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Acyclic groups of automorphisms

PIERRE DE LA HARPE and Dusa McDurr®

1. Introduction

A discrete group I is said to be acyclic if its Eilenberg—Macl.ane homology
groups H;(I") with coefficients in the trivial I'-module Z are zero for all i >0. In
this paper we show that certain groups, such as the group GL(V) of all
continuous linear automorphisms of an infinite dimensional Hilbert space V, are
acyclic. This is a folk theorem which was surely known long ago to experts in the
field such as Quillen and Segal. However it seems worthwhile to publish a proof in
view of the recent interest shown in such questions. For example, Herman pointed
out in [He] that the group of diffeomorphisms of a compact manifold admits a
canonical representation in GL(V). Therefore, if GL(V) had carried non-trivial
cohomology, one might have been able to define non-trivial characteristic classes
for groups of diffeomorphisms. See also section 2.6 in [Ma] and the concluding
remark of [H2].

We will consider the following groups.

1. The group 3(X) of all permutations of an infinite set X.

2. The group () of measure preserving automorphisms of a Lebesgue
measure space (2, B, u) where p is infinite and non-atomic. (As usual one
identifies two automorphisms which agree w-a.e.)

3. The group GL(W) of all linear automorphisms of an infinite dimensional
vector space W.

4. The group GL(V) of all continuous linear automorphisms of an infinite
dimensional Hilbert space V over the real, complexes or quaternions, as well as
the group U(V) of invertible isometries of V.

5. The group GL(M) of invertible elements in a properly infinite von
Neumann algebra M, and the subgroup U(M) of unitary elements.

THEOREM. The groups defined above are acyclic.

The above list is by no means complete. One could add many “classical
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groups”’ in the sense of [H3], and also the group of continuous linear automorph-
isms of an infinite dimensional topological vector space E for suitable E. The
Banach spaces ¢y and [,, 1 << p <, are possible candidates: see proposition 2.a.2 in
[LT]. However Douady [D] constructs a Banach space E for which the group of
connected components of GL(E) is isomorphic to Z. It follows that GL(E) is not
perfect and hence not acyclic. Therefore the above theorem does not hold for
GL(E) where E is an arbitrary Banach space. See also [St]. For acyclic groups of
a quite different nature from those of our list, see [BDH] and [BDM].
Here is one consequence of the theorem.

COROLLARY. Let G be one of the groups above and let A be a finitely
generated abelian group. Then any extension

0>A->G—->G—1
is trivial.

Proof. Any non-trivial normal subgroup of G is of uncountable index. (See
Appendix 1.) In particular any homomorphism from G to Aut (A) is trivial and so
G acts trivially on A in the above extension. Our main theorem implies that

H?*(G; A) is zero. Hence the extension is a semi-direct product. Again using the
fact that the action of G on A is trivial, we see that the product is direct. W

A notable feature of the groups in 2, 4 and 5 is that they are contractible when
given their natural topologies. (See [Ke] for &£(£2), [DD] for U(V) and U(M)
with the strong topology, [Ku] for GL(V) and U(V) with the uniform topology,
and [BW] for GL(M) and U(M) with the uniform topology.) There are many
other contractible groups of automorphisms which are acyclic when considered as
discrete groups: for example, the group of compactly supported homeomorphisms
of R" [M], and the group of diffeomorphisms of R" which are the identity near
the origin [Se]. On the other hand, Sah pointed out that the universal cover
SL(Z,R) of SL(2, R) is contractible as a topological group but is not acyclic as a
discrete group [SW]. The main tool which we use in proving acyclicity is the
infinite repetition argument of Mather [M] and Wagoner [W]. (See also [BDH] §4
and [Be] ch. 3.) There are several contractible groups which are more “flexible”
than SL(2, R), but are still not large enough for this argument to be used. We
have in mind groups such as #({2), where (2 has finite measure, or the group of
compactly supported homeomorphisms of R" which preserve Lesbegue measure,
for n>2. These groups are known to be perfect [F1], [F2], and it would be
interesting to know if they are acyclic. One could also consider much bigger
groups such as the group of all homeomorphisms of a Hilbert cube or a Hilbert
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space. These are shown to be contractible in [Re]. The groups GL(M) and U(M),
where M is a finite continuous von Neumann factor, are not contractible. They
are discussed further in section 4.

The theorem is not hard to prove. We first show that the subgroup Gg of
elements in G which are the identity on an appropriately defined ‘““flag” F is
acyclic. Then we show, using a technique due to Segal (82 in [Se]), that this forces
the whole group G to be acyclic. The first of these two steps uses the infinite
repetition argument of [M] and [W] and, in the general case, an elegant algebraic
trick due to Quillen [Q2]. The second step works essentially because the Tits
building (or partially ordered set) formed by the flags is contractible. We give the
proof for GL(V) in full detail, and in section 4 sketch the modifications needed
for the other groups.

We discuss in Appendix 1 the results about normal subgroups of G needed for
the corollary above. Though these are old results, we indicate for GL(W) and
GL(V) a proof much shorter than the originally published ones. Doing this, we
again show that G is perfect, namely that H,(G) is trivial. This is what our main
result and proof reduce to when cleared from homological machinery.

