ sur un voisinage de oF, ..

On peut donc a nouveau appliquer la théorie de Bott-Chern pour obtenir:

x(F,,E)=L cxm+ja we | w

t Ft.e t.e
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avec
Wy = ﬁ (3-9) log [x|PAcl_1(€)

=7 G-0) T o det® (4(E), QT o)

¢ désignant le fibré engendré par p’ sur 9F,, et &* son orthogonal dans T.

Soient £ >0 et t,€ C\{0} choisis tels que si |t|<t,, {f =t} soit transverse a S..
Alors T, =Uo<r<1 0F,, . €st une variété lisse compacte dont le bord est réunion
de XNS, et de oF, .. 1l est alors clair que le volume de T, a pour limite zéro
quand ¢, tend vers zéro.

D’aprés le théoréme de Stokes y; et Y, €tant bornées au voisinage de
X NS, on a donc puisque

¢1+¢2:L Y+ .
. ns,

lim vol T, =0, lim I
tol—0 t—0 5F,

Comme d’aprés Milnor x(F..)=1+(-1)Np™*Y(X) et que nous avons vu que
]img___,o jXﬂS‘ Y= 0, on obtient:

1\, (NFDS — T . w
1+ (DM (X) = lim Lns, n+ lim lim L UT)

t,

ce qui prouve que deux des trois résultats suivants permettent de retrouver le
troisieéme:
1) La formule de Langevin

lim lim j UT) = (DN (NP + ™)
Fi.

e—0 t—0

2) La formule

_ 1 (dz-z)
Euo(X) = — lim [m ERACk-A®)

2711 e—0

3) Euo(X)=1+(-1)N "1™,
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