A reciprocity law for K2-traces.

Autor(en): Rosset, Shmuel / Tate, John
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 58 (1983)

PDF erstellt am:
03.05.2024

Persistenter Link: https://doi.org/10.5169/seals-44587

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

A reciprocity law for $\boldsymbol{K}_{\mathbf{2}}$-traces

Shmuel Rosset and John Tate

Suppose $E \subset F$ is a finite field extension and let

$$
\operatorname{Tr}: K_{2}(F) \rightarrow K_{2}(E)
$$

be the trace map (also called transfer, see [5, §14]). If $x, y \in F^{*}$ and $\{x, y\}$ is the corresponding symbol in $K_{2}(F)$ then we know, since $K_{2}(E)$ is generated by symbols, that $\operatorname{Tr}_{\text {F/E }}(\{x, y\})$ can be expressed as a sum of symbols. In this paper we give an algorithm for computing such an expression explicitly (cf. the proposition in §3). The algorithm is based on a reciprocity law (§2) and involves repeated polynomial division with remainder, like the Euclidean algorithm. The proof works not only for Milnor's K_{2}, but for functors sufficiently like K_{2}, which we define in $\S 1$ and call Milnor functors. This abstraction is useful for it yields as a corollary (§3) the fact that the canonical map from K_{2} to any Milnor functor commutes with traces. Another corollary is that, if $(F: E)=n$, then $\operatorname{Tr}_{F / E}(\{x, y\})$ can be written as a sum of n symbols (or less). On the other hand this is also the best bound: in §4 we give an example, using division algebras, of a symbol whose trace is not a sum of less than n symbols.

One of us (S.R) would like to thank David Saltman for a conversation which helped realize the example in section 4.

1. Milnor functors

Let K be a fixed base field and let \mathbb{C} be the category of commutative finite dimensional \boldsymbol{k}-algebras.

DEFINITION. A Milnor functor over k is a functor $M: \mathbb{C} \rightarrow$ (Abelian groups) together with
(i) For each $A \in \mathbb{C}$ a bilinear map $\varphi=\varphi_{A}: A^{*} \times A^{*} \rightarrow M(A)$;
(ii) For each extension $A \rightarrow B$ in \mathbb{C} such that B is a projective A-module, a homomorphism $\operatorname{Tr}_{B / A}: M(B) \rightarrow M(A)$; such that the following properties hold.
(φ) The maps φ are functorial, i.e., induce a morphism of functors from the functor $A \mapsto A^{*} \times A^{*}$ to the functor $A \mapsto M(A)$, and satisfy

$$
\begin{array}{rlll}
\varphi_{A}(a, 1-a)=0, & \text { if } & a \in A^{*} \quad \text { and } & 1-a \in A^{*}, \\
\varphi_{A}(a,-a)=0, & \text { if } & a \in A^{*} .
\end{array}
$$

(Tr) if $A \rightarrow B \rightarrow C$ are ${ }^{(5}$-morphisms such that C is projective over B and B over A, then

$$
\operatorname{Tr}_{C / A}=\operatorname{Tr}_{B / A} \circ \operatorname{Tr}_{C / B}
$$

$(\operatorname{Tr}-\varphi)$ If $A \rightarrow B$ is a © -morphism with B projective as A-module, and if $x \in A^{*}, y \in B^{*}$ then

$$
\operatorname{Tr}_{B / A} \varphi_{B}(x, y)=\varphi_{A}\left(x, N_{B / A} y\right),
$$

where $N_{B / A}: B^{*} \rightarrow A^{*}$ is the usual norm:
$N_{B / A}(y)=\operatorname{det} \quad$ (multiplication by y).
EXAMPLE 1. Milnor's K_{2}; see [5] and [6].
EXAMPLE 2. Assume that the characteristic of k does not divide a given integer n and let μ_{n} denote the sheaf on n-th roots of 1 on the étale site over $\operatorname{Spec} \mathbf{A}$; here A is a given element in $\mathrm{Ob}(\mathbb{C})$. By Kummer theory

$$
H^{1}\left(\operatorname{Spec} A, \mu_{n}\right)=A^{*} /\left(A^{*}\right)^{n} .
$$