Finally Appendix 2 describes a result due to Quillen according to which the
monoids (or semi-groups) related to our groups are contractible and hence acyclic.

The authors thank Charles Kratzer, Han Sah and Pierre Vogel for instructive
conversations.

2. Subgroups of GL(V)

In this section and the next one, V denotes an infinite dimensional Hilbert
space. Let F be a flag in V: we mean by this that F is a nested sequence
$:1285,28;o- - of closed subspaces of V=S5, such that S;_,/S; is isomorphic to
V for each i =1. Define

G, ={geGL(V)|g=id on S;}
and
Gi={ge G;|g(Si)=Si}

for each i =0. Define also G., to be the union of the G;’s and G. that of the G}’s.
Then

1=GycGyc--cG,c--- <G,
I u U U
GycGic---cGlc: <Gl
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For ge G, observe that g=id on S.= () S;. For notational convenience, we
assume S, ={0}. (But proposition 1 as well as its consequences in section 3 and
the variations of section 4 would obviously hold without this assumption.) The
result of this section is:

PROPOSITION 1. The groups G. and G, are acyclic.

We shall recall the following facts from §2 in [W]. A flabby group is a group I’
such that there exist homomorphisms

u:I'xI' > I' (direct sum)
7:I'=> I' (infinite repetition)
with the following properties: For any finite subset ¢ — I', there are elements a, b,
c in I' satisfying
(1) gel=aga™?, 1ug=>bgb ' where 1 is the identity element in I,

(2) gur(g@)=cr(g)c™!
for all ge .

LEMMA 2 (Wagoner). A flabby group is acyclic.

Sketch of proof. Any inner automorphism of I' acts trivially on homology. By
(1), this implies first that « induces a (non associative) ring structure sy : Hy(I') ®
Hy(I') — Hy(I') on homology, with two-sided unit the number 1 in Hy(I") =Z.
By (2), this implies also that x(idX7)A and 7 act the same way on homology,
where A:I'— I'X I is the diagonal map.

Let i be an integer, i >0, and assume inductively that H,(I') is trivial for
0 <n <i (this holds trivially if i = 1). Choose z € H;(I"). By the Kiinneth formula

Ae(2)=2®1+1Qze H,(I'N ® Hy(I')+ Ho(I') @ H,(I') = H;(I' X I')

so that
(2dX 1)A)(2) =24(z @ 14+ 1 ® 74(2)) = z + 14(z) € H;(I).

As this must coincide with 14(z) one has z =0. Hence H;(I') is trivial. 1
LEMMA 3. The group G is flabby.

Proof. Let T3 be a Hilbert space isomorphic to V. For any pair (j, k) of
positive integers, let T be a copy of Tg. We identify V and T =&, ©; T} in such
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a way that

S;=DD Tk

k j=i

(where @, means @5 _,). For each j=0 define an isometry p; from D, T¥ onto
T} and an isometry (shift) o; from @, T¥ onto DF_; T* with o;(T¥) = TF*! for all
k = 0. Denote by p the isometry &D; p; from T onto €, T? and by o the shift €D, a;.
Define the maps

’ GL(T)X GL(T)— GL(T)
“Ve v — pgo*+oho*

and

GL(T) — GL(T)

T.
g — ) a*pgp*o**
k

(The series converges strongly, and p* is the adjoint of p; in view of section 4, it is
appropriate to define p* by p*(&)=n if n=p(¢)eIm(p) and p*(&)=0 if &L
Im (p).)

It is easy to check that x and v are homomorphism because p and o are
isometries with orthogonal complementary ranges. Similarly « (id X 7)A = 7. For
each i =0 one has £ (G}X G!) <= G! and 7(G}) < G} because p,p{+a,0¥ coincides
with the identity on @, T¥ for j=i. It follows that » and 7 induce homomorph-
isms G,X G, — G and GL— G., denoted below by & and p again. Require-
ment (2) in the definition of a flabby group obviously holds (with ¢ = 1).

Consider some integer i =0. Let a; be an invertible isometry of T which acts
as DIzl p, on B, Bzl T, as the identity on D, &2, T}, and (thus) maps in
some way @B, T¥ onto

o i-1

(ea @ T}‘)@ (eB T{‘).
k=1j=0 k

One has a,€ G/.,<G. and a;ga¥*=g«1 for all ge G!. Similarly, let b; be an

invertible isometry of T which acts as @iZj o; on D, D); T and as the identity

on @B, B;.,,, TX. Then b, € Gi,, and bgb¥=1xg for all ge G}. It follows that

requirement (1) above holds. W

We know thus that G. is acyclic. The reader who is interested in U(V) and
not in GL(V) may skip the end of this section since G.NU(V)=G,NU(V).
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Let us now recall what we need from a result due to Quillen (theorem 1’ of
[Q2]). Let A be a Q-algebra with unit, let I' be the group of invertible

(2 X2)-matrices over A which have the form (g i’), let I'' be the subgroup of I

consisting of diagonal matrices and let 7w : I’ — I’ be the homomorphism defined
by

(a b)_ (a 0)
™o 1/ \o 1/
If R is a Z[I'}-module, we denote by H,(I', R) the i™™ Eilenberg-MacLane
homology group of I' with coefficients in R; moreover R is assumed to have the

trivial Z[I ]-structure if there is no strong reason for any other one (such as
R = H,(N; K) below).

