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Braided surfaces and Seifert ribbons for closed braids

Lee Ruporpu

Abstract. A positive band in the braid grocup B, is a conjugate of one of the standard generators; a
negative band is the inverse of a positive band. Using the geometry of the configuration space, a
theory of bands and braided surfaces is developed. Each representation of a braid as a product of
bands yields a handle decomposition of a Seifert ribbon bounded by the corresponding closed braid;
and up to isotopy all Seifert ribbons occur in this manner. Thus, band representations provide a
convenient calculus for the study of ribbon surfaces. For instance, from a band representation, a
Wirtinger presentation of the fundamental group of the complement of the associated Seifert ribbon in
D* can be immediately read off, and we recover a result of T. Yajima (and D. Johnson) that every
Wirtinger-presentable group appears as such a fundamental group. In fact, we show that every such
group is the fundamental group of a Stein manifold, and so that there are finite homotopy types among
the Stein manifolds which cannot (by work of Morgan) be realized as smooth affine algebraic varieties.
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§0. Introduction

Stallings, reporting [S] on constructions of fibred knots and links, mentions
(almost in passing) a construction which associates to any braid B € B, a certain
Seifert surface in S> bounded by the closed braid B. Actually — and importantly —
that construction begins not with a braid (an element of the group B,) but with a

! Research partially supported by NSF grant MCS 76-08230



2 LEE RUDOLPH

braid word (an expression of the braid as a word in the standard generators
o1, ...,0,_1 of B,, and their inverses). Stallings describes the constructed Seifert
surface as being plumbed together from n—1 simpler surfaces.” More naively,
the surface is simply given as a handlebody: the union of n (2-dimensional)
0-handles connected by orientable 1-handles whose number and location are
specified by the particular braid word.

The plumbing description, in Stallings’s context of “homogeneous braids,” is
appropriate because it shows that the surface constructed from a homogeneous
braid (word) is actually a fibre surface for the closed braid. In this paper I hope to
show that the naive handlebody description, and a generalization of it which
produces Seifert ribbons, can be appropriate in other contexts.

This work fits into a circle of ideas going back to Alexander, E. Artin, van
Kampen, and Zariski. In 1923, without bringing the (then undiscovered) braid
groups into it, Alexander [Al] showed that every (tame) link type contains
representative closed braids. In other words: the construction that begins with a
braid B € B, and produces an oriented link B = S3 is perfectly general — every link
type can be so produced. Artin introduced the braid groups B, in 1925, giving
algebraic structure to the geometric braids, and used that algebraic structure to

“describe (among other things) a class of group presentations which included
presentations of precisely the link groups (S —L). Meanwhile, Zariski [Z1, Z2]
was investigating the groups m,(CP>—TI’), where I' was a (possibly singular)
complex algebraic curve, and seems actually to have commissioned van Kampen
to prove the now-famous ‘“van Kampen’s Theorem” [vK] precisely to get presen-
tations of those groups—which are of course intimately related to the groups
m,(C*-1).

A ribbon surface in the 4-disk D* is a 2-manifold-with-boundary embedded in
a certain restricted way (see §81 and 2, below). A (non-singular) piece of algebraic
curve is, as it turns out, always a ribbon surface (cf. [Mi]). In §2 I show how, from
a braid B together with b, an expression for B as a word in certain generators of B,
(the set of conjugates of the standard generators), one can construct a ribbon
surface in D* bounded by (a link of the type of) B; and in §3 I show that this
construction is perfectly general, and produces representatives of each isotopy
class of orientable ribbon surface. One may say that Alexander’s theorem is the
boundary of these results. (A modification of the construction produces, equally
generally, “ribbon immersions” in S?; and in particular all ordinary Seifert
surfaces can be constructed from “embedded band representations’ of braids.)

In §4 a presentation for the group ,(D*— S(b)), of the form called a Wirtinger
presentation, is derived from b. Every group that has a Wirtinger presentation at

2'This kind of plumbing was first discovered by Murasugi [Mu].
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all, has one of the sort that appears here (and from such a presentation b is
immediately read off). Thus we recover Dennis Johnson’s improvement [J] of T.
Yajima’s [Y] result that any group with a Wirtinger presentation can be realized
as 7(S*—S) for some smooth orientable surface S (the improvement being in the
ribbon-like nature of the surface, see below). Actually, I show somewhat more,
and as an application show that each such group also appears as the fundamental
group of a Stein manifold (in fact a complex surface in C*). John Morgan [Mo] has
ruled out many groups, for instance (x,y:[x,[x,[x, [x, y]Il]=1)=G say, from
being fundamental groups of (affine) smooth algebraic varieties; but G, as it
happens, has a Wirtinger presentation.

Ribbon genus and related matters are attacked in §5. An appendix indicates
how the work can be extended to (alternatively) ribbon surfaces with nodes in D*,
or surfaces immersed in S$> with both ribbon and clasp singularities.

The long §1 lays the groundwork for the rest of the paper, relating information
about the geometry of the configuration space (the space of which B, is the
fundamental group) to algebraic information about B, and geometric information
about surfaces in S® and D*.

§1. Loops and disks in the configuration space: closed braids, braided surfaces,
and band representations

Apparently it was only as late as 1962 that topologists first realized that “B,
may be considered as the fundamental group of the space . .. of configurations of
n undifferentiated points in the plane’ (this ‘“‘previously unnoted remark’ being
then made by Fox and Neuwirth [F-N, p. 119]).® In this section some further
relations among the geometry of that space, the geometry of links and surfaces,
and the algebra of the braid group, will be explored. Simply for convenience here,
the plane R? (in which the configurations of n points lie) will be identified with the
complex line C; for a further application of the theory, where the complex
structure is really at the heart of things, see [Ru].

By identifying the complex n™ degree monic polynomial ], (w—w;)=
wh+c,wt 4+ -4+ ¢,_yw+c, with on the one hand the un-ordered n-tuple
{wi,..., w,} of its roots, and on the other hand the ordered n-tuple (c,, ..., c,)
of its non-leading coefficients, we effect the well-known identification of C"/S,,
with C". (The symmetric group &, on n letters acts on C" by permuting the
coordinates.) Now, C"/&,, (being the quotient of C" by a finite group of auto-
morphisms) inherits from C" a natural structure of (singular, affine) algebraic

3 Magnus [M], in a review of [Bi], indicates that Hurwitz, [Hu], studying monodromy in 1891, had
in fact noted this definition.
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variety; its singular locus $(C"/S,,) is the quotient by &,, of the multi-diagonal in
C", that is, it contains exactly those n-tuples {w,, ..., w,} in which for some j#k,
w; = w;. But, via the identification of C"/©,, (the space of roots) with C" (the
space of coefficients), we also give C"/&,, a non-singular structure, which is the
normalization and the minimal resolution of the quotient structure. Let us denote
C"/®,, with this non-singular structure by E,, and let A denote its subset which
““is” the old singular locus. Then 4 is a hypersurface of the affine space E, ; when
n=3, A is singular. (Algebraic geometers know A as the discriminant locus.) Still,
a smooth map of a manifold into E,, may be perturbed arbitrarily slightly to make
it transverse to A, since A is the image of a smooth manifold (any one of the
hyperplanes w; = w, back in the multidiagonal of the space of roots) by a smooth
map. (Incidentally, this resolution shows that A is irreducible, so that its regular
set R(A) is connected, a fact we need later.) In particular, all the transversality we
will need in the sequel is collected in the following lemma.

<

LEMMA 1.1. Let M be a compact, smooth manifold-with-boundary of dimen-
sion no greater than 3. Then any smooth map f: M — E, may be perturbed by an
arbitrarily small homotopy to a smooth map which misses the singular locus ¥(A)
entirely (since $#(A) has real codimension 4) and which intersects the smooth,
codimension-2 manifold R(A) of regular points of A transversely. If f | oM is already
transverse to A in this sense then the homotopy need not alter f | oM. O

The (open, dense) set E,—AcE, is the configuration space (of n ‘“‘un-
differentiated points in the plane”). The fundamental group m,(E, —A4) (we will
suppress basepoints whenever it is decent to do so) is called the braid group B,
(Its structure will be recalled later. General reference: [Bi].) Since E, is contract-
ible, every loop f:9D?*— E, — A extends to a map f:D?*— E, —we can assume f
is smooth, and by Lemma 1.1, transverse to A. Now, what is called a geometric
braid is nothing more nor less than a loop in E,—A. What then is such an
extension to a map of a disk?

DEFINITION 1.2. A (smooth) singular braided surface in a bidisk D =
DixD3={(z,w)eC?:|z|=r,, |W|=r,} is a (smooth) map of pairs i:(S,dS)—
(D, 8, D) (here 8, D denotes the solid torus dD? X D3 which is half of the boundary
of D), such that

(1) prici: (S, 88)— (D3,0D?%) is a branched covering map (and an honest
covering on the boundaries),

(2) S is so oriented that pr,ci, away from its finite set of branch points, is
orientation preserving (with respect to the complex orientation of D7 <C).

From (1) we see that S is orientable, so (2) makes sense.
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The degree n of the branched covering pryci is the degree of the braided
surface; all but finitely many points z e_D% have n distinct preimages in S.

