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Ueber den ersten Eigenwert des Laplace-Operators auf ausgewahl-
ten Beispielen kompakter Riemannscher Flachen

FELIX JENNI

1. Einleitung

1.1. Zu >0 betrachten wir das hyperbolische Spitzeck G, mit dem spitzen
Winkel /4 und einer Seite der Lange u/8 (Abb. 1).

%
G. (w8 c.J1dF=m/4
bk /4 ¥

Abb. 1

Aus 16 Exemplaren dieses Spitzecks erhalten wir durch geschickte Verheftung
eine kompakte randlose Riemannsche Fliche F* vom Geschlecht 2 (Abb. 2).

=

Abb. 2

L(70)=p

Yo ist fiir w <u*=1,83... die kiirzeste geschlossene Geodatische der Flache F*.
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194 FELIX JENNI

Ueber das Spektrum des Laplace-Operators A auf den Flichen F" zeigen wir

. B,
ANED T
M(F*) <3 ir <1

(F*)<jy f K (A)
A (F*)>5 fiur w>0

dim E)\I(F“) = 1 fur L < 1.

Obige Behauptung (A) wird im zeiten Abschnitt ausfiihrlich bewiesen. Nach-
stehend werden noch analoge Resultate aus der Dissertation [6] vorgestellt, aber
aus Platzgriinden hier nicht bewiesen (Beweise vgl. [6]).

1.2. Zu g =2 betrachten wir diejenige kompakte Riemannsche Flache F,, die wir
erhalten, wenn wir die gegeniiberliegenden Seiten des regelmissigen hyperboli-
schen 4g — Ecks mit Winkeln m/4g verheften. Fir das Spektrum des Laplace-
Operators A auf den Flachen F, erhalt man

lim g - A (F,)=2
g—>oo

M(E) <3 iir g=20
)\1(1:2) >3
dim E, (g, =2 fur g=20.
Genauere Untersuchung der Fliche F, bringt die Verschdrfungen
3,83<A,(F,)<3,85
dim E)‘l(Fz) =3,
und eine gute Abschdtzung fiir A= SUpg o=z A1(F):
3,83<A,<4,81. ©

Dieses allgemeine Resultat ist eine Erganzung und Verbesserung des Resultates
von Huber [5]: A,<5,2. Der Beweis von (C) stiitzt sich wesentlich auf die
nachfolgende Abschatzung der Liange [, der kiirzesten geschlossenen
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Geodatischen hyperelliptischer Flachen:

1
Ly(g)= sup [yW(F)=4-ArCos <5,107. (D)
F hyperell. . 77'(8 + 1)
g(F)=g 2 sin ————
12g

Gleichheit gilt fiir g=2 und g =5.

2. Beweis von (A)

Wir bendtigen dazu die Isometriegruppe I der Flachenschar F* (2.1). Die
Moglichkeit zu entscheiden, welche irreduzible Darstellung von I im ersten
Eigenraum E, auftritt (2.2), reduziert die Betrachtungen iiber den ersten Eigen-
wert A,(F*") auf die Abschitzung des ersten Eigenwertes eines gemischten Rand-
wertproblems von G, (2.3).

2.1. Die Isometriegruppe und deren irreduzible Darstellungen. Die Translation R
lings v, um w/4 und die Spiegelungen S und T an vy, bzw. vy, (vgl. Abb. 3) sind
offensichtlich Isometrien der Flichen F“. Die Isometrie J = R? lasst die Punkte
P,, ..., P, fest. P,,..., P sind somit die Weierstrasspunkte von F* (vgl. [7]).
Die Isometrien R, S und T sind sogar Eerzeugende der ganzen Isometriegruppe I,
weil $ie schon die grosstmogliche Untergruppe der Permutationen der Weier-
strasspunkte und J = R? erzeugen. Wir erhalten: Die Diedergruppe Dg wird
erzeugt von R und S mit den Relationen R*=S?= RSRS =id. Die ganze
Isometriegruppe I lasst sich schreiben in der Form I = Dgx{id, T} T erfiillt die
Relationen T?=id, RT=TR und ST=TS.

Abb. 3
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Die Gruppe I besitzt 2 zweidimensionale und 8 eindimensionale Darstellungen:

- ) re-( ) o))

paBy(R) =aQ, paﬂ‘y (S) = B9 paBy(T) =Y a, Ba Y € {_1, 1}

Wir schreiben anstelle von +1 jeweils nur die Vorzeichenkombinationen: p, . .,
Pii—s--. €LC.

