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A reciprocity law for K,-traces

SHMUEL ROSSET and JOHN TATE

Suppose E < F is a finite field extension and let
Tr: K,(F) — K,(E)

be the trace map (also called transfer, see [5, §14]). If x, y e F* and {x, y} is the
corresponding symbol in K,(F) then we know, since K,(E) is generated by
symbols, that Trge({x, y}) can be expressed as a sum of symbols. In this paper we
give an algorithm for computing such an expression explicitly (cf. the proposition
in §3). The algorithm is based on a reciprocity law (§2) and involves repeated
polynomial division with remainder, like the Euclidean algorithm. The proof
works not only for Milnor’s K,, but for functors sufficiently like K,, which we
define in §1 and call Milnor functors. This abstraction is useful for it yields as a
corollary (§3) the fact that the canonical map from K, to any Milnor functor
commutes with traces. Another corollary is that, if (F:E)=n, then Trgg ({x, y})
can be written as a sum of n symbols (or less). On the other hand this is also the
best bound: in §4 we give an example, using division algebras, of a symbol whose
trace is not a sum of less than n symbols.

One of us (S.R) would like to thank David Saltman for a conversation which
helped realize the example in section 4.

1. Milnor functors

Let K be a fixed base field and let € be the category of commutative finite
dimensional k-algebras.

DEFINITION. A Milnor functor over k is a functor M : € — (Abelian groups)
together with

(i) For each A €@ a bilinear map ¢ =@ :A*XA*—> M(A);

(ii) For each extension A — B in € such that B is a projective A-module, a
homomorphism Trg, 4 : M(B) — M(A); such that the following properties hold.
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(¢) The maps ¢ are functorial, i.e., induce a morphism of functors from the
functor A+> A* X A* to the functor A — M(A), and satisfy

eoala,1—a)=0, if aecA* and 1—-acA¥,

eala,—a)=0, if aeA*

(Tr) if A— B — C are €-morphisms such that C is projective over B and B
over A, then

TrC/A = TrB/A o TrC/B

(Tr—¢) If A— B is a €-morphism with B projective as A-module, and if
xe A*, ye B* then

Trga®s (x, ¥) = palx, NB/A)’),

where Ng, 4 :B*— A™* is the usual norm:
Npg/a(y)=det (multiplication by y).
EXAMPLE 1. Milnor’s K,; see [5] and [6].

EXAMPLE 2. Assume that the characteristic of k does not divide a given
integer n and let w, denote the sheaf on n-th roots of 1 on the étale site over
Spec A; here A is a given element in Ob (€). By Kummer theory

H'(Spec A, w,) = A*/(A*)".
The cup product
H'(Spec A, p,) x H'(Spec A, p,) = H*(Spec A, pn3?) = M(A)

provides us with a context satisfying (i) and (ii). We refer to Milne’s book [4] for
details. The existence of a trace can probably be extracted from [7, exp. XVII].
However, this Milnor functor can be expressed entirely in terms of Galois
cohomology and the trace in terms of corestriction, as follows. For A€@, ae
M(A), and x eSpec A, let a(x)e M(A/x) be the image of a under the residue
class map A — A/x. then the map

ar> (a (x))xeSpecA
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gives an isomorphism

MA)> [T M) (*)

xeSpecA

For each x e Spec A, A/x is a finite extension field of k. If E is a finite extension
field of k, then

M(E) = H*Gal (E/E), pn(E,)® u,(E)),

where E; is a separable algebraic closure of E. The map ¢, is characterized in
terms of the isomorphism (*) by

(eala, b))(x) = @as(a(x), b(x))

for each x € Spec A, where a(x) (resp. b(x)) is the residue mod x of a (resp. b),
and for a field E the map

¢ :E¥*XE*— M(E)

is the Galois cohomology symbol (cf. [8]) characterized by ¢(a, b)=da U db,
where d:E*— HYGal (E/E), u.(E,)) is the connecting homomorphism in the
exact cohomology sequence associated with

0—> p(E)— E¥>E%—0.

Let A — B be an extension in € such that B is a projective A-module. Then
for each x e Spec A and each y e Spec B lying over x, the local ring B, is a free
A,-module; let r(y/x) denote its rank. Let E, = A/x and let F, be the field
between E, and B/y such that F,/E, is separable and (B/y)/F, purely inseparable.
Then the ratio

detn_T(y/x)

 [F,:El]

is an integer, and the M-trace from B to A is characterized in terms of the
isomorphism (*) by

q(y/x)

(Trg,aB)(x) = ; q(y/x) corg e_(B(Y)),

where cor is the corestriction in Galois cohomology, and we identify M(B/y) with
M(F,) via the isomorphism induced by the inclusion F, < Bly.
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In case E€@ is a field containing a primitive n-th root of unity ¢, we can
identify M(E) with the group Br,, (E) of elements of order n in the Brauer group
of E in such a way that

(a, b)p = the Brauer class of A,(a, b)

where A,(a, b) denote the cyclic algebra generated over E by elements X and Y
subject to the relations

XN =aq, Y™ =b, XY =(YX;
(cf. [5], p. 143).

