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Quasiregular mappings and metrics on the n-sphere with punctures

SEPPO RICKMAN*

1. Introduction

Let D be a domain in the Euclidean n-space R" and f: D — R" continuous.
We call f quasiregular if f belongs to the local Sobolev space W, ..(D), i.e. f has
generalized first order partial derivatives which are locally L"-integrable and
there exists K, 1=K <, such that the distortion inequality

If'(0)|" = KJi(x) a.e. (1.1)

holds. Here f'(x) is the formal derivative of f at x defined by the partial
derivatives, |f'(x)| its operator norm, and J;(x) the Jacobian determinant. The
definition extends immediately to maps f: M — N where M and N are oriented
connected Riemannian n-manifolds, see for example [6]. If here N is R"=
R" U{}, equipped with the spherical metric

dx*>
do’=—,
7T+ xP?
where dx? is the Fuclidean metric, and M is a domain in R", we also call f
quasimeromorphic. A quasiregular homeomorphism is called quasiconformal. The
smallest K in (1.1) is the outer dilatation K(f) of f and the smallest K in

Jf(x)s_K‘ i'nf If'(xX)h|* a.e.
hi=1

is the inner dilatation K;(f) of f. A quasiregular mapping f is called K-

quasiregular if the dilatation K(f)=max (Ky(f), K;(f)) satisfies K(f)=K.
Quasiregular mappings form a natural generalization of analytic functions in

plane to the real n-dimensional space. For the basic properties we refer to [2],

* This research was partially supported by Forschungsinstitut fiir Mathematik, ETH, Ziirich.
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[12]. For some years ago a Picard type theorem on omitted values was proved in
the following form:

1.2. THEOREM [9]. For n=3 and K =1 there exists a constant q = q(n, K)
such that every K-quasiregular mapping f:R"™ — R"\{a,,...,a,}, where
a,, . .., a, are distinct points in R", is constant.

The proof of 1.2 in [9] is based on two basic tools in the theory of quasiregular
mappings, namely, the method of moduli of path families and the theory of
quasilinear partial differential equations. A proof which uses only the first of these
methods is given in [11] by means of ideas from [10]. It was recently proved by
the author that at least for n = 3 Theorem 1.2 is qualitatively best possible, in fact,
any number of points can be omitted.

The purpose of this paper is to give some geometrical insight from a different
point of view to Theorem 1.2. We shall study quasimeromorphic mappings of the
unit ball B={xeR"||x|<1} into Y=R"\{ay,...,a,} where q is sufficiently
large. We consider B as the Poincare model of the hyperbolic n-space with the
hyperbolic metric

,  4dx?
e PR
Our main result is that if Y is equipped with a metric with a certain natural
singularity behavior near the points g;, then f is a Lipschitz mapping if small
distances are ruled out (Theorem 2.4).

Let us first take a look at the classical case n=2. If q=3, the analytic
universal covering surface of Y is conformally equivalent to B. Let w: B — Y be
an analytic covering projection. The map 7 induces a complete metric dr> on Y,
called the Poincare metric of Y. If f: B — Y is analytic, we can lift f to an analytic
function f: B — B such that wof =f. According to the Schwarz-Pick lemma fis
distance decreasing, and with the metric dr* on Y, so is f. For the case q =3 one
gets from estimates on the metric dr> the Picard-Schottky theorem (see [1,
Theorem 1-13]).

Let then n = 3. To some extent the covering projection 7 in the 2-dimensional
case can be replaced by a branched covering which is quasimeromorphic. In
Section 3 we consider such maps h:B— Y=R"\{a,,..., a,} which are auto-
morphic with respect to some discrete group G of Mdbius transformations ‘acting
on B and which are injective in each fundamental set. Such a map h induces a
distance 7(y, z) for points y, z in Y from the hyperbolic metric in B. The singular
behavior of the metric 7 is similar to the behavior in the classical case as is shown
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in Proposition 3.2. In dimension three we give explicitly an example of this type
where the dilatation of h has an absolute bound and q is arbitrarily large. The

possible sets {a;, ..., a,} in these constructions depend on G and the dilatation
of h.

On the other hand, if we take an arbitrary sufficiently large set {a,, ..., a,} in
R" and a metric r on Y=R"\{a,,..., a,} which has a singular behavior near
each g; like in Proposition 3.2, then we obtain a counterpart (Theorem 2.4) for
the classical distance decreasing result mentioned above. As a corollary we get an

analogue for the Picard-Schottky theorem and in this way also a new proof for
Theorem 1.2.