By an embedded braided surface in D let us mean a singular braided surface
for which i is a smooth embedding, or, by abuse of language, also the image
i(S)c D of such an i.

EXAMPLE 1.3. If I is a complex-analytic curve in a neighborhood of D
(possibly analytically reducible, but without multiple components), so situated
that I’ N oD is the transverse intersection of R (I") and 9, D, then the normalization
of I'ND mapping into D is a singular braided surface; and if there are no
singularities of the curve inside D then it is an embedded braided surface. (Such
analytic curves motivated these investigations, but by no means exhaust the
examples.)

Here is the connection between braided surfaces and the configuration space.

On the one hand, given a smooth map f:(D3,8D?) — (E,, E,—A4) for which
f~1(4) is a finite subset of Int D?, one can create a singular braided surface f* in
D?x D3, where the second radius r, is any strict upper bound for the absolute
value of all elements w; in all n-tuples {w,, ..., w,}=f(z) for z e D?. (Begin by
considering the set S;={(z, w)e D:w e f(z)}. Then there is a finite subset X = S;
so that S;— X is a genuine n-sheeted covering space of D} —pr,(X), embedded as
a submanifold of D, with pr, as covering projection. Just from the continuity of f
it is easy to resolve the singularities of Sj, yielding a surface-with-boundary S; on
which the map f* is forced; and this is clearly the desired singular braided surface.
Note that its degree is n.)

On the other hand, given a singular braided surface i:(S, 3S) — (D, 3,D), of
degree n, there is a corresponding smooth map i :(D3,dD?) — (E,, E, —A): on
the set of those z € D? where {w:(z, w)€i(S)} has n distinct elements, one sets
i4(z)={w:(z, w)€i(S)}; again the extension to all z in D, is forced.

Note also that if f, as above, is transverse to 4, then f* is an embedded
braided surface, and is also “in general position”” - meaning here that branch
points of priof* are all “simple vertical tangents”. And conversely, given i as
above, i, will be transverse to A only if S is in fact embedded and its vertical
tangents are all simple. Of course, any embedded braided surface is arbitrarily
close (isotopic through embedded braided surfaces) to an embedded braided
surface in general position.

Recall that a surface embedded in D*={(z, w)e C?:|z|>*+|w|*=1} is a ribbon
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surface if the restriction to the surface of |z|>+|w|? is a Morse function, identically
1 on the boundary, which may have sadd{es as well as local minima, but which has
no local maxima. Ribbon surfaces in D*, and the related ribbon immersions in S>
and R?, will be discussed in greater detail in §§2 and 3. Here we will make the
connection to braided surfaces.

PROPOSITION 1.4. If S< D is an embedded braided surface then there is an
isotopic deformation of D to D* (in C?) which carries S onto a ribbon surface.

Of course D has corners and D* is smooth, but the isotopy will be smooth
except near the corners of D, which without loss of generality are missed by S.

Proof. After a slight perturbation of S, perhaps, the function Ly(z, w) =|z|*
will, when restricted to S, be a Morse function with n (the degree of S) minima, a
saddle point for each branch point, and no local maxima, and it will be identically

1 on 8S. Then for small € >0, L, =|z|*+ ¢ |w|*, when restricted to S, has the same
properties, except that it is not quite constant on the boundary. A small isotopy of

D, supported near its own boundary, will fix L, |3S. The rest is clear. O

Remark 1.5. A consequence of the construction in §3 is that a converse to this
proposition holds — every (orientable!) ribbon surface is isotopic to an embedded
braided surface. This is the exact analogue, for ribbon surfaces, of Alexander’s
theorem [Al] for links, that they all occur as closed braids. I don’t know a more
direct proof of this converse.

Next we will dip into the algebra of B, for a while.

The standard generators of B, are o4,...,0,_,. (With respect to a basepoint
x€ E,, for instance « ={1, . .., n}, o; is represented by a loop which as a motion of
the n points leaves all but j and j+ 1 fixed constantly, while exchanging j and j+1
by a counterclockwise 180° rotation [this is the East Coast convention!].) The
standard presentation of B, is B,=(0y,...,0,_1:R (i=1,...,n—-2), R;
(1=i<j—1=n-1)), where R,:0,0,,,0; =0;,100,,; and R;:0;0; =0;0; are the
standard relations. All the standard generators belong to one conjugacy class: for
R, may be rewritten as 0;,;=0.0:,,0:0:40; ' =(0:0:,1)0:(0:0:,1)" and so by
induction each o; is conjugate to o,. Also, this class is not equal to its inverse, and
in the infinite cyclic abelianization of B,, each generator o; maps to 1.

For reasons which will be evident in the next section, I call any element of the
conjugacy class of o, a positive band. The inverse of a positive band (i.e., a
conjugate of a1') is a negative band. A band is a positive or negative band.
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! when

In any group, I will use the notation *b to denote the conjugate aba™
convenient.

For n>2 there are infinitely many bands in B,. (B, is infinite cyclic.)
Intermediate between the set of 2(n— 1) standard generators and their inverses,
and the set of all bands, is a set of (n—1)n embedded bands. The positive
embedded bands are o,; =“*“~Vg;, where (just here) A(i,j—1)=a; - - - 0;_,, and

NOTATION 1.6. An ordered k-tuple b =(b(1),..., b(k)) with each b(i) a
band in B, (of either sign) is a band representation (in B,) of the braid B(b) =
b(1) - - - b(k), which we call the braid of b. The length 1(b) is k. Conventionally,
the braid of the unique O-tuple is the identity of B,.

If each b(i) is an embedded band we call b an embedded band representation. If
each b(i) is a standard generator or the inverse of a standard generator, we
identify b with a braid word in the usual sense; in that case length is more usually
called letter length.

Since every braid is the braid of some braid word, it makes sense to define the
rank of B in B,, written rk,(B) or rk(B), to be the least k such that some band
representation of B has length k. Only the identity has rank 0. Rank is constant
on conjugacy classes, and is less than or equal to ‘“least letter length” (the
analogue of rank when only braid words and not all band representations are
used) and greater than or equal to the absolute value of the exponent sum (an
invariant of words in the free group on oy, ..., 0,_; which clearly passes on to
B,). A band representation in which each band is positive is a quasipositive band
representation and its braid is a quasipositive braid (cf. [Ru]); the length of a
quasipositive band representation equals the exponent sum and the rank, and
equals the least letter length if and only if the braid of the representation is
actually a positive braid in the usual sense.

Remark 1.7. The notion of band is algebraic, geometric in E,, and (as we shall
see) geometric in S>. The notion of embedded band is not algebraic, and seems to
be geometric only in the latter context. Thus the idea of “embedded rank” seems
to be unnatural and will be ignored.

There are some natural operations that relate different band representations of
the same braid B. (Perhaps some natural incidence structure, of the “building”
sort, awaits discovery in the set of such representations.) Let b = (b(1), .. ., b(k)),
k=2. If for some j between 1 and k—1 we have b(j)b(j+1)=1€B,, then
(b(1),...,b(j—1), b(j+2),...,b(k)) is another band representation of the same
braid, gotten by elementary contraction at the j*™ place.If j is between 1 and k+1
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(k= 0), and a is any band, then the elementary expansion of b=(b(),...,bk) by
a at the j™ place is the band representation of the same braid b’ =
(b'Q),...,b'(k+2) with b'())=b() (i<)),b'()=a, b'(j+1)=a, b'(i)=b(i—2)
(i>j+1).

Now let 1 =j<k = Il(b). The effect of S;, the forward slide at the j* place, is to
replace b with ;b= (b'(1), ..., b"(k)):b'())=b() if i#], j+1; b'(j)="Db(j+1);
and b'(j+1)=b(j). The effect of S;*, the backward slide at the j*™ place, is to
replace b with S;'b=(b'(1),...,b"(k)):b'(i)=i if i#j, j+1; b'(G)=b(j+1);
b'(j+1)=>T*D7p(j). It is easy to check that B(b)=B(S;p) =B(S;'b) and that
and S;' are, indeed, inverse to each other.

(After preparing this paper, the author became aware of Moishezon's work
[Moi] on “braid monodromies” of complex plane curves. My slides are Moishez-
on’s ‘“elementary transformations’; because he is dealing purely with what 1
have called quasipositive band representations, he does not introduce expansions
and contractions.)

For a fixed k=2, the k—1 slides S, ..., S,_; generate a group which acts on
the set of all band representations (of various braids) of length k. It is readily
checked that these slides satisfy the standard relations R;(S,,...,S._;) and
R;i(S;, ..., Sk-1), and therefore mediate an action of the braid group B, on this
set of length-k band representations. Let two band representations (necessarily of
the same braid) which are in the same B, -orbit be called slide-equivalent. This
will be elucidated in the next section, and in Prop. 1.11.

EXAMPLE 1.8. Let (a, b) be a band representation of length 2. It is easily
checked that S3™(a, b) =(“P"q, @™ 7'ep), §2™~1(q, b) =(“""2p, @™ q) for any
melZ.

