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On the homology of Lie groups made discrete

J. MILNOR

§1. Introduction

Let G be an arbitrary Lie group and let G® denote the same group with the
discrete topology. Then the natural homomorphism G°® — G gives rise to a
continuous mapping m: BG® — BG between classifying spaces. This paper is
organized around the following conjecture which was suggested to the author by
E. Friedlander, at least in the complex case. (Compare Quillen, p. 176.)

IsoMORPHISM CONJECTURE. This canonical mapping BG® — BG induces
isomorphisms of homology and cohomology with mod p coefficients, or more
generally with any finite coefficient group.

Here the homology of BG? is just the usual Eilenberg-MacLane homology of
the uncountably infinite discrete group G°. These homology groups are of interest
in algebraic K-theory (see for example Quillen), in the study of bundles with flat
connection (Milnor, 1958), in the theory of foliations (Haefliger, 1973), and also
in the study of scissors congruence of polyhedra (Dupont and Sah). They are
difficult to compute, and tend to be rather wild. For example if G is non-trivial
and connected, then Sah and Wagoner show that H,(BG®;Z) maps onto an
uncountable rational vector space. (See also Harris.) The homology and cohomol-
ogy groups of BG, on the other hand, are much better behaved and better
understood. (Borel, 1953.)

In §2 we will see that this Isomorphism Conjecture is true whenever the
component of the identity in G is solvable. If it is true for simply-connected
simple groups, then it is true for all Lie groups. It is always true for 1-dimensional
homology, and is true in a number of interesting special cases for 2-dimensional
homology. (See §4.) For higher dimensional computations which tend to support
the conjecture, see Karoubi, p. 256, Parry and Sah, as well as Thomason.

Another partial result is the following (83). If G has only finitely many
components, then for any finite coefficient group A the homomorphism
Hy(BG?; A)— Hy(BG; A) is split surjective. Thus we obtain a direct sum decom-
position

H,(BG?®; A)=H;(BG; A)®(unknown group),
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where the unknown summand is of course conjectured to be zero. The proof is
based on Becker and Gottlieb, and generalizes a theorem of Bott and Heitsch. As
an immediate corollary, it follows that the integral cohomology H*(BG; Z) injects
into H*(BG?®;Z).

An appendix discusses the analogous homomorphisms with rational coeffi-
cients, which behave very differently. For example the homomorphism
H;(BG®; Q) — H;(BG; Q) is identically zero for i >0 whenever G is compact, or
complex and semi-simple with finitely many components. More generally, even
when these homomorphisms are not identically zero, it is often possible to
describe the precise kernel of the associated ring homomorphism H*(BG; Q) —
H*(BG?®; Q).

The methods used in this note are all more or less well known. I am
particularly grateful to J. F. Adams, E. Friedlander, A. Haefliger, and D. McDuff
for pointing out some of the necessary tools to me, to A. Borel for pointing out
an error in an earlier version, and to the Institut des Hautes Etudes Scientifiques
for its hospitality.

§2. The solvable case

First some general definitions. We will always use singular homology theory
with constant (i.e., untwisted) coeflicients.

For any topological group G, let G be the homotopy fiber of the map G® — G.
(Compare Thurston.) Thus G is the topological group consisting of all pairs (g, f)
where g is a point of G® and f is a path from the identity element to the image of
g in G. We will be particularly interested in the classifying space BG. Mather calls
the homology of BG the “local homology” of the topological group G, since it is
completely determined by the germ of the group G at the identity element. (See
also Haefliger 1978, which uses the notation Bg for our space BG, and McDuff
1980, which uses the notation BG.) If G is locally contractible, so that the identity
component G, has a universal covering group U, note that the natural
homomorphisms U — G,— G induce isomorphisms U — Go,— G. Hence the
homology groups of BG depend only on the universal covering group of G. In the
case of a Lie group, it follows that they depend only on the Lie algebra of G.

LEMMA 1. The Isomorphism Conjecture of §1 is true for a connected Lie group
G if and only if the associated space BG has the mod p homology of a point, for
every prime p. If it is true for a connected group G, then it is true for any Lie group
H, connected or not, which is locally isomorphic to G.