LEMMA 4 (Quillen). Let K be a field which is either finite or the rationals.
Then 1 induces an isomorphism on Hgy(—; K).

. 1 b
Proof. Let N be the subgroup of I' consisting of matrices of the form ( 0 1),

which is isomorphic to the additive group of the algebra A. As N is torsion-free
and abelian, Hy(N; Z) is isomorphic to the additive group Az N. (This holds for
finitely generated free abelian groups, as one checks knowing homology of
compact tori; this holds in general because N and the inductive limit of finitely
generated subgroups of N have the same homology.) It follows that Hy(N; K) =~
(Az N) ®z K for any field K. In particular Hy(N; K) = Hy(N; K) =K if K is finite
(because N is divisible) and Hy(N; Q) = Ag A. (This is a highly degenerate form
of the results described in §8 of [Q2].)
Consider the Hochschild-Serre spectral sequence

E;,=H,(I'"; H,(N;K)) > H,,(T’; K)
corresponding to the extension
0O->N->T'->I"->1.

If K is a finite field, one has H,(N;K)=0 for t>0 and Hy(N;K)=K. The
spectral sequence therefore degenerates, giving the desired result.
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Suppose K =Q. Make Q* act on I' by
A (a b)= (A O)(a b)()\ 0)'1__ (a )\b)
0 1/ \0o 1/\o 1/\o 1/ \o 1/
Thus A € Q* acts on the exact sequence

O->N->I'->I"-1

N

O->N—->-I'->I"—->1

and consequently also on the spectral sequence. As A € Q* acts on H,(N; Q)=
Ao (N @z Q) by multiplying by A‘, and acts trivially on I'’, it follows that A acts
on EZ, by multiplying.by A’. Assume A # £1; as the differentials commute with the
Q*-action and as A'# A" for t# ¢, all differentials are zero. It follows that

EZ,=E7, forall s, t=0.

Now €;,,_.EZ, is the graded object associated to the natural filtration of
H,(I'; Q) for each integer n=1. Since Q™ acts on I'" by inner automorphisms, the
induced action on H,(I'; Q) is trivial; thus Q* acts trivially on each Ej, Hence
EZ,=0 for any (s, t) with s =0 and ¢ > 0. This shows that H,(I""; Q) = H,(I"; Q) for
any s=0. W

COROLLARY 5 (a universal coefficient argument). The homomorphism
a: I’ = I'" induces an isomorphism on Hy(—) = Hy(—; Z).

Proof. We know that =« induces an isomorphism for Hy(—; R) if R is the
additive group of a finite field. Using direct products and extensions of the
coefficients, one checks the same holds for R a finite abelian group. As homology
commutes with inductive limits of coefficients, this holds also when R =Q/Z.
Using the sequence

0-Z-Q—->Q/Z—-0

and the fact that 4 is an isomorphism for R =Q and R =Q/Z, one proves the
claim. W
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The proof of Proposition 1. We use again the notations defined earlier in this
section, and we denote by L(V) the algebra of all bounded operators on V. For
each i>0 the spaces S;" and S; are both isomorphic to V. It follows that G; is
isomorphic to

G 7)

and that G; consists of matrices in G; with b= 0. Quillen’s argument shows that
the inclusion of G/ in G; induces an isomorphism Hy(G})= Hg(G;). It follows that
the inclusion of G in G, induces also an isomorphism Hy(G') = H4x(G), so that
the proof of proposition 1 is complete. W

a,be L(V) with a invertible}

Let us end this section by two observations. First the groups of our main
theorem are not flabby. Consider for example G = U(V) with V an infinite
dimensional separable complex Hilbert space, and suppose there exists a ‘“‘direct
sum’” homomorphism » : G X G — G with property (1) preceding lemma 2; we
shall reach a contradiction.

Choose an orthonormal basis (¢;);cn of V and a sequence (A;);cn of pairwise
distinct numbers in the interval ]—, w[. Define re G by r(e;) =exp (iA;)e; for
] € N. The centralizer of r in G is the abelian group T of unitary operators which
are diagonal with respect to the chosen basis.

Consider the homomorphism & ,: G — G given by g — (g, 1). By hypothesis
2.(g) is conjugate to g Therefore, », is injective and, because its image
commutes with « (1, r), the centralizer of »(1, r) is not abelian. But there exists
b e G with 1(1, r)= brb~*. Therefore the centralizer of »(1, r) is the abelian group
bTh~'. This contradiction shows that G is not flabby.

The second observation is that there are plenty of (non trivial) G-modules R
with non trivial H¢(G, R) or H*(G, R). Consider for example a subgroup G, of
G and a Gy-module R;. Let R =Homgg, (ZG, R,), where ZG is considered as a
left ZG,-module and as a right ZG-module; then R is naturally a G-module
(namely a left ZG-module). A standard result known as Shapiro’s lemma states
that H"(G,, R,) is naturally isomorphic with H"(G, R) for all n=0; see for
example §34.2 in [Bab]. Choose in particular a finite cyclic subgroup G, of G and
let R, be a trivial G,-module isomorphic to G; as abelian group. Then
H"(G, R)+#0 for all n>0.