Remark 1.9. It is tempting to conjecture that a single slide-equivalence class
should fill out the set of band representations of B of a given length, at least when
that length is the rank of B. This fails to be true. For instance, in Bsj,
(04, 030,052 and (05005, 0,0,05 ") have the same braid and (being quasiposi-
tive) are of minimal length for that braid, but they are not slide-equivalent.
(Sketch of proof: For typographical convenience, let o; and o, be abbreviated to
1, 2, respectively. Using Example 1.8 it suffices to show that 1 cannot be
written as V"1 or as V™2 =1"D"2"1 for any integer m. Now, in any group,
three elements u, v, x satisfy “x ="x if and only if uv™' commutes with x. So
we have to show that (1 - 221)™ and (1 - 221)™2 don’t commute with 1 for any m. A
straightforward but unilluminating computation in SL(2, Z), using the well-known

representation o —> ((1) ——D, o> (1 (1)), suffices to verify this.) It happens
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that these two band representations are ‘‘conjugate” in the obvious sense (by o5!)
but not all examples of this phenomenon arise so simply.

Remark 1.10. In §4 we will see an example of a braid 8 of rank 2, and a band
representation b of B of length 4, which is not slide-equivalent to any elementary
expansion of any band representation of the minimal length 2.

Our next task is to relate band representations to disks in E,. Now we fix a
basepoint *€ E,—A, and identify B, with m,(E,—A4,%). For each k=1,
moreover, we fix a set P, of k distinct interior points of D? —let us be definite and
say P.={1/m—1eC:m=1,...,k}c D*={zeC:|z|=1}. Let the basepoint of
D? be *=—+—1. Then m,(D?>-P,;*) is the free group of rank k on free
generators x; (j=1,..., k), where x; is the class of a loop consisting of a straight
line segment from * to a point on the circle of radius 1/2k(k —1) centered at
1/j—1, followed by the circle traversed once counterclockwise, followed by the
segment back to *. If h is a diffeomorphism of D? to itself which is the identity on
dD? and which preserves P, as a set, then the automorphism hy : 7,(D?— P, ; *) —
m(D?— Py; *) satisfies hg([0D?]) =[0D?], where [0D?] is the homotopy class of
the (counterclockwise oriented) boundary of D?, namely, x;x, - * - x.. It is a fact
(cf. [Bi]) that the group of all such automorphisms hy is naturally isomorphic to
the braid group B,; a diffeomorphism which is supported in a 1/2k(k—1)-
neighborhood of the interval

[~—1—-——1,—1——1]CD2
m+1 m

and rotates the interval 180° counterclockwise will induce the automorphism 3,
corresponding to o,,.

PROPOSITION 1.11. (i) Let f:(D? aD?, ) — (E,, E, — A, *) be smooth and
transverse to A, and suppose that f*(A) contains precisely k points. Let h : D* — D?
be a diffeomorphism, fixing dD pointwise, such that h(P,)=f{"'(A). Then the
k-tuple ((foh)gxy,...,(foh)xX.) is a band representation in B,, and its braid is
B = fx([0D?]). The band representations which correspond to different choices of h
are slide-equivalent, and vice versa.

(ii) Conversely, given a band representation b of B, and a smooth map f: (3D?, *)
—(E, — A, %) such that f(dD?) (oriented counterclockwise) represents B, then there
is a smooth extension of f over the whole disk D?, f:(D?, dD?, %) — (E,,, E, — 4, *),
which is transverse to A, with f~'(A) = Py, and such that the band b(j) equals fyx;
(G=1,..., k). Such an extension is unique up to homotopy. If f is an embedding on
dD? the extension may be taken to be an embedding also, unique up to isotopy.
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Proof. If k =1, then (i) says that a loop (through *) which bounds a disk that
meets A transversely in exactly one point represents a band in B,; and the
existence half of (ii) says that every band arises like this. Both statements are true:
for, indeed, an obvious explicit loop representing o, (as in [Bi, p. 18]) bounds an
equally obvious disk of the sort required in (i), and (up to orientation) all loops
which bound such disks are conjugate in B,, because (by transversality) the map
m(E, — A4, *) = m(E, —R(A), *) induced by inclusion is an isomorphism and (as
remarked before Lemma 1.1) R(A) is a connected submanifold of E, of codimen-
sion 2. .

Now, to prove (i) for any k, note that since (foh)y:m(D?*—P; *)—
m(E, —A4; *) is a homomorphism, certainly the product (feh)sx, - - - (foh)sgx,
equals (foh)y(x, -+ * x,) which is fs([0D?]) since h is the identity on dD?; and by
the case k=1, each braid (foh)yx; is indeed a band; so we do have a band
representation of B. A different choice of h corresponds to composing the original
foh on the right with a diffeomorphism of D? which fixes the boundary pointwise
and P, as a set, and therefore to composing the original (foh)y on the right by an
automorphism in the group generated by the 3;’s. But one quickly sees that, on
the level of band representations, 3,, corresponds to the forward slide S,,. So (i) is
proved for all k.

As to (ii), given b one readily constructs a map g from a bouquet of k disks

¥_1 (D3, *), identified at a common boundary point *, into E, so that each
restriction g | D7 is smooth and transverse to A, meeting it at a single point, and
taking dD7 to a loop in the class b(j). Then there is a map q:(8D? *)—
(VK. 9D?, *) with (goq)«[0D?*]=B; and goq is homotopic (rel. *) to the given
map f in the complement of A. Using q to glue the annulus (which is the domain of
the homotopy between f and geq) to /., D7, one creates a disk D? and a
continuous extension of f from dD? across D?. This extension is smooth on the
boundary and near the preimage of 4, to which it is transverse; and a small
perturbation will preserve those properties, while rendering the extension smooth
everywhere. Two different extensions differ, up to homotopy, by an element of
a5(E, —A) but according to [F-N] the space E,—A4 is a K(B,, 1): so any two
extensions of f are homotopic. Finally, if n>2 the assertions about embeddings
and isotopies are easy by general position, the ambient dimension being then at
least 6; while if n =2, B, is Z and what little there is to be said can be justified by
ad hoc arguments. [

The following proposition shows how any two band representations of a braid
are related. The proof given is geometric; the algebraically-minded reader may
supply an algebraic proof.
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PROPOSITION 1.12. Two band representations of 8 in B, may always be
joined by a finite chain in which adjacent band representations differ either by an
elementary expansion or contraction or by a forward or backwards slide.

Proof. Let f:D*>— E, be smooth and transverse to A. Then the natural
(complex) orientations of D? and R(4) give the finite set f '(4) an orientation -
the sign of a point equals the sign of a corresponding band. Let F: D*xI — E,
be a homotopy between two such maps f,=F(-,i), i=0,1, with F|aD?*x{t}
independent of f, and F smooth and transverse to A in the interior of the solid
cylinder D?xI. Then the set F~'(4) is a smooth 1-manifold-with-boundary in
D?x I, with 3(F '(A)) =f5'(A) Uf;'(4); and in fact F*(4) has a natural orienta-
tion for which, as a relative cycle, 0F '(4) = —f,(A)+f;'(4). After possibly a
small perturbation we can assume that pr, | F"'(4): F '(4) — I is a Morse func-
tion. For all but critical values t,, ..., tn, F(:, t): D*— E, gives a band represen-
tation of the braid [f,(6D?)]. The band representations just below and above a
local minimum (resp., maximum) differ by an elementary expansion (resp., an
elementary contraction). In an interval without critical points, F is an isotopy rel.
A and the band representations at the ends of such an interval differ by a
sequence of slides (slides really appear: it may not be possible, as it were, to
choose a fixed normal form for the disks D?x{t} over the whole interval). [

Note that F'(A)c D?>xI may well be knotted and linked. There is a
homomorphism m,(D*xI—F '(A)) — B, which takes meridians to bands. In a

picture, it can be helpful to label arcs of the diagram of F~'(4) with names of
bands.

EXAMPLE 1.13. Figure 1.1 shows the geometric equivalent of the following
chain of band representations (as before, we simplify typography by writing i for
g;):

(1,21) - (1,%°1,2,27Y) — (1,2,%1,279)
—(2,771,71,27) - (2,77'1,%'274,21)
—_ (2’ 2~112212—1, 2—11’ 21) — (2-11’ 21)

The last link in the chain depends on the calculation 2 - ?"'??!27! = identity in Bj.

