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Les fibrés de Secifert dans le probleme de la simplification par les
courbes elliptiques

C. MenmNI et G. PArict

Introduction”’

Soit T un tore complexe; on considere le probleme de la simplification par T

(P) Soient A et B deux variétés analytiques complexes compactes telles que
AXT=BXT. A—t-on alors A=B??

On sait qu’en général ce probléeme n’ admet pas une réponse positive: en 1978
Shioda (cfr. [Sh]) a exhibé un contrexemple en construisant trois courbes elliptiques
T, T', T" telles que T X T'=T X T" mais avec T' % T". D’autre part, toujours dans
[Sh], Shioda a montré:

THEOREME. Soit T une courbe elliptique, avec End (T)=Z. S’il existe deux
courbes elliptiques T;, T, telles que TX T, =TXT,, alors Ty=T,.

On est alors conduit au probléme suivant:

(P,) Soit T une courbe elliptique, avec End (T)=Z. S’il existe deux variétés A
et B telles que A XT=BXT, est-ce qu'on a alors A =B?

Dans le présent article nous attaquons le probléme en supposant que A% B et en
essayant de doter les variétés A et B d’une structure de fibré localement trivial,
de fibre une courbe elliptique T, isogéne 4 T, sur le méme espace analytique X.
Nous sommes ainsi amenés a étudier le probléme suivant: (cfr. § 0, (4)).

(P,) L’application naturelle: i: H'(X, T) - HY(X, Tx T) est-elle injective?

On sait que la réponse est négative dans le cas général: dans [Pa] on construit,

! Pour une introduction plus détaillée au probléme de la simplification, on peut voir: [Br], [Fu],
[Pa].

2Les mots «analytiques complexes compactes» seront souvent sous-entendus dans la suite. En
particulier, =désignera toujours un isomorphisme analytique complexe.
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124 C. MeNINI ET G. PARIGI

pour tout tore complexe T, deux fibrés F,(T), i =1, 2, de fibre T sur une surface
de Riemann adéquate Z, tels que F, X T=F, X T, mais avec F, #F,.
Dans le présent travail (cfr. § 1), on démontre:

THEOREME. Soit T une courbe elliptique avec End (T)=Z. S’il existe deux
variétés A et B telles que A X T =B X T, alors ou bien A est isomorphe a B, ou bien
A et B sont des fibrés principaux de Seifert® de fibre une méme courbe elliptique T,
isogéne a T, sur un méme espace analytique Z.

Le théoréme serait faux si I’on remplagait fibré de Seifert par fibré localement
trivial. On va en effet donner au § 2 un exemple, avec une courbe elliptique
quelconque T, ou I’obstruction a simplifier par T repose sur la notion de fibration
de Seifert. Plus précisément, on va exhiber deux fibrations #,:=(H,, 7, Y),
¥, :=(H,, m,, Y) telles que:

1) #, et ¥, sont deux fibrés de Seifert ayant comme base le méme espace
analytique Y et comme fibre type une méme courbe elliptique isogene a T.

2) Hy#H,, mais H X T=H,XT.

3) Il n’existe aucun espace analytique Y’ et aucune projection =/ tels que
¥*,:=(H, !, Y, i=1,2, soit un fibré localement trivial de fibre une courbe
elliptique.

Il découle tout de suite de la définition (cfr. [Ho], definition 1) que pour
construire de tels fibrés de Seifert, qui puissent avoir une chance de ne pas étre
localement triviaux, il faut d’abord exhiber un espace produit de Seifert (qui en
représente la situation locale) du style: (%) , T, —GQ—>, G étant un groupe fini
d’automorphismes analityques de T qui agit aussi sur la variété Q, mais avec des
points fixes. On pose alors Q:=P; et G:=7Z/2Z x7Z/2Z =ker{-2: T — T}, un tel
G opere sur P; avec deux points fixes.

Aprés, on utilise les fibrés F, i=1,2, définis en [Pa], en posant
H; :=(F; XP,)/G, et on démontre que les H; vérifient les propriétés 1) et 2). Au
§ 3, enfin, on démontre la propriété 3): la variété (F; XP,)/G, i=1,2, n’est
jamais, en effet, I’espace total d’une fibration localement triviale ayant comme
fibre une courbe elliptique.