This is quite a general construction. Indeed, let I' be any group with more than
one element. One shows by induction from a (possibly infinite) cyclic subgroup of
I' that there exists a I'-module M and an integer n >0 with H"(I"; M) # 0.
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3. The set of flags

Let Gr be the set of those closed subspaces S of V which are isomorphic to
V/S. (Thus Gr is the set of points in a Grassmannian space.)

LEMMA 6. Let {S,,...,S,} be a finite subset of Gr. There exist S}, ... S,e Gr
with S, cS,, (I1sm=<p)and S, LS, Ism<n=<p).

Proof. Any subspace of V whose codimension is strictly smaller than the
dimension of V intersects non trivially any element of Gr. One may thus choose
unit vectors as follows

L 1
V11€S, V21 €S N{v ). .o, V,1€S, N{vy1, .- vp——l,l}
and in general
L
VL ESIMN{ULL s Upts e oo Vit -+ -5 Dpima}
b
L
Vi €S, N{U1 1, oo Vpts e oo s Vs e v o s Upi} -

(The index i runs over N* if V is separable and over some suitable infinite set if V
is “larger”.) Define S;, to be the closed linear span of the v,,;’s. Then S7,..., S}
have the desired properties. W

LEMMA 7. Let S,,...,S,€Gr and let h,,...,h,e GL(V). There exist
..., S,eGr with S,cS, (Isms<p), S,LS, and h,(S,)Lh,(S,)
(Ism<n=<p).

Proof. By Lemma 6 there exist S7,...,S,e Gr with S;,<S,, (1=m=<p) and

SmlS, (1=sm<n<p). Define T, =h,(S,) (1=m=<p). There exist also

..., The Gr with T, cT,, (1sm=<p) and T, L T, (1sm<n=<p). Define
S,,=h(T,) lsm=<p). A

Now consider the set & of flags F={S;>S,>- -} with [ S, ={0} as defined
in section 2. Let F={S§, 25,2 -}, F'={81284,>- - -} and he GL(V). We write
F's<Fif S;c§; for all i. If S L S;, we write F' L F. If in addition S; @ S} € Gr, the
spaces S; DS >S,D S, - - form a flag which we call F’' @ F. Finally the flag
{h(S;) 2> h(S,)>- -} is called h(F).

We may reformulate lemma 7 for flags.
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LEMMA 8. Let F,,...,F,e®& and let hy,...,h,e GL(V). There exist
i,...,Fle® with F,<F, (sms<p), F,LF, and h,(F.)Llh,(F)
(Ism<n=<p).

Proof. Let F,, ={S,.;>S,..>" -} and write T,,; =S ;N S,.;_; where S, =V
(I=sm=<p and i=1). Then S,,; =D;~;+; T,,;. The result now follows by applying
lemma* 7 to the spaces T, ..., T,; for each j=1. W

We review now the Milnor construction for classifying space (see e.g. [Hu],
chap. 4, §11). Given any (discrete) group I, let EI' be the simplicial complex
whose p-simplices are the ordered subsets (yo,. .., v,) of I. We denote by |EI|
the topological space obtained by realizing ET". It is well-known and easy to see
that |EI'| is contractible (compare the proof of lemma 10 below). Moreover the
group I acts freely on |EI'| by multiplication on the left. Thus the quotient space
BI' =T\ |ET'| is a model (the “infinite join”’ model) for the classifying space of the
group I'. In particular this means that the groups H;(I") (i € N) are just the integral
homology groups of the space BI.

For the rest of this section, we will write G for GL(V), E for EGL(V) and B
for BGL(V). For each flag F={S;>5,>-- '} in &, let G be the subgroup of G
containing those operators which agree with the identity on S; for i large
enough, and let Er be the subcomplex of E defined as follows: a k-simplex
(80, ..., 8) of E is in Eg if g, ..., g agree on S; for i large enough. (For short,
we will say that g,,..., g agree on F.) Let F,F'e. If F'<F, observe that
Gr < G and that Eg is a subcomplex of Ep. If F1LF' and if F® F' e, then
Grer = GeNGg.

LEMMA 9. For any Fe§, the complex Eg is G-invariant and the quotient
G\ |Eg| is naturally isomorphic to BG.

Proof. ‘“Naturally” means that, if F, F'e & with F'<F, then the map BGg —
BGge induced by Gg<> G is just the inclusion of BGr in BGg (both are
subspaces of B).

The space |Eg| is not connected. Indeed two O-simplices (g) and (g’') define
points lying in the same connected component if and only if there is a sequence of
1-simplices in Eg of the form

(g’ gl), (gh g2)’ sy (gm, g')

This holds if and only if g and g’ agree on F, namely if and only if g and g’ belong
to the same right coset of Gg in G. It follows that connected components of |Eg|



58 PIERRE DE LA HARPE AND DUSA MCDUFF

are parametrized by G/Gg. The coset Gy corresponds to |E4, where Ej is the
subcomplex of Eg consisting of simplices (g, . . ., g&) where g, ..., g agree with
the identity on F.