1.3. Notation. The Euclidean (spherical) ball and the (n—1)-dimensional
sphere with center x and radius r are denoted by B(x,r) (D(x,r)) and S(x,r)

(C(x, r)) respectively. We write B(r)=B(0,r), S(r)=S(0,r), B= B(l),_ S=S(1).
The hyperbolic metric in B is denoted by p and the spherical metric in R" by o.

2. The main result
Let a,...,d, q=3, be distinct points in R". We fix 8 >0 such that
1 "
B=4min o(a;, a;)

and write Y=R"\{a,, ..., a,.}, U; = D(q;, B)\{q;}, and

U

]

q
U,
=1

We shall consider metrics 7 in Y which satisfy the conditions

log (1/0(a;, y1))
log (1/0(a;, y,))

T(y1, Y2)=Qo(yy, y2) if y,y,€eY\U, (2.2)

7(y1, y2) — |log

=P if y,yel (2.1)

for some positive constants P and Q.

Metrics 7 satisfying (2.1) and (2.2) are for example obtained from conformal
metrics ‘

d7*=v* do? (2.3)
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where vy is continuous in Y, constant in Y\ U, and

1 )
YO = @ yiog (ota,yy T YU

We formulate our main result as follows.

2.4. THEOREM. For each K=1 and for each integer n=3 there exists a
number 8 = 8(n, K)>0 and a positive integer qo = qo(n, K) such that the following
holds. If f:B— R"\{a,,...,a,}=Y is a K-quasimeromorphic mapping where
a, ..., a, are distinct and q = qq, then

T(f(xl)’ f(xz)) = C max (p(xla x2), 8)’ X1, X2 € B’ (25)

where 7 is a metric in Y satisfying (2.1) and (2.2) and C is a constant depending
only on n, K, B, P, and Q.

The proof of 2.4 includes some value distribution results which we shall first
list below.

2.6. Averages of the counting function over spheres. Let V be a ball B(x,, r,)
and g: V— R" a nonconstant K-quasimeromorphic mapping. For y € R" and for
a Borel set E such that Ec V we define

nEy= 2 ikg)

xeg '(Y)INE

where i(x, g) is the local topological index of g at x; see [2, p. 6]. If E is as above
and X is an (n— 1)-dimensional sphere in R", we let »(E, X) be the average of
n(E, y) over X with respect to the (n—1)-dimensional spherical metric. Espe-
cially, if E = B(r) and X = S(t), we call n(r, y) = n(E, y) the counting function and
write v(r, t) = v(B(r), S(t)), in which case we also have that

v(r, t)=
Wy 1

I n(r, ty) d#" 'y
S

where %"~ ! is the normalized (n — 1)-dimensional Hausdorff measure and w,_, =
%n-—-l( S)

2.7. LEMMA. Forr,s, t>0 and 0>1 such that B(6r)< V we have

n-—1

K

| ol
Ogs

v(6r, )= v(r, S)—W .
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This lemma is in a slightly weaker form in [8, 4.1]. The above form is due to
M. Pesonen and A. Hinkkanen (independently) and the proof can be found in [7]
and [11].

Let A(r) be the average of n(r, y) over R" with respect to the n-dimensional
spherical measure. From 2.7 we obtain (see [8, p. 456]).

K(a+a'l|logt|™™)
(log 6)* "

K(a+a'llogt™™)
(log )" !

v(r/0, t)— =A(r)=v(r,t)+ (2.8)

where a, a’ >0 depend only on n. Since A(r) remains invariant if g is followed by
a rotation in R", we get from (2.8) the following lemma formulated with spherical
radii.

2.9. LEMMA. For y,zeR", for 0<s,t=m/2, and r>0 and 6>1 such that
B(6r) <V we have

K[b+b'(log s|*~*+|log t|*~1)]

v(6r, C(y, s))=v(r, C(z,t))— (og 6

where b, b’>0 depend only on n.