Proof. This follows easily from the mod p homol—ogy spectral sequences as-
sociated with the fibrations BG — BG® — BG and BG — BH® — BH. (Note that
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BG is simply-connected.) The passage from mod p coefficients to arbitrary finite
coefficients can be carried out by induction on the order of the abelian coefficient
group A, making use of the homology exact sequence associated with a coefficient
sequence A'— A — A/A’, where A’ is some non-trivial proper subgroup of A.
Details will be omitted. W

LEMMA 2. If a discrete abelian group I' is uniquely divisible, then its classify-
ing space BI" has the mod p homology of a point.

Proof. A “‘uniquely divisible” group is just one which is isomorphic to a vector
space over the rational numbers Q. First suppose that this vector space is
1-dimensional. Then I' is a direct limit of free cyclic groups, hence its homology is
trivial in all dimensions greater than one; and evidently the group

H\(BI';Z/pZ)=H,(BI'; Z)QZ/pZ=TI'QZ/pZ

is also zero. Next suppose that I' is finite dimensional over Q. Then the conclusion
follows inductively, using the Kiinneth Theorem. Finally, the infinite dimensional
case follows by a straightforward direct limit argument. W

Combining these two results, we obtain the following,.

LEMMA 3. If the component of the identity of G is solvable, then the
Isomorphism Conjecture is true for G.

Proof by induction on the dimension. By Lemma 1 it suffices to consider the
case of a simply-connected solvable group. In the 1-dimensional case, G =R, the
conclusion follows immediately, since BR is contractible, and BR? has the mod p
homology of a point by Lemma 2. In the case of a higher dimensional simply-
connected solvable group, choose a homomorphism from G onto R with kernel
N. Then the short exact sequence N— G — R gives rise to a Serre fibration
BN — BG — BR. We may assume inductively that BN has the mod p homology
of a point, and a spectral sequence computation shows that BG does also. W

More generally, for any Lie group G, the associated Lie algebra g has a
maximal solvable ideal n, and the quotient g/n splits as a direct product of simple
Lie algebras s;. Let S; be corresponding simple Lie groups.

LEMMA 4. If the Isomorphism Conjecture is true for each simple Lie group S,,
then it is true for G.

The proof, based on the fibration BN — BG — [] BS, is easily supplied. W
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§3. The Gottlieb transfer

Let 7: E — B be the projection map of a smooth fiber bundle, with a closed
manifold as fiber. The Gottlieb transfer tr: H'E— H'B can be defined intuitively
as the cup product with the Euler characteristic along the fiber, followed by
integration along the fiber. (For a precise definition see Gottlieb.) Here, and
throughout most of this section, some fixed coefficient group A is to be understood.
There is a completely analogous transfer homomorphism in homology. One basic
property is that the composition

HB-->HE-~>HB

is equal to multiplication by the Euler characteristic of the fiber.

Let G be any Lie group with finitely many components, and let K be a maximal
compact subgroup. According to Mostow, the quotient space G/K is contractible,
hence the natural map BK — BG is a homotopy equivalence. Let N be the
normalizer of a maximal torus in K. According to Hopf and Samelson, the
quotient manifold K/N has Euler characteristic +1. Note that there is a canonical
fibration w:BN — BK with fiber K/N. Following Becker and Gottlieb, this
implies the existence of a transfer homomorphism tr: H;BK — H,BN such that the
composition H;BK — H,BN — H,BK is just the identity map of H;BK. Therefore
the natural homomorphism my: H;BN— H,BK is a split surjection. A similar
argument shows that the corresponding cohomology homomorphism 7*: H'BK —
H'BN is a split injection. \

Now let us assume that the coefficient group A is finite. Then HyBN® = H,BN
by §2. We continue to assume that G has only finitely many components.

THEOREM 1. The canonical homomorphism ms: HBG® — HBG is a split
surjection. That is some direct summand of HBG® maps isomorphically onto HBG.
Similarly, the cohomology homomorphism n* : HHBG— H'BG? is a split injection.

Prbof. This follows by inspection of the commutative diagram

H,BN® > HBG?
) [
H,BN-=> H,BK => H.BG,

or the analogous cohomology diagram. W
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COROLLARY 1. The homomorphism n*: H'(BG;Z) — H'(BG®; Z)
of integral cohomology is injective.