It is clear that Ep is G-invariant. It follows from the discussion above that
G\ |Eg| may be identified with Gg\|E%, which is nothing but the infinite join
model BGg for the classifying space of G.. W

Let Ey4 be the union of the Eg’s over Fe@; it is a subcomplex of E which is
invariant by G. Let By = G\ |Ey|; it is a subspace of B which is the union of the
G\ |Eg|’s over F in §.

LEMMA 10. The space Ey is contractible.
Proof. Let a4, ..., 0, be simplices in Ey. Choose

Fi={8,1282>"" J S , Fy, ={Sp,133p,23‘ -}

in § with o, € E¢ . There is an integer k such that the vertices in o,, agree on
S,.x; denote by h,, their common restriction on S,,; (1<m=<p). Let Fi,...,F}
be as in lemma 8: one has ¢,, € Eg; (1<m=<p). Then the cone on o, U---Ug,
with vertex h, is in E.

It follows that, for any finite subcomplex K of Eg, there exists a subcomplex L
of E4 containing K and contracting to a point. Hence |Ey]| itself is ¢ -tractible
(see e.g. corollary 7.6.24 in [Sp]). W

LEMMA 11. The inclusion By=\Jp.g BGr — B=BG is a homotopy
equivalence.

Proof. Since the quotient maps |E| — B and |E4| — By are covering maps, this
follows immediately from the two previous lemmas. W

The following lemma holds for p =1 by section 2.

LEMMA 12. Let F,, ..., F,€&. Then BGg U- - -UBGg, is contained in an
acyclic subspace of By.

Proof. Choose any flag Fye &. By Lemma 8 there exist F§, Fi,. ... F,e & with
F! <F, (0sms<p) and F,, L F, (0<m <n=<p); in particular F{1®---@F}isa
flag in &§. As BGg, < BGg; (1<m=p), it suffices to check that BGg;U- * - U BGg;
is acyclic. Hence we may assume without loss of generality that F,, LF,
(1sm<n=<p)and that F;®---©F, €.



Acyclic groups of automorphisms 59
Let us assume as induction hypothesis that, in this situation, both
BGg, U --UBGf, , and BGgger, U UBGE _,eF, ,
are acyclic. (When p =2, the former works by proposition 1 and the latter is
vacuous.)
Consider first the Mayer—Vietoris homology sequence of the subcomplexes
BGger,U- - "UBGE,_gor, and BGg oF,
of By with intersection
BGF,@(F,,_IGBF,,) U-- 'UBGF,,QGB(F,,“IGBF,,)‘

By the induction hypothesis, two of any three consecutive terms in this sequence
vanish. Hence all terms vanish and

BGFIEBFDU - U BGFD——1®Fp

1s acyclic.
Consider now the Mayer—Vietoris sequence of the subcomplexes

BGg,U---UBGE, , and BGeg,

of By with intersection
BGpg,er,U- - -UBGE,_eF,

From the previous step and from the induction hypothesis it follows that
BGg, U- - - UBGg,

is acyclic. W

THEOREM 13. The group G is acyclic.

Proof. The homology of a complex is generated by that of its finite subcom-
plexes. Thus lemma 12 implies that By is an acyclic space, and lemma 11 that G is
acyclicc.
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4. Variations

Unitary group U(V) of an infinite dimensional Hilbert space V.

The proof that U(V) is acyclic is much simpler than for GL(V) since section 2
may be reduced to Lemmas 2 and 3. Section 3 is unchanged.

Symmetric group 3(X) of an infinite set X

Here a flag is a nested sequence {S; S, > - -} of subsets of X =S, such that
Si—1—S; is equipotent with X for each i=1 and such that () S,=. Define

3 ={g€2(X)| g=id on S;}

for each i=0 (no distinction here between 3! and 3;) and X.=J ¢ 3;. The
argument of Lemma 3 shows that . is a flabby group. Read ‘‘disjoint union”
instead of “direct sum”, “injection” instead of “isometry”. The adjoint p™ of an
injection p is defined only on the image of p by p*p =id; then a formula like
pgp™+ aha* is clear because pgp™ is a permutation of some subset of X and cho*
is a permutation of its complement. The group Z is consequently acyclic.

Let Gr be the set of those subsets S of X equ1potent with their complements
S*+=X-S. For two subsets S;, S, of X, read S;NS,= for S; L S,. Lemmas 7
and 8 may then be repeated without change and all of section 3 with minor
changes only. It follows that 3(X) is acyclic.

Automorphism group #4({2) of a Lebesgue space ({2, B, )

Let (£2, 34, u) be a Lebesgue space where the measure w is infinite and non
atomic. A flag is now a nested sequence F={S; >S5, >- - -} of measurable subsets
of 2 =S, such that S;_; —S; has infinite measure for each i =1 and such that () S;
has measure zero. Comments for ) (X) above apply to «(£2), with the under-
standing that everything in view is now measurable. Therefore & ({2) is also acychc

Let (2, B, 1) be a Lebesgue measure space. Let X be the set of atoms in 2,
let X =]]; X; be the partition of X according to the masses of the atoms, and let
2 =0-X. Then the sequence

1»»@(0)»&4(47)»1:[2(&)—»1

is exact (and splits). Suppose w({2) =0, and suppose that X is not empty. Then
A(0) is clearly acyclic if and only if each X is either one point or an infinite set.
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Automorphisms of an infinite dimensional vector space W over a (possibly skew)
field F

Case (i): CharF=0.

