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Relative cohomology of groups

NATHAN HABEGGER, VAUGHAN JONES,* OscAR PINO ORTiz and JOHN RATCLIFFE

§0. Introduction

If G is a group and A is a G-module, the cohomology groups H"(G, A) can
be interpreted either as the cohomology of the cochain complex C*(G, A) given
by the bar resolution (see [M]) or as equivalence classes of n-fold extensions. This
situation has reached perfection and is summarized in an historical note by
MacLane in [Ho]. If N is a normal subgroup of G and B is a submodule of A on
which N acts trivially (and hence B is a Q-module with Q = G/N), one may
define the relative cohomology groups H"(Q, G; B, A) as the cohomology of the
quotient complex C*(G, A)/C*(Q, B). In this paper we present another cochain
complex L*(G, N; B, A) whose cohomology is the relative cohomology but which
is more explicit than the quotient complex and which grew out of certain
“crossed” extensions which give an interpretation of the group H*(Q, G; B, A),
analogous to the n-fold extensions mentioned above.

A crossed extension is an exact sequence 1— A — C-% N — 1 together with
an action (g, ¢) — gc of G on C such that d(c)d =cdc™! for ¢,d € C and d(gc) =
gd(c)g™! for ge G, ceC. It follows that A is in the centre of C and that the
action of G induces the structure of a G-module on A. This idea goes back to
Whitehead ([W]) and was studied extensively in [H], [L], [O] and [R]. One may
define a sum of two crossed extensions and equivalence classes of such form a
group. It can be shown that this group is isomorphic to the second relative
cohomology group. One way to establish this isomorphism is to give a cocycle
description of crossed extensions. More precisely, if s: N — C is a section for 3,
define ag: NXN—> A and a;:NXG — A by

ao(n, m)=s(n)s(m)s(nm)*

oy (n, g) = s(n)(gs(g"'ng))™"

* Supported in part by NSF Grant #MCS 79-03041
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150 NATHAN HABEGGER ET AL.

One can easily show (see [R]) the following cocycle relations
(1) ag(m, s)—ag(nm, s)+ay(n, ms)—ay(n,m)=0
(2) gao(g™'ng, g7'mg) —ag(n, m) = a,(m, g)— a,(nm, g)+ay(n, g)

(3) gai(g7'ng, h)—ay(n, gh)+ay(n, g)=0
(4) a,(n, m)=ay(n, m)—ay(m, mnm)

The dependence of a, and «; on the section s gives natural coboundary
relations.

Crossed extensions arise naturally in algebraic topology and in the study of
group actions on algebras. In [J] it was shown that the above relations can be
interpreted as forming the beginning of a cochain complex derived from the
double complex C*(G, C*(N, A)). In [O], this complex L*(G, N; A) is defined in
all dimensions and even in the case where A is an arbitrary G-module. The pair
(e, @7) is then a 2-cocycle. Thus H*(L*(G, N; A)) classifies crossed extensions
when A is a Q-module. It was conjectured in [O] that the cohomology of
L*(G, N; A) is the same as the relative cohomology. The conjecture was proved
for H>. Also a “crossed module” formalism for arbitrary G-modules was worked
out in [O] and [CW]. Another version appears in [H].

In §4 of this paper we will show that L*(G, N; B, A) has the cohomology of
the quotient C*(G, A)/C*(Q, B), thus establishing the conjecture of [O]. As an
application, we immediately obtain the 8-term exact sequence of [H], [R], [L].

In §3 a spectral sequence converging to H*(Q, G; B, A) is given. For B =
{a | ga = a for all g € N} this has a small calculational advantage over the spectral
sequence of Hochschild-Serre [H-S] in that the bottom line has disappeared.

In §5 we give an example where results are easily obtained using the cocycle
relations of L* which are not obvious using C*(G, A)/C*(Q, B).

At this stage there is no “n-fold crossed extension’ theory for the relative
cohomology groups although some cases are treated in [O], and the third
cohomology relations for the complex L* do arise naturally in the study of
Connes’ invariant x(M) for von Neumann algebras (see [C]).