Proof. This follows from the commutative diagram

H'(BG:Z)—->H'(BG;Z)— H'(BG;Z/nZ)

l |

H'(BG®;Z)— H'(BG®;Z/nZ),

using the fact that H' (BG; Z) is finitely generated, so that the intersection
of the subgroups nH'(BG;Z) is zero; and using the fact that the right
hand vertical arrow is injective. W

The corresponding statement in homology would be false. For example if G is
the unitary group U(n) or the special linear group SL(n, C), then we will see in
the Appendix that my:H(BG?;Z)— H,(BG;Z) is identically zero for i>0.
However we can prove the following weaker statement.

COROLLARY 2. Every element of finite order n in H,(BG;Z) lifts to an
element of order n in H;(BG®;Z).

Proof. This follows from the commutative diagram

-

H,,,(BG®;Z/nZ) - H,(BG®;Z)>

lomo l

H..,(BG;Z/nZ)— H,(BG;Z)>. R

§4. Examples for H,

Homology with integer coefficients is to be understood throughout this section.
We will need the following observation to relate integer homology to mod p
homology.

LEMMA 5. A path-connected space X has the mod p homology of a point for
every prime p if and only if the integer homology group H,X is uniquely divisible for
i>0.

In particular, a connected group G satisfies the Isomorphism Conjecture if and
only if the integer homology H;BG is uniquely divisible for i >0.



On the homology of Lie groups made discrete 77

Proof. This follows from the homology exact sequence associated with the
coefficient sequence 0 >Z>Z —>Z/pZ—>0. B

Recall from §2 that it would suffice to prove the Isomorphism Conjecture for
connected semi-simple groups.

LEMMA 6. If G is connected and semi-simple, then H,BG is zero, and there is
a split exact sequence 0 — H,BG — H,BG® — H,BG — 0.

Here H,BG can be identified with the fundamental group G, since G is
connected. So the last statement means that H,BG? splits as the direct sum of the
finitely generated group G, and a group H,BG which is conjectured to be a
rational vector space.

Proof. For the computation of H,BG, we may assume that G is simply-
connected (compare §2), and hence that H,BG = 0. Since G is perfect, the group
H,BG? = G/[G, G] is zero. The statement that H,BG =0 then follows from the
spectral sequence of the fibration BG — BG® — BG.

For any connected Lie group G, note that H;BG is finite, since the rational
cohomology of BG is a polynomial algebra on even dimensional generators
(Borel, 1953). Therefore H;BG® maps onto H3;BG by Corollary 2 of §3. If G is
semi-simple, so that H,BG =0, an elementary spectral sequence argument now
yields the required short exact sequence; and it follows from Corollary 2 that this
exact sequence splits. W

LEMMA 7. If G is a Chevalley group over the real or complex numbers, then
H,BG is uniquely divisible and uncountably infinite.

For the proof, which is based on deep results of Steinberg, Moore and
Matsumoto, the reader is referred to Sah and Wagoner, p. 623. W

Note that any complex simply-connected simple Lie group is automatically a
Chevalley group. In the complex case, the proof shows that H,BG is naturally
isomorphic to the group K,C of algebraic K-theory, which is uniquely divisible by
a theorem of Bass and Tate.

Typical examples of real Chevalley groups are special linear group SL(n, R),
the rotation groups SO(n, n) and SO(n, n+1), and the symplectic group consist-
ing of automorphisms of a skew form on R®". In the real case, H,BG is
isomorphic to the “real part” of K,C, that is the subspace fixed under the
involution arising from complex conjugation,
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For non-Chevalley groups, the known information is rather sparse. Alperin
and Dennis have proved an analogous result for the stable special linear group
over the quaternions. Their paper also contains an ingenious argument due to
Mather, which proves the following. If T=S"' is a maximal torus in the 3-sphere
group SU(2), then H,BT® maps onto H,BSU(2)®. Since H,BT?® is known to be
uniquely divisible, it follows that H,BSU(2)? is at least divisible. I do not know
how to prove the corresponding statement even for SU(3). Alperin has shown
that the successive homomorphisms

H,BSU(3)> - H,BSU4)? — - - -

are surjective (and bijective from SU(6) on); but no more precise information
about these groups seems to be available.