A flag is in this case a nested sequence {S; ©S,>- - -} of subspaces of W=,
such that S;_,/S; is isomorphic to W for each i =1 and such that [ S; ={0}. As in
Lemma 3 we may identify W with @, &, TF, where each T¥=W, in such a way
that S, =@, @, T} for all i. Then the subspace R, =@, @iz}, T* complements
S..

Define

G"={ge GL(W)|g=id on S},
G ={ge G| g(R)=R}.

One checks as in Lemma 3 that G¥' is flabby. When Char F=0, Lemma 4 and 5
show that GY is acyclic.

In Lemmas 6 to 8, understand S, 1S, as S,NS.={0}, and ve
SN{vy,...,v,}" as veS with v not in the linear span of {v,,...,v,}. Then
section 3 holds for GL(W), which is consequently an acyclic group. All our
arguments allow the field F to be non-commutative.

Case (ii): CharF=p>0.

The arguments of section 2 show that fI*(GZ.}' ;K)=0 if Char K# CharF
(where Hy denotes reduced homology). It follows that Hy(GL(W);K) =0 when
Char K # Char F. Therefore, in order to show that GL(W) is acyclic, it will suffice
to prove that Hy(GL(W);K)=0 when K is the algebraic closure k of the finite
field k with p elements. To do this we need

LEMMA 14. For each flag F and integer d>0 there is a subgroup Gg¢ of
GL(W) which contains Gg and is such that H(G§; k) =0 for 0<j<d.

Proof. Quillen proves the following lemma in [Q2] §9.

LEMMA. Let k be an algebraically closed field and d an integer >0. Then there
exists an order D in a number field of degree d over Q with the following properties:
Given any D-module N, let the group of units D* act on it by multiplication, and let
the group homology Hy(N, k) be endowed with the induced action of D*. Then for
each t, H,(N, k) is a direct sum of one-dimensional representations of D* over k.
Furthermore, H,(N, k) does not contain the trivial representation for 0 <t <d.
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Let D be as in this lemma. The choice of a basis over Z for D gives rise to a
ring homomorphism

po: D — My(Z) — M,(F)

where M, (A) is the ring of d-by-d matrices over A and where M,(Z) — M, (F) is
reduction mod p. Let F be the flag {S; > S, > - -}. For each pair (j, k) of positive
integers, let now TF be a copy of F*. We identify W and T =@, &, T¥ in such a
way that S; =@, @, TF, and we denote by R, “the” complement B, @i} Tk
of S;. Define a ring homomorphism p, : D — GL(W) by setting

po(A) in T for j=i, all k
O; (A) =3. . k
id in the other T7.

Now put
Gl={ge GL(W)|g=p;(A) in S; for some A € D*}

and let G§= ;=1 G{. Clearly G < G§. We must show that H(G#; k)=0 for
0o<j<d.
Let

G{ ={ge G? ’ g(R)=R;}.

and consider the induced D*-action on the spectral sequence of the extension
0—-N—-Gi—>G¥—1. It follows from the lemma that each E}, 2<r<o,
breaks up into a sum of one dimensional representations preserved by the
differentials. Since D* acts trivially on the abutment, the subspaces on which D*
acts trivially form a spectral sequence which converges to Hy(G¢; k). By the
lemma, the terms EZ of this sequence vanish when 0<t<d. Hence H;(G%; k)=
H,(G¥;k) for 0<j<d.

Now note that G{' is the product of G} with p,(D*). But p,(D*) is isomorphic
to a subgroup of the group of units of D/pD =k, where k, is the field of order p°.
Hence p;(D*) has order prime to p. Therefore f{*(pi(D*);l_() =0 which implies
that Hy(G?'; k)= Hy(G/; k). Now consider the diagram
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We have seen that the inclusions «; and a, induce an isomorphism on H;(—; k),
0<j<d. Since a, factors through a group isomorphic to G, it induces the zero
map on I:I,-(—; k). Hence a5 must induce the zero map on H;(—; k), 0<j<d. This
implies that

H/(G# k) =lim H(G5 k) =0, 0<j<d W

To finish the proof of the theorem we must find an appropriate substitute for
Lemma 12. If Fy, ..., F, are disjoint flags such that F, ®- - -@®F, is also a flag,
choose groups G§ as above and, for each subset {i,, ..., i} of {1,... , n}, set

d — (d .. d
GF.,GB---GBF.k“ GFHO' ﬂGF‘k.

The proof of Lemma 14 shows that these groups G§, for F=F, @---®F,, are
acyclic. The inductive argument of Lemma 12 then readily shows that

H(BG§, U---UBGt;k)=0 0<j<d-2n.
Clearly, this suffices to show that the inclusion By~ B annihilates ﬁ*(—;E).