§1. Shuffies and partial shuffies

Let o be a permutation of {1,2,...,n}. For a group G we define a map
l,:G"—>G" by l,(g,...,8)=(b1'asb,,..., b  a,b,) where a,q=g, bosy=
g8, - g, where i<j;<---<j are all the j,’s satisfying o(i)> o (ji). In words,
we move the variable g into the o (i)th position, and then conjugate g by the
product of those g, k > i, in their order, which are now in a position inferior to g;.
(Note that b, =1).
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EXAMPLE. (1) if o is the permutation (123) then

I, (g1, 22, 83) = (g3, 258183, €5 ' 8283)-

(2) if o is (132) then

(81, 825 83) = (82, €3, 83 '8 '818283)

(3) if o is (12) then
I,ol,(g, h)=1,(h,h " "gh)=(h"'gh, h~'g 'hgh)

Example (3) above shows that in general [ o[, # [,.,. However

PROPOSITION 0. Let o be a perumtation of {1,...,p+q} fixing the sets

{1,...,pHp+1,...,p+q} and let T be a permutation satisfying 7(i)<t(i+1) for
i#p. Then I ol,=1,.

Proof. Let  1,(81, .-, 8ps Cotts- s 8prq) =(X1s e ooy Xpy Xpts - - o> Xpag) X =
bi'ab. For p+1l=i=p+q we find in both Lol (g,...,8+,) and
lees(81, - . ., 8o+q) the variable x; in the 7(i)th place. However for 1=i=<p in
l.ol,(g) we find x; in the 7(i)th place conjugated by x,., - - - x,,, where r is the
maximum | satisfying 7(p+j)<7(i), whereas in [..,(g) we find x; in the 7(i)th
place conjugated by the product of the a,.; =g€,-1(,+1),1=<i=r, in their original
order. From the definition of the b,, we see, by induction, that these products are
identical.

DEFINITION. A permutation o is a partial shuffle of type (a, b, c,d), a+b+
c+d=nif

(1) o(i)=iforl=si=aora+b+c+l=i=n

2) o(i)<o(i+1)fora+l=<i=<a+b—-1lora+b+l=<i=a+b+c—-1
(In words, the sets {1,...,a{a+b+c+1,...,n} are left fixed, while the sets
{a+1,...,a+bHa+b+1,...,a+b+c} are shuffled).

A permutation is a 3-shuffle of type {(a, b, ¢), a+b+c=n, if o(i)<o(i+1) for
i#a, i#a+b.

PROPOSITION 1. (A) If o is of type (0, a, b, c) and 7 of type (0, a+b, c,0)
then o0 is of type (a, b, c). Any m of type {a, b, c) has a unique decomposition as
above. Furthermore 1., =1,°l,.
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(B) If o is of type (a, b, c,0) and 7 of type (0, a, b+c, 0) then o0 is of type
(a, b, c). Any m of type {a, b, c) has a unique decomposition as above. Furthermore
oo = Lol

Proof. The formula [, = [, © I, follows from Proposition 0. The rest is obvious.
Q.E.D.

Let G be a group, N a nomal subgroup. If we let X, Y, Z denote either G or
N then I(X*x YP**xZ)cX*x YP**xZ4 for o of type (a, b, c,d). Thus if
a:X*xYb*xZ4—>A is any map, A a Z-module, we may define
S(a,b,c,d)a:X*xXY?*xZ4— A by

S(a, b, c,d)a = Z (=D*laol | (=1)'=signature o.

o type
(a,b,c,d)

PROPOSITION 2. Let a: G™" — A. We have the formula

S(a, b, c,0)8(0,a,b+c,0a=S(0,a,b,c)S0,a+b,c 0

Proof. By Proposition 1 both sides are equal to

Y (Dol
n type
{a,b,c)

§2. Relative cohomology of groups

Let G be a group, N a normal subgroup. We write Q for the quotient G/N. If
A is any G-module we denote by AYN the submodule of elements fixed by N. AN
is a Q-module. Let B be a Q-submodule of AN,

We denote by C*(G; A) the complex of normalized cochains a : G" — A with
coboundary

da(gO, > sy gn) = gOa(gla RS gn)
+ Z (_1)ia(g0a e o0y gi~1gi’ e ey gn)
=1

+(-1)""a(go, - - - 8n-1)

The projection G — Q induces an inclusion of complexes C*(Q;B)c
C*(G; A). Let C*(Q, G; B, A) be the quotient complex.
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DEFINITION. The group H*(Q, G; B, A)=H*(C*(Q, G; B, A)) is called
the relative cohomology group. The associated long exact sequence

- — H*(Q, B) > H*(G,A) > H*(Q,G; B, A)— -
is called the fundamental long exact sequence.