Appendix: Real or rational coefficients

The cohomology of BG® with real or rational coefficients behaves quite
differently from cohomology with finite coefficients, and is somewhat better
understood. In fact, there are two basic tools which help to make the real case
tractable, namely the Chern—Weil theory of characteristic classes expressed in
terms of curvature forms, and the van Est theory of continuous cohomology. One
consequence of these theories is the following.

LEMMA 8. If G is compact, then the canonical homomorphism HBG® —
H;BG, with real or rational coefficients, is zero for i >0.

If the integer homology H;(BG;Z) happens to be free abelian, then it follows
easily that the corresponding homomorphism with integer coefficients is also zero.
This is the case, for example, when G is the unitary group U(n).

More generally, let G be any Lie group with finitely many components, and let
K be a maximal compact subgroup.

LEMMA 9. In this case, the homomorphism HBG® — H,BG is zero for i
greater than the dimension of G/K.

Here and elsewhere, real or rational coefficients are to be understood.
Evidently this reduces to the previous statement if G itself is compact.

Here is a different generalization. Let G be any Lie group which contains a
discrete cocompact subgroup I'. Such a subgroup exists, for example, whenever G
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is connected and semi-simple (see Borel and Harish-Chandra), or whenever G is
simply-connected and nilpotent with rational structure constants (Mal’cev).

LEMMA 10. Then the image of my: H;BG® — H.BG is precisely equal to the
image of the composition

H.I - H,BG® — H,BG.

Similarly, the kernel of the ring homomorphism n*: H*BG — H*BG?® is
equal to the kernel of H*BG — H*BI. Here are some examples. If G is
compact, then we can take I' to be trivial, and recover Lemma 8. If G is the
group PSL(2, R) = SL(2, R)/{+I}, then a maximal compact subgroup K is a circle,
and G can be identified with the group of all orientation preserving isometries of
the hyperbolic plane G/K. In this case we can take I" to be the fundamental group
of a closed surface I'\ G/K = BI'. The cohomology H*BG = H*BK is a polyno-
mial ring on one 2-dimensional generator, and it follows from either Lemma 9 or
10 that the square of this generator maps to zero in H*BG?®. However, the image
of the generator itself in H*BG? is non-zero. (Compare Milnor 1958, as well as
Wood.)

Another closely related result is the following.

LEMMA 11. If G is complex and semi-simple, with finitely many compo-
nents, then again the homomorphism H,BG® — H.BG is zero for i >0.

For a real semi-simple connected Lie group, the kernel of the cohomology
homomorphism n* can be computed as follows. Let h: G — G¢ be a complexifi-
cation of G. That is, let G¢ be a connected complex Lie group whose Lie algebra
is the complexification g ®C of the Lie algebra of G, and let h be a homomorph-
ism which induces the embedding of g into its complexification. Note that the
kernel of h is necessarily discrete and central.

THEOREM 2. With these hypotheses, the sequence of ring homomorphisms
H*BGc— H*BG — H*BG? is “exact”, in the sense that the kemnel of the second
homomorphism is equal to the ideal generated by the positive dimensional elements
in the image of the first.

Remark. If we use real coefficients, then the image of h*: H*BG¢c — H*BG
can be identified with the image of the Chern—Weil homomorphism associated
with G.

As an example, if G=SL(2n,R), then we can take G¢c=SL(2n,C). The
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cohomology ring H*BG is a polynomial ring generated by the Pontrjagin classes
P1 - - -, Pn, together with the Euler classs e, subject to the relation e*=p, ; and the
image of h* is equal to the subalgebra generated by the Pontrjagin classes. (See
for example Milnor and Stasheff.) Thus it follows that only the Euler class survives
to H*BG?® (or to H*BI' if I is a discrete cocompact subgroup).