The reader may like to check that if a and b are any two bands satisfying
aba = bab (for instance, o; and o;,,) then the following chain corresponds to an
arc knotted in a trefoil: (a)— (a, b, b)— (b, a,b) = (*b™%,b,°"a) —
(**7%7b, b1, *"'q) — (**'*"'b) = (a) again.
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Figure 1.1

Because the relationship between different band representations of the same
braid is of interest, the further study of the configurations F~'(4) may be worth
undertaking. In this regard one further construction may be mentioned here. For
n = 3 there is room in E,, to alter a homotopy F by surgeries, as follows. First, one
may assume that F(D?*XI) is an embedded 3-disk (i.e., F identifies only along
intervals {z} X I, z €dD?). Let L be any link in the interior of this 3-disk, disjoint
from A. Then in E,, L is the boundary of a collection of 2-disks which are
pairwise disjoint and disjoint, except along L, from F(D?*xI), and which are
smoothly embedded transverse to A. Corresponding to any framing of any
component L; of L in the 3-disk there is an embedding of a bidisk D? X D? in E,
so that D?x{0} is mapped to the 2-disk bounded by L; and aD? X D? with its
product structure induces the given framing of L; in the 3-disk, while D? xX3dD? is
transverse to A. Make a 3-manifold in E,, with boundary equal to the 2-sphere
F(8(D?*xI)), by removing the solid tori dD? X D? from the 3-disk and replacing
them with the solid tori D? XaD?; this 3-manifold is transverse to A and easily
smoothed at its corners. In case L is a split link of trivial knots, each framed with
+1, the new 3-manifold is again a 3-disk and a new homotopy has been created
between the original pair of band representations f,, f,. It may be hoped that such
surgeries, properly chosen, can replace general configurations F~'(4) with ones
that are special enough in some way to be more easily understood. For instance,
crossings in a diagram of the link F'(4) can be reversed, at the expense (in
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general) of introducing new components (each component L; of L will contribute
a (£2,2) torus link binding together the arcs whose crossing has switched sign).
Remark 1.9 shows that what might be conceived to be the ultimate simplification
is not always possible: we cannot assume that F'(A) is simply a braid (with
respect to projection on I). '

§2. Constructions of surfaces from band representations

The real content of this section, and the next, is in the pictures.

Figure 2.1 shows a surface of the type described in [S] (there named Tp) for the
“homogeneous’ braid word ¢,05%0305 " € B;. (Although the notation T would
seem to suggest that the surface depends only on the braid, in fact the particular

Figure 2.1 Figure 2.2

FOUR SURFACES S(b)

Figure 2.1. b=(0,, 05,05, 0,,0,, 0,03 in B;.
Figure 2.2. b=(0,, 05,0, 05" in Bs.
Figure 2.3. b=(0,4, 014, 023,034,090, 3) in Bs.
Figure 2.4. b =("":0,,207") in B,

Figure 2.3 Figure 2.4
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word is used to make the surface.) Instead of drawing the surface just as [S] would
have it, with a twist (positive or negative according to the exponent of the
corresponding letter in the braid word) to each band, I have preferred to give the
bands half-curls: then, in Fox’s expressive words [F, p. 151], “the resulting
surface . .. may be laid down flat on the table so that only one side of it is
visible,” whereas twists expose a bit of the back side.

Here is the procedure for making a surface according to a braid word
(homogeneous or not): if the word represents an element of B, and is of letter
length k, the surface has an ordered handlebody decomposition h§U- - -UhK%U
hiU- - -Uht; the 0-handles are embedded in R> as planar cells, stacked in order
in parallel planes; the 1-handles are attached (orientably) along the front edges of
the 0-handles, in order; if the jth letter in the word is o5}, £(j) ==1, then the jth
1-handle connects h?(,-) to h?(,-)ﬂ; the half-curl is downwards (i.e., towards the next
1-handle) if €(j)=+1 and upwards if £(j) = —1. (The referee observes that this is
really just Seifert’s method of “‘Seifert circles” [F], applied to a natural oriented
link diagram for the closure of the given braid word.)

Figure 2.2 illustrates the surface corresponding to the braid word o,0,0,05"
considered as an element of Bs; just as including a braid in B, (here, B;) into the
group B, ., adds m trivial components to the link which is its closure, so does
such an inclusion add disks to the constructed surface.

Somewhat more generally, if b=(b(1),...,b(k)) is an embedded band
representation of B = B(b) in B,, then there is a Seifert surface for # made of n
O-handles connected by k 1-handles, where now the 1-handles may have to
stretch across several intervening disks between their two ends.

It should be noted that while the surfaces constructed from braid words are all
unknotted (that is, the fundamental group of the complement of the surface is
free —as the referee remarks, this is always true for surfaces constructed by
Seifert’s procedure), this is not true of all surfaces constructed from embedded
band representations; see Fig. 2.3, an annulus knotted in a trefoil, corresponding
to the embedded band representation (054, 012, 023, 034, 01 4) in Bs.

Now consider a general band representation b. Make a choice, for each
j=1,...,k, of a particular braid word w(j) such that b(j)="%a7,. (One is
actually also choosing i(j).) Then, as in Fig. 2.4, where the process is applied to
(*1%20,, “2o7) with w(l), w(2) as written, a surface hSU---UhSURlU- - -URKX
whose boundary is the closure of B(D) can be constructed; but now it is not
embedded in R>, but rather immersed. The 0-handles have interpenetrated each
other according to the braid words w(j)w(j)~'. Each component of the singular
set of the immersed surface is of the same type: an arc of transverse double-
points, of which the preimage on the abstract surface consists of two arcs, one
entirely interior to the surface and one with both its endpoints on the boundary
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(briefly, a proper arc). A surface with only such singularities is called a ribbon
surface (in R?3 or S?), or a ribbon immersion. We have constructed a Seifert ribbon
for the closed braid.

A band representation b of B in B, thus gives various different Seifert ribbons
for ﬁ (each one a ribbon immersion, conceivably an embedding, of the same
abstract surface), differing according to specific ways of writing the bands. For our
purposes there seems to be no need to distinguish these various ribbons, any one
of which will therefore be denoted by S(b).

Ribbon immersions in S* are related to the previously introduced ribbon
surfaces in D* as follows (a detailed exposition has been written up by Joel Hass,
[H]). Let i: S — S*>=0D* be a ribbon immersion. Then without changing i on 38,
one may isotopically push i into D* so as to separate the double-arcs and produce
an embedding (S, 3S) < (D*, aD*) which is a ribbon surface in the sense of §1; and
every ribbon surface in D* arises in this way (from any one of many different
ribbon immersions i).

We will also use the symbol S(b) to denote such a pushed-in version of (any
one of) the Seifert ribbons S(b). On this interpretation, S(b) is uniquely defined
(up to isotopy), perhaps justifying the ambiguity in the other interpretation; we
can see this by explicitly using the data of b alone (no choices of conjugators
w(})) to construct S(b) in D*. Figure 2.5 illustrates stages in such a construction of
S(oy, “’oy). Figure 2.6 shows a Seifert ribbon S(b) in S> adorned with representa-
tive level sets showing how to push the ribbon immersion into D*.

This is the general construction: if b=(b(1),...,b(k)) is in B,, of length k,
think of an n-string (open) braid which changes in time, from the (constant) trivial
braid at t =0 to B(b) at t = 1. In between there are k singular times, 0<t,<- -+ <
. <1; the interval [0, 27r] which parametrizes the changing braid is also divided
into subintervals, by values 0 =60, <- - -< 6, <2. Between t =0 and t =3(¢t, +1¢,),
the braid changes only in the 6-interval 6, <6 < 6,, in which before and after the
singular time t, it moves by isotopies, passing at t, through a stage where a simple
crossing (a point of order 4, like the center of an X) appears. Similarly, between
t =3(t;+1,) and t =4(¢t,+15), the braid changes only in the @-interval 6,< 6 < 6,,
where it has a simple crossing when t=t,; and so on. When this movie of a
changing open braid is used to create a surface in the bidisk D=
{(z, w):|z|=1, |w|=R}, by letting z =t exp i, the surface evidently is a braided
surface, isotopic (vide Prop. 1.4) to a ribbon surface in D*; and the boundary is
(of the link type of) B(b). We will use S(b) also for the braided surface just
constructed.

Remark 2.1. Of course, according to §1, b dictates an embedding
(D? 8D? — (E,, E, — A) transverse to A, and this embedding in turn gives a
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Figure 2.5. A movie of the construction of S(oy, “%c,)

braided surface in D: it should be no surprise that this surface is none other than
S(b). It is hoped, however, that the pictorial approach taken has been of some
help in understanding this situation.

Remark 2.2. The algebraic moves of §1 can now be interpreted geometri-
cally. “Slides” on the level of band representations correspond to handle-slides of
the surfaces S(b)< D* with their ordered handlebody decompositions; thus,
slide-equivalent band representations of 8 in B, produce surfaces S(b), S(b)
which are isotopic in D* (but generally not through a level-preserving isotopy).
An elementary expansion of b corresponds to adding a (hollow) handle to S(b),
either joining two components by a trivial tube S' X I or taking the connected sum
of one component with a trivial torus S*x S?*, in D* (the cases corresponding to
whether or not the pair of inverse bands in question have a permutation that links
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Figure 2.6.

previously disjoint cycles); an elementary contraction, when possible, corresponds
to removing such a trivial tube or torus.

§3. The construction is general

We will show that every orientable ribbon surface is (isotopic to) some S(b), b
a band representation. We will do this on the interpretation of ‘“‘ribbon surface”
as “‘ribbon immersion in R* = §3”; the isotopy will be ambient isotopy. The proof
is in two steps. First we show that every ribbon immersion ‘“may be laid down flat
on the table.” Then we show how to move any such tabled surface around until it
is an S(b). As before, the text is secondary to the pictures.

