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Les fibres de Seifert dans le problème de la simplification par les
courbes elliptiques

C. Menini et G. Parigi

Introduction1

Soit T un tore complexe; on considère le problème de la simplification par T:

(P) Soient A et B deux variétés analytiques complexes compactes telles que
AxT BxT. A-t-on alors A =B?(2)

On sait qu&apos;en général ce problème n&apos; admet pas une réponse positive: en 1978
Shioda (cfr. [Sh]) a exhibé un contrexemple en construisant trois courbes elliptiques
T, T, T&quot; telles que TxT&apos;^TxT&quot; mais avec T # T&quot;. D&apos;autre part, toujours dans

[Sh], Shioda a montré:

THÉORÈME. Soit T une courbe elliptique, avec End(T)=Z. S&apos;il existe deux

courbes elliptiques 7\, T2 telles que TxT1 TxT2, alors TX T2.

On est alors conduit au problème suivant:

(Pi) Soit T une courbe elliptique, avec End(T)=Z. S&apos;il existe deux variétés A
et B telles que A x T B x T, est-ce qu&apos;on a alors A =B?

Dans le présent article nous attaquons le problème en supposant que A^B et en

essayant de doter les variétés A et B d&apos;une structure de fibre localement trivial,
de fibre une courbe elliptique T, isogène à T, sur le même espace analytique X.
Nous sommes ainsi amenés à étudier le problème suivant: (cfr. § 0, (4)).

(P2) L&apos;application naturelle: i : H\X, f) -* H\X, fxT) est-elle injective?

On sait que la réponse est négative dans le cas général: dans [Pa] on construit,

1 Pour une introduction plus détaillée au problème de la simplification, on peut voir: [Br], [Fu],
[Pa].

2 Les mots «analytiques complexes compactes» seront souvent sous-entendus dans la suite. En
particulier, désignera toujours un isomorphisme analytique complexe.

123



124 C. Menini et G. Parigi

pour tout tore complexe T, deux fibres F,(T), i 1, 2, de fibre T sur une surface
de Riemann adéquate Z, tels que FtxT^F2xTy mais avec Ft^F2.

Dans le présent travail (cfr. § 1), on démontre:

THÉORÈME. Soit T une courbe elliptique avec End(T) Z. S&apos;il existe deux
variétés A et B telles que AxT BxT, alors ou bien A est isomorphe à B, ou bien

A et B sont des fibres principaux de Seifert,(3) de fibre une même courbe elliptique T,
isogène à T, sur un même espace analytique Z.

Le théorème serait faux si l&apos;on remplaçait fibre de Seifert par fibre localement
trivial. On va en effet donner au § 2 un exemple, avec une courbe elliptique
quelconque T, où l&apos;obstruction à simplifier par T repose sur la notion de fibration
de Seifert. Plus précisément, on va exhiber deux fibrations 3i?1: (H1, ttx, Y),
af2: (H2, tt2, Y) telles que:

1) Wx et 2^2 sont deux fibres de Seifert ayant comme base le même espace
analytique Y et comme fibre type une même courbe elliptique isogène à T.

2) Hi#H2, mais H!XT H2x T.

3) II n&apos;existe aucun espace analytique Y&apos; et aucune projection tt[ tels que
3^: (H,, ttî, Y&apos;), i 1,2, soit un fibre localement trivial de fibre une courbe
elliptique.

H découle tout de suite de la définition (cfr. [Ho], définition 1) que pour
construire de tels fibres de Seifert, qui puissent avoir une chance de ne pas être
localement triviaux, il faut d&apos;abord exhiber un espace produit de Seifert (qui en

(TxQ Q\
représente la situation locale) du style: I———, tt, —I, G étant un groupe fini

\ G G/
d&apos;automorphismes analityques de T qui agit aussi sur la variété Q, mais avec des

points fixes. On pose alors Q: Pt et G: Z/2Zx//2Z ker{- 2:T-&gt; T}; un tel
G opère sur Px avec deux points fixes.

Après, on utilise les fibres F,, i l,2, définis en [Pa], en posant
H, : (Fl xP1)/G, et on démontre que les Ht vérifient les propriétés 1) et 2). Au
§3, enfin, on démontre la propriété 3): la variété (F.xP^/G, î l,2, n&apos;est

jamais, en effet, l&apos;espace total d&apos;une fibration localement triviale ayant comme
fibre une courbe elliptique.