To begin the proofs, let us consider the Chern—Weil homomorphism
0:Invg R[g']— H*(BG; R)

associated with a Lie group G and its Lie algebra g. Here Invg R[g'] stands for
the graded algebra consisting of all real valued polynomial functions on the vector
space g which are invariant under the adjoint action of G. Given such an invariant
polynomial f: g — R, homogeneous of degree n, and given a smooth principal
G-bundle over some manifold M, with a smooth G-invariant connection, the
curvature 2-forms (2 of the connection give rise to a closed 2n-form f({2), and
hence to a characteristic cohomology class

(f(2)) e H*"(M; R).

This corresponds to the required class 6(f)e H*"(BG;R) under the canonical
homomorphism H?>"(BG;R)— H*"(M;R). See Kobayashiand Nomizu or
Spivak for details.

Chern-Weil Theorem. If G is compact, then this homomorphism
0:Invg R[g']— H*(BG;R) is bijective.

In particular, BG has only even dimensional cohomology with real coeffi-
cients. This theorem is proved in Cartan or Chern or Bott 1973.

Proof of Lemma 8. Any homology class in H,,(BG?®; Q) can be realized as
the image of a homology class from some smooth open manifold which is mapped
into BG®. To prove that its image in H,,(BG; Q) is zero, it evidently suffices to
evaluate on an arbitrary real cohomology class in H*(BG;R)=Invg R[g']. If
n >0, then choosing any homogeneous polynomial f € Invg R[g'] of degree n, the
characteristic class (f(£2)) of the induced bundle over M is zero since this induced
bundle has curvature 2 =0. The conclusion follows. W

In the case of a complex Lie group, there is an analogous homomorphism

Invg C[g']— H*(BG; O),
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where now C[g'] must be interpreted as the graded algebra consisting of all
complex polynomial functions on the complex vector space g,

LEMMA 12. If G is complex and semi-simple, with only finitely many
connected components, then this complex Chern—-Weil homomorphism
Invg C[g']— H*(BG; C) is also bijective.

Proof of Lemmas 12 and 11. Let K< G be a maximal compact subgroup.
(Compare Mostow.) Since K is essentially unique, it coincides with the compact
real form of G, as constructed by Weyl. Hence the Lie algebra g can be identified
with the complexification £® C of the Lie algebra of K. It is then not difficult to
check that Invg C[g'] can be identified with Invg R[f']® C, so that Lemma 12
follows from the Chern—Weil Theorem applied to K. Evidently Lemma 11 follows
easily. W

Next consider the following construction. Let G be any Lie group (with a finite
or countably infinite number of components). Fixing some large integer N, let
E — X be a smooth N-universal principal G-bundle. That is, we assume that the
total space E is (N—1)-connected. Then the base space X =E/G is a finite
dimensional manifold such that the natural map X — BG induces isomorphisms
of homology and cohomology in dimensions less than N. Let A(E) be the de
Rham complex of smooth differential forms on E, and let Invg A(E) be the
subcomplex of G-invariant forms. We will be interested in the cohomology
groups H"(Invg A(E)) in dimensions n <N.

If G has only finitely many components, then these groups H" (Invg A(E)) are
isomorphic to the continuous (or the differentiable) Eilenberg-MacLane cohomol-
ogy groups of G, as studied by van Est. (See for example Borel and Wallach, p.
279.) Furthermore H"(Invg A(E)) can also be identified with the group
H"(Invg A(G/K)), where K is a maximal compact subgroup of G, or equivalently
with the Lie algebra cohomology H"(g, K). Thus this cohomology is zero in
dimensions greater than the dimension of G/K. (Compare van Est, Borel-Wallach,
Dupont, or Haefliger 1973.) The following two lemmas are essentially due to van
Est.

LEMMA 13. The natural homomorphism n*: H*(BG; R) — H"(BG?; R) fac-
tors through the group H"(Invg A(E)), providing that n <N.

Clearly Lemma 9, with real coefficients, will follow as an immediate corollary
once we have proved this statement; and the corresponding statement with
rational coefficients will then also follow.
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LEMMA 14. If I is a discrete cocompact subgroup of G, then the composition
H"(Invg A(E))— H"(BG?;R) — H"(BrI; R) is injective for n <N.

