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Ueber den ersten Eigenwert des Laplace-Operators auf ausgewàhl-
ten Beispielen kompakter Riemannscher Flàchen

Félix Jenni

1. Einleitung

1.1. Zu |ll&gt;0 betrachten wir das hyperbolische Spitzeck
Winkel it/4 und einer Seite der Lange jul/8 (Abb. 1).

^ mit dem spitzen

dF-«/4

Abb 1

Aus 16 Exemplaren dièses Spitzecks erhalten wir durch geschickte Verheftung
eine kompakte randlose Riemannsche Flâche F* vom Geschlecht 2 (Abb. 2).

Abb 2

Yo ist fur fi &lt; fx, 1,83... die kùrzeste geschlossene Geodàtische der Flâche F*\
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194 FELIX JENN1

Ueber das Spektrum des Laplace-Operators à auf den Flàchen F* zeigen wir

Ai(F*)&lt;i fur il&lt;1

A2(F^)&gt;| fur jm&gt;0

dim HxiCF11)= 1 fur M» &lt; 1.

Obige Behauptung (A) wird im zeiten Abschnitt ausfiïhrlich bewiesen. Nach-
stehend werden noch analoge Resultate aus der Dissertation [6] vorgestellt, aber

aus Platzgrûnden hier nicht bewiesen (Beweise vgl. [6]).

1.2. Zu g =^2 betrachten wir diejenige kompakte Riemannsche Flâche Fg, die wir
erhalten, wenn wir die gegenùberliegenden Seiten des regelmâssigen hyperboli-
schen 4g - Ecks mit Winkeln 7r/4g verheften. Fur das Spektrum des Laplace-
Operators A auf den Flàchen Fg erhâlt man

limg- A1(Fg) 2

Ai(Fg)&lt;* fur g ^20
(B)

Ax(F2)&gt;|

dimEXi(FK) 2 fur g ^20.

Genauere Untersuchung der Flâche F2 bringt die Verschàrfungen

3,83 &lt;Ai(F2)&lt; 3,85

und eine gute Abschâtzung fur Ax supFg(F)ê2 Ai(F):

3,83&lt;A!&lt;4,81. (C)

Dièses allgemeine Résultat ist eine Ergânzung und Verbesserung des Résultâtes

von Huber [5]: A2&lt;5,2. Der Beweis von (C) stiitzt sich wesentlich auf die
nachfolgende Abschâtzung der Lange l0 der kùrzesten geschlossenen
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Geodàtischen hyperelliptischer Flâchen:

195

Lo(g)= sup lo(F)^4 • ArCos \ -&lt;5,107.
Fhyperell 7T(g+l)

zsin
(D)

zsin-
12g

Gleichheit gilt fur g 2 und g — 5.

2. Beweis von (A)

Wir benôtigen dazu die Isometriegruppe I der Flâchenschar F** (2.1). Die
Môglichkeit zu entscheiden, welche irreduzible Darstellung von I im ersten
Eigenraum Ex auftritt (2.2), reduziert die Betrachtungen iiber den ersten Eigenwert

Àt(F^) auf die Abschàtzung des ersten Eigenwertes eines gemischten Rand-
wertproblems von G^ (2.3).

2.1. Die Isometriegruppe und deren irreduzible Darstellungen. Die Translation .R

lângs Yo um fx/4 und die Spiegelungen S und T an yx bzw. y0 (vgl. Abb. 3) sind

offensichtlich Isometrien der Râchen F^. Die Isometrie J R2 lâsst die Punkte

Pu P6 fest. Pu F6 sind somit die Weierstrasspunkte von F^ (vgl. [7]).
Die Isometrien JR, S und T sind sogar Eerzeugende der ganzen Isometriegruppe I,
weil sie schon die grôsstmôgliche Untergruppe der Permutationen der
Weierstrasspunkte und J R2 erzeugen. Wir erhalten: Die Diedergruppe D8 wird
erzeugt von R und S mit den Relationen R4 S2 RSRS id. Die ganze

Isometriegruppe I lâsst sich schreiben in der Form I D8x{id, T} • T erfûllt die

Relationen T2-id, RT=TR und ST=TS.