Nous remercions vivement André Hirschowitz pour son aide tout le long de ce

3 Dans la suite, les notations et les définitions relatives aux fibrés de Seifert seront toujours cells de
[Ho].
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travail. Nous tenons aussi a remercier V. Ancona et A. Lascu pour leurs conseils
fructueux.

§ 0. Conventions et notations

1) Si T est un tore complexe, on sait que les automorphismes analytiques de T
forment un groupe de Lie complexe. On notera ce groupe Aut, (T) et Aut, (T)
le sous-groupe des automorphismes de T qui conservent aussi sa structure de
groupe.

2) Si X est une variété analytique complexe, on désigner a par J(X) son fibré
tangent.

3) Soit F un fibré analytique de base X, fibre T et groupe structural G <
Aut, (T). On dira alors que F est un G-fibré sur X

4) Si X est une variété analytique complexe et G un groupe de Lie complexe, on
désigne par G le faisceau des germes d’applications holomorphes X — G.

5) On sait qu’un homomorphisme de faisceaux de groupes abéliens p : F — 4 sur
le méme espace topologique X induit les homomorphismes:

px: H/X, F)—> HYX,9); px:HX F)>H(X 9

Si U est un recouvrement ouvert de X, on convient alors de noter encore pk
P’application canonique:

pk: Z'U, F) — Z'(U, ).

§ 1. Un théoréme de structure

THEOREME 1.1. Soit T une courbe elliptique, avec End (T)=Z. S’il esiste
deux variétés A et B telles que A X T=B X T, alors ou A =B, ou bien A et B sont
des fibrés principaux de Seifert, de fibre une méme courbe elliptique T, isogéne a T,
sur un méme espace analitique Z.

Démonstration. On sait (cfr. [Br;], lemme 1) que si X=X,XX, est le
produit de deux variétés analytiques compactes, tout champ de vecteurs
holomorphe ¢ sur X est de la forme &€ =£,@E,, ou & est un champ de vecteurs
holomorphe sur X; (i=1,2). Soit alors 7 un champ de vecteurs holomorphe
vertical sur A X T, jamais nul, et ¢ : A X T — B X T un isormorphisme analytique.

Si T(¢): T(AXT)— T(BxT) est I’application linéaire tangente associée a ¢,
0 :=J(¢)(7) est un champ de vecteurs sur B X T, de la forme o =0,PB0,, ou o,
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est un champ sur B et o, un champ sur T. La suite de la demonstration se
compose de plusieurs pas.

a) On suppose d’abord qu’il existe un point b€ B tel que o,(b,) =0.

o, étant un champ sur T jamais nul, une courbe integrale pour o passant
par un point de la forme (b, t) n’est rien d’autre que by x T.

Il existe donc age A tel que ®P(ayo X T)=>byX T. D’autre part, pour tout
voisinage de Stein V de b, dans B, il existe un voisinage U de a, dans A tel
que: ¢(U X T)< VX T. En plus pour tout x’ € U, si pg est la projection naturelle
ps:BXT— B, pg(®(x'xT)), par le théoreme de I’application propre de
Remmert (cf. [Re]), n’est qu’'un y' '€ B. Donc, &(x'XT)=y'XT. On peut
alors bien définir un isomorphisme &: A =B.

b) On va supposer maintenant o; partout normale. Posons, pour tout a€ A,
T,:=aXT et pour tout beB, T,:=bXT. Alors les courbes ®@(T,) ne
peuvent jamais €tre tangentes a des courbes du type T,.

b;) Soit X wune variété avec deux isomorphismes a:AXT—X et
B:=a: ® ':BXxT— X qui rendent commutatif le diagramme:

X
7 e m
AXT -5 BXT
Alors, on peut définir sur X une opération holomorphe du produit T X T.

En effet, soit 7 un champ de vecteurs holomorphe sur T; 7 définit une
opération de T sur le produit AXT (resp. BXT) qu'on peut voir, via
I'isomorphisme a (resp. 8) comme une opération m, : TXX — X (resp.
neg: TXX — X).

Il est par ailleurs évident que, si ’on considére * comme un champ vertical
sur AXT et BXT et si on le transporte sur X via les applications linéaires
tangentes I (a) et T(B) et si 'on définit v, :=T (a)(7) et v,: =T (B)(7), on
aura que le crochet [v;, v,] est nul. Donc, les deux actions de T commutent
sur X.

b,) T peut étre vu de deux maniéres différentes comme un sous-groupe de
Aut, (X), le groupe des isomorphismes analytiques de X. Donc, si §;, i =1, 2,
sont les applications §; : T — Aut, (X), relatives aux deux actions de T sur X,
on pose T;:=8§,(T) et on a T, < Aut, (X).

bs) Soit ¥ le sous-groupe de Aut, (X) engendré par T; et T,. Alors ’application
naturelle p: T, X T, — % est surjective et a un noyau fini K. On a donc une
suite exacte:

0—->K->T,XT,—>%—0.