Remark. We justify our use of the term “relative’.

If A is a triviall G module, and B=A, then H"(Q,G;B,A)=
H"*'(M,, BG; A) where M, is the mapping cylinder of the fibration p: BG —
BQ.

Proof. If C.(X, A)YC*(X, A)) denotes singular (co)chains then C*(G, A)=
C*(BG, A), C*(Q, A)=C*(BQ, A) so

C*(G, A) Hom, (C«(BG), A)
C*(Q, A) Hom, (C(BQ), A)

= Homy (ker py, A)

where 1 — ker py — C4(BG) AN C«(BQ) — 1 is exact. Finally, the suspension of
ker py is isomorphic to coker iy, where

1 —> Co(BG) —> Cy(M,) — coker ix— 1 is exact.

§3. A spectral sequence for relative cohomology

We review briefly parts of the fundamental paper of Hochschild and Serre [1]:
Regard C*(N,A) as a G-module by (gB)(ny,...,n)=gB(g 'ng,
g 'n.g). Then C*(G, C*(N, A)) is a double complex with coboundaries

s e ey

dNa(gl’ "y gr)(nOs R ] ns) = nOa(gh vy gr)(nh seey ns)

+ Z (_1)ia(g13 LR gr)(nO, NS CTCY (RN ns)
i=1

+(—l)s+1a(g1’ ceey gr)(n07 ve ey ns—l)
and

dGa(g(b ) gr)(nla sy ns) = gOa(gla ) gr)(galnlg()’ w = ey galnng)
+ Z (—1)ia(g03 cees 8i-18i-- - gr)(nb ) ns)
i=1

+(_1)r+1a(g0’ I gr—l)(nl’ ey ns)
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For reasons of convenience we will write a(n,,...,n,g;,...,8g,) in place of
a(gy,...,g)(ny, ..., 0.
Let T*(G,N; A)=®,_,-.C"(G, C*(N, A)) be the total complex associated
to the double complex with total differential dg +(—1)"*'dy on C*(G, C(N, A)).
We define a map |: C*(G, A)—> T*(G, N; A) by

l(a)=(a0, S ,an), ap, =S(0, q, p, O)QIqucn p+q = n.

Note in particular that a, =« and ay= ax-.

PROPOSITION 3. I:C*(G, A)— T*(G, N; A) is a map of complexes.

Proof. This is the ‘“general identity” of [H-S]. Q.E.D.

Define a filtration R, of C*(G, A) where a€R, if a(hy,...,h, g1, ...,8)
depends only on the h; and the classes mod N of the g;. Also R, NC"(G, A)=0 if
p > n.

Define a filtration S, of T*(G, N; A) by S, =®,.,C'(G, C*(N, A)). If a € R,
and l(a) =(ay, ..., a,), then a; =0, j<p, so l(a) € S,. Thus [ is a map of filtered
complexes.

THEOREM 4 (Hochschild—Serre).

I*:E, (R)— E, (S)=C"(G, H'(N, A))
is an injection and image I* = C°(Q, H*(N, A)).

COROLLARY 5. E2.(R)=H"(Q, H*(N, A))

We now study the quotient complex C*(Q, G; B, A). Define a filtration of
C*(Q, G; B, A) by R, =image of R,

THEOREM 6 (Spectral sequence for relative cohomology).
HP(Q, H*(N, A)) q>0
E3%R) = :
3%(R) HD(Q, éB_“) =0

> H*(Q,G; B, A)
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Remark. If B= A", the E, term of this spectral sequence is identical to the
Hochschild-Serre E, term except that the bottom line has disappeared.