Abb. 3
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Die Gruppe I besitzt 2 zweidimensionale und 8 eindimensionale Darstellungen:

™-ri ±î)

ft pafiy(T) y a, ft 7 €{-1,

Wir schreiben anstelle von ±1 jeweils nur die Vorzeichenkombinationen: p+++,

p++_,... etc.

2.2. DarsteHungen der Isometriegruppe im ersten Eigenraum. Aile Isometrien &lt;2&gt;

aus der Isometriegruppe I der Flâchen F** vertauschen mit dem Laplace-
Operator A. Zu jeder Isometrie &lt;P e I erhalten wir daher eine lineare, bijektive
Abbildung 0*

des fc-ten Eigenraumes Ek auf sich. Zu einer beliebigen aber festen Basis

{ej}J lf dk von £k existiert somit eine regulàre dkxdk -Matrix A&lt;&gt; mit

Die Abbildung pr^-^Aj,, &lt;PeI ist eine Darstellung von I im Eigenraum Ek

bezûglich der Basis {e,}. Der Ausreduzierung dieser Darstellung entspricht eine
Basistransformation in Ek. Sei nun {e}} eine spezielle Basis von Ek in dem Sinne,
dass die Darstellung p: &lt;î&gt; —&gt; A&lt;j&gt; vermôge dieser Basis in lauter irreduzible Kom-
ponenten zerfâllt:

A4, © Bj, wobei pt : &lt;^ -&gt; Bj

eine irreduzible Darstellung von I im entsprechenden Teilraum von Ek ist. Die
Eigenràume Ek werden so in eine direkte Summe von Eigenrâumen zu ir-
reduziblen Darstellungen aufgespalten: Ek=©xE^ (eine irreduzible Darstellung
kann mehrfach auftreten!) Huber hat in [4] gezeigt, dass auf dièse Weise aile

1 Die Eigenfunktionen sind i.a. komplexwertig. Fur die Auswertung von Randwertproblemen
betrachten wir jeweils Real- oder Imaginârteil oder eine reellwertige Linearkombination komplexer
Funktionen.



Ueber den ersten Eigenwert des Laplace-Operators

c (RS)
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G, (T) b
d (R3S)

a (S)

Abb. 4. (Ausschnitt aus Abb. 3)

irreduziblen Darstellungen von I in der Gesamtheit aller Eigenrâume beliebig oft
auftreten.

Im folgenden wird zuerst diejenige Darstellung bestimmt, die im ersten
Eigenraum der Flâchen F* auftritt und anschliessend deren kleinsten Eigenwert
abgeschâtzt.

Betrachten wir zuerst die zweidimensionalen Darstellungen p+ und p~. Seien

ex und e2 Eigenfunktionen aus E£+, die bezùglich der Darstellung p+ eine
kanonische Darstellung bilden. Man rechnet leicht nach, dass die Funktion
u et + ie2 die Bedingungen

(RS)*u u, (R2S)*u -u, T*u m

erfùllen. Damit sind Re u und Im u Lôsungen des Randwertproblems II
(Abb. 5).

In jedem Eigenraum zur Darstellung p~ flndet man eine Eigenfunktion u mit
T*u -m, d.h. zusâtzlich u \ s-Achse 0 (Abb. 5) als verschàrfende Randbeding-
ung und demzufolge grôsseren Eigenwerten. Damit tritt die Darstellung çT sicher
nicht auf im ersten Eigenraum.

Nun zu den eindimensionalen Darstellungen p±=fc±. Die Isometrien S, T, RS,
R3S sind Spiegelungen an a, b, c, d (vgl. Abb. 3 und 4). Eine réelle Eigenfunktion

/ aus einem Teilraum Ep zu einer eindimensionalen Darstellung p erfùllt die
Randbedingungen ouion 0 oder u 0 an den Rândern von G^, jenachdem ob
die Darstellung der zugehôrigen Isometrie +1 oder -1 ist: zB: p(S) -l—&gt;fe
Ep:S*f(z) -f(z), /|a=0. So erfullen die Eigenfunktionen zu den eindimensionalen

Darstellungen spezielle Randwertprobleme von G^.