Properly infinite von Neumann algebras

Let M be a properly infinite von Neumann algebra, faithfully represented in
L(V) for some complex Hilbert space V. A flag is a nested sequence {S; > S, >
-+ -} of closed subspaces of V=5, with [ S;={0} such that the orthogonal
projection P; from V onto S; is in M and such that P,_; — P, is equivalent to the
identity for each i =1. It is easy to choose every operator appearing in sections 2
and 3 in the algebra M. Therefore the appropriately defined groups G and G.
are acyclic, as well as U(M) and GL(M).

It is likely that the argument applies to a large class of infinite C*-algebras.
Let B be such an algebra, let M(B) be its multiplier algebra, let U(B) be the
subgroup of the unitary group U(M(B)) consisting of those elements g for which
g—1e B, and let U(B), be the connected component of U(B) with respect to the
norm topology. There are many cases in which U(B), is known to be contractible
for the norm topology [Mi]; in these cases, U(B), and the similarly defined
“general linear group” GL(B), should “often” be acyclic.

Finite von Neumann algebras

Let M be a finite continuous factor, and let U(M) be the group of unitaries in
M. When given the norm topology, U(M) has a fundamental group isomorphic to
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the additive group of the real numbers: this was first proved in [AS], but it follows
also essentially from Bott periodicity as formulated in theorem 1.11 of chapter III
of [Ka]. Indeed

Rifiisodd, i=0
iUMnormz{--- ’.
M (U(M)norrm) 01if i is even, i>0
(See I11.7.7 in [Ka], or theorem 5 in [Br]; both state the analogous ‘stable fact”,
but the isomorphism holds also as above.) Let

0->R—-> UM)—» UM)—1

be the (topological) universal covering of U(M). It is known that U(M) is perfect
(indeed simple up to centre [FH]). One may conjecture that U(M) is also perfect,
namely that the short exact sequence above is still a covering in the algebraic
sense of [Ker], and thus that there exists a surjective homomorphism of
H,(U(M)) onto R. In any event it seems very unlikely that the group U(M) is
acyclic.

Appendix 1. About normal subgroups

If X is an infinite countable set, 3(X) has exactly two non trivial normal
subgroups: the group 3,(X) of permutations of X with finite support and its
derived group A;(X) of even permutations [SU]. If X is any infinite set, normal
subgroups of X(X) which are neither trivial nor A(X) are in bijection (via
supports) with infinite cardinals smaller than the cardinal of X [B].

If (2, B, w) is a Lebesgue measure space with u infinite and non atomic, % ({2)
has exactly one non trivial normal subgroup consisting of those bi-measurable
transformations a with support {w € 2 | a(w) # @} of finite measure [F1], [Eil.

If W is an infinite dimensional vector space over a field F, normal subgroups
of GL(W) have been studied in [R]; we present hereafter part of these results
with different proofs inspired by [And], [Ep] and [Hi].

LEMMA A1l. The group GL(W) is perfect.

Proof. If T is a set and if (W), is a family of copies of W, we write any
element in GL(® W,) as an (I X I)-matrix with coefficients in End (W). If I is
countable, we may identify €© W, and W.
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In GL(W & W & W) one has

1 x ON/1 0O O\N/1 —x O\/1 O 0 1 0 x
(0 1 O) 0 1 1) 0 1 0)(0 1 —1)—:(0 1 O)
0 0 1/\0 0 1/\0 0 1/\0 O 1 0 0 1

1 %
for each xeEnd (W). It follows that any element of the form (0 1) in

GL(W @ W) is a product of two commutators. In GL(B,.n W,), one may apply
the infinite repetition argument used in section 2. We write vy;~7vy, if two

elements vy,, vy, in a group I' are conjugate. For any x € GL(W) one has

SRRV

in GL(D,_n W,). It follows that any element of the form ( 0 1) in GL(W & W)
iS a commutator.
Let ge GL(W). Choose sequences (i) and (v;) of vectors in W as follows:
u;e W—{0} ui=g(u)  v,e W—span(uy, u})

and in general

u, vy g '(vy)
€ W—span| - - . Ui =gWUis)
w, v g '(v)

V1€ W—span

4
Ui 1 Uity

(The index i runs over N* if the dimension of W is countable and over some
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suitable set otherwise.) Define

U =span (uy, u,, ...) V,=span (v, vs,...)
V,=span (v,, v, .. .) V=V, &V,

It is easy to check that UNV={0} and g(U)NV={0}. Thus there exists

te GL(W) with tu=u; and tv, =v, for each i. As t=id on V, one has
*

1 %
t~(0 *)EGL(WQVV); as tg =id on U one has tg~((1) *)eGL(WGBW). It

follows from the beginning of the proof that g is a product of commutators in
GL(W). B

The proof above shows also the following fragmentation lemma: any element
in GL(W) may be written as a product of finitely many elements similar to

( 0 1) in GL(W @ W). Indeed, it remains to be checked that (O 1) has this

property, and this is clear if one looks at

1 x 1 x O\/1 0 y

(0 1 ()),)=(0 1 0)(0 1 0)

0 0 1 0 0 1/\0 0 1
in GL(W® WO W),

Let N,. be the normal subgroup of GL(W) containing those elements of the
form A +X with A a homothety and X an endomorphism of W with rank strictly
smaller than the dimension of W. Let ge GL(W) with g¢ N,,.... Let us check that
there exists a subspace V of W with V isomorphic to W/V and with VNg(V)=

{0}.