The next result is a variant of [9, 3.2] for spherical distances:

2.10. LEMMA. There exists 6,= 6,(n, K)>1 such that the following holds. Let
r>0 and 6> 6, be such that B(6’r)<V, let u, v e B(r) and y € R™ be points such
that s = a(g(u), y)<t=o(g(v), y). If y and some z in R"\ D(y, t) are not in gV,
then for some d, >0 depending only on n

d, 1og9( t)“‘l
2

=———|log - .
v(6r, C(y, ) =22 (log -

2.11. Proof of Theorem 2.4. We may assume that f is nonconstant. We write

_(b+2b)K

c1= Gog2y 1’ 6, = max (6,, exp (3¢, Kd; ")),

where b, b’, 6, and d, are the constants appearing in 2.9 and 2.10. Let g, be the
smallest integer such that

do=w,_102;1,2°" 267" (2.12)
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and let
5§=27072 (2.13)

Here ,_, is the (n—1)-measure of the unit ball in R"'. Because 8<%, it is
possible to choose p =3 such that

1 n—1
(log p)" " =2 (log -g) . (2.14)

Let x,, x, € B be such that p(x;, x,) =8 and write y; = f(x;), i =1, 2. Because f
is open, it suffices to find a suitable estimate for 7(y,, y,). We consider different
cases according to the location of y; and vy,.

Case 1. y,, y,€ D(a, B/p) for some k.
Set s, =a(ag, y;), i=1,2, and assume s,=<s;. By (2.1) we have

log s5*

1(y1, y2) <log og s_1+P. (2.15)
1

Write r; =|x;—x,| 7. By (2.13) and by simple estimation of the hyperbolic
distance we get r;<2"*(1—|x,|). Lemma 2.10 gives

- d, log 0 n-1
v(B(xi, ), Clag, 1) = 212821 (10g 1) 216)
2

By Lemma 2.9 we obtain

v(B(x,, 2ry), C(a;, B/p)) = v(B(xy, ry), Clay, s1))— cl<10g }-)n‘ (2.17)

S

for all j. The left hand side of (2.17) is positive if
_ 1 n—1
v(B(x,,r), Cla, s0)>cr(log )
1

By (2.16) this in turn is true if

(:og s5 ! B 1)"‘1 B (log (sl/sz))"“1 S ¢, K
og syt log s1! d, log 6,
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Suppose now that 7(y,, y,)>c, where

ClK )ll(n—l) ]
=P+ —— +1]. :
¢, =P+log [(dn log 0, 1 (2.18)

Then the left hand side of (2.17) is positive by (2.15).

Since a; is omitted and v(B(x,,2ry), C(a;, B8/p))>0, we have E,=
S(x1,2r)Nf'C(a;, B/p)# @ for all j. Let b be the smallest of the Euclidean
distances d(E,, E;), j# i, and let b=d(E, E,,). Then q2,_,(b/2)" '=w,_,(2r)" .
By (2.12) b=|x,—x,|/2. Let x;€ E; and x3€E,, be such that b=|x?—x3| and
write r,=|x}—x3| 07. Since f(x}) and f(x2) are separated by the ring
D(a;, B)\D(a;, B/p), Lemma 2.10 implies

_ log 6
v(B(x2,1,), Cla, B)) 24"——"1}—1 (log p)"~". (2.19)
Lemma 2.9 gives then for all j
— _ p n—1
V(B2 20, Clay Blp) =BG 1), CanB)—c, (logB) . @20

The left hand side of (2.20) is positive because

d, log 6,

n—1
% (log p)* '>c, (log —g—)

according to the choices of 6, and p.

Continuing similarly we get a sequence (x;, x,) = (x], x3), (x3, x3), (x3, x3), . ..
of pairs in B such that xT*!, x**'e B(xT, 2r,,) and r, =|xT—x3| 02=<r,._./2.
Then |xT'—x,|<4r,=<27%(1—|x,)) which implies that x7,x}— x,€B. But
o(f(x7), f(x39))> B for all m which contradicts the continuity of f at x,.

We have thus proved that

(Y, Y2)=c; (2.21)

where c, is defined in (2.18).
Case 2. y,€ D(ay, B/p), y2¢ D(ax, B/p) for some k.

Assume first that y, € D(a, B/p?) or y, ¢ D(ay, B). T_hen y: and y, are sepa-
rated by the ring D(a, B/p)\D(a, B/p?) or D(ay, B)\D(as, B/p). Starting as in
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Case 1 from the inequality (2.19) we get a contradiction with continuity if
7(y1, ¥2) > Ca.
If y, ¢ D(ay, B/p?), y2€ D(a, B), we get

log (p*/B) _

7(y1, y2) =P +log “log B Cs.