Nous remercions vivement André Hirschowitz pour son aide tout le long de ce

3 Dans la suite, les notations et les définitions relatives aux fibres de Seifert seront toujours cells de
[Ho].
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travail. Nous tenons aussi à remercier V. Ancona et A. Lascu pour leurs conseils
fructueux.

§ 0. Conventions et notations

1) Si T est un tore complexe, on sait que les automorphismes analytiques de T
forment un groupe de Lie complexe. On notera ce groupe Auta (T) et Autg (T)
le sous-groupe des automorphismes de T qui conservent aussi sa structure de

groupe.
2) Si X est une variété analytique complexe, on désigner a par ST(X) son fibre

tangent.
3) Soit F un fibre analytique de base X, fibre T et groupe structural Gç

Auta (T). On dira alors que F est un G-fibre sur X.
4) Si X est une variété analytique complexe et G un groupe de Lie complexe, on

désigne par G le faisceau des germes d&apos;applications holomorphes X—» G.
5) On sait qu&apos;un homomorphisme de faisceaux de groupes abéliens p :: ^-* &lt;&amp; sur

le même espace topologique X induit les homomorphismes:

p* : H°(X, 9) -+ H°(X, &lt;ê) ; pi : H\X, 9) -» H\X, %

Si U est un recouvrement ouvert de X, on convient alors de noter encore p\
l&apos;application canonique :

§ 1. Un théorème de structure

THÉORÈME 1.1. Soit T une courbe elliptique, avec End(T)=Z. S&apos;il esiste

deux variétés A et B telles que AxT^BxT, alors ou A^B, ou bien A et B sont
des fibres principaux de Seifert, de fibre une même courbe elliptique T, isogène à T,
sur un même espace analitique Z.

Démonstration. On sait (cfr. [BrJ, lemme 1) que si X Xx x X2 est le
produit de deux variétés analytiques compactes, tout champ de vecteurs
holomorphe £ sur X est de la forme £ £i©ê2&gt; où 4 est un champ de vecteurs
holomorphe sur Xl (i 1,2). Soit alors t un champ de vecteurs holomorphe
vertical sur AxT, jamais nul, et&lt;£:AxT—»BxTun isormorphisme analytique.

Si ^(&lt;£&gt;) : &lt;T(A x T) -* ?T(B x T) est l&apos;application linéaire tangente associée a &lt;£,

cr: ST((l))(T) est un champ de vecteurs sur B x T, de la forme a or1®a2, où at
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est un champ sur B et cr2 un champ sur T. La suite de la démonstration se

compose de plusieurs pas.

a) On suppose d&apos;abord qu&apos;il existe un point boeB tel que a1(bo) 0.

cr2 étant un champ sur T jamais nul, une courbe intégrale pour cr passant

par un point de la forme (b0, t) n&apos;est rien d&apos;autre que b0 x T.
H existe donc aoeA tel que &lt;P(a0x T) b0x T. D&apos;autre part, pour tout

voisinage de Stein V de b0 dans B, il existe un voisinage U de a0 dans A tel

que: $([/xT)çVxT.En plus pour tout x&apos; e U, si pB est la projection naturelle
PbiBxT—&gt;B, pe(&lt;î»(x&apos;xT)), par le théorème de l&apos;application propre de
Remmert (cf. [Re]), n&apos;est qu&apos;un y&apos;eB. Donc, 0(x&apos;xT) y&apos;xT. On peut
alors bien définir un isomorphisme &lt;f&gt;

: A =B.
b) On va supposer maintenant crx partout normale. Posons, pour tout aeA,

Ta: axT et pour tout beB9 Tb: bxT. Alors les courbes &lt;P(Ta) ne

peuvent jamais être tangentes à des courbes du type Tb.

bx) Soit X une variété avec deux isomorphismes a:AxT-*X et
/3 : a • &lt;P~l :BxT-*X qui rendent commutatif le diagramme:

X
&lt;f \ (1)

AxT —*-» BxT
Alors, on peut définir sur X une opération holomorphe du produit

En effet, soit t un champ de vecteurs holomorphe sur T; t définit une
opération de T sur le produit AxT (resp. BxT) qu&apos;on peut voir, via
l&apos;isomorphisme a (resp. (3) comme une opération tja:TxX-&gt;X (resp.