Proof. Considering B< A < C°(N, A) we have an inclusion C*(G, B)—>
T*(G,N; A) of complexes since dn(C*(G,B))=0. Since [(C*(Q,B))<
C"(G, B), we get

TN(G,N; A)
C"(G, B)

[:C"(Q,G;B,A)—

If we let §,~=image of S; in T"(G, N; A)/C"(G, B) then [ is a map of filtered
complexes. Theorem 6 is then a corollary of the following analog of Theorem 4.

PROPOSITION 7. I:E} (R) — E. (S) is an inclusion with image

C?(Q,H*(N,A)) q>0

n AN —_

Proof. C"(Q,B)=R,<R,, if p=n, so ES(R)=EJ(R) if >0 and

E,o(R)

0 (R)=~——RO
B~ By

Since d(C"(Q, B)) = C""(Q, B)= R, ., it follows that

0->C"(Q,B)—0 — - - - is a subcomplex of
0— E%(R) — E. (R)—-- - with quotient
0— Eg,o(ﬁ) > Eg,l(é) o

From the associated long exact sequence, we get

0— C"(Q, B) = E},o(R) = E, o(R) =0

is exact and E} (R) = E} (R), q>0.
Similarly 0— C"(G, B)— E.(S)—> EL((S)—0 is exact and E}(S)=
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E}.(S),q>0. A look at the commutative diagrams

E,(R)=C"(Q,H*(N,A)=E;,(S) q>0

I )

E;q(R) > E;.qS)

and
0— C"(Q, B)—> ELo(R) —> ELo(R) >0
Cc(Q, AN)
N
C"(G, A")
0—> C"(G, B) = E!((S) = E,.o(5) = 0

establishes the proposition.

§4. The complex L*(G, N; A, B)
We write an element of T"(G, N; A)/C"(G, B) as (ay, ..., a,_1, @,) Where

C"(G,A)

a, Emz C"(G, A/B).

DEFINITION

T"(G, N; A)
C"(G, B)

such that a; =S(0, n—k, k, 0)&@,|n~-*xg+ mod B
and SO, n—m,m—k, k)ay =S(n—m, m—k, k, O)aMIN.._kXGk}

L"(Ga N; A, B) = {(aOa Y £ &n) €

Remark. If A=A~ =B we make abbreviations such as L"(G, N; A, A) to
L"(G, N; A). Note that in this case

C"(G, A) _

e G A) D
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so we abbreviate (ag, ..., a,_1, @,) t0 (ay, ..., a,_1). The reader may check that
if A=AN =B, then (ay, a;) is in L*(G, N; A) if and only if the relation (4) of the
introduction is satisfied and a cocycle iff (1) (2) and (3) are satisfied.

It is a direct consequence of Proposition 2 that the map

l-_C"(G, A) _ T'(G,N;A)
"C"(Q, B) C"(G, B)

of §3 (given by (&) =(ay, - . -, tr—1, @), & = S(0, n —k, k, 0)a |y xg+) has image
contained in L"(G, N; A, B). In fact

PROPOSITION 8.

Image | =L"(G, N; A, B)

COROLLARY 9. L*(G, N; A, B) is a subcomplex of T*(G, N; A)/C*(G, B).
DEFINITION. A*(G, N; A, B)=H*(L*(G, N; A, B))

THEOREM 10. I*: H*(Q, G; B, A)— A*(G, N; A, B) is an isomorphism.

Proof of Proposition 8 and Theorem 10. Consider the following diagram of
complexes

C*G,B) _ CXG,A) _ CXG,A)

0 > > -0
~ C*Q,B) C*(Q, B) C*(G, B)
]
C*G, A)
0—L*(G,N;B,B L*(G,N;A,B) 5> ——"——0
— L*( ) = L*(G ) C*G.B)
where m(ay,...,a,)=a,. The top row obviously is exact and the first square
commutative. Commutativity of the second square follows from the identity
S0, 0, n,0)a = a, so that if l(a) =(ay, ..., a,), then a,, = a. Hence = is surjective

since o[, is.
Furthermore, since o, =S(0, n—k, k, 0)&,,|n~+xg+~ mod B, it follows that if
a, =0 then «, takes values in B. This proves exactness of the bottom line.
From the diagram it follows that [, is surjective if and only if I, is. The five
lemma applied to the long exact sequences in homology shows that I; induces an
isomorphism on homology if and only if [, does.
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So it suffices to prove 8 and 10 in case A = AN =B. Then