¢ étant un quotient de T, X T, par le groupe fini K, est un tore complexe de
dimension 2, isogéne a T; X T>.
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b,) On peut définir deux injections: A,: T, > %, (i=1,2); si T,:= 9 T,, la suite:
0->T,->%—>T,-0 (i=1,2)

est scindée. En effet, soit G, .1 le sous-groupe de Aut, (A X T) engendré par
T, et T, en tant que groupes agissant sur A X T. On a donc la suite exacte de
groupes:

0—)K‘—>T1XT2"‘>chxT_*O.

Soit maintenant T, le groupe qu’on obtient en transportant le champ vertical
choisi sur B X T, sur le produit A X T, en le projetant sur A et en considérant
le groupe a un parametre d’automorphismes correspondant. On a donc une
surjection 7 : T, — T, dont le noyau est, par construction, un groupe fini K;.
(K, est donc le noyau de ’action de T, sur A). On a alors la suite exacte:

0""K1"‘>T2—)TA"‘)O.

T, étant un quotient de la courbe elliptique T, par le groupe fini K; est une
courbe elliptique isogéne a T, et donc 2 T. On peut voir & présent qu’on peut
définir, d’une fagon naturelle, une application: p,: Ty X Tx — Gaxr telle que:
p1(ty, t,) : =t ot,, et que, par construction, une telle application est un isomor-
phisme de groupes de Lie complexes. En transportant sur X, via I’isomor-
phisme a, on a:T; XT, =% D’autre part, si I’on restreint I’application
p:T,;XT,— % a T, X0r, on peut bien définir une injection A,:T; — 4, et il
facile a voir que le diagramme:

Tl S TIXTA

1] b .

Tl-————"@

est commutatif. Si I’on considére alors le diagramme:

0— T, —> T xTy —> T, — 0
" l gw, (3)
v
0 > T, > ¢ > T, > 0

on peut déduire de (3) qu’un tel diagramme est commutatif et que I’applica-
tion induite ¢, : T, — T, est un isomorphisme.
Il en découle que la suite:

0>T,>9—>T,—>0
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est scindée. 1l est évident aussi qu’on peut définir une courbe elliptique Tg et
une surjection 7 : T, — T, dont le noyau est un groupe fini K,. On aura aussi
un isomorphisme: T, X Tz =%; de méme il existe un isomorphisme o, : Tz —
T, et donc la suite exacte:

0>T,>4—>T,—0

est scindée. En particulier, on a:
T XTa=T X T=4=Tp xT,=T, X T,,

et donc un isomorphisme (de groupes de Lie complexes)
p:T1><’I~"1—->T2><’1~"2.

Or, il est évident que, par construction, on a:T=T,=T,. Comme End (T)=
Z, d’aprés Shioda (cfr. [Sh]) on a aussi: T, =T,.
Si on pose: T:=T, (i=1,2), on a donc un automorphisme:

p:T1XTET2xT.

Par construction, T, agit effectivement sur A ; il s’en suit donc (cfr. [Ho]), que
le quotient A/T a une structure complexe canonique et que A est, par
rapport  la projection canonique 4 : A — A/T, un fibré principal de Seifert
ayant T comme groupe de structure.

Or, T=T, agit effectivement sur B, ce qui fait donc de B un fibré
principal de Seifert par rapport 2 la projection g : B — B/T.
On veut maintenant montrer que I’isomorphisme @ passe au quotient c’est-a-
dire qu’il induit un isomorphisme: ®:A/T — B/T.

Mais si ’'on décompose le diagramme (1), on obtient:

AXT—— X = X = X < BxT
PAl l Py
A X/T, X/'T, B (4)

v v v

AT = XIT,xT=X/9$=X/T,xT=B/T
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Or, par construction, on a:X/TyxT=X/4=X/T,xT ce qui acheve la
démonstration.