Il est par ailleurs évident que, si l&apos;on considère t comme un champ vertical
sur A x T et B x T et si on le transporte sur X via les applications linéaires

tangentes &amp;{a) et ^(|8) et si l&apos;on définit iv=#XcO(t) et v2:=9&apos;(P)(t), on
aura que le crochet [vl9 *&gt;2] est nul. Donc, les deux actions de T commutent
sur X.

b2) T peut être vu de deux manières différentes comme un sous-groupe de

Auta (X), le groupe des isomorphismes analytiques de X. Donc, si ôf, i 1,2,
sont les applications 8t : T—» Auta (X), relatives aux deux actions de T sur X,
on pose Tt : St(T) et on a Tf c Auta (X).

b3) Soit &lt;S le sous-groupe de Auta (X) engendré par Tx et T2. Alors l&apos;application

naturelle p:T1xT2-*cS est surjective et a un noyau fini K. On a donc une
suite exacte:

&lt;£ étant un quotient de 7\ x T2 par le groupe fini K, est un tore complexe de
dimension 2, isogène à T\ x T2.
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b4) On peut définir deux injections: À, : T, &lt;^&gt; % (i 1, 2); si ft:= &lt;ê/Tl9 la suite:

0 -» T, -* « _» f;; _* o i 1, 2)

est scindée. En effet, soit ^Axtle sous-groupe de Auta (AxT) engendré par
7\ et T2 en tant que groupes agissant sur AxT. On a donc la suite exacte de

groupes:

Soit maintenant TA le groupe qu&apos;on obtient en transportant le champ vertical
choisi sur B x T, sur le produit A x T, en le projetant sur A et en considérant
le groupe à un paramètre d&apos;automorphismes correspondant. On a donc une
surjection tt : T2 —» TA, dont le noyau est, par construction, un groupe fini Kx.
(Kt est donc le noyau de l&apos;action de T2 sur A). On a alors la suite exacte:

TA étant un quotient de la courbe elliptique T2 par le groupe fini Kx est une
courbe elliptique isogène à T2 et donc à T. On peut voir a présent qu&apos;on peut
définir, d&apos;une façon naturelle, une application: px : T\ x TA -» ^Axt telle que:
Pi(*i&gt; ta) : hota, et que, par construction, une telle application est un isomor-
phisme de groupes de Lie complexes. En transportant sur X, via l&apos;isomor-

phisme a, on a : 7\ x TA &lt;ê. D&apos;autre part, si l&apos;on restreint l&apos;application

p:T1xT2^cS à Tix0T2 on peut bien définir une injection kt :Tx —&gt; % et il
facile à voir que le diagramme:

|P1 (2)

est commutatif. Si l&apos;on considère alors le diagramme:

0 &gt; Tx 7\ x Ta fa 0

II I i*1 (3)

on peut déduire de (3) qu&apos;un tel diagramme est commutatif et que l&apos;application

induite fa : TA —» Tx est un isomorphisme.
Il en découle que la suite:
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est scindée. Il est évident aussi qu&apos;on peut définir une courbe elliptique TB et
une surjection rr : Tx —&gt; TB, dont le noyau est un groupe fini K2. On aura aussi

un isomorphisme: T2 x TB =&lt;g; de même il existe un isomorphisme i/f2: TB —»

T2 et donc la suite exacte:

est scindée. En particulier, on a:

T\x fA Tx x f=« fB x T2 f2xT2,

et donc un isomorphisme (de groupes de Lie complexes)

Or, il est évident que, par construction, on a : T T\ T2. Comme End (T)
Z, d&apos;après Shioda (cfr. [Sh]) on a aussi: fx f2.

Si on pose: T:=Ti, (i 1,2), on a donc un automorphisme:

p:Txxf T2xf.

b5) Par construction, Tx agit effectivement sur A ; il s&apos;en suit donc (cfr. [Ho]), que
le quotient AIT a une structure complexe canonique et que A est, par
rapport à la projection canonique tta : A —&gt; AIT, un fibre principal de Seifert
ayant T comme groupe de structure.

Or, T~T2 agit effectivement sur B, ce qui fait donc de B un fibre
principal de Seifert par rapport à la projection ttb:B-+B/T.

b6) On veut maintenant montrer que l&apos;isomorphisme &lt;P passe au quotient c&apos;est-a-

dire qu&apos;il induit un isomorphisme: &lt;P:A/f —&gt; BIT.
Mais si l&apos;on décompose le diagramme (1), on obtient:

AxT—^-?X X =X&lt;-^-BxT
I

1 l

I h
X/T2 B (4)

I
A/f X/TxXT =X/S X/T2xf B/f
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Or, par construction, on a iX/Ti* f X/^ X/T2x f ce qui achève la
démonstration.