T"(G,N; A) _ . a
CH(G, A) _p-i?%nc (G,C (N’ A))
q>
and

T"(G,N; A)
C"'(G, A)

k<m=n-1,S(n—m, m—k, k, 0)a,,|n~+xg-=S(0,n—m, m—k, k)ak}

L"(G,N; A)= {(ag, ceey Qp_q)E such that for

We begin with the following

LEMMA 11. Let a=(ag,...,0,-1), b=(Bo,-..,Bn-1) be elements of
L"(G,N;A). Then a=b if and only if ay=By, and a(m,,...,
My i, 815+ -5 8) = Be(My, ..., My, 815 . . -, &) whenever g ¢ N.

Proof of Lemma 11. Since ay|n-=S(0, n—k, k, 0)ay=S(0, n—k, k, 0)B, =
Bi|n- We may assume some g; ¢ N. Suppose we have shown that o; = B; for i <k,
and that oy = B, whenever the first [ for which g ¢ N satisfies | <j <k. We show

ak(m17 cee s My g hla ceey h’ja gj+l’ LERE} gk) = Bk(mla cee s My ks hl’ seey h]'s gj+19 R gk)
whenever hy,...,h;e N but g, ¢N.
For simplicity, write (m, h, g) for (m, ..., m,_, hy, ..., hj, 841, - - -, 8&)- Since

. _; = Br—; we have

S(n—k,j, k—j,0a(m, h,g)=S0,n—k,j, k—jlay_j(m, h, g)
= S(O’ n— k, js k ‘j)Bk—i(m: h: g) = S(n - ka ja k —-j’ O)Bk(m) ha g)
Furthermore, for o of type (n—k, j, k —j,0), o # id, we have by our induction

hypothesis that a;°l,(m, h, g) =B °l,(m, h,g) since in I, (m, h, g) the value
2.1 ¢ N will occur earlier. Thus

ak(m’ ha g) = S(n - ks j) k .—j’ O)ak(ms h’ g)‘— Z (_1)!alak olo(m’ h’ g)
o type(n—k,j,k—j,0)
o¥*id
=S(n—k,j,k=j,0B(m h g~ X  (D"Bcol(mh,g)
o type(n—k,j,k—j,0)
o¥*id
= Bk(ma ha g)-

End of proof of Prbposition 8. Let (o, ...,a,-1)€ L(G, N; A). We will define
BeC"(G,A) so that if I[(B)=(Bo,...,Bs1), then Bo=ay and B;(my,...,
My_iy 81,---,8)=a;(my,...;m,_i, 8,...,8&) whenever my,...,m, ;€ N and
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g, ¢ N. By Lemma 11, it will follow that B; = q;, all i, i.e. [(B)=(ap,- .., An_1)-
Set B|N"=a,. Then By=a,. Set B(gy,...,8,)=0 if g, ¢ N. Suppose B is
defined on N" ™' X(G—N)xG'™, for i>j>0. Define

Bmy,...,m, i, 81,---,8)
= Z (—1)‘0‘6010("119 cees My €15-- > gy)

o type(0,n—j,j,0)
o#*id

+a,~(m1, ey My s 81544 4 g]'),

for m;e N and g, ¢ N. (Note that Bol,(m,,..., m,_; g1, ..., &) has already been
defined). It follows that

Bi(mb ® %89 mn—h gb ceey gj) = Z (—'1)lc|B°lo-(m1’ se ey mn-—h gla RS ] g;)

o type(0,n—j,j,0)

= a,-(ml, is oy mn_]‘, 15+, gl)'

Proof of Theorem 10 (A = AN = B). It suffices to show the following;:
Let K™ be the kernel of the composite

C*G, A) ¢

CGA = xaa)

L*(G, N; A).

Then the inclusion C*(Q, A) < K* induces an isomorphism on homology.