§ 2. Un exemple d’obstruction a la simplification par T

On va meintenant donner pour toute courbe elliptique T un example de fibrés
de Seifert distincts H,, H, tels que H; X T = H, X T. L’obstruction a la simplifica-
tion par T est le fait que H;, H, ne sont pas des fibrés localement triviaux.

Remarque 2.1. Soit T une courbe elliptique et G:=Z/2Z XZ/2Z. On a:G =
Ker {- 2: T — T}. Donc, G opére librement sur T par translations. Par ailleurs, on
peut regarder G comme le sous-groupe de SL(2,Z), (qu'on notera encore G),
formé par les matrices:

{0 .00 06 00 )

On peut donc définir d’une fagon naturelle une opération holomorphe de G su
P, une telle action n’étant que la composition de ces matrices avec les éléments
(a, b)eP,. G agissant sur T et sur P,, il agit aussi sur T X[P, par:

g:(t,z) > (g+t,g—z), pour tout teT, zelP,, geG.

Si p:(TxP,)/G—P,/G est la projection naturelle, le triplet

(TP, &>
@“( G ‘PG

est, par définition, un espace produit de Seifert avec T comme fibre type.

Remarque 2.2. On sait (cfr. [Pa], propositions 3.4. et 3.7) que si g est un
entier impair plus grand que 6 et K, le noyau de la multiplication par q dans T, il
existe une surface de Riemann compacte X, de genre g = g(X)>1, et un élément
¢e H(X, K,) tels que si F; et F, sont des fibrés, de fibre T, correspondant a ¢ et
a 2-¢ alors F; et F, ne sont pas non plus imomorphes en tant que variétés.
Puisque G et K, commutent entre eux, on peut définir, d’'une facon naturelle, une

action de G sur les fibrés F,, i =1, 2, et considérer les quotients correspondants
H; :=(F, xP,)/G. On a alors:

PROPOSITION 2.3. Soit H; := (F; XP,)/G. Les variétés H X T et H, X T sont
isomorphes.
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Demonstration. Soit p: T X T — T X T P'application définie par la matrice
2+
A= ( q ")esL(z, 2),
r2

ou q est le nombre entier défini en 2.2, et ou ry, r, sont des entiers convenables.

Or, pe Aut, (TxT) et il est facile a voir (cfr. [Pa], théoréme 4.2) que p induit
un isomorphisme analytique (qu'on note encore p) entre les fibrés F, X T et
F,XT. On obtient donc un isomorphisme: ¢:P; X F,XxT—P;xF,xT, en po-
sant: ¢(z, f, 7) = (z, p(f, 7)), pour tout z €P,, fe F,, 7€ T. On définit une action de
G sur P, xXF, XT, i=1,2, de la facon suivante:

g-(z,f,7)=(g-z,gf 1), pour tout ge G.

Or, ¢ commute a I'action de G; on a donc un isomorphisme ¢:H; X T —
H, xT.

Remarque 2.4. Les F,, (i =1, 2;) étant des fibrés sur la surface de Riemann X,
on peut définir une application holomorphe:

F; <P, P,
X X—
G °7G

w5 -

telle que m,([(x, 1), z]g) :=(x,[z]s). Il découle tout de suite de la définition (cfr.
Ho, définition 1) que les triplets

F, xXP P
%,:_—_(__'____l, _,Xx.._l)
i G wl G

sont des fibrés de Seifert avec T comme fibre type. On va maintenant montrer
que les H; = (F; X[P,)/G ne sont pas isomorphes.
On aura besoin du lemme suivant:

LEMME 2.5. Soit T une courbe elliptique, X une surface de Riemann de genre
supérieur ou égal a 1, H un fibré de Seifert, de fibre type T, sur X. Alors toute
application holomorphe +y:[P, — H est constante.

Démonstration. On sait que toute application de P, dans une surface de
Riemann, de genre supérieur ou égal a 1, est constante. Alors si w:H— X
désigne le projection canonique de H sur X, 'application holomorphe 7 - vy :P; —
X est constante, c’est-a-dire il existe x € X tel que Im y < H(x), la fibre de H sur
x € X. Mais H(x) est encore une courbe elliptique, donc y est constante.
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Remarque 2.6. Sill = (U,);.; est un recouvrement ouvert de X, les classes £ et
2.¢ des deux fibrés F, et F, seront représentées respectivement par les cocycles
(&),(2.£;) € Z'(1, K,), ou avecles identifications prédédentes, pour tout x € U; N U,
&i(x), (resp. 2.§,;(x)) est toujours vue comme la translation dans T associée a
I'élément &;(x) e K,,. (resp. 2.§;(x) € K,). Or, il est facile de voir que F,/G et F,/G
sont deux fibrés de base X, fibre T/G et cocycles (&;) et (2.¢,) respectivement, ol
& : U, NU, — Aut, (T/G) est donnée par & :x —[£(x)]g. De méme, on définit
2.¢;(x). D’autre part, la multiplication par 2 dans C définit un isomorphisme de
T/G sur T. Dong, les fibrés F,/G et F,/G sont isomorphes aus fibrés F, et F, de