The cup product

$$
H^{1}\left(\operatorname{Spec} A, \mu_{n}\right) \times H^{1}\left(\operatorname{Spec} A, \mu_{n}\right) \rightarrow H^{2}\left(\operatorname{Spec} A, \mu_{n}^{\otimes 2}\right)=M(A)
$$

provides us with a context satisfying (i) and (ii). We refer to Milne's book [4] for details. The existence of a trace can probably be extracted from [7, exp. XVII]. However, this Milnor functor can be expressed entirely in terms of Galois cohomology and the trace in terms of corestriction, as follows. For $A \in \mathbb{C}, \alpha \in$ $M(A)$, and $x \in \operatorname{Spec} A$, let $\alpha(x) \in M(A / x)$ be the image of α under the residue class map $A \rightarrow A / x$. then the map

$$
\alpha \mapsto(\alpha(x))_{x \in \operatorname{Spec} A}
$$

gives an isomorphism

$$
\begin{equation*}
M(A) \xrightarrow[\rightarrow]{\rightarrow} \prod_{x \in \operatorname{Spec} A} M(A / x) . \tag{}
\end{equation*}
$$

For each $x \in \operatorname{Spec} A, A / x$ is a finite extension field of k. If E is a finite extension field of k, then

$$
M(E)=H^{2}\left(\operatorname{Gal}\left(E_{s} / E\right), \mu_{n}\left(E_{s}\right) \otimes \mu_{n}\left(E_{\mathrm{s}}\right)\right)
$$

where E_{s} is a separable algebraic closure of E. The map φ_{A} is characterized in terms of the isomorphism (*) by

$$
\left(\varphi_{\mathrm{A}}(a, b)\right)(x)=\varphi_{\mathrm{A} / \mathrm{x}}(a(x), b(x))
$$

for each $x \in \operatorname{Spec} A$, where $a(x)($ resp. $b(x))$ is the residue $\bmod x$ of $a($ resp. $b)$, and for a field E the map

$$
\varphi_{E}: E^{*} \times E^{*} \rightarrow M(E)
$$

is the Galois cohomology symbol (cf. [8]) characterized by $\varphi(a, b)=d a \cup d b$, where $d: E^{*} \rightarrow H^{1}\left(\operatorname{Gal}\left(E_{s} / E\right), \mu_{n}\left(E_{s}\right)\right)$ is the connecting homomorphism in the exact cohomology sequence associated with

$$
0 \rightarrow \mu_{n}\left(E_{s}\right) \rightarrow E_{s}^{*} \xrightarrow{n} E_{s}^{*} \rightarrow 0 .
$$

Let $A \rightarrow B$ be an extension in © such that B is a projective A-module. Then for each $x \in \operatorname{Spec} A$ and each $y \in \operatorname{Spec} B$ lying over x, the local ring B_{y} is a free A_{x}-module; let $r(y / x)$ denote its rank. Let $E_{x}=A / x$ and let F_{y} be the field between E_{x} and B / y such that F_{y} / E_{x} is separable and $(B / y) / F_{y}$ purely inseparable. Then the ratio

$$
q(y / x) \stackrel{\text { defn }}{=} \frac{r(y / x)}{\left[F_{y}: E_{x}\right]}
$$

is an integer, and the M-trace from B to A is characterized in terms of the isomorphism (*) by

$$
\left(\operatorname{Tr}_{B / A} \beta\right)(x)=\sum_{y \mid x} q(y / x) \operatorname{cor}_{F_{y} / E_{x}}(\beta(y))
$$

where cor is the corestriction in Galois cohomology, and we identify $M(B / y)$ with $\boldsymbol{M}\left(F_{y}\right)$ via the isomorphism induced by the inclusion $F_{y} \subset B / y$.