Let us say that a surface immersed in R? is tabled fif it is oriented, and we have
an oriented 2-plane (the table) so that orthogonal projection from the surface to
the plane is an orientation-preserving immersion. In [F], Fox attributes to Seifert
essentially the following procedure for finding a tabled surface in the isotopy class
of a given embedded surface (oriented and without closed components, necessar-
ily), S. There is a handlebody decomposition of S with n O-handles h?, k
I-handles h}, and no 2-handles; and the 1-handles are attached orientably. (We
might of course require that n be the number of components of S, but we don’t
have to; and when we come to the case of immersions this won’t be possible.) Let
T <R’ be an oriented 2-plane. By isotopy of S in R?, we may make each h? a
2-cell lying in a translate T; of T, bearing the proper orientation there; and we
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can assume that the projections of these 0-handles into T are pairwise disjoint.
Now by isotopy arrange that the core arcs of the h; project into T in general
position, and with no points except their endpoints in the images of the h?. Shrink
each h,-1 down to a narrow band around its core arc; then, without loss of
generality, the projection of h] identifies some number of transverse arcs to
points, and is otherwise an immersion, alternately preserving and reversing
orientation in the regions between the transverse arcs — that is, h,-1 is twisted (as
seen from T). Also, of course, h! may be knotted, and the various 1-handles may
link each other, too. As far as twisting goes, however, since the 0-handles already
projected orientably and S is oriented, each h; has an even number of twists; and by
further isotopy “‘these twists can be replaced by curls (just half as many curls as
twists)” ([F, p. 151]). When the twists are all out, the surface is tabled.

Figure 3.1 illustrates this procedure as applied to a particular Seifert surface
for the figure-8 knot, without regard to economy in the number of handles.

Figure 3.1. Tabling an embedded surface by twisting handles.
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Now suppose that we begin with a surface which is not embedded, but is
ribbon immersed by i:S— R> where on i(S) the double-arcs are A,, (m=
1,....s), and i"'(A,,) is the disjoint union of the proper arc A’, and the arc
A!"cIntS. It is easy to find a set A% (m=1,...,s) of proper arcs on S, pairwise
disjoint and disjoint from all the A?, such that for each m, A, < A*. Then there
is a handlebody decomposition of S which includes among its O-handles a
neighborhood on S of each proper arc A/, and A¥, and which has no 2-handles.
(As always, S is oriented and without closed components.) It is now possible
practically to mimic Seifert’s procedure with i(S), except of course that the
0-handles containing A* and A/, will not have disjoint images in 7T, and cannot
both lie in planes parallel to T. Let us always take A,, <i(S) to be actually a
straight line segment, parallel to T; then of the two immersed 0-handles contain-
ing it, one can be taken to lie parallel to T, and the other to lie in another plane
parallel to T except for a narrow tab which passes through A,,. (Note that to have
both the 0-handles project orientably to T, one may have to “pivot” one of them
about A,,.) Figure 3.2 illustrates this, for a particular ribbon immersion of a
disk — the boundary being a stevedore’s knot.

Returning to surfaces S(b) for a moment, we see that they are of course tabled
(as pictured in §2) - both from the point of view of the plane of the paper, and
from the tilted plane perpendicular to the axis of the closed braid aS(b) =8, in
which perspective the 0-handles greatly overlap each other. So our second task is
to take our ribbon surface, already assumed tabled, and isotope it until it has
become an S(b). First, skewer all the O-handles; that is, pick an axis A perpen-
dicular to T, and by isotopy of S through tabled surfaces arrange the 0-handles so
that each one intersects A in its own plane (in the case of the 0-handles with tabs,
let us make the intersection fall in the planar part, not in the tab). Now pick
rectangular coordinates in T, and for reference a rectangle-with-rounded-corners
R in T, its sides parallel to the axes, which we will call horizontal and vertical. Let
one of the vertical sides of R be called its front edge. By further isotopy of S, we
may so arrange the 0-handles so that each one projects either onto exactly R (if
there is no double-arc in that 0-handle) or onto R suitably enlarged along the
front edge (by a larger or smaller tab), and so that the double-arcs are vertical
segments projecting outside R (past its front edge). Next we may arrange the
I-handles (if necessary, sliding their attaching maps along the boundaries of the
0-handles) so that: they attach only along the front edges of the projections
(including front edges of tabs); so that their projections are neighborhoods of
polygonal arcs composed solely of horizontal and vertical segments; and so that in
the resulting “link diagram” of core arcs, each over-arc is a horizontal segment.
(We always assume general position, so it also is assured that the 2k endpoints
of the k 1-handles’ core arcs have 2k distinct vertical coordinates; let also the



20 LEE RUDOLPH

Figure 3.2. Tabling a ribbon immersed surface by twisting handles.

1-handles be sufficiently narrow that all attaching takes place inside 2k disjoint
intervals.) This is illustrated in Fig. 3.3, continuing the example of the stevedore’s
knot,

We are nearly done now. One by one, vertical parts of the bands may be
expanded into full-fledged 0-handles and these 0-handles slipped into the stack
impaled by A - the adjacent horizontal segments, if they approach from the left,
being given half-curls to allow the attachment to stay within the realm of tabled
surfaces with all bands attached along front edges. When no vertical parts are left,
the resulting surface is of the form S(b), where B(b) is a braid on some large
number of strings (n plus the number of vertical segments).
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Remark 3.1. Each band in such a band representation b is actually of the
form “o! where for some i <j either w=0,0y,,"** 0;_; Or W=0,01,, " " * O], -

it is either embedded or has a single double-arc but goes directly from h? to h}, ;.

Figure 3.4 shows how this last part of the construction was used to make the
surface in Fig. 2.3, beginning with an annulus knotted in a trefoil (already tabled);
and Fig. 3.5 finishes the stevedore’s knot with its ribbon disk.

Acknowledgement. The conviction that every ribbon surface should arise as
S(b) for some b came upon the author in 1978, after experimentation with
cardboard models. It was some time before the idea of using, essentially, link
diagrams with only vertical and horizontal segments in them, and every over-
crossing horizontal, was incorporated into a proof. And it was only much later
that the author remembered having first heard of such a construction at the
October, 1977, topology conference in Blacksburg, Va. (at VPI&SU) from
Herbert Lyon, in whose hands the construction was used to show that every
(embedded, orientable) surface in S>, without closed components, is a subsurface

Figure 3.3. The stevedore’s knot and its ribbon disk, continued.
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Figure 3.4. Thickening vertical parts of 1-handles into 0-handles.

s

Figure 3.5. The ribbon disk bounded by a stevedore’s knot, concluded.
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of a fibre surface of some fibred knot, [L]. The unconscious memory of Professor
Lyon’s talk was undoubtedly an important ingredient in the genesis of the
author’s proof.

The fact that every ribbon surface appears as S(b) for some b has some
immediate consequences which may be noted here.

PROPOSITION 3.2. Every (orientable) ribbon surface in the 4-disk is isotopic
to a braided surface in the bidisk. [

As stated in Remark 1.5, I don’t know a more direct proof of this.

PROPOSITION 3.3 (Alexander). Every link can be represented as a closed
braid. [

We might say that Proposition 3.3 is the boundary of Proposition 3.2; of
course it relies on the existence of Seifert surfaces for every link.
Further consequences will be reserved to the next section.

§4. The fundamental group =,(D — S(b))

A Wirtinger presentation of a group G is a presentation G =
(X1s e v s X i Xy =""%sy» r=1,...,k), in which each w(r) is a word in
X1, ..., X,; @ group with a Wirtinger presentation is a Wirtinger group. A special
Wirtinger presentation is one in which each conjugator w(r) is actually one of the
generators, X, It is clear that any Wirtinger group has a special Wirtinger
presentation.

That any link group m,(S>—L) (for L tame) is Wirtinger is classical (presuma-
bly due to Wirtinger); and indeed that Wirtinger presentation which is written
down in the usual way from inspection of a link diagram is special. Then Fox’s
method of cross-sections (for instance), or, indeed, Morse theory relative to the
submanifold X, shows that any group m(SY —X), X a smooth orientable sub-
manifold of codimension 2, is Wirtinger. Not every Wirtinger group appears as a
link group in S>. But the following is true.

PROPOSITION 4.1. (Yajima [Y], Johnson [J]). If G is a Wirtinger group,
then there is a smooth, orientable surface S = S* with w,(S*—S)=G; and S may be
taken to be the double of a ribbon surface in the 4-disk D*.
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(The papers of Yajima and Johnson were pointed out to me by Professor
Jonathan Simon; Johnson’s proof, obtained independently of Yajima, introduces
the ribbon refinement; the proof to be given here uses the formalism of band
representations to render Johnson’s construction by ‘“band moves” even more
perspicuous.)

Proof. First, let us derive a (Wirtinger) presentation for (D — S(b)) from b. If
b is in B,, of length k, there will be n generators and k relations. Thinking of S(b)
as a closed braid changing in time from the (constant) trivial braid to B(b), one
can identify the generators x,,..., X, as standard meridians at any one of the
stages; the relations appear at the singular stages, and as in [F, p. 133] each
relation takes the form ‘“‘two meridians are equal” (not, of course, necessarily
standard meridians). More explicitly: recall that there is a (faithful) representation
of B, as a group of left automorphisms of the free group F, =(xy,...,X,: ),
given on generators by o,x; =X, .4, X411 =X, 0:X;=X; (j#i, i+1); and that, if
v € B, and the open geometric braid K < D? X I represents v, then in terms of the
standard meridians x;,...,x, of K in D?x{0}, the standard meridians of K in
D?x{1} (taken in the same order) are yxi,..., yx, (This is readily checked
graphically; or see [Bi] where, however, right automorphisms are used.) Let
b=(b(1),...,b(k), b(j)="Pc%); then the j™ stage contributes the relation
w(j)x;;, = w(j)xi¢)+1- Noting that for any braid w and any x;, wx; is a conjugate of
some x; (true by inspection for w a generator, then generally true by induction),
we see that this relation can be rewritten in Wirtinger form.