base X, fibre T et dont les classes dans H'(X, K,) sont respectivement 2.£ et 4.£.
On a alors:

LEMMA 2.7. Les deux fibrés F,/G et F,/G définis en 2.6 ne sont pas non plus
isomorphes en tant que variétés.

Démonstration. D’aprés 2.6 on peut regarder ces fibrés comme des fibrés sur
X de fibre T dont les classes dans H'(X, K,) sont 2.¢ et 4.£& 1l est d’ailleurs
évident (cfr. [Pa], proposition 3.7) qu’il suffit de montrer que F,/G et F,/G ne
sont pas isomorphes en taut que Aut, (T)-fibrés. On sait aussi (cfr. [Pa], théoréme
3.4) que la condition suffisante sur ¢ pour que F, et F, ne soient pas isomorphes
est que: pour tout p € Aut, (T), soit:

(Pl )x(8) #2¢ *)

De méme, pour conclure que F;/G# F,/G, il suffit de démontrer que pour tout
p € Aut, (T), (plk )x(2.0) # 4.4, ce qui est évident d’apres (¥).
Par ailleurs, on a:

Remarque 2.8. Soit

, TxP, T
p': —=

G G

la projection p':[t, z]g — [t]g. Alors le triplet

T X[P T
@’:=( - ',—-)
G 'P'c

est une fibration localement triviale avec P; comme fibre type. On peut donc
prouver:
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PROPOSITION 2.9. En tant qu’espaces analytiques, les fibrés de Seifert H,,
i =1, 2 (définis en 2.4) ne sont pas non plus isomorphes.

Démonstration. Evidemment, les H, i=1,2, sont des fibrés localement
triviaux sur F/G. D’apres le lemme 2.5, in isomorphisme analytique de H, sur H,
induit un isomorphisme analytique de F,/G sur F,/G, ce qui n’existe pas d’apres
le lemme 2.7.

§ 3. Les variétés (F, xP,)/G

Le but de ce paragraphe est de montrer que les variétés (F, xP,)/G, i=1, 2,
ne sont jamais I’espace total d’une fibration localement trivial, ayant comme fibre
une courbe elliptique.

3.1. La situation locale

G agissant librement et proprement discontinuement sur T xXP,, (T XP,)/G
est une variété lisse. Afin que une telle variété soit I’espace total d’une fibration
de fibre une courbe elliptique sur un espace analytique C, il faut que C soit une
surface de Riemann compacte.

Plus précisément, on a:

PROPOSITION 3.1.1. S’il existe une fibration localement triviale A =
[(TxP,)/G, 8, C] avec une courbe elliptique T comme fibre type, on a:
i) C=P,
i) (TxP)/G=P,xT
iii) Il existe un isomorphisme x: T — T/G qui rend commutatif le diagramme:

T % -
Glp1 =TxP,
)
p’l pre
TG «— T

Démonstration. i) On procede par I’absurde, en supposant que le genre g(C)
de la courbe C soit supérieur ou égal a 1. Si p’ est la projection définie en 2.5,
Iapplication & :(T X[P;)/G — C est constante si on la restreint aux fibres de p'.
Dongc, chaque fibre de p’ serait inclue dans une fibre de 8, ce qui est absurde, car il
n’existe pas d’applications non constantes de P, dans T.

ii) (TxP,)/G étant une surface réglée de base T/G, son premier nombre de
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Betti, b,[(TxP,)/G], est égal a 2. (cfr. e.g. [Be], proposition III, 2.1.). D’autre
part, ou peut voir (T X[P,)/G comme une surface elliptique sur [P,. Pour une telle
surface, (b, étant égal a 2), on a alors (cfr. [Su]®, page 306):

XPy_ fup
= .

iii) Evident.