(2.22)

Case 3. y;, y2¢U; D(a;, B/p)=U".
From (2.1) and (2.2) we obtain

log (p/B) 7

7(y1, y2) =P+2log TlogB 2

O = C4. (2.23)

Our conclusion from the inequalities (2.21), (2.22), and (2.23) is that in any
case

7(y1, ¥Y2) =max (cy, ¢3, ¢4) = C;.

For the constant C in the theorem we can by (2.13) take
C=2°01C;.

The theorem is proved.

As a corollary of Theorem 2.4 we obtain a substitute for the Picard-Schottky
theorem in the following form.

2.24. COROLLARY. Let f:B—R"\{ay,...,a,.1}, n=3, be K-quasi-
regular and q =q, where q, is as in 2.4. Then

log |f(x)| = Cy(—log so+1og |f(0)(1—|x])~ (2.25)
where

So=1% min o(a;, &)

and C, and C are constants which depend only on n, K, and s,.

Proof. We choose a metric 7 in Y=R"\{a,,...,a,4} given by (2.3) with
a, = and B=s, Since |f(x)|<w/o(f(x),~)), we may assume that f(x)e
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D(e, s0). If f(0)e 15(°°, So0),

log |f(x)| _4log (1/0(, f(x)))
log [f(0)] ~ log (/o (=, £(0)))

=4 exp 7(f(0), f(x))

=<4exp (C(p(0,x)+8)=Co(1—|x|)7€

and (2.25) holds. If f(0)¢D(x,s,), we choose a point z € C(eo, s,) with
7(f(0), f(x)) > 7(z, f(x)) and obtain

le(?gg g(;;))‘) =4 exp 7(z, f(x)) <4 exp 7(f(0), f(x)) = Co(1—|x|)~€

and (2.25) holds also in this case.

2.26. Remark. Similarly as in the classical case we use Corollary 2.24 to give
a new proof of Theorem 1.2 as follows. Let q be as in 2.24 and let f:R" —
R"\{a, ..., a,~1} be K-quasiregular. Let z € R" and h be the map x > 2 |z| x of
the unit ball. Then 2.24 applied to foh gives

log |f(z)] = Co(~log s+ log |f(0)])2°.

It follows that f is bounded and thus constant by [3, 3.7].

3. Branched coverings of sphere with punctures

Let M and N be oriented connected n-manifolds. A continuous map f: M — N
is called a branched covering if

(a) f is discrete, open, and surjective,

(b) for each ye N there exists a neighborhood V of y such that each
component of ™'V is relatively compact.

If f: M — N is a branched covering and V is as in (b) and connected, then every
component D of f~'V is a normal domain, i.e. f 8D = 3fD, f maps D surjectively
onto V, and the index (see 2.6)

wy.,D)= ) ixf

xef Y (y)nD

is constant for all ye V.
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We shall consider special branched coverings from B onto some Y =
R"\{ay, ..., a;}. These will be quasimeromorphic and automorphic with respect
to certain discrete Mobius groups G acting on B.

Let P be a convex (open) hyperbolic polyhedron in B which satisfies the
following conditions:

(1) P has a finite number of faces and finite volume.

(2) Each dihedral angle in P is m/k for some integer k >1.

(3) The set of vertices of P in dB is nonempty.

Let I' be the group generated by reflections in the faces of P. Then I' is a
discrete group acting on B and P is a fundamental polyhedron for I' [13]. Let G
be the subgroup of I' generated by an even number of reflections in the faces of P.
Then G is a Mobius group. If T is the reflection in some (open) face A of P,
Q =int (PU TP) is a fundamental polyhedron for G.

3.1. LEMMA. There exists a homeomorphism ¢:P— B such that ¢ | P is
quasiconformal.

The proof of this lemma can be carried out as in [5, 3.4]. Fix Q as above. We
extend ¢ to a continuous map ¢ :Q — R" by reflection in A and 8B. Then ¢
maps PUTPU A quasiconformally onto BU(R"\B)U¢A. Let {b,,..., b,} be
the set of vertices of P in B and let a; = ¢(b;). We extend ¢ to a quasimeromor-
phic mapping h of B by setting

h|g(QNB)=yog7'|g(QNB), geG.