2.2. Darstellungen der Isometriegruppe im ersten Eigenraum. Alle Isometrien ¢
aus der Isometriegruppe I der Fliachen F" vertauschen mit dem Laplace-

Operator A. Zu jeder Isometrie @ €I erhalten wir daher eine lineare, bijektive
Abbildung &*

d*: u—uo-d, ue EY

des k-ten Eigenraumes E, auf sich. Zu einer beliebigen aber festen Basis
{€;}i=1...a von E, existiert somit eine regulire d, X d,-Matrix Ag mit

€ € €
O*:l i || i D=

€4, €4, €4,
Die Abbildung p: P — Ay, @I ist eine Darstellung von I im Eigenraum E;
beziiglich der Basis {¢;}. Der Ausreduzierung dieser Darstellung entspricht eine
Basistransformation in E,. Sei nun {¢;} eine spezielle Basis von E, in dem Sinne,

dass die Darstellung p: @ — Ay vermoge dieser Basis in lauter irreduzible Kom-
ponenten zerfillt:

Agp=@® B, wobei p;:®— B§

eine irreduzible Darstellung von I im entsprechenden Teilraum von E; ist. Die
Eigenrdume E, werden so in eine direkte Summe von Eigenrdumen zu ir-
reduziblen Darstellungen aufgespalten: E; =@®,E% (eine irreduzible Darstellung
kann mehrfach auftreten!) Huber hat in [4] gezeigt, dass auf diese Weise alle

! Die Eigenfunktionen sind i.a. komplexwertig. Fiir die Auswertung von Randwertproblemen
betrachten wir jeweils Real- oder Imaginirteil oder eine reellwertige Linearkombination komplexer
Funktionen.
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¢ __(Rs)
G,:(T) b Cy

d (R%)

a  (S)
Abb. 4. (Ausschnitt aus Abb. 3)

irreduziblen Darstellungen von I in der Gesamtheit aller Eigenrdume beliebig oft
auftreten.

Im folgenden wird zuerst diejenige Darstellung bestimmt, die im ersten
Eigenraum der Flichen F" auftritt und anschliessend deren kleinsten Eigenwert
abgeschatzt.

Betrachten wir zuerst die zweidimensionalen Darstellungen p* und p~. Seien
e, und e, Eigenfunktionen aus E%’, die beziiglich der Darstellung p* eine
kanonische Darstellung bilden. Man rechnet leicht nach, dass die Funktion
u = e, +ie, die Bedingungen

(RS)*u=u, (R%2S)*u = —u, T*u=u

erfilllen. Damit sind Reu und Imu Losungen des Randwertproblems II
(Abb. 5).

In jedem Eigenraum zur Darstellung p~ findet man eine Eigenfunktion u mit
T*u = —u, d.h. zusitzlich u | s-Achse =0 (Abb. 5) als verschiarfende Randbeding-
ung und demzufolge grosseren Eigenwerten. Damit tritt die Darstellung p~ sicher
nicht auf im ersten Eigenraum.

Nun zu den eindimensionalen Darstellungen p. ... Die Isometrien S, T, RS,
RS sind Spiegelungen an a, b, ¢, d (vgl. Abb. 3 und 4). Eine reelle Eigenfunk-
tion f aus einem Teilraum E® zu einer eindimensionalen Darstellung p erfiillt die
Randbedingungen 8u/én =0 oder u =0 an den Réndern von G,, jenachdem ob
die Darstellung der zugehorigen Isometrie +1 oder —1 ist: zB: p(S)=—1— fe
E°:S*f(z)=—f(2), fl.=0. So erfiillen die Eigenfunktionen zu den eindimen-
sionalen Darstellungen spezielle Randwertprobleme von G,,.

(RS)
3 — =
G, (R°S) u=0
(1) H, -
0 ' éo AS) i Q_L-_‘. =0
(R3S) g

Abb. 5. Randwertproblem II
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Die Eigenwerte aller von eindimensionalen Darstellungen herrithrenden
Randwertprobleme ausser dem zu p,._ sind >} fiir beliebiges u, weil sie zu
Eigenfunktionen gehoren, fiir die mindestens ein Nullstellenbereich N auf der
Fliche F* nur ein- oder zweifachzusammenhangend ist. Der Eigenwert ist dann
auch Eigenwert des abgeschlossenen Nullstellenbereichs N, aufgefasst als feste
Membran, und deren Eigenwerte sind bekanntlich grosser als 3 (Spezialfall von
Lemma 1 in [2] fiir zeifachzusammenhangende Gebiete, Beweis vollig analog fiir
zweifachzusammenhingende Gebiete: man nehme Parallelstreifen in der Ueber-
lagerung anstelle einer Kreisscheibe, Zylinderkoordinaten anstelle von Polarkoor-
dinaten).