Consider two particular types of bands. An embedded band o};' contributes
the relation x; = x;,;. A band of the form *o;?, with w = ([1\;2; 0,,)07_;, contri-
butes the relation x; =%x;,;. According to Remark 3.1, every orientable ribbon
surface S$ < D* can be constructed as S(I;) for some band representation with
bands only of those two types; the corresponding presentation is special Wir-
tinger. Conversely, given any special Wirtinger presentation of a group G, after
possibly adding new generators set equal to old ones, we can assume that each
relation is of one of the two forms x; = x;,1, X; ="Xx;,; and it is easy to find a band
representation with that as the corresponding presentation.

So every Wirtinger group appears as m,(D*—S(b)) for some b. By Morse
theory, because S(b) is ribbon, the homomorphism (S — B(8)) = 7,(D*— S(b))
is onto. Now, by van Kampen’s theorem, the groups 1r1(D4~S(5)) and ,(8*—
2S(b)), where 2S(b)) is the double of S(b) in S* (the double of D*), are
isomorphic. [

EXAMPLE 4.2. Let b=(0,, ®o7") in Bs; then B(b) is a square knot, S(b)
is a ribbon disk, and it is readily checked that (D —S(b))=(x;, X3, X5:
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X1 =Xz, X1 ="22x5) = (x, y : xyx = yxy), the group of the trefoil knot. In fact, in
this case the double of the disk pair (S(b), D) is the spun trefoil in S*.

EXAMPLE 4.3. Here is the example, using a knotted 2-sphere, promised in
Remark 1.10 to show the subtle structure of the set of band representations of a
given braid. As before, let 1, 2, 3 abbreviate a,, o,, o respectively; and let %
abbreviate x . Then B =B(3, 575T) € B, closes to a split link with two unknotted
components, and evidently rk(8) =2 since B is not the trivial braid. One calcu-
lates (D —S(3,%*’1))=(x,,x3: ). If b is any band in B,, the elementary
expansion (3,%?1,b,b) gives a presentation ,(D—S(3,%%1,b,b)) =
(x2, x3:7(x5, x3)) with (at most) one new relation, since b and b give rise to the
same relation according to Theorem 4.1. Then any band representation of B8 of
length 4, which is slide equivalent to an elementary expansion of (3, 2221), gives a
presentation of the same form.

On the other hand, consider the band representation b = (33, 223, 321, '21). Its
conjugate *b, w =3212333, has braid equal to B (we use b for ease of computa-
tion). We calculate w,(D—S(I;)) =(X1, X3, X3, Xg:Xp=X4, “2X3=1X4, X;="Xg4,
“1X5 = X3) = (X5, X3:X2X3X5 = X3X,X3, [X3, x3]=1). This is the group of the 2-twist
spun trefoil, and in fact when we cap off the two trivial components of the closed
braid the 2-twist spun trefoil is the knotted 2-sphere we get. In any case, this is
not a one-relator group, so the length-4 band representation *b of B(3,2%1)
cannot be slide equivalent to an elementary expansion of (3, 24T, (Presumably
two elementary expansions, some sliding, and one elementary contradiction
suffice to connect the two slide-equivalence classes, but I have not checked this.)

Remark 4.4. The Wirtinger presentation of 7r,(D — S(b)) derived in Proposi-
tion 4.1 evidently takes no notice of the signs of the bands in b, so every Wirtinger
group arises as (D —S(b)) for some quasipositive band representation b. As
shown in [Ru], if T« D<C? is a piece of complex-analytic curve with oI’ =
I'N 9, D (transverse intersection), then dl" = B is a closed quasipositive braid, and
conversely every quasipositive braid arises in this manner. Examining the proof
given there in the light of this paper, one sees that in fact (up to isotopy) such
pieces of (non-singular) complex-analytic curves are precisely the surfaces S(b)
for b quasipositive.

We can use this to produce a Stein manifold M < CN with fundamental group
G, for any Wirtinger group G. In fact, find a quasipositive band representation b
with (D —S(b)) = G; realize S(b) as a piece of complex-analytic curve (non-
singular, and extendible to a slightly larger bidisk) in D. By the solvability of the
Cousin problem for the bidisk (cf. [G—R]), there is a holomorphic function
f(z, w) in (a neighborhood of) D, of which the zero-set in D is precisely S(b).
Also, the 2-disk D?<C may be embedded as a Stein submanifold of some CN
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(and actually N =2 will do), by a proper analytic embedding g:D?>— CN. Then
(z, w)—>(g(2), g(w), 1/f(z, w)) is a proper analytic embedding of D—S(b) onto a
Stein submanifold M = C*N*!, (In fact, by Forster [Fr], if N =2 or 3, M must be an
analytic complete intersection, since it is parallelizable.)

SCHOLIUM. There are finite homotopy types which can be realized as Stein
manifolds but not as non-singular affine algebraic varieties.

For John Morgan, using Hodge theory, has shown that, for instance, the group
G =(x,y:1=[x,[x,[x, [x, y]IID is not the fundamental group of any non-singular
algebraic variety (affine or not), [Mo]. Yet G has the Wirtinger presentation
G=(xystuv,w:s="x,x=5% v="tx="u,w="u x="x). (To see this, one
uses repeatedly that in any group °[a, b]=[“a, °b], and [a, b]=1 iff [a, b ']=1.)

Of course, there are infinite homotopy types among the Stein manifolds; for
instance, any open subset of C (e.g., the complement of the integers) is a Stein
manifold, [G—R]. (The analogue in C", n>1, is naturally quite false.)

The abelianization of a Wirtinger group is free abelian, so there are certainly
finitely presented non-Wirtinger groups, and some of these appear as fundamental
groups of Stein manifolds, indeed of algebraic varieties. Is it possible that every
finitely presented group appears as the fundamental group of a Stein manifold?
Given a finite presentation, it is easy to construct various (open) complex
manifolds of complex dimension 2 with G as the fundamental group, but it is not
at all clear how to make such a construction yield Stein manifolds.

§5. Rank and ribbon genus

Recall that rk, (B), for B € B,, is the least k such that some band representa-
tion of B in B, has length k. Call such a shortest band representation minimal in
B..

Recall also the definition of the ribbon genus of a knot or link, L < S>=4D*,
Every such L is, of course, the boundary of various connected orientable smooth
surfaces S =dD*. The ribbon genus g (L) is the least integer that appears as the
genus of such a surface which is ribbon embedded in D*; clearly we have
g(L)=g,(L)=g,(L), where the (classical) genus g(L) restricts the surfaces over
which the minimum is taken to those actually in S, and the slice genus g,(L)
makes no restrictions.

The genus is quite a classical invariant; ribbon genus and slice genus are of
more recent interest; both have been under study by some quite high-powered
methods, cf. Gilmer [G1, G2]. As band representations and ribbon surfaces are so
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closely related, there might be some hope that the more naive methods of this
paper would be relevant to the study of g, This section presents some observa-
tions on the beginnings of such a program.

It should be noted that (because of the requirement that the surfaces involved
be connected) g, g, and g, all are most satisfactory when applied to links which
can bound connected surfaces (without closed components) only: for instance,
knots, or more generally links in which any two distinct components have
non-zero linking number.

The following Proposition is an immediate consequence of the construction in
§3, applied to any Seifert ribbon for L which happens to have genus g,(L).

PROPOSITION 5.1. Let L be a link for which every Seifert ribbon is connected.
Then for some n and some braid BeB, with =L, we have g(L)=
32— n+rk,(B)—c(B)) (where c(B) is the number of cycles in the permutation of B;
or equivalently the number of components of L). O

It would be nice if the quantity 3(2—n +rk,(8) — c(B8)) always computed g(é).
This, alas, is not the case, as Professor Andrew Casson pointed out to me.
Example 5.3. is due to him. (Below, i abbreviates o;, and i abbreviates o;!.)

EXAMPLE 5.2. In B,, consider B =3323211212. Then B is a split link of
two unknotted circles. (The reader familiar with Markov moves may verify this by
first increasing the string index to five by the move B — 34323211212; conjugat-
ing this braid to get 32343211212; reducing the string index to four by moving
back to 3233211212; and then by a fairly straightforward series of conjugations
and reductions in string index, proceeding to the identity in B,, which certainly
has the closure advertised. Alternatively, experiments with string, or pencil and
eraser, may give the result more quickly.) So B bounds a pair of disjoint disks. If
there were a band representation of 8 in B, of which the associated ribbon
surface was a pair of disks — even ribbon disks — then it would have to have length
2, and (since B has exponent sum 0) it would have one positive and one negative
band.