In case $E \in \mathbb{C}$ is a field containing a primitive n-th root of unity ζ, we can identify $M(E)$ with the group $\mathrm{Br}_{n}(E)$ of elements of order n in the Brauer group of E in such a way that

$$
(a, b)_{M}=\text { the Brauer class of } A_{\zeta}(a, b)
$$

where $A_{\zeta}(a, b)$ denote the cyclic algebra generated over E by elements X and Y subject to the relations

$$
X^{N}=a, \quad Y^{n}=b, \quad X Y=\zeta Y X ;
$$

(cf. [5], p. 143).
EXAMPLE 3. The dlog symbol, see [1]. If A is a k algebra in © let $\Omega_{A / k}^{1}$ be the A-module of Kähler differentials of A over k, and let $\Omega_{A / k}^{2}$ be its second exterior power. Define

$$
\operatorname{dlog}: A^{*} \rightarrow \Omega_{\mathrm{A} / k}^{1}
$$

by $\operatorname{dlog}(f)=f^{-1} \cdot d f$. It is simple to verify that Ω^{2} and $\operatorname{dlog} \wedge$ dlog satisfy axioms (i), (ii) above. The existence of a good trace is a non-trivial fact [2].

2. Reciprocity

Let M be a Milnor functor over k. In this section we shall write the M-symbol $\varphi_{E}(x, y)$ by
$(x, y)_{\mathrm{E}}, \quad$ or $\quad(x, y)$
if E is evident.
Let K be a field of finite degree over k. For relatively prime non-zero polynomials $f(T), g(T)$ in $K[T]$ we define a new kind of symbol (f / g). Its values are in the group $\boldsymbol{M}(\boldsymbol{K})$ and it is defined by the following requirements.

1) It is additive in g, i.e. if g_{1}, g_{2} are both prime to f then

$$
\left(\frac{f}{g_{1} g_{2}}\right)=\left(\frac{f}{g_{1}}\right)+\left(\frac{f}{g_{2}}\right)
$$

2) It is 0 if g is a constant or $g=T$.
3) If g is monic irreducible $\neq T$ and x is a root of $g(T)$ then

$$
\left(\frac{f}{g}\right)=\operatorname{Tr}_{K(x) / K}(x, f(x))_{K(x)} .
$$

It is clear that, thus defined, the symbol (f / g) is additive in f, as well as in g, and it depends only on the residue class of f modulo (g). As function of g it depends only on the ideal generated by g in the ring $K\left[T, T^{-1}\right]$.

To formulate the reciprocity law satisfied by (f / g) we introduce some notation: if

$$
p(T)=a_{n} T^{n}+a_{n-1} T^{n-1}+\cdots+a_{m} T^{m}
$$

with $a_{m} a_{n} \neq 0$. let

$$
\begin{aligned}
p^{*}(T) & =\left(a_{m} T^{m}\right)^{-1} p(T) \\
c(p) & =(-1)^{n} a_{n}
\end{aligned}
$$

Reciprocity law

$$
\begin{equation*}
\left(\frac{f}{g}\right)=\left(\frac{g^{*}}{f}\right)-\left(c\left(g^{*}\right), c(f)\right) \tag{**}
\end{equation*}
$$

Proof. We first dispose of a few trivial cases. If g is a constant or T it is easily checked that both sides are 0 , so we assume henceforth that $g(T)$ is monic irreducible $\neq T$. let x be a root of $g(T)$. If $f(T)$ is a constant c then the left side of $\left({ }^{* *}\right)$ is

$$
\begin{aligned}
& \mathrm{Tr}_{K(x) / K}(x, c)_{K(x)}=\left(N_{K(x) / K} x, c\right)_{k} \\
& \quad=\left((-1)^{\operatorname{deg}(g)} \cdot g(0), c\right)=-\left((-1)^{\operatorname{deg}(g)} \cdot g(0)^{-1}, c\right) \\
& \quad=-\left(c\left(g^{*}\right), c(f)\right)
\end{aligned}
$$

which is equal to the right hand side since $\left(g^{*} / f\right)=0$, by definition.
A similar computation using $(x,-x)=0$ works when $f(T)=T$ so we now assume that both f and g are monic irreducible, and not T.