Wenn wir gezeigt haben, dass auch die Eigenwerte zum Randwertproblem II
alle >} sind, haben wir die Behauptungen von (A) auf solche des Randwertprob-
lems I (Abb. 6) zuriickgefiihrt.

Um zu zeigen, dass auch die Eigenwerte des Randwertproblems II >3 sind,
schatzen wir den Rayleigh-Quotienten einer Eigenfunktion f aus dem ersten
Eigenraum auf H, ab (vgl. Abb. 5):

ty s
J |grad f|* dF J L lgrad f|> Cos s - ds - dt
AII: H,, — 0

to s
J |f|*> dF J j |f|> Cos s - ds - dt
H, 0 Y0

t, s® Sh\2
j J (——f) Coss-ds-dt
% % os
|

s(t)
j |f.|*> Cos s - ds
) Inf Os(t)
j |f2Coss - ds-dt ‘<% I |f|> Cos s - ds
0

0

v

s(t) Sq
J |F.|> Cos s - ds J |F,|*Cos s - ds
0 0

= Inf  Min o = Min — >
te(0, t)) FeCX0,s(t)) [ " FeC?(0,s0) [0
F(0)=0 |F|*Coss -ds  F@®=0 |F|* Cos s - ds
0 (4]

gemass nachfolgendem Lemma fiir Sins,=8/w, d.h. sicher fir p<1
(Sin so=Cos /8 - V2 Cos u/4<8/m fir u<1).

2.3. Randwertproblem I. Zur irreduziblen Darstellung p™ gehort folgendes Rand-
wertproblem (Abb. 6):

=) =—u=0
L et Z
G = r = du
[T e = — e T
= = 70

Y
Abb. 6. Randwertproblem I. Sin R’ = Ctg /8; Sin R = (v2 Sin n/8) 1. (S,.: grosster in G, enthaltener
Parallelhalbstreifen)
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Zur Abschitzung des ersten Eigenwertes benotigen wir das folgende

LEMMA. Fiir R>0 sei AR der erste Eigenwert des Problems
(Coss-v)Y+ACoss-v=0 mit v(0)=0, v (R)=0, ((©'(0)>0)

Behauptung.

)\RZ___z_____
~mw-Sin R

Beweis. Sei v die erste FEigenfunktion zu obigem Problem und v=
w - arctg(Sin s). w erfillt dann die Gleichung

Coss-w"+(Sins+ )-w'+ACoss-w=()

arctg (Sin s)

und w'(0) =0 (w(0)>0). v ist als erste Eigenfunktion zu obigem Problem mono-
ton wachsend in (0, R), insbesondere v# 0 in (0, R). w is monoton fallend bis zur
ersten Nullstelle (w' =0— w"<0), also wegen v#0 in (0, R) insbesondere in

(0, R). Aus der Differentialgleichung und den Randbedingungen fiir v folgt
unmittelbar

v'(0) = ARJ Cos s - v(s) ds

0
und

R

w(0) = )\RI Cos s - arctg (Sin s) - w(s) - ds

0

R
é)\RL Cos s - arctg (Sin s) - w(0) - ds

=w(0) - ARgsm R

Aufgelost nach AR erhalten wir die Behauptung. qed.
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Jetzt beweisen wir folgenden

SATZ.
: 1-2 .
O aE9zd I g
T 21
1+2H
5
e qe v s
(i1) i{no NE) w*. (erste Behauptung von (A))

Beweis. Sei u die erste Eigenfunktion zum Randwertproblem I und die
Konstante ¢ so gewihlt, dass u=c+u; und |5 u, dF =0 ist. Dann gilt:

j |grad u|* dF = J lgrad u,|? dFé%J |u,|? dF,
G, G, G,

weil der erste Eigenwert des Neumannschen Randwertproblems auf G,, grosser
als 3 ist.” Andrerseits ist nach vorstehendem Lemma (S, : vgl. Abb. 6):

L lgrad u|? dFéL lgrad u|> dF = ;\RL |ul® dF

» " (3

;AR( L Il dF -2 - L el 1w dF)

» [

= AR (L (el dF—2]c| - \/L 1 dF - L“ i dF)
AR(L lc]? dF—2]c| - \/L 1 dF - L.. i dF)