Abb. 5. Randwertproblem II
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Die Eigenwerte aller von eindimensionalen Darstellungen herrûhrenden
Randwertprobleme ausser dem zu p++_ sind &gt;^ fur beliebiges jul, weil sie zu
Eigenfunktionen gehôren, fur die mindestens ein Nullstellenbereich N auf der
Flâche F* nur ein- oder zweifachzusammenhàngend ist. Der Eigenwert ist dann
auch Eigenwert des abgeschlossenen Nullstellenbereichs N, aufgefasst als feste
Membran, und deren Eigenwerte sind bekanntlich grôsser als \ (Spezialfall von
Lemma 1 in [2] fur zeifachzusammenhàngende Gebiete, Beweis vôllig analog fur
zweifachzusammenhângende Gebiete: man nehme Parallelstreifen in der Ueber-
lagerung anstelle einer Kreisscheibe, Zylinderkoordinaten anstelle von Polarkoor-
dinaten).

Wenn wir gezeigt haben, dass auch die Eigenwerte zum Randwertproblem II
aile &gt;\ sind, haben wir die Behauptungen von (A) auf solche des Randwertprob-
lems I (Abb. 6) zuruckgefûhrt.

Um zu zeigen, dass auch die Eigenwerte des Randwertproblems II &gt;\ sind,
schâtzen wir den Rayleigh-Quotienten einer Eigenfunktion / aus dem ersten
Eigenraum auf H^ ab (vgl. Abb. 5):

f |grad f\2 dF f
°

f |grad f\2 Cos s - ds - dt
v ii _ hi^ h h

[ \f\2dF f
° fS |/|2Cossdsdr

i*0
rs(t&gt; /SA2 fs(t)
I (-M Coss • ds • dt I |/s|2Coss • ds

fto°f«(t) Inf TIÔÔ
I I |/|2 Cos s -ds-dt tG(Oto)j |/|2Cossds

[ |Fs|2Cossds | °|Fs|2Coss - ds

^ Inf Min -7-77; ^ Min -7 &gt;z
te(0to)FeC2(0,s(t)) \ ,o FgC2(O so) fso

f&lt;o)«o I |F|2 Cos s • ds f(o)=o I |F|2 Cos s • ds

gemâss nachfolgendem Lemma fur Sinso 8/7r, d.h. sicher fur jul&lt;1

(Sin s0 Cos jul/8 • V2 Cos jul/4&lt; 8/tt fur jll &lt; 1).

2.3. Randwertproblem I. 7mt irreduziblen Darstellung p+ gehôrt folgendes
Randwertproblem (Abb. 6):

\ R

R

Abb 6 Randwertproblem I Sin R&apos; Ctg jx/8, Sin R (V2 Sm fx/8)&quot;1 (S^ grosster in G^ enthaltener
Parallelhalbstreifen)
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Zur Abschàtzung des ersten Eigenwertes benôtigen wir das folgende

LEMMA. Fur R&gt;0 sei kR der erste Eigenwert des Problems

(Coss&apos;v&apos;y + KCoss-v=0 mit i&gt;(0) 0, v&apos;(R) 0,

Behauptung.

Sin R

Beweis. Sei v die erste Eigenfunktion zu obigem Problem und v

w • arctg(Sin s), w erfûllt dann die Gleichung

Coss • w&quot;+(Sins+ ——-) • w&apos; + ACoss • w 0
\ arctg(Sins)/

und w&apos;(0) 0 (w(0)&gt;0). v ist als erste Eigenfunktion zu obigem Problem mono-
ton wachsend in (0, JR), insbesondere v^ 0 in (0, JR). w is monoton fallend bis zur
ersten Nullstelle (w&apos; 0-&gt; w&quot;&lt;0), also wegen v^Q in (0, R) insbesondere in
(0, R). Aus der Difïerentialgleichung und den Randbedingungen fur v folgt
unmittelbar

•R

t/(0) ÀR I Cos s • v(s) ds

und

fR
w(0) kR Cos s • arctg (Sin s) • w(s) • ds

fR
^ ÀR Cos s • arctg (Sin s) • w(0) • ds

Aufgelôst nach ÀR erhalten wir die Behauptung. qed.
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Jetzt beweisen wir folgenden

SATZ.

fur vî

(ii) lim ——-r ir2. (erste Behauptung von (A))