§ 2. Un exemple d&apos;obstruction à la simplification par T

On va meintenant donner pour toute courbe elliptique T un example de fibres
de Seifert distincts Hl9 H2 tels que H1xT=H2xl L&apos;obstruction à la simplification

par T est le fait que Hl5 H2 ne sont pas des fibres localement triviaux.

Remarque 2.1. Soit T une courbe elliptique et G: Z/2ZxZ/2Z. On a:G
Ker {• 2 : T—» T}. Donc, G opère librement sur T par translations. Par ailleurs, on
peut regarder G comme le sous-groupe de SL(2, Z), (qu&apos;on notera encore G),
formé par les matrices:

°K .?)•

On peut donc définir d&apos;une façon naturelle une opération holomorphe de G su

Pi, une telle action n&apos;étant que la composition de ces matrices avec les éléments
(a, b)ePx. G agissant sur T et sur Pl9 il agit aussi sur TxPt par:

g:(f, z)-*(g + t, g-z), pour tout teT, zePl9 geG.

Si p .-(TxPjVG —&gt;PJG est la projection naturelle, le triplet

est, par définition, un espace produit de Seifert avec T comme fibre type.

Remarque 2.2. On sait (cfr. [Pa], propositions 3.4. et 3.7) que si q est un
entier impair plus grand que 6 et KQ le noyau de la multiplication par q dans T, il
existe une surface de Riemann compacte X, de genre g g(X)&gt; 1, et un élément
ÇeHl(X, Kq) tels que si Ft et F2 sont des fibres, de fibre T, correspondant à £ et
à 2 • £, alors Ft et F2 ne sont pas non plus imomorphes en tant que variétés.

Puisque G et Kq commutent entre eux, on peut définir, d&apos;une façon naturelle, une
action de G sur les fibres F,, i 1, 2, et considérer les quotients correspondants
H, : (Ft xP^/G. On a alors:

PROPOSITION 2.3. Soit Ht : (Ft x P^/G. Les variétés H^TetH^T sont

isomorphes.
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Démonstration. Soit p:TxT-&gt;TxT l&apos;application définie par la matrice

&quot;W(2,Z),

où q est le nombre entier défini en 2.2, et où rl5 r2 sont des entiers convenables.
Or, pe Autg (Tx T) et il est facile à voir (cfr. [Pa], théorème 4.2) que p induit

un isomorphisme analytique (qu&apos;on note encore p) entre les fibres F^xT et

F2xT. On obtient donc un isomorphisme: ^:P1xF1xT-^P1xF2xT, en
posant: iKz, /, t) (z, p(f, r)), pour tout z ePx, fe Fu r e T. On définit une action de
G sur P^^xT, î 1, 2, de la façon suivante:

g • (z, /, t) (g • z, g • /, t), pour tout geG.

Or, ifj commute à l&apos;action de G; on a donc un isomorphisme t/rrH^xT—&gt;

H2xT.
Remarque 2.4. Les Fl? (i 1,2;) étant des fibres sur la surface de Riemann X,

on peut définir une application holomorphe:

telle que tt,([(x, t), z]G):=(x, [z]G). Il découle tout de suite de la définition (cfr.
Ho, définition 1) que les triplets

G

sont des fibres de Seifert avec T comme fibre type. On va maintenant montrer
que les Ht =(Ft xP1)/G ne sont pas isomorphes.

On aura besoin du lemme suivant:

LEMME 2.5. Soit T une courbe elliptique, X une surface de Riemann de genre

supérieur ou égal à 1, H un fibre de Seifert, de fibre type T, sur X. Alors toute

application holomorphe y : P1 --&gt; H est constante.

Démonstration. On sait que toute application de Px dans une surface de

Riemann, de genre supérieur où égal a 1, est constante. Alors si tt:H—»X
désigne le projection canonique de H sur X, l&apos;application holomorphe tt • 7 :PX —&gt;

X est constante, c&apos;est-à-dire il existe x g X tel que Im 7 &lt;= H(x), la fibre de H sur
x g X. Mais H(x) est encore une courbe elliptique, donc 7 est constante.
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Remarque 2.6. Si U (l/t)l€r est un recouvrement ouvert de X, les classes £ et
2.£ des deux fibres Fx et F2 seront représentées respectivement par les cocycles
(4,),(2.4,)eZ1(U, Kq), où avec les identifications prédédentes, pour tout xe Ul C\ Up