EXAMPLE 3. The dlog symbol, see [1]. If A is a k algebra in € let 02}, be
the A-module of Kihler differentials of A over k, and let 03, be its second
exterior power. Define

dlog: A* — Q4

by dlog (f)=f"" - df. It is simple to verify that 2?2 and dlogAdlog satisfy axioms
(1), (ii) above. The existence of a good trace is a non-trivial fact [2].

2. Reciprocity

Let M be a Milnor functor over k. In this section we shall write the M-symbol
¢e(x, y) by

(x’ Y)Ea or (xa Y)

if E is evident.

Let K be a field of finite degree over k. For relatively prime non-zero
polynomials f(T), g(T) in K[T] we define a new kind of symbol (f/g). Its values
are in the group M(K) and it is defined by the following requirements.

1) It is additive in g, i.e. if g;, g are both prime to f then

) () )

2) Itis O if g is a constant or g=T.
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3) If g is monic irreducible# T and x is a root of g(T) then
\_
g = fo(x)/x (x, f(x))K(x)-

It is clear that, thus defined, the symbol (f/g) is additive in f, as well as in g, and it
depends only on the residue class of f modulo (g). As function of g it depends
only on the ideal generated by g in the ring K[T, T '].

To formulate the reciprocity law satisfied by (f/g) we introduce some notation:
if

p(M=a,T"+a, ,T" "+ - - +a,T"

with a,.a, # 0. let

p*(T)=(a,, T™) 'p(T)
c(p)=(-1)"a,.

Reciprocity law

(£) - (5)-ctem.com. %)

Proof. We first dispose of a few trivial cases. If g is a constant or T it is easily
checked that both sides are 0, so we assume henceforth that g(T) is monic
irreducible # T. let x be a root of g(T). If f(T) is a constant ¢ then the left side of
(**) is

Tremyx (x, C)K(x) = (NK(x)/sz O
=((—1)%*® - g(0), c) = —((-1)*=® - g(0) ™", ¢)
=—(c(g*), c())
which is equal to the right hand side since (g*/f) =0, by definition.
A similar computation using (x, —x) =0 works when f(T)=T so we now

assume that both f and g are monic irreducible, and not T.
Let x be a root of g and y a root of f. Let

A =K(x)®xK(y).

K(x) and K(y) are naturally imbedded in A and we identify them as such. Then
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the elements x, y, x —y are invertible in A, indeed the norm

NA/K(x)(x —y)=f(x)

is invertible, so x —y is.
The identity

(x,x—y)=(y,x;_f)+(x,-1)

follows from a little computation with the relations (u, 1—u) = (u, —u) = 0. We use
it to compute the same thing in two ways

Trax (x, x— y)= Treeyx TrA/K(x) (x, x — y)

= TrK(x)/x (x, IVA/K(::)()c - }’))

~Tricc (6 f(x)) = (g)

y—x y—Xx
Trak <y, f‘;‘) =Trxgyx Trake) <y, ‘:’;)

NA/K(y)(Y - x))
Na/k (=)

=Trgyk (y,

=Trgyyx (y’ i%)
=Trxoux (v, 8%(y) = (EJ;>

Finally

Trak (x, —1) = Trgyx Trake) (X5, —Da
=Trgyyk (NA/K(y)xs _1)K(y)

=Trkyx WNrwxX ~ Dk
=(c(g®) 7", (=1)* D) = —(c(g*), c(f)).

Here we used the obvious fact that

Na/ky)(x) = Ng ey ().

This completes the proof of the reciprocity law.
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3. Consequences

Let E < F be a finite extension of fields finite over k, and let x, y € F*. Then

Tree (x, y) = (5)

where g(T)e E[T] is the monic irreducible polynomial with root x and f(T)e
E[T] is the polynomial of smallest degree such that Ngg,y = f(x).

PROPOSITION. Let g, 81,.--,8.70, g,..1=0 be the sequence of poly-
nomials defined by:

g80=8 &=
and for i=1
g1 = the remainder of the division of g¥ , by g,
as long as g #0. We have then
l=m=degg=[E(x):E]<[F:E]

and
/

Tree (59)= = X (c(gt-0). c(g).