Let x be a root of g and y a root of f. Let

$$
A=K(x) \otimes_{K} K(y)
$$

$K(x)$ and $K(y)$ are naturally imbedded in A and we identify them as such. Then
the elements $x, y, x-y$ are invertible in A, indeed the norm

$$
N_{\mathrm{A} / K(x)}(x-y)=f(x)
$$

is invertible, so $x-y$ is.
The identity

$$
(x, x-y)=\left(y, \frac{y-x}{-x}\right)+(x,-1)
$$

follows from a little computation with the relations $(u, 1-u)=(u,-u)=0$. We use it to compute the same thing in two ways

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{A} / \mathrm{K}}(x, x-y) & =\operatorname{Tr}_{K(x) / K} \operatorname{Tr}_{\mathrm{A} / K(x)}(x, x-y) \\
& =\operatorname{Tr}_{K(x) / K}\left(x, N_{\mathrm{A} / K(x)}(x-y)\right) \\
& =\operatorname{Tr}_{K(x) / K}(x, f(x))=\left(\frac{f}{g}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{A} / \mathrm{K}}\left(y, \frac{y-x}{-x}\right) & =\operatorname{Tr}_{K(y) / K} \operatorname{Tr}_{\mathrm{A} / \mathrm{K}(y)}\left(y, \frac{y-x}{-x}\right) \\
& =\operatorname{Tr}_{K(y) / K}\left(y, \frac{N_{\mathrm{A} / K(y)}(y-x)}{N_{\mathrm{A} / \mathrm{K}(y)}(-x)}\right) \\
& =\operatorname{Tr}_{K(y) / K}\left(y, \frac{g(y)}{g(0)}\right) \\
& =\operatorname{Tr}_{K(y) / K}\left(y, g^{*}(y)\right)=\left(\frac{g^{*}}{f}\right)
\end{aligned}
$$

Finally

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{A} / \mathrm{K}}(x,-1) & =\operatorname{Tr}_{K(y) / K} \operatorname{Tr}_{\mathbf{A} / \mathrm{K}(\mathrm{y})}(x,-1)_{\mathbf{A}} \\
& =\operatorname{Tr}_{K(y) / K}\left(N_{\mathrm{A} / K(y)} x,-1\right)_{K(y)} \\
& =\operatorname{Tr}_{K(y) / K}\left(N_{K(x) / K} x,-1\right)_{K(y)} \\
& =\left(c\left(g^{*}\right)^{-1},(-1)^{\operatorname{deg}(f)}\right)=-\left(c\left(g^{*}\right), c(f)\right) .
\end{aligned}
$$

Here we used the obvious fact that

$$
N_{\mathrm{A} / \mathrm{K}(y)}(x)=N_{K(x) / K}(x) .
$$

This completes the proof of the reciprocity law.

3. Consequences

Let $E \subset F$ be a finite extension of fields finite over k, and let $x, y \in F^{*}$. Then

$$
\operatorname{Tr}_{F / E}(x, y)=\left(\frac{f}{g}\right)
$$

where $g(T) \in E[T]$ is the monic irreducible polynomial with root x and $f(T) \in$ $E[T]$ is the polynomial of smallest degree such that $N_{F / E(x)} y=f(x)$.

PROPOSITION. Let $g_{0}, g_{1}, \ldots, g_{m} \neq 0, g_{m+1}=0$ be the sequence of polynomials defined by:

$$
g_{0}=g, \quad g_{1}=f
$$

and for $i \geq 1$

$$
g_{i+1}=\text { the remainder of the division of } g_{i-1}^{*} \text { by } g_{i},
$$

as long as $\mathrm{g}_{\mathrm{i}} \neq 0$. We have then

$$
1 \leq m \leq \operatorname{deg} g=[E(x): E] \leq[F: E]
$$

and

$$
\operatorname{Tr}_{F / E}(x, y)=-\sum_{i=1}^{m}\left(c\left(g_{i-1}^{*}\right), c\left(g_{i}\right)\right)
$$