£,(x), (resp. 2.£tJ(x)) est toujours vue comme la translation dans T associée à

l&apos;élément Ç1}(x)g Kq. (resp. 2.£lJ(x)e Kq). Or, il est facile de voir que FJG et F2/G
sont deux fibres de base X, fibre T/G et cocycles (fEJ) et (2.ç;/) respectivement, où

êj : l/t H U, —&gt; Auta (T/G) est donnée par ïtJ :x —»[êj(x)]G- De même, on définit
2.4j(jc). D&apos;autre part, la multiplication par 2 dans C définit un isomorphisme de

T/G sur T. Donc, les fibres FJG et F2IG sont isomorphes aus fibres Ft et F2 de
base X, fibre T et dont les classes dans H*(X, Kq) sont respectivement 2.£ et 4.£.
On a alors:

LEMMA 2.7. Les deux fibres Fx/G et F2jG définis en 2.6 ne sont pas non plus

isomorphes en tant que variétés.

Démonstration. D&apos;après 2.6 on peut regarder ces fibres comme des fibres sur
X de fibre T dont les classes dans H^X, Kq) sont 2.£ et 4.£ II est d&apos;ailleurs

évident (cfr. [Pa], proposition 3.7) qu&apos;il suffit de montrer que FJG et FJG ne

sont pas isomorphes en taut que Auta (T)-fibrés. On sait aussi (cfr. [Pa], théorème
3.4) que la condition suffisante sur £ pour que Ft et F2 ne soient pas isomorphes
est que: pour tout pe AutR (T), soit:

De même, pour conclure que FJG^FJG, il suffit de démontrer que pour tout
peAutg (T), (p|Kq)*(2.£)^4.£, ce qui est évident d&apos;après (*).

Par ailleurs, on a:

Remarque 2.8. Soit

f TxP, _T
P :

G
~*

G

la projection p&apos;:[t, z]G -~&gt;[t]G. Alors le triplet

est une fibration localement triviale avec P^ comme fibre type. On peut donc

prouver:
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PROPOSITION 2.9. En tant qu&apos;espaces analytiques, les fibres de Seifert Ht,
i 1,2 (définis en 2.4) ne sont pas non plus isomorphes.

Démonstration. Évidemment, les H,, î l,2, sont des fibres localement
triviaux sur FJG. D&apos;après le lemme 2.5, in isomorphisme analytique de Hx sur H2
induit un isomorphisme analytique de FJG sur F2/G, ce qui n&apos;existe pas d&apos;après

le lemme 2.7.

§3. Les variétés (F.xl

Le but de ce paragraphe est de montrer que les variétés (F, xPt)/G, i 1, 2,

ne sont jamais l&apos;espace total d&apos;une fibration localement trivial, ayant comme fibre

une courbe elliptique.

3.1. La situation locale

G agissant librement et proprement discontinuement sur Txpl5 (TxP1)/G
est une variété lisse. Afin que une telle variété soit l&apos;espace total d&apos;une fibration
de fibre une courbe elliptique sur un espace analytique C, il faut que C soit une
surface de Riemann compacte.

Plus précisément, on a :

PROPOSITION 3.1.1. S&apos;il existe une fibration localement triviale A

[(TxPx)/G, 8, C] avec une courbe elliptique T comme fibre type, on a:

ii) (TxP1)/G=P1xf
iii) II existe un isomorphisme x :T—&gt;TIG qui rend commutatif le diagramme:

1 i
&lt;5»

TIG &lt; f
Démonstration, i) On procède par l&apos;absurde, en supposant que le genre g(C)

de la courbe C soit supérieur ou égal à 1. Si p&apos; est la projection définie en 2.8,
l&apos;application ô:(TxP1)/G—&gt; C est constante si on la restreint aux fibres de p&apos;.

Donc, chaque fibre de p&apos; serait inclue dans une fibre de 8, ce qui est absurde, car il
n&apos;existe pas d&apos;applications non constantes de Px dans T.

ii) (TxP^/G étant une surface réglée de base T/G, son premier nombre de
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Betti, fciKTxPO/G], est égal à 2. (cfr. e.g. [Be], proposition III, 2.1.). D&apos;autre

part, ou peut voir (TxP^/G comme une surface elliptique sur Px. Pour une telle
surface, (bx étant égal à 2), on a alors (cfr. [Su?4*, page 306):

G

iii) Évident.