Proof of Lemmas 13 and 9. Evidently we can identify H"(BG; R) with the de
Rham cohomology H"(A(E/G)), which maps naturally to H"(Invg A(E)). On the
other hand, if SE denotes the smooth singular complex of E, then G® operates
freely and properly on SE, so the quotient complex SE/G® has the same
cohomology groups as BG?® in dimensions less than N. A canonical cochain
homomorphism

Invg A*(E) — C*(SE/G®; R)

is constructed by integrating G-invariant n-forms over smooth singular simplexes
which are well defined up to right translation by G?®. This cochain homomorph-
ism induces the required homomorphism from H"(Invg (A(E)) to H*(BG?; R).
Further details will be left to the reader. W

Proof of Lemmas 14 and 10. We can identify H"(BI'; R) with the nth
cohomology of the complex Invj A(E)= A(E/I') of I'-invariant forms on E. Let
a be a closed G-invariant n-form on E, and suppose that a =dB for some
I'-invariant (n —1)-form B. If we translate 8 by any element of the compact coset
space I'\G, which acts on the right, then we obtain another (n—1)-form with
coboundary a. Averaging these translates with respect to the Haar measure on
this compact coset space, we obtain a G-invariant (n—1)-form with the same
coboundary a. This proves Lemma 14; and Lemma 10 follows easily. W

Proof of Theorem 2. Part of this Theorem, namely the statement that the
composition H'BG¢c— H'BG — H'BG?® with real or rational coefficients is zero
for i>0, follows immediately from Lemma 11 together with the commutative
diagram

BG? - BG

|

BG% - BGc.

Note, by Lemmas 13 and 14, that an element of H'(BG;R) maps to zero in
H'(BG?;R) if and only if it maps to zero in the group H'Invg A(E)=
H'Invg A(G/K). Thus, to prove the Theorem, we must check that the sequence

H*BG¢— H*BG — H* Invg A(G/K),

with real coefficients, is ‘“‘exact” in the sense of Theorem 2.
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A standard elementary argument shows that the chain complex Invg A(G/K)
can be identified with the complex C*(g, K)=Invg A*(g/T) consisting of all
multi-linear skew forms on the vector space g/f which are invariant under the
adjoint action of K, provided with a suitable coboundary operator. If we pass to
complex coefficients, then the cohomology of this complex can be computed in
terms of the complexification h: G — G¢ as follows. Choose a maximal compact
subgroup L of G¢ with h(K)= L. Then G and L are both real forms of the
complex Lie group G¢. Hence the corresponding real Lie algebras g and [ have
isomorphic complexifications. It follows easily that H*(g, K)®C is isomorphic to
H*(1, h(K))®C. This can be identified with the cohomology of the complex
Inv; A(L/h(K))®C, in fact, since L is compact and connected, it can simply be
identified with H*(L/h(K); C).

Note also that h(K) is the quotient of K by a finite central subgroup, so that
the cohomology of Bh(K), with real or rational coefficients is isomorphic to the
cohomology of BK or of BG. To simplify the notation, let us assume that
K=h(K), so that we may think of K as a subgroup of L. The statement to be
proved then reduces to the following.

LEMMA 15 (Cartan, p. 69). Given compact connected Lie groups K < L, the
sequence H*BL — H*BK — H*(L/K) of ring homomorphisms (with real or ra-
tional or complex coefficients) is “exact” in the sense of Theorem 2.

Proof. The fibration sequence L — L/K — BK gives rise to a cohomology
spectral sequence; or alternatively to the statement that H*(L/K) is isomorphic to
the cohomology of the complex H*BK®@ H*L under a coboundary operator d
which has the following properties. The image d(H*BK ®1) is zero; and further-
more, if v e H*L is universally transgressive so that its transgression ¥ is defined
and lies in the image of H*BL — H*BK, then d(1®v)=9®1. (See Borel, 1953
p. 187.) Since H*L is an exterior algebra generated by universally transgressive
elements, it follows easily that the image of d intersected with H*BK®1 is the
ideal spanned by the ©. This proves the Lemma. W

.

To prove the Theorem, we must identify the sequence H*BL — H*BK —
H*(L/K), of Lemma 15, with the required sequence H*BG¢— H*BG —
H* Invg (A(G/K)), using complex coefficients. This can be done, making use of a
purely algebraic construction of the last homomorphism. (See Haefliger 1973,
p. 6.) Details will be omitted. W
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