By the reciprocity law, we find by induction on j, using (g*_/g) =(g.1/g):

(.g.l) = - Zj: (c(g¥-1), c(g))+ (%)

8o i=1 i

for 1=<j=<m. But the last non-zero polynomial g,, is a constant because it divides
the relatively prime polynomials g, and g;. Hence (g% _,/g,.) =0, and the proposi-
tion follows on putting j =m; We have m <deg g because the degrees of the
polynomials in the sequence are strictly decreasing, and = =1 because f# 0.

COROLLARY 1. If [F:E]l=r and x,y € F*, then Trgg (x,y) is a sum of at
most r symbols.
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The sequence of polynomials in the proposition depends only on F, E, x, and
y, not on the Milnor functor M. Thus the trace of a symbol (x, y)), has an
expression as a sum of symbols which is independent of the Milnor functor M; on
symbols, the trace is uniquely determined. Any morphism M; — M, of Milnor
functors which carries each symbol (a, b)e M;(A) to the “same’ symbol (a, b) e
M,(A) must therefore commute with Trge on symbols. In particular, letting
Rr: K,5(F)— M(F) be the homomorphism (whose existence and unicity are
guaranteed by Matsumoto’s theorem) such that Rg({a, b}) = (a, b)p, for a, b € F*,
and similarly Rg, we have

COROLLARY 2. The diagram

K, SsM(F)

Tl’p/E Tl'F'/ E

K(E)—>M(E)

is commutative.

4. An example

We have just proved that if [F: E]=r and x, y € F* then Trgg (x, y) is a sum
of r symbols. Yet it is known that in some cases, e.g. global or local fields, every
element of K, (say) is a symbol [8, 3], so it is well to give an example where
Tr (x, y) cannot be written as a sum of fewer than r symbols. For this it will suffice
to work with the functor of Example of Section 1.

Let n=2 and r=1 be integers. Let k, be a field containing a primitive n-th
root of unity, {. Let uq, vq, ..., U, v, be 2r independent variable over k, and let

F= kO(ula Uy; U, Ua5. .. 5 Uy, Ur)
be the field they generate. Let M be the Milnor functor of Example 2.

LEMMA. The element B=Y:_, (u;, v;) in M(F) is not a sum of fewer than r
symbols.

Proof. We use the identification M(F)-= Br, (F) discussed at the end of
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Example 2. For 1=i=r let B; by the cyclic algebra over F generated by elements
X; and Y; subject to the relations

X?':uu Y'i‘zvis )(,lele)(,,

so that (u;, v;) is the Brauer class of B;. Then B is the Brauer class of B=®/_, B,,
an algebra of dimension n®" over F. We will show B is a division algebra. This will
prove the lemma, for it shows that B cannot be the Brauer class of an algebra of
dimension less than n?, and consequently cannot be a sum of fewer than r
symbols.

If B were not a division algebra it would have zero divisors, and multiplying
these zero divisors by a common denominator of their coefficients in F relative to
the basis

{X5YT- - XY} (0L, m;<n)
for B over F, we would find zero divisors in the ring
R = kO[ub Ul’ L ) ur’ vr][Xla Y19 ce vy Xr’ Yr]z kO[Xla YI’ seey Xr, Yr]'

But this ring has no zero divisors, for it has a basis over k, consisting of the
monomials

xXLym. .o xtym

with [, m; integers =0, and the product of two such monomials is a power of {
times the monomial obtained by adding exponents. Hence, if we order the
monomials by the lexicographical order of their exponent sequences, the product
of two non-zero polynomials will contain the product of the highest terms in the

two factors with a non-zero coefficient, so will not be 0. This proves the lemma.
Let o be the automorphism of F which is identity on k, and acts on the

variables by

OU; = Uiy, 1Sl‘<—r; U1 = Uy,

oU; = Uiy, l=i=r; Ury1 = Ug.
Let G be the cyclic group of order r generated by o, and let E = F€.

PROPOSITION. The image of {u,, vi} under Trg : K,F — K,E is not a sum
of fewer than r symbols.
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Proof. We use the commutativity of

K»(F)/nK,(F)—=>Br, (F)

Tr Tr

Ky(E)[nKy(E)——>Br, (E).

and the rule

YeSg/r TrF/E a = Z T
7eG

for a e Br F. If Tr{u,, v,} were a sum of s <r symbols so also would be

res Rg Tr{u,, v,} =res Tr Re{u,, v} =res Tr (u,, v,)

= Z T(Up, vy) = Z (u, v;) =B,
i=1

7€eG

contradicting the lemma.
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