But in fact 8 is not the product of two bands in B,. We check this as follows.
There is a homomorphism ¢ of B, onto SL(2,Z), given by

sor=s@=[; 1] s@=]_ ]}

49 30

. ds t
_18 -1 1] One also finds that the general form

The image of B is found to be [
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l1—ac +a?
¢ l1l+ac
the upper (lower) sign corresponding to a positive (negative) band. Then, up to
conjugation in SL(2,Z), a product of one positive and one negative band takes
the form

of the image of a band is [ ], where a and ¢ are coprime integers;

[1—ac+c2 —1~ac+a2]

—c2 1+ac

This has trace 2+ c?, so if it is conjugate to ¢(B) we must have c>=36. But let a
_ 1: _i(l)]; the lower left hand
corner of the conjugate is —18w?+60wz —30z2. Yet —18w?+60wz —30z%=-36
can have no integral solutions (z, w), for dividing it by 6 and taking both sides
modulo 5 yields 2w*=—1 (mod 5), which is impossible.

Although B is not a product of two bands in B,, the product 34-BeBsis a
product of three bands in Bs, namely 24 - g =43234.43321.4327 1t would be
interesting to know whether 8 considered as an element of Bs is a product of two
bands in Bs. If it were, we would have here an example in which the rank of a
braid decreases when the braid is considered to lie in a braid group of larger string
index.

Now, B when considered as an element of Bs has closure a split link of three
unknotted components. If rks(8)=2, it is at least reasonable to suppose that
among the minimal band representations of B in Bs, some at least correspond to
the Seifert ribbon for B which consists of three unknotted disks. But if such a
band representation of length 2 does exist, it still will not be possible to get from
it to the band representation of length 4 given by B =34 - 43234 . 43321 . 4327 qimply
by inserting a pair of cancelling bands and sliding: this can be shown by an
argument like that in Example 4.3, comparing the fundamental groups of the
complements of the surfaces corresponding to the different band representations.

. p .| X ;
unimodular integral matrix [z ‘i] conjugate [

EXAMPLE 5.3. (Casson). In Bj, let y =(12)°. Then ¥ is a ribbon knot, but
rk3(y)Z 4; so that 32 —n+rk,(y)—c(y)) =3(-2+rks(v)) =Z1>0=g,(¥).

To see that ¥ is ribbon, we consider v, = '2'23 - y € B,, which has the same
closure, and observe that the equation vy, = 23 - B (where B is as in Example 5.2)
displays ¥, as the boundary of a ribbon disk made from the two disks bounded by
é and a single band joining them.

To see rk;(y)>2 (whence it must be at least 4), we represent B; in SL(2, Z)
and make an argument similar to that above; details are left to the reader.
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In an earlier draft of this paper, the following hypotheses were put forth as
conjectures.

Hypothesis 1. rk,.,(B)=rk,(B) for all Be B, <B,.,.
Hypothesis 1. rk, . (Bo:") =rk,(B)+1 for all B € B,.

Hypothesis III. If b= (b(1),. .., b(k)) is a minimal band representation in B,, . ,
of B € B,, then b(k) # o*.

Hypothesis IV. If b is a minimal band representation in B, ., of B € B,, then
actually each band b(j) belongs to B,.

The logical relationships of these hypotheses are as follows.

PROPOSITION 5.4. Hypothesis I1 = Hypothesis 1; Hypothesis IV = Hypoth-
esis III; (Hypothesis 111 & Hypothesis I) = Hypothesis II.

Proof. Certainly IV implies III.

Observe that all band representations of a given braid have lengths of the
same parity; that rk,.,(B)=rk,(B) for any BeB,; and that rk,(By)=
rk,(B) +rk,(y) for any B,y € B,. )

Suppose B falsifies I. Then rk, . ,(B)=rk,(B)—2. Then if b is a minimal band
representation of B8 in B, ., (b, ') is a band representation of Bo*! in B, ., so
rk,.(Boi)=rk,(B)—1, and B also falsifies II. Thus II implies I.

Now suppose III and I are both true. Let b be a minimal band representation
of Bo¢ in B, ., (¢ =+1). Then (b, o;°) is a band representation of 8 in B,.,; by
III it is not minimal, so rk,.(B)=rk,.1(Bo;)—1. But in any case rk,.,(8)=
rk,..(Bo)—1; so in fact rk,.,(Bor)—1=rk,.,(B), and by I this equals rk, (B); so
IT'is true. O

However, Hypothesis 1I is not true.

To see this, recall Markov’s Theorem (alluded to in Example 5.2), as proved in
[Bi]: Let Be B,, and B'€ B, be braids with closures of the same (oriented) link
type. Then there is a finite sequence B, . .., By of braids B; € B, (;), with 8, =8,
B, =B’, such that for each i=2,...,s, one of the following holds - either

(M1) n(@i)=n(i—1) and B; is conjugate to B;,_; in B, =B, -1, Or

(M2) n(i)=n(i—1)+1 and B; = Bi-10ni-1) OF

M27Y) n(@i)=n(@—-1)—1and B;, = Bi“f(li)'
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LEMMA 5.5. Suppose Hypothesis 11 is true. Then if two braids B, B’ differ by a
Markov move (M1), (M2), or (M27"), they have the same difference between string
index and rank.

Proof. In (M1) string index is constant, and so is rank since it is a conjugacy-
class invariant. In (M2), let B € B,, B’ = Bo:!; then by Hypothesis II, the rank of
B' is one greater than the rank of B, but so is its string index, and the difference is
constant. Similarly for (M2 Y. O

By Lemma 5.5 and Markov’s Theorem, if Hypothesis II is true, then the
difference of string index and rank would be an invariant of oriented link type;
but Examples 5.2 and 5.3 show that it is not, so Hypothesis II is false.

Then, by Proposition 5.4, not both of Hypothesis III (or the stronger
Hypothesis IV) and Hypothesis I can be true. I will still conjecture (weakly) that
Hypothesis I is true.

I will conclude by asking various questions.

Is there an algorithm for calculating the rank of an arbitrary braid? Such an
algorithm, with Proposition 5.1, would at least estimate the ribbon genus of a
knot.

The rank of a quasipositive braid is, of course, its exponent sum. But is there
an algorithm for determining whether a braid (which has not been given as the
braid of a quasipositive band representation) is quasipositive? Is there an al-
gorithm for determining whether a given knot or link has, among its various
expressions as a closed braid, one which is quasipositive? Is there even a criterion
which can rule out certain knots as possibly quasipositive? (No criterion based on
a Seifert form for some Seifert surface can work — not, e.g., signatures or Alexan-
der polynomials; [Ru2].)

Is there a way of determining (perhaps for a limited class of braids) whether
the stable situation of Proposition 5.1 has been achieved? In particular, if B8 € B,
is quasipositive, is g (8) =3(2—n +rk,(B)—c(B))? For the particular case that 8 is
one of the quasipositive iterated torus links associated to singular points of
complex plane curves, that this equality holds has been conjectured by Milnor.
Also, if equality fails for some quasipositive braid, then (using results of [Ru]) one
could represent some positive homology class in H,(CP?;Z) by a smooth man-
ifold of genus strictly less than that of the homologous smooth algebraic curve —a
situation which Thom has conjectured cannot occur.

Finally, note that if g,(L)= g, then for some m (the number of local maxima of
the radius-squared on some surface in D*, with boundary L and genus g,(L)) the
link L Umo consisting of L and m (split) unknots has g, (LUmo)=g. If L= é,
Be€B, then LUmo is the closure of B considered as an element of B,,,,.
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Particularly in case Hypothesis I is true, can the method of band representations
give any information about the slice genus?

Appendix. Clasps and nodes, iiberschneidungszahl, etc.

Here we sketch briefly how the various sections of the paper proper can be
extended to a broader class of surfaces.

A.1l. A nodal braided surface is a singular braided surface i : S§ — D for which i
is an immersion in general position (that is, each singularity is a transverse
doublepoint, briefly, a node). A nodal braided surface is itself ‘“‘in general
position” if no two nodes lie over any one point of D%, and no node lies over a
branch point (whence also neither tangent plane at a node is vertical). We will
tacitly take all nodal braided surfaces to be in general position.

Though the disk i,: D3 — E, which corresponds to a nodal braided surface is
not transverse to A (if there really are nodes), its intersections with A are either
transverse or simply tangent.

An immersion f:S — D* of an orientable surface is a ribbon immersion in D*
provided that Lof (where L(z, w)=|z|>*+|w|?) is Morse without local maxima.
Such an immersion, if it is in general position, has only nodes as singularities, and
no node is a critical point of Lef.

The analogue of Proposition 1.4 holds: any nodal braided surface in the
bi-disk is isotopic to a ribbon immersed surface in the disk.

Let a node in B, be the square of a band. A nodal band representation v is a
k-tuple (v(1), ..., v(k)) in which each »(i) is either a band or a node; as before,
1(?) = k is the length of v, B(¥) =[If-, v(i) is its braid. Let «(¥) be the number of
nodes in 7.

In analogy to Proposition 1.11, we see that to a nodal band representation
and a smooth map f:dD*— E,—A representing B(¥), there corresponds a
smooth extension of f over D? with I(¥) intersections with 4, of which «(¥) are
“node-like”. A suitable converse holds.