One may choose a sequence (v;) of vectors in W as follows:
v,€e W—{0} with g(v,)e W—span (v,)
and in general

v (vy)
v; g(vy) .1 § ) !
v;,1€ W—span| - . with g(v;,,) € W—span

u g v, g(v)

Ui+1
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Indeed, suppose one cannot find v;,,. Let

= st (g(z:; - 21%))-

Then ve W—F implies g(v) € span (F, v); for any u € F, one has also g(v+u)e
span (F, v); hence g(u) € span (F, v). It follows that F is invariant by g and that g
induces a homothety on W/F. But this is ruled out by hypothesis.

Then V =span (vy, v,,...) has the desired properties.

PROPOSITION A2. Any non trivial normal subgroup of GL(W) is contained
in Npax-

Proof. Let N be a normal subgroup of GL(W) and assume that N N, ...
There exist fe N and a subspace V of W with V isomorphic to W/V and with
f(V)NV={0}. We may thus view N as a normal subgroup of GL(W & W)
containing an element f of the form (: ;)

By the fragmentation lemma, it is enough to check that N contains any

10 1 0
element of the form (0 *) Consider r,se GL(W) and define g=(0 r)’

hz(é (S)) As N is normal, N contains A=hfh™'f! and ghg™'h~'. By a

straightforward matrix computation, the latter is of the form

A Al 1 *
ghg 'h 1=( 1).

0 rsrls”

As GL(W) is perfect, it follows that, for any k € GL(W), there exists z € End (W)

1 z
ith ( ) N.
wi 0 k €
Let now a, be GL(W) with a+b =1. (One may define a as an infinite direct

sum of automorphisms of a vector space of dimension two, each represented by

‘ 0 -1 _ .
(1 (1)), and similarly for b with (_ 1 l>.) There exist x, y € End (W) with
1 X 1 y
(0 a“‘> and (0 b“)
in N. Then

b o 5o Do 2=l )
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and

BN ) e

It follows that
1 z)(l —z)_(l 0)
(0 o 1) 0 k)N
the proof is complete. W

It would be easy to prove by similar arguments all of theorem B (and thus also
theorem A) in [R].

Let now V be an infinite dimensional Hilbert space over the reals, complexes
or quaternions and GL(V) be as in the introduction. Let GE(V, C) be the normal
subgroup of GL(V) containing those elements of the form A+x with A a
homothety and X a compact operator (we assume V to be separable). It is quite
easy to check that GL(V) is perfect (see problems 191 and 192 in [Hal]). There is
a fragmentation lemma which follows straightforwardly from polar decomposition
and spectral theorem. Any ge GL(V) with g¢ GE(V, C) is similar to an element

of the form (: ;) in GL(V @ V): this is corollary 3.4 in [BP] or theorem 1 in

[AnS]. Hence the proof above applies, and is very much simpler than that of [H1].
The subgroup of GL(V) containing all bijective isometries of V can be handled
either as in [H1] or as suggested in [H3], and we have proved the following result.

PROPOSITION A3. Any non trivial normal subgroup of GL(V) is contained
in GE(V,C). Any non trivial normal subgroup of U(V) is contained in
UE(V, C)=U(V)NGE(V, C).

For normal subgroups of GL(M) and U(M), when M is a properly infinite von
Neumann algebra, see [H3] and papers reviewed there.

COROLLARY A4. Let G be one of the groups described in the introduction
and let N be a non trivial normal subgroup of G. Then N is of uncountable index in
G.

Let G be as above and let N,,,, be the maximal normal subgroup of G. There
are cases for which we have information about the homology of N,,..: see works
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by Nakaoka and Priddy [P] if G=) (X) and N, =Y;(X) with X infinite
countable, the papers on group cohomology in [E] if G = GL(W), or [BHS] if
G = GL(V). In each case our main theorem provides corresponding information
about the homology of the quotient G/N,,,,.

Appendix 2. About monoids of monomorphisms

Each of the acyclic groups of automorphisms considered above is the group of
units in a corresponding monoid (or semigroup) of monomorphisms. For example,
2. (X) is the group of units in the monoid M(X) formed by all injective maps from
X to X. One can form the classifying space BM of a monoid in exactly the same
way as that of a group; see [Se]. In particular, the Eilenberg-MacLane homology
groups H;(M;Z) are just the integral homology groups of the space BM. Quillen
pointed out in an unpublished version of [Q1] that the classifying spaces of
monoids such as M(X) are contractible. Of course, this implies that the monoids
are acyclic. h

Here is a sketch of his argument. Say two homomorphisms f, g: M — M are
semi-conjugate if there is me M such that mf(n)=g(n)m for all ne M. The
argument is based on the fact that two homomorphisms which are semi-conjugate
induce homotopic maps on BM; see [Q1] §1. Choose p € M(X) so that the image
p(X) of X under p is in Gr. Define f: M(X)— M(X) by f(n)(x)=pnp~'(x) if
xep(X) and by f(n)(x)=x otherwise. Then f is semi-conjugate both to the
identity homomorphism and to the trivial homomorphism which takes every
n e M(X) to the identity element. It follows that BM(X) is contractible.
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