Let B; be the filtration of C*(G, A) where aeB,NC"(G, A) if a is
unchanged whenever any of the last i values is multiplied by an element
of N, B,NC'(G,A)=C"(Q,A) if i=n For i<p=n, let B,=
{aeB;|algy,...,8)=0 if g_i...,8 - are all in N}, B;;=B, and
B,,NC"(G,A)=B;,;NC"(G, A) if p>n. Set K,=KNB,;, K;,=KNB,,.

We will show the following

(a) K; =K1
K.
o ()0 i<n
in+1
K.
(c) H"(~—'£—)=0 i<p<n.
Ki,p+1

It follows that

K. K .
Hn( i ) — Hn( z,H—l) — 0
Ki+1 Ki,n+2
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and hence that

(g m) - s)=o

Proof of (a). Let o be of type (0,n—i,i,0). If o#id and a € B; then
acl, |ym-ixgi=0. Hence the formula, valid for a € B; : a; = a|nn-1xg. In particular if
ackK;, O=o; = alN""xG" ie. a€Ki;,y.

Proof of (b). For a € B;,, NC"(G, A), da € B, ,,,, we have for me N

O:da(gl, sy gn——i—-l: g m, hb vy hl)
= (—1)n-i(a(gl, cves &n-i-1, 8M, hl, R hl)_a(gl7 RN gn—i—l’ ga hl’ L] hl))

ie. aeB NC"(G,A)=B,,.,NC"(G,A). It follows that if ae
I<i,n N Cn(67 A)a da € K,n-f-l) then a € Ki,n+1'

Proof of (c). Choose a section *: Q — G of the quotient map 7 : G — Q such
that 1*=1.

We first show (c) in the special case i =0.

Suppose a € Ky, NC"(G, A), da € K, ,,+,. Define for

%
09mp+25'"9mn€N’B(gl"°'9gp~1’q O',an+2,...,mn)
= *
_a(gla' -'sgp—l’q » T, mp+2" ey mn)°

If B is any extension of B to all G"™, then B € By ,- Moreover

dB(gy, ..., 8-1,a 0, my,q,. .., m,)
=(=1)"B(g1, - --» -1, 4 oMy 1, My, ..., M)+ -
+(=1)"B(81s- - » &o-1, 47T, Myyq, . .., M)
=(~1)Pa(gs, ..., 8-1,4% OMpiy, Myyn, ..., M)+

+(____1)na(g1’ 2w wy gp—l’ q*’ a, mp+19 ) mm—l)

= _da(gls s ey gp—-la q*’ a, mp+1’ ] mn)
+(_1)pa(g1’ s w .y gp—la q*O', mp+1’ s w ey mn)
= (_1)pa(g1’ --5 8p—15 q*aa Myt .-n) mn)

since da € K 41, i.6. a—(—1)° dp e Bop+1-
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Thus it suffices to show that B can be extended to a € K. Now B is already
defined on G? x N" 7?71, Extend B as follows:

Let B(g1,.-.,8.-1)=0if g.¢ N and some g¢N, p<i=n-—1. Assume now
that B is defined if some g ¢ N, i=k<n—1.Thenif g ,¢Nbutm,,..., meN
(and if k<p some g ¢ N,p<i=n-—1) define

B(mls e My Brevrs o v oy gn—l)

= Z (‘—1)‘0|Bolo'(mla ey My, v - -0 gﬂ"l)

o type(0,k,n—k—1,0)
o#id

the right side already having been defined. It follows that

Bn*k—l(mla vy My ety o -0y gn—l) = 0 fOI' 8r+1 ¢ N (and pIOVided some gl¢ N’
p<i=n-1,if k <p). Thus, by Lemma 11, it will follow that 8 € K if we can show

Bn—k—l(mla ey My, By -k ks gp, mp+l’ sesy mn—-l) =O

for my,y,...,m,_1€N.