L \c]? dF + L i dF

w u

und damit

A(F*)=Max

b4

b [l ar
G,

I3

j P dF + j \u,? dF
G, G

[

?Hebt man die zugehérige Eigenfunktion auf F* als Ueberlagerung von G, so stellt man fest, dass
wiederum mindestens ein ein- oder zweifachzusammenhingender Nullstellenbereich auftritt und (wie schon in
2.2) der Eigenwert deshalb grosser als } ist.
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Ueber ¢; =g, |u,|* dF wissen wir nichts. Die Tatsache, dass der erste Term
monoton fallend und der zweite monoton wachsend in ¢, ist (vgl. Abb. 7), erlaubt
folgende entscheidende Vereinfachung:

[

Fiir alle ¢, >0 gilt:

)\R(L lclzdF~2|c|\/ L 1dF-c1)

ic
A (F*)=Min : A , St
J |c|* dF + ¢, j |c|* dF +c,
G G,

"

Fiir ¢; =8v2/w Sin /8 - |c[>- §s, 1 dF erhalten wir:

?-?slng(j |c|* dF — 2|c|\/L 1dF————Sm lclzLuldF)

AM(FM)= .
lc \2dF+8‘/_ \ PI 1dF
‘G,
J | dF=—=H 1 dF eingesetzt ergibt:
S 22 Sin% “Gu
1—4\/2—‘17— sm‘—g
Al(Fu)ng- Z
1+-£
r

Daraus folgt unmittelbar die Behauptung (i).



202 FELIX JENNI

Die Vergleichsfunktion v = arctg Sint (Koordinaten s und t vgl. Abb. 5, t:
Abstand von der s-Achse) im Rayleigh-Quotienten von G, eingesetzt, ergibt:

|grad v|* dF
A (Fr)y ="t
j o] dF

s

-
1

e L dt

8 Cos't

= R
% J Cos t(arctg Sin t)* dt + j (arctg Sin R)? dF
0 G

u«su-

A

% arctg Sin R’

IA

—g (Sin R(arctg Sin R)*—2(arctg Sin R) In Cos R) + (arctg Sin R)? (7—7 ~Esin R)

48
w(m n
—_— — e t i,
8(2 archgs)

(T _ in & 2_&(17_ ( &)) ( ___1_>
4(2 arctg («/i Sin 8)) 3 \o arctg s/ESmS In 1+2$in2 /8
"

3
§—2(1+uln—) fir u=1. qed (ii)
0 ®

A

Obiger Ausdruck ist fiir w =1 immer <j (zweite Behauptung von (A)). Der erste
Eigenwert einer Membran ist immer einfach (keine Nodallinien im Innern). Auf
die Flache F* ubertragen ergibt dies die vierte Behauptung von (A). Aus der
Abschitzung in 2.2 und der vierten Behauptung folgt schliesslich die dritte
Behauptung. Damit ist (A) vollstindig bewiesen.

3. Zu den Aussagen (B), (C) und (D).

Die Behauptungen (B), (C) und (D) werden im Rahmen dieser Arbeit nicht
ausfiihrlich bewiesen, weil dies schon in [6] getan worden ist. Im folgenden
werden darum nur die wichtigsten Ideen kurz skizziert.

Die Aussagen (B) iiber die in 1.2 beschrieben Flichen F, erhdlt man analog
denen in (A). Die Beweise sind etwas langer und komplizierter, weil die Isome-
triegruppen dieser Flachen komplizierter sind. Die verscharften Aussagen iber die
Flache F, erfordern feine Methoden zur numerischen Abschitzung eines speziel-
len Randwertproblems.
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Die Behauptung (D) beruht im wesentlichen auf den Tatsachen, dass erstens
jede Geodatische auf einer hyperelliptischen Flache, die durch zwei Weier-
strasspunkte geht, geschlossen ist und darum die Kreise mit Radius [,/4 um die
Weierstrasspunkte eine nicht tiberlappende Kreisbelegung der Flache bilden, und

zweitens den Sitzen von Fejes-Toth [3] tiber Kreisbelegungen in der hyperboli-
schen Ebene.

Bloch hat in [1] den ersten Eigenwert des Laplace-Operators A in
Abhangigkeit von Geschlecht und Lange der kiirzesten geschlossenen
Geodatischen abgeschitzt. (D) eingesetzt in seine Abschatzungen und die Unter-
suchungen iiber F, ergeben (C).
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