Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 59 (1984)

Artikel: A sharp four dimensional isoperimetric inequality.
Autor: Croke, Christopher B.

DOl: https://doi.org/10.5169/seals-45390

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-45390
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici §9 (1984) 187-192 0010-2571/84/020187-06$01.50 + 0.20/0
© 1984 Birkhauser Verlag, Basel

A sharp four dimensional isoperimetric inequality

CHRISTOPHER B. CROKE®

Introduction

Let (M, 0M) be a compact n-dimensional Riemannian manifold (with bound-
ary) of non positive sectional curvature. Assume further that every geodesic ray in
M minimizes length up to the point it hits the boundary. In this paper we show:

THEOREM. If (M,oM) is as above (n=3) then Vol(@M)"=
C(n) Vol (M)"! where

an—1)"!

/2 n—2
aln— 2)"“2{‘[ cos ()" 2 sin (1)" 2 dt}
(

)

C(n)=

and a(n) represents the volume of the unit n sphere. If n# 4 equality never holds. If
n =4 equality holds if and only if M is isometric to a flat ball.

This answers a long standing conjecture in dimension 4. The conjecture states
that for (M, dM) a compact domain in a complete simply connected manifold of
non-positive curvature (which implies the condition of the theorem) we have
Vol (dM)" = C(n) Vol (M)™ ' for C(n)=n""'a(n—1), with equality holding if
and only if M is isometric to a flat ball. It is an easy computation to see that
C(4) = C(4). The conjecture was proved in dimension 2 by Beckenbach and Rad6
(see [B-R]) in 1933, and is open in all dimensions except 2, and now 4.

This conjecture is a special case of a more general conjecture (see [A]) where
an upper bound K (not necessarily 0) on the curvature is assumed. The more
general conjecture was proved in dimension 2 by Aubin (see [A]), and for
constant curvature in all dimensions by Schmidt (see [Sc]).

The isoperimetric constants are related to Sobolev constants (see [A], [Bo],
and [FF] among other). In particular we see that for a domain D in a simply

* Supported by NSF Grant #MCS-01780
187



188 CHRISTOPHER B. CROKE

connected n-dimensional Riemannian manifold of non-positive curvature and for
any g€ Hy(M) we have

L ldgll= C(n){L Igl"/"—l}(""“’"

where C(4) is the flat constant.

Such isoperimetric inequalities are interesting even with non-sharp constants.
Previous non-sharp versions of the theorem are consequences of results in [H-S]
and [C]. The constants C(n) given here are the best known to the author in all
dimensions (greater than 2). In particular C(3) =327 while C(3) =36r.

Notation and definitions

We will use the notation of [C]. Let UM 35 M represent the unit sphere
bundle with the canonical (local product) measure. For ve UM, let vy, be the
geodesic with vy (0)=v and let ¢(v) represent the geodesic flow (i.e. &'(v)=
vi(t)). For ve UM we let l(v)=max{t|vy,(t)e M}. Note &' (v) is defined for
t=I(v) and vy, (l(v))eoM.

For peoM let N, be the inwardly pointing unit normal vector to dM at p. Let
U'dM > oM be the bundle of inwardly pointing unit vectors (i.e. U'dM =
{ue UM | w(u)edM and (u, N,.,)>0}). We let U,doM represent = '(p). For
ue UoM we will use cos (u) to represent {u, N..(.)). The measure on U dM is
the local product measure du where the measure of the fibre is that of the unit
upper hemisphere.

The proof

The main tool in the proof is a formula due to Santalo:

I(w)
(i)j f(v)dv=f j F(& () cos (u) dt du
UM U*aM

0

for all integrable functions f. The formula takes this form in our case since all
geodesics in M hit M. For a proof see [Sa] pp. 336-338 or [B] p. 286.
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From this we derive:

LEMMA 1. a) Vol (M) =1/a(n—1) {-sm () cos (u) du
b) For all integrable functions g

J' g(u) cos (u) du = I g(ant (u)) cos (u) du
U*oM U

*aM

where ant (u) = —v.,(I(u)).