Then h is a branched covering onto Y=R"\{a,, ..., a,}, it is automorphic with
respect to the group G, and it is injective in each fundamental set.
The map h induces from the hyperbolic metric p in B a metric 7 on Y defined

by
1(y, z) =min{p(u, v) |lue h (y), ve h *(2)}.

3.2. PROPOSITION. There exist a constant a(n, K), depending only on n and
K =K(h), and a number B>0 such that

log (1/a(a;, y1))
log (1/o(a;, y,))

7(y1, y2) — |log =a(n, K) (3.3)

whenever y,, y,€ D(a, B\{a}, j=1,...,q.
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Proof. Let y;,y,€Y and let x;eh ™ (y;) be such that 7(y;, y,)=p(x;, x,).
Suppose that for some j x; belongs to the horosphere S((1—r,)b;, ), i=1,2. We
may assume r, =r,. Since b; is a parabolic fixed point for G, [4, 6.16] implies that
for some §;>0

Cie™i=a(a, y)=Ce™ if ola, y)=s, S

where C;, C,, v, and 8 are positive constants with 1=<+/8 <b(n, K). A similar
statement is included also in [4, 6.17(ii)] where, however, the r in the exponent
should be replaced by 1/r.

The inequalities (3.4) give for o(a;, y))=s, i=1,2,

—log G, +38/r, _log (1/a(a;, y2)) _—log Ci+virs
—log C,+v/r, log(1/a(a; y,)) —log C,+8/r, "

By choosing s; smaller if necessary we get

log ™~ log 2y_ log log (1/0(a;, y,)) <log M+1og %1_/

ra ) log (1/0'(01, }’1))~ p)

and log (ry/rp) — bry = p(x4, x,) <log (r,/r,) + br, where b is some positive constant.
The proposition follows with 8 =min (s,, ..., s,).

Sources for examples of groups G of the type above are mentioned for
instance in [13]. The possible configurations of the set {a, ..., a,} depend on G
and the dilatation of h. We shall in the following give an example in dimension
three where the set {a,, ..., a,} is arbitrarily large and h has an absolute bound
for its dilatation.

3.5. Example. We shall give the definition of a hyperbolic polyhedron in
H?*={xecR?|x3;>0}. Let 3 be the set of spheres S(x,1) in R® where x runs
through the points of the lattice {x € 9H?> | x = jv3 e, + k(v/3 e,/2+3e,/2), j, k € Z}.
Here e, is the ith standard coordinate vector. We let m be a positive integer and
define planes

A;={xeR?®|x,=0},
A,={xeR3?|x,—V3x,=0},
A;={xeR3| x2+\/3 x;=3m}.

Let A be the bounded open triangle in dH> bounded by the planes A,. Let 3., be
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the subset of 3 consisting of spheres which meet A, and let P’ be the open
hyperbolic convex polyhedron in H? bounded by the spheres in 3, and the planes
A, Let T be a Mobbius transformation which maps H> onto B?® and
T(v3 m/2, m/2, m)=0. Set P = TP'. The dihedral angle between any two adjacent
faces of P is m/3 or m/2. Hence P defines a group G as described before. We shall
next give a more detailed definition of the map ¢ : P — B3.

Let b be a vertex of P in 9B, let 8r = 8r, be the Euclidean distance from b to
the set of other vertices of P. Let U = U, be the component of PN (B\B(1-2r))
such that be U. In the following K, and K, are some absolute constants >1. By
the technique in [5, p. 128] we first construct a K;-quasiconformal mapping g = g,
of V=V, =PNB(b,4r) onto V\U such that

(1) g is the identity on VN B(1-2r),

(2) UNB(b, r) is mapped onto W, =(V\U)NB(b',r/32) and b'=g(b) is a
point in S(1—-2r)N U such that d(b’, 9P)=1r/8,

(3) |g(x)—b'|=c exp (—1/|x—b]) if xe UNB(b, r) for some constant c.

Let ¢, be the map of P such that ¢,| V, =g, if b is a vertex of P in B and
identity elsewhere. Furthermore, there exists a K,-quasimeromorphic mapping ¢,
of E = ¢,P onto B such that ¢, | W, is the radial stretching x — (1—2r,) 'x for
each vertex b in 9B. The required map ¢ | P is defined as ¢,°¢;.
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