By the reciprocity law, we find by induction on j, using $\left(g_{i-1}^{*} / g_{i}\right)=\left(g_{i+1} / g_{i}\right)$:

$$
\left(\frac{g_{1}}{g_{0}}\right)=-\sum_{i=1}^{j}\left(c\left(g_{i-1}^{*}\right), c\left(g_{i}\right)\right)+\left(\frac{g_{j-1}^{*}}{g_{j}}\right)
$$

for $1 \leq j \leq m$. But the last non-zero polynomial g_{m} is a constant because it divides the relatively prime polynomials g_{0} and g_{1}. Hence $\left(g_{m-1}^{*} / g_{m}\right)=0$, and the proposition follows on putting $j=m$; We have $m \leq \operatorname{deg} g$ because the degrees of the polynomials in the sequence are strictly decreasing, and $m \geq 1$ because $f \neq 0$.

COROLLARY 1. If $[F: E]=r$ and $x, y \in F^{*}$, then $\operatorname{Tr}_{F / E}(x, y)$ is a sum of at most r symbols.

The sequence of polynomials in the proposition depends only on F, E, x, and y, not on the Milnor functor M. Thus the trace of a symbol $(x, y)_{M}$ has an expression as a sum of symbols which is independent of the Milnor functor M; on symbols, the trace is uniquely determined. Any morphism $M_{1} \rightarrow M_{2}$ of Milnor functors which carries each symbol $(a, b) \in M_{1}(A)$ to the "same" symbol $(a, b) \in$ $M_{2}(A)$ must therefore commute with $\mathrm{Tr}_{\text {F/E }}$ on symbols. In particular, letting $\boldsymbol{R}_{F}: K_{2}(F) \rightarrow M(F)$ be the homomorphism (whose existence and unicity are guaranteed by Matsumoto's theorem) such that $R_{F}(\{a, b\})=(a, b)_{M}$ for $a, b \in F^{*}$, and similarly \boldsymbol{R}_{E}, we have

COROLLARY 2. The diagram

is commutative.

4. An example

We have just proved that if $[F: E]=r$ and $x, y \in F^{*}$ then $\operatorname{Tr}_{F / E}(x, y)$ is a sum of r symbols. Yet it is known that in some cases, e.g. global or local fields, every element of K_{2} (say) is a symbol [8,3], so it is well to give an example where $\operatorname{Tr}(x, y)$ cannot be written as a sum of fewer than r symbols. For this it will suffice to work with the functor of Example of Section 1.

Let $n \geq 2$ and $r \geq 1$ be integers. Let k_{0} be a field containing a primitive n-th root of unity, ζ. Let $u_{1}, v_{1}, \ldots, u_{r}, v_{r}$ be $2 r$ independent variable over k_{0} and let

$$
F=k_{0}\left(u_{1}, v_{1} ; u_{2}, v_{2} ; \ldots ; u_{r}, v_{r}\right)
$$

be the field they generate. Let M be the Milnor functor of Example 2.

LEMMA. The element $\beta=\sum_{i=1}^{r}\left(u_{i}, v_{i}\right)$ in $M(F)$ is not a sum of fewer than r symbols.

Proof. We use the identification $M(F) \xrightarrow{\sim} \mathrm{Br}_{n}(F)$ discussed at the end of

Example 2. For $1 \leq i \leq r$ let B_{i} by the cyclic algebra over F generated by elements X_{i} and Y_{i} subject to the relations

$$
X_{i}^{n}=u_{i}, \quad Y_{i}^{n}=v_{i}, \quad X_{i} Y_{i}=\zeta Y_{i} X_{i}
$$

so that $\left(u_{i}, v_{i}\right)$ is the Brauer class of B_{i}. Then β is the Brauer class of $B=\bigotimes_{i=1}^{r} B_{i}$, an algebra of dimension $n^{2 r}$ over F. We will show B is a division algebra. This will prove the lemma, for it shows that β cannot be the Brauer class of an algebra of dimension less than $n^{2 r}$, and consequently cannot be a sum of fewer than r symbols.