Remarque 3.1.2. Si A est une fibration localement triviale, il existe un
isomorphisme f:(TxP1)/G-&gt;T/GxP1 qui rend commutatif le diagramme

^ ^U T/GxP,

TIG

où p : TIG xPj-» TjG est la projection canonique. Cependant, on a:

LEMME 3.1.3. Soif E une courbe elliptique, sx et s2 deux sections disjointes
d&apos;une surface réglée triviale JBxP1; alors sx et s2 sont constantes et, en particulier,
définissent des diviseurs linéairement équivalents.

Démonstration. On a :ExP1=P(GE(B6E). Les sections sx et s2 définissent
deux sous-fibrès A et B de OE®OE et on a :A®B

D&apos;après [At, théorème 3] A et B sont triviaux, d&apos;où la conclusion. On peut
maintenant montrer:

PROPOSITION 3.1.4. La surface réglée p&apos;:(TxP1)/G-*T/G n&apos;est pas
triviale.

Démonstration. D&apos;après le lemme 3.1.3., il suffit de construire deux sections

disjointes de la surface dont les diviseurs associés ne soient pas linéairement
équivalents.

Soient 21,z2gP1 les points coordonnées (0,1) et (1,0). Considérons les

sections s, : T/G -&gt; (TxPJ/G du fibre O&apos; définies par: s,([f]o) : [t, zJg, 0 1» 2)
et soient Dx et D2 les diviseurs associés. On remarque d&apos;abord que l&apos;application

4 On remercie C Tumni et A Lanten pour nous avoir aimablement indiqué ce travail
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ÀilPx/G—^Px donnée par À([a, b]G): (a2, b2) est un isomorphisme. Si v:(Tx
P^/G-^Pi est la fonction méromorphe définie par v([t, (a, b)]) a2/b2 on
a :2(D1-D2) Div O).

Supposons par l&apos;absurde que Dl et D2 soint linéairement équivalents. Il existe
alors une fonctions méromorphe h .&apos;(TxP^/G—&gt;Pi telle que v — h2. Si y et h

sont les fonctions méromorphes sur TxPi obtenues en relevant ^ et h, on a:
i) fi(g + r,g-z) fi(f,z), VgeG, feT, zgPj

ii) v (h)2.
_

Or, ii) entraîne h ±a/b, ce qui est absurde puisque h est G-invariante tandis que
a\b et —a/b ne le sont pas.

En résumant, on a donc prouvé:

THÉORÈME 3.1.5. Le triplet © [(TxP1)/G,p,P1/G] est un espace produit
de Seifert ayant T comme fibre type. De plus, la variété (TxP^/G n&apos;est pas
Vespace total d&apos;une fibration localement triviale, ayant comme fibre type une courbe

elliptique.

3.2. La situation globale

(TxP1)/G étant une variété lisse, il en est de même pour (F, xPJ/G, i 1, 2.

En outre, si (F, xPx)/G est l&apos;espace total d&apos;une fibration, la base de la fibration
est une surface lisse compacte.

PROPOSITION 3.2.1. S&apos;il existe une fibration localement triviale &amp;

[(F, xP1)/G, &lt;p,, S] de fibre type une courbe elliptique f, alors il existe une application

holomorphe: o~:S-&gt;X qui rend commutatif le diagramme:

•y G
FlxP1

(7)

-I
X

et dont les fibres sont isomorphes à Px.

Démonstration. Soient seSetp une section locale du fibre SFt définie dans un
voisinage ouvert du point s. La restriction de prx • tt, à la fibre &lt;p~1(s) T est

holomorphe donc elle est constante. La composition pr • irx • p définit donc une
application qui ne dépend pas du choix de p. On peut donc construire une
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application holomorphe surjective a : S —» X qui rend commutatif le diagramme
(7). D&apos;autre part, Wt | (&lt;pt) \a~\x)) est un fibre sur o~~~\x) de fibre f.
On a : (&lt;p{) x* 1U) TT1(prxr1(x) {x}xjTxP1)/G. Donc ({x}x(TxPt)/G, &lt;p,,

cr H*)) est un fibre sur (r^(x) de fibre T. Alors d&apos;après la proposition 3.1.3.,

a \x)=Pu VxgX.

PROPOSITION 3.3.2. La variété (F.xP^/G n&apos;est pas Vespace total d&apos;une

fibration ayant comme fibre type une courbe elliptique.

Démonstration. Si c&apos;était le cas, il existerait une fibration cp iCTxlP^/G—&gt; G
localement triviale, de fibre une courbe elliptique, ce qui est absurde d&apos;après le
théorème 3.1.5.
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