Remarque 3.1.2. Si A est une fibration localement triviale, il existe un
isomorphisme f: (T X[P,)/G — T/G XP, qui rend commutatif le diagramme

T_@ N T/G <P,

6
N A ©

T/G

ou p:T/G %P, — T/G est la projection canonique. Cependant, on a:

LEMME 3.1.3. Soit E une courbe elliptique, s, et s, deux sections disjointes
d’une surface reglée triviale E XP,; alors s, et s, sont constantes et, en particulier,
définissent des diviseurs linéairement équivalents.

Démonstration. On a:EXP,=P(0zPB0:). Les sections s; et s, définissent
deux sous-fibrées A et B de O PO et on a: ABB =0 PO:.

D’apres [At, théoréme 3] A et B sont triviaux, d’ou la conclusion. On peut
maintenant montrer:

PROPOSITION 3.1.4. La surface réglée p':(TXP,)/G— T/G n’est pas
triviale.

Démonstration. D’apres le lemme 3.1.3., il suffit de construire deux sections
disjointes de la surface dont les diviseurs associés ne soient pas linéairement
équivalents.

Soient zq, z,€P, les points coordonnées (0,1) et (1,0). Considérons les
sections s; : T/G — (T XP,)/G du fibré O’ définies par: s;((tlg):=[t, z:]g, (i=1,2)
et soient D, et D, les diviseurs associés. On remarque d’abord que I’application

4 On remercie C. Turrini et A. Lanteri pour nous avoir aimablement indiqué ce travail.
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A :P,/G — P, donnée par A([a, bls):=(a? b? est un isomorphisme. Si v:(T X
P))/G—P, est la fonction méromorphe définie par v([t,(a, b)])=a?*/b* on
a:2(D,—D,)=Div (v).

Supposons par ’absurde que D, et D, soint linéairement équivalents. 11 existe
alors une fonctions méromorphe h:(TXP,)/G —P, telle que v=h2 Si v et h
sont les fonctions méromorphes sur T X[P; obtenues en relevant v et h, on a:

i) hg+t,g-2)=h(t,z), VgeG, teT, zeP,

ii) »=(h)%

Or, ii) entraine h = +a/b, ce qui est absurde puisque h est G-invariante tandis que
a/b et —a/b ne le sont pas.
En résumant, on a donc prouvé:

THEOREME 3.1.5. Le triplet S =[(T xP,)/G, p,P,/G] est un espace produit
de Seifert ayant T comme fibre type. De plus, la variété (T xP,)/G n’est pas
I’espace total d’une fibration localement triviale, ayant comme fibre type une courbe
elliptique.

3.2. La situation globale

(T xXIP,)/G étant une variété lisse, il en est de méme pour (F, XP,)/G, i =1, 2.
En outre, si (F; X[P;)/G est I’espace total d’une fibration, la base de la fibration
est une surface lisse compacte.

PROPOSITION 3.2.1. S’il existe une fibration localement triviale F =
[(F, xIP,)/G, ¢;, S] de fibre type une courbe elliptique T, alors il existe une applica-
tion holomorphe: o :S — X qui rend commutatif le diagramme:

X><El (7)

et dont les fibres sont isomorphes a P,.

Démonstration. Soient s € S et p une section locale du fibré %, définie dans un
voisinage ouvert du point s. La restriction de pr, - 7, a la fibre ;7 '(s)=T est
holomorphe donc elle est constante. LLa composition pr - mr; - p définit donc une
application qui ne dépend pas du choix de p. On peut donc construire une
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application holomorphe surjective « : S — X qui rend commutatif le diagramme
(7). D’autre part, ¥, | (¢;) '(o"'(x)) est un fibré sur o '(x) de fibre T.

Ona: (@) 'o '(x)=T;'(pr,) '(x) ={x} X (T xP,)/G. Donc ({x}x(TxP))/G, ¢,
o '(x)) est un fibré sur o '(x) de fibre T. Alors d’aprés la proposition 3.1.3.,
o '(x)=P,, Vxe X.

PROPOSITION 3.3.2. La variété (F;, XP,)/G n’est pas ’espace total d’une
fibration ayant comme fibre type une courbe elliptique.

Démonstration. Si ¢’était le cas, il existerait une fibration ¢ : (T xXP,)/G — G
localement triviale, de fibre une courbe elliptique, ce qui est absurde d’apres le
théoreme 3.1.5.
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