Beweis. Sei u die erste Eigenfunktion zum Randwertproblem I und die
Konstante c so gewâhlt, dass u c + ux und JG^ t^ dF 0 ist. Dann gilt:

f |grad u\2 dF= f |grad ut\2 dF^\ f \ut\2 dF,
Jg^ Jg^ Jg^

weil der erste Eigenwert des Neumannschen Randwertproblems auf G^ grôsser
als \ ist.(2) Andrerseits ist nach vorstehendem Lemma (S^: vgl. Abb. 6):

f f |grad u\2 dF^\Rl \u\2 dF

(1 M&gt;*F-2\c\J[^l
und damit

IL kl2 dF-: ldF1
| IcP
JG^

|Ml|2 dF

&apos;dF

f |c|2dF+f
•&apos;G,. JGU

2Hebt man die zugehôrige Eigenfunktion auf FM als Ueberlagerung von G^ so stellt man fest, dass
wiederum mindestens ein ein- oder zweifachzusammenhângender Nullstellenbereich auftritt und (wie schon in
2.2) der Eigenwert deshalb grôsser als \ ist.
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Ueber c1 $G^\ui\2 dF wissen wir nichts. Die Tatsache, dass der erste Term
monoton fallend und der zweite monoton wachsend in cx ist (vgl. Abb. 7), erlaubt
folgende entscheidende Vereinfachung:

Fur aile cx&gt;0 gilt:

|c|2dF+d f |c|2 dF+cx

Fur cx 8&gt;/2/it Sin |m/8 • \c\2 • Js 1 dF erhalten wir:

2V2O. /x

ldF

il dF 1 dF eingesetzt ergibt:

8

7T

Daraus folgt unmittelbar die Behauptung (i).
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Die Vergleichsfunktion 1; arctg Sin t (Koordinaten s und t vgl. Abb. 5, t:
Abstand von der s-Achse) im Rayleigh-Quotienten von G^ eingesetzt, ergibt:

j |gradu| dF

dF

8 Jo Cos

~ Cos r(arctg Sin f)2 dt 4- (arctg Sin R)2

-arctgSin Rf

~ (Sin R (arctg Sin R)2 - 2(arctg Sin R) In Cos R) + (arctg Sin R)2 (7 - £ Sin JR
8 \4 8

^-^(l + jutln-) fur fi^l.
77 V jUl/

qed(ii)

Obiger Ausdruck ist fur /m ^ 1 immer &lt;| (zweite Behauptung von (A)). Der erste

Eigenwert einer Membran ist immer einfach (keine Nodallinien im Innern). Auf
die Flâche F* ùbertragen ergibt dies die vierte Behauptung von (A). Aus der
Abschâtzung in 2.2 und der vierten Behauptung folgt schliesslich die dritte
Behauptung. Damit ist (A) vollstândig bewiesen.

3. Zu den Aussagen (B), (C) und (D).

Die Behauptungen (B), (C) und (D) werden im Rahmen dieser Arbeit nicht
ausfùhrlich bewiesen, weil dies schon in [6] getan worden ist. Im folgenden
werden darum nur die wichtigsten Ideen kurz skizziert.

Die Aussagen (B) ùber die in 1.2 beschrieben Flâchen FR erhâlt man analog
denen in (A). Die Beweise sind etwas langer und komplizierter, weil die Isome-

triegruppen dieser Flâchen komplizierter sind. Die verschârften Aussagen ùber die
Flâche F2 erfordern feine Methoden zur numerischen Abschâtzung eines speziel-
len Randwertproblems.
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Die Behauptung (D) beruht im wesentlichen auf den Tatsachen, dass erstens

jede Geodàtische auf einer hyperelliptischen Flâche, die durch zwei Weier-
strasspunkte geht, geschlossen ist und darum die Kreise mit Radius lo/4 um die
Weierstrasspunkte eine nicht ùberlappende Kreisbelegung der Flàche bilden, und
zweitens den Sâtzen von Fejes-Toth [3] ùber Kreisbelegungen in der hyperboli-
schen Ebene.

Bloch hat in [1] den ersten Eigenwert des Laplace-Operators A in

Abhângigkeit von Geschlecht und Lange der kiïrzesten geschlossenen
Geodâtischen abgeschàtzt. (D) eingesetzt in seine Abschâtzungen und die Unter-
suchungen ùber F2 ergeben (C).
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