Proof. Part a) follows directly from (i) by letting f(v)=1 and integrating the t.
That is

a(n—1) Vol (M) = J

UM

1(w)
dv = j J' cos(u) dtdu = I I(u) cos (u) du.
U+aM Jo

U*aM

To prove part b) we first note that (i) says that the geodesic flow £ is a measure
preserving map from Q to UM where Q ={(u, t) |ue U*8M and 0=t =<1(u)} is
given the measure cos (1) dt du. ¢ has an inverse (smooth almost everywhere) £*
which is also measure preserving, for ve UM ¢ '(v) = (—y~,(I(-v)), [(—v)). Since
the antipodal map —1: UM — UM is also measure preserving we have £ 'o(—1)o
£:Q — Q is measure preserving. Since £ to(—1)o&(u, t) = (ant (u), l(u)—t) we see
that for every integrable G:Q — R we have:

l(w)
J j G(u, t) cos (u) dtdu = J
U*aM Y0

L)
j G(ant (u), l(u)—1t) cos (u) dt du
U*oM Y0
To complete the proof of part b) simply take G(u, t) = g(u)/l(u) and integrate
the t (note: l(ant u) = l(u)).

LEMMA 2. a) [y-am l(u)" Y/cos (ant u) du =Vol (3M)? with equality holding
if and only if M is flat and convex.

b) §uam (cos (ant u))"%(cos (u))" "2 du = Vol (M) - C,(n) where C,(n)=
a(n—2) 7% cos™™ 2 (t) sin" 2 (t) dt. Equality holds if and only if cos(u)=
cos (ant u) almost everywhere.

Remark. ‘“almost everywhere’ above can be replaced with “everywhere” but
it is not worth going into.
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Proof. Let dx be the volume form on M and dp the volume form on dM. Let
q€dM. In normal polar coordinates (u, r) about q in the region Exp{tu|ue
U, oM and 0=t =1(u)} we have dx = F(u, r) du dr for some function F(u,r). Let
A=Exp{tu|t=1(u)}. Then AcoM and dp on A is precisely
(F(u, l(u))/cos (ant u)) du. Thus we see

J F(u, l(u))
U,

du =Vol (A)=Vol (6M).
am COS (ant u)

Equality holds if and only if A =0M. That is, M is (geodesically) star shaped
from q.
Integrating over q we get

J F(u, l(uw))
U

du =Vol (6M)?
cam COS (ant u)

with equality holding if and only if M is convex. Part a) now follows since M
having non-positive curvature implies F(u, [(u))=[(u)" ' with equality if and only
if the sectional curvatures of all sections containing +y/(t) for some ¢, are 0 (see
[B-C] Section 11.10).

To prove part b) we apply a Schwarz inequality and Lemma 1b.

I (cos (ant u))*2(cos (u))" V"2 du

= J (cos (ant u))"" *(cos (u))*" 2 cos (u) du
U*aM

1/2

< {J’U+6M (cos (ant u))*™ 2 cos (u)du}l/2 . {LwM (cos (u)*™ 2 cos (u) du}

= an (cos (u))"" 2 du = J;M (L*am (cos (u)V"2 du) dq

=Vol (6M) - C,(n)

In order for equality to hold we need to have equality in the inequality, i.e.
cos (ant u) = K cos (u) almost everywhere for some constant K. Since the max-
imum values of both cos (ant u) and cos (u) are 1 it is clear that K must be 1.
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Proof of the theorem. By Lemma la and a Holder inequality we have

1

aln— 1) JUutomMm

B 1 ( I(u)
“a(n—1) Jyom (cos (ant u)

= a(nl— 1) {an (—:gls(—b(ia)ljn—;—]u_) du}”n_l

] s antuyeos o]

Vol (M) =

[(u) cos (u) du

)Un_l(cos(anttd)”"“cos(u)du

Applying Lemmas 2a and 2b we get

Vol (M) = (Vol (0M))¥"~1 - (Vol (aM))" 2"~ 1Cy(n)"~2/n1,
a(n—1)
hence
C(n) Vol (M =2V (o1 (M) =(Vol (M)
Cz(")n

In order for equality to hold we must have equality in Lemmas 2a and 2b as
well as the above Holder inequality. By Lemma 2a we see that M must be flat and
hence the theorem follows from the classical result in R", since C(4) is sharp and
C(n) for n#4 is not. One can also see the n =4 case directly. Equality in the
Holder inequality gives

*(u)

—_ )3/2
cos (ant u)

= K cos (ant u)"? cos (u

almost everywhere for some constant K. By the equality condition in Lemma 2b
we see [(u) =2r cos (u) for some constant r. It is now easy to see (since M is flat)
that M is a ball of radius r.

Remark. A similar equality analysis for n# 4 would require:
1) M flat and convex
2) cos (ant u) = cos (u)
3) l(u)= K cos®’" 2 (u).
No such M exists.
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