If B were not a division algebra it would have zero divisors, and multiplying these zero divisors by a common denominator of their coefficients in F relative to the basis

$$
\left\{X_{1}^{l_{1}} Y_{1}^{m_{1}} \cdots X_{r}^{l_{r}} Y_{r}^{m}\right\} \quad\left(0 \leq l_{i}, m_{i}<n\right)
$$

for B over F, we would find zero divisors in the ring

$$
R=k_{0}\left[u_{1}, v_{1}, \ldots, u_{r}, v_{r}\right]\left[X_{1}, Y_{1}, \ldots, X_{r}, Y_{r}\right]=k_{0}\left[X_{1}, y_{1}, \ldots, X_{r}, Y_{r}\right] .
$$

But this ring has no zero divisors, for it has a basis over k_{0} consisting of the monomials

$$
X_{1}^{l_{1}} Y_{1}^{m_{1}} \cdots X_{r}^{l_{r}} Y_{r}^{m_{r}}
$$

with l_{i}, m_{i} integers ≥ 0, and the product of two such monomials is a power of ζ times the monomial obtained by adding exponents. Hence, if we order the monomials by the lexicographical order of their exponent sequences, the product of two non-zero polynomials will contain the product of the highest terms in the two factors with a non-zero coefficient, so will not be 0 . This proves the lemma.

Let σ be the automorphism of F which is identity on k_{0} and acts on the variables by

$$
\begin{array}{lll}
\sigma u_{i}=u_{i+1}, & 1 \leq i \leq r ; & u_{r+1}=u_{1} \\
\sigma v_{i}=v_{i+1}, & 1 \leq i \leq r ; & v_{r+1}=v_{1}
\end{array}
$$

Let G be the cyclic group of order r generated by σ, and let $E=F^{G}$.

PROPOSITION. The image of $\left\{u_{1}, v_{1}\right\}$ under $\operatorname{Tr}_{F / E}: K_{2} F \rightarrow K_{2} E$ is not a sum of fewer than r symbols.

Proof. We use the commutativity of

and the rule

$$
\operatorname{res}_{E / F} \operatorname{Tr}_{F / E} \alpha=\sum_{\tau \in G} \tau \alpha
$$

for $\alpha \in \operatorname{Br} F$. If $\operatorname{Tr}\left\{u_{1}, v_{1}\right\}$ were a sum of $s<r$ symbols so also would be

$$
\text { res } \begin{aligned}
\boldsymbol{R}_{\mathbf{E}} \operatorname{Tr}\left\{u_{1}, v_{1}\right\} & =\operatorname{res} \operatorname{Tr} R_{F}\left\{u_{1}, v_{1}\right\}=\operatorname{res} \operatorname{Tr}\left(u_{1}, v_{1}\right) \\
& =\sum_{\tau \in G} \tau\left(u_{1}, v_{1}\right)=\sum_{i=1}^{r}\left(u_{i}, v_{i}\right)=\beta
\end{aligned}
$$

contradicting the lemma.

REFERENCES

[1] Bloch, S., K_{2} and algebraic cycles. Ann. Math. 99 (1974), 349-379.
[2] Hartshorne, R., Residues and Duality, Springer Lecture notes \#20 (1966).
[3] Lenstra, H. W., K_{2} of global fields consists of symbols, in Algebraic K-theory Evanston 1976, Springer Lecture notes \#551, pp. 69-73.
[4] Milne, J. S., Etale Cohomology, Princeton Univ. Press, 1980.
[5] Milnor, J., Introduction to algebraic K-theory, Ann. Math. Studies \#72, Princeton, 1971.
[6] Quillen, D., Higher algebraic K-theory I, in Algebraic K-theory I, Springer Lecture notes \#341, 1973.
[7] SGA 4, Tome 3, Springer Lecture notes \#305, 1972.
[8] Tate, J., Relations between K_{2} and Galois cohomology, Inv. Math. 36 (1976), 257-274.

Dept. of Mathematical Sciences
Tel-Aviv University
Tel-Aviv, Israel
and
Dept. of Mathematics
Harvard University
Cambridge, MA 02138, USA

Received August 18, 1982