But since B € By, and o € K, ,,, a calculation shows

*
Bn—-k—l(ml’ ey My, Bty -0 gp—l’ q o, mp—t—la s ey mn—l)

— * —
- an—k(ml’ vy My Bretis oo o s gp—la q 0, mp+1’ LRI mn—l) _0'

Now suppose a €K;,, da€K;,,;, i>0. Define a'(qy,...,q) (81,5 8ui)=
(g1, s 8ui4q%s---,q7). Then a'(qy, - .., q) € By,_; and a calculation shows

a'(Ch, DRI qi)k(ml, ey My ks gl’ sy gk)

=ageri(My, oo, My, 815+ 86 15+ -»qF) =0

so a'(qy, - .., q) € Ko p—i. Moreover da'(qy, - . ., q) € Kop—i+1 Since
da'(qr, ..., q)(81s -+ oty M) =dalgy, ..., 8- mq¥,...,qF) for meN.
Thus there is a B'(q,...,q)€ Ko, such that a'(qy,...,q)—dB'(qy,...,q)€

KO,p—H—l-

Define B by B(gl’ ooy gn) = B'(w(gn—i)a ey ’n.(gn))(gly s o>y gn—-i-—1)° We have
BeB;, (so B; =0 for j<i). Moreover

Bi+k(m1> e My ks 81, ceos 8o hl’ s ey hl)

=p'(mw(hy), ..., wh)h(my, .o My i1, 81+ -5 &) =0.



162 NATHAN HABEGGER ET AL.

So B K. Since

(a ”dB)(gla cees n-i-1 M, hl’ ceey h:)
= (a,—dB')(Tr(hl), sv ey ’n'(hl))(gh cees Bn-i—1s m) for m EN’
it follows that a —dB e K ;.

§5. A calculation using L*(G, N; A)

PROPOSITION 12. Let A be a divisible abelian group. Let N be a central
subgroup of a perfect group G. Then H*(G/N; A)— H?*(G, A) is injective and
H?*(G/N; A) - H*(G, A) is surjective (trivial coefficients).

Proof. It is equivalent to show H?*(G/N, G; A)=0. By Theorem 10, it is
equivalent to show A?(G,N;A)=0. So let a=(ay a;) be a cocycle of
L*(G, N; A). We must show a =db, where b =(B) and db = (dnfB, dsB). Now

0=dga,(n, g h)=ga,(g"'ng, h)—a,(n, gh)+a,(n, g)

=a,(n, h)—a,(n, gh)+ay(n, g) (since A is a trivial G module and N is
central

so ay(n,*): G — A is a homomorphism. Since G is perfect this shows a; =0.

Now 0=ay(n, m)=ayn m)—ayn, m*nm)=ay(n, m)—ag(m,n) so ag:
N?— A is a symmetric cocycle. The corresponding extension 1 > A - C —> N —
1 is thus abelian and represents an element in Ext; (N, A) =0, since A is divisible
(hence injective, c.f. [M2] p. 93). So this extension is split, i.e. 0 =[ay]e H*(N, A),
ie., ag=dnB for B:N— A. Now

dsB(n, g) = gB(g~'ng)— B(n) = B(n)—B(n)=0

SO

db = (dnB, dgB) = (dnB, 0) = (a, 0) = (ag, 1) = a.

The case N central, A trivial

Let 1 > N—- G —Q—1 be a central extension and A a trivial G module.
Then equations 2-4 become

(2) Ozal(m9 g)_'al(mn: g)+a1(n9 g)
(3) 0 = al(n9 h)—al(n’ gh)+a1(n’ g)

(4) a,(n, m)=ay(n, m)—ay(m, n)

i.e. a; is bilinear
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It follows easily that

PROPOSITION 13. For a central extension with trivial coefficients we have an
exact sequence

0— A*G, N; A) > H*(N, A) xBilin(N X G, A) - Bilin(N XN, A)

(where i(ay, a;) = ([ao], @) and

t([ao), ay) = ay|nxn — (o — Tarp), Tag(n, m) = ay(m, n).)

COROLLARY 14. (1) Ext'(N, A)xBilin(NxQ; A)= A*G, N; A)
(2) If Bilin(NxG; A)=0, A*(G, N; A)=Ext'(N, A)
(3) If HX(N, A)=0, A*(G,N; A)=Bilin(NxQ; A)

COROLLARY 15. If G is perfect, A%(G, N; A)=Ext!(N, A)

Remark. The results in this section may also be derived from known results
from the homology theory of groups. [K] [EHS] [GS].
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