Slides (as well as various species of expansion and contraction) can be defined
as before. In- particular one sees that any nodal band representation is slide-
equivalent to (and thus has the same braid as) a nodal band representation with

all the nodes at the end.

A.2. From a nodal band representation # a nodal braided surface i:S — D,
and hence a ribbon immersion S — D*, each with boundary (of the link type of)
B(#), can be constructed; likewise, after a choice of conjugators w(i) with
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Figure A.1. A clasp/node surface derived from a nodal band representation.

v(i)="Pg%, an immersion S — S* with boundary B(#). All of these, as before,
will be indiscriminately denoted by S(#). The model in S> is no longer a ribbon
immersion if «(#)# 0. It will have, besides ribbon singularities, so-called clasp
singularities.

A component of the set of clasp singularities on the immersed surface is an arc
of double-points A ; the two inverse images A’ and A” each have one endpoint on
the boundary of the abstract surface, and one in its interior; and the two sheets of
the immersion are transverse along A. Figure A.1 shows how each node in the
nodal band representation contributes one clasp (and, of course, possibly some
ribbon singularities). Observe that the immersion isn’t quite tabled — again, from
each node there is a contribution of a single flap of the backside of the surface
exposed to view.

Figure A.2. Putting a clasp disk bounded by the stevedore’s knot into the form S).



Seifert ribbons for closed braids 33

A.3. Again, the construction is general; again, this is most easily seen in R>.
One finds, in the isotopy class of the given clasp/ribbon surface, a surface which is
“almost tabled” —tabled except for flaps such as those mentioned above.* As
before, all the double-arcs of ribbon singularities can be made “vertical” segments
in planes parallel to the table; and now all the double-arcs of clasp singularities
are taken to be “horizontal.” In the neighborhood of a clasp double-arc, two flaps
(one tabled, the other not) interpenetrate each other, each attached to the front
edge of one of the stacked 0-handles. Then one proceeds just as before. Figure A.2
illustrates this for a clasp disk bounded by the stevedore’s knot.

A.4. If v is a nodal band representation in B,, of length k, the fundamental
group' (D —S(¥)) can be presented with n generators and k relations; «(?)
among the relations will be of the form “two (not necessarily standard) meridians
commute,” while the rest as before set two meridians equal. Analogues of all the
results in §4 hold here.

A.S. If K< 82 is a knot, define ii(K) [resp., ii,(K); ii,(K)] to be the least
integer k such that there is a ribbon immersion of a disk in D*, bounded by K,
with only one local minimum [resp., a ribbon immersion of a disk in D*, bounded
by K; an immersion of a disk in D*, bounded by K] with exactly k singular
points, each one a node. Then ii(K) is the ordinary iiberschneidungszahl of K, and
may also be defined as the least number of self-crossings in a generic regular
homotopy of K to an unknot; while i, and i, may be called the ‘“ribbon
tiberschneidungszahl” and “‘slice iiberschneidungszahl” respectively, for obvious
reasons.

Now, if S = M* is any generically immersed surface in a 4-manifold, a surgery
may be done on S inside M, replacing two 2-disks on S with a node as their
intersection by an annulus with the same boundary, thereby increasing the genus
of S (if it is connected) while decreasing the number of nodes by the same
amount; and if S is ribbon-immersed in the 4-disk, such a surgery can be done
within the class of ribbons, each annulus introducing two new saddles and no local
extrema. Thus we have inequalities &i(K)= i, (K)= g,(K), i (K)= ii,(K) = g,(K),
for any knot K.

PROPOSITION. For any knot K, ii,(K) is the least number k of self-crossings
in a (generic) regular homotopy of K to a ribbon knot.

Proof. The trace of a regular homotopy of K to K' is an annulus with
singularities (generically, only nodes) in S>XI. So k=i, (K). To see that k=
ii,(K), let S be a disk, ribbon immersed in D* with boundary K, with exactly

* Added in proof: using vertical double arcs, clasps too may be tabled completely.
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ii,(K) nodes. Then there is a nodal band representation ¢ such that S is ambient
isotopic to S(#); if ¥ is in B,, then an Euler characteristic argument shows that
I(P)=k(@)+n—1=ii,(K)+n—1. After slides, if necessary, we may assume that
all the nodes in ¥ are collected at the end, v = (#', #") where 7’ is an ordinary band
representation of length n —1 in B,, and 7" is all nodes. The permutation of a node
is trivial, so B(¥') has the same permutation as B(#), and B(#) is a knot K,
bounding a ribbon disk S(#'). Now, evidently, #" may be understood as defining a
regular homotopy of K to K’ with i, (K) self-crossings. [

PROPOSITION. If the knot K is the closure of a strictly positive braid B € B,,
then ii(K)=3i(e(B)—n+1).

Proof. Recall that the diagram D(B) of a positive braid B is the (finite) set of
positive braid words with that braid. Call B square-free if no word in its diagram
has two consecutive letters equal.

Suppose that for k <e(B), m=n, if y€ B,, is a strictly positive braid, e(y) =k,
then there is a regular homotopy of 4 to an unknot with i(e(y)—m+1) self-
crossings. If B is not square-free, let B = B(b) where some two consecutive letters
in b are equal, and let 50 be b with those two letters omitted; then there is a
regular homotopy of K to B(b,) with one self-crossing, and this may be followed
by the inductively-assumed homotopy of B(b,) to the unknot, to produce the
desired homotopy of K.

So let B be square-free. Each word in its diagram has at least one o,_; in it,
for B is strictly positive. If some word in D(B) has o,_; in it exactly once, then
that letter may be omitted to obtain a braid of smaller exponent sum (in one
lower string index) with closure K, and the homotopy we seek exists by the
inductive hypothesis. So we may assume each word in D(8) contains o,,_, at least
twice. Find b in D(B) with the fewest possible uses of o,_;, and, among those,
with some two uses of o,_, separated by as few letters as possible, say b=
A0, _1Y00n—19, Yo€ B._1. Then v, is not empty (since o>_; cannot appear in b),
and it certainly begins with o,_, (for a letter with a smaller subscript could be
commuted forwards past o,,_,, shortening v,), and likewise ends with o,,_,. Write
Yo = On_27Y1Po, Where v, €B, _, and p, is either empty (in which case so is ;) or
begins and ends in o,_,. Continue this process iteratively as long as possible,
writing y; = 0, _>_iYi+10:» Where v,.1€ B,_,_; and p; is either empty (in which case
SO is v;4+1) or begins and ends in o,_,_;. The process must stop eventually, and at
that point we have b= A0, _ 10, 2" " " Op_a2_ifi+1" " " PoTn-10. But p,,, isn’t empty
(the process stops at the first empty remainder), so it begins with o,_;_;, and we
have b=a - - - Op-1-i0n_2-i0n_1-i - - 6. Now apply the standard relation to re-
Write 01 0 pn—2-i0n—-1-i 88 Op_2_iOn_1-i0n—2_i» and commute the first of the new
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letters forward past everything till it passes o,_,. Now the two o,_,’s are
separated by fewer letters than in b, contrary to assumption; so no square-free
word has o, _; in it twice.

We are done, once we start the induction. But the only strictly positive braid of
exponent sum 1 is o, in B,, for which ii(B)=4(1-2+1). O

Remark. Milnor [Mi] conjectured the proposition, with an equality, in the
particular case of links of singularities; and Henry Pinkham has given an inductive
argument (based on the structure of such links as iterated torus knots) proving the
proposition, again in that case.

CONJECTURE. If B is a strictly positive braid (coming, for instance, from the
link of an irreducible singular point of a complex plane curve), then there are

equalities i(B) = ii,(B) = g(B) = g.(B).

This would follow from the discredited Hypothesis II of §5, and still seems a
good bet.

Index of notation

Notations introduced in the paper (other than ephemera, used briefly in proof
or exposition and then discarded) are listed with their page of definition. Standard
symbols appear on the list if their use is somewhat idiosyncratic, or if they are
very basic, or occasionally if their domain of standard use is remote from
topology.

b; b(i) a band; the i band in a band representation (6, 7)

b a band representation (7)

B(b); B(E) the braid of a band representation (7); its closure

B, the braid group on n strings (n—1 generators) (4)

c(B) the number of cycles in the permutation of 8 (27)

D; D* a bidisk D2x D? (4); a round 4-disk (5)

A the ‘“‘discriminant locus” (4)

e(B) the exponent sum of B (7) (the image of B in Z=H'(B,))
E, the ambient space of A (4)

E,—A the “configuration space” of n points in R? (4)

g, g, & genus, ribbon genus, slice genus of a link (26)
rk,.(B) the rank of g in B, (7, 26)
R;, R; “standard relations” in the braid group (6)



LEE RUDOLPH

regular locus of an algebraic set (4)

forward and backwards slides of band representations at the jth place
(8) '

the symmetric group on n letters

singular locus of an algebraic set (4)

the Seifert ribbon corresponding to a band representation b (15)

a “standard generator” of B, (6)

an “embedded band” (7)

Stallings’s notation for a particular kind of S(b) (13)

u, U, U the tiberschneidungszahl of a knot, and a ribbon and slice analogue

In any group, [x, y] denotes xyx~'y~!, and *y denotes xyx~'.

thereof (33)
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