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Higher dimensional simple knots and minimal Seifert surfaces

Eva BAYER-FLUCKIGER*

Introduction

A knot K> 'c 82" g=2, is said to be simple if K> ! has a (q—1)-
connected Seifert surface. Such a Seifert surface is said to be minimal if the
associated Seifert matrix is non-singular. Levine has given an isotopy classification
of simple (2q—1)-knots and their minimal Seifert surfaces in terms of S-
equivalence and congruence of Seifert matrices (cf. [8]). Another algebraic
classification of simple (2q —1)-knots can be obtained via the isometry classifica-
tion of Blanchfield forms (cf. Trotter [14] or Kearton [7]) which is usually easier
to handle than the S-equivalence relation.

In the first section of the present paper we define a (—1)?*'-hermitian form
which gives an isotopy classification of minimal Seifert surfaces. The Blanchfield
form can be obtained from this form by an extension of the scalars. This is
inspired by Trotter’s papers [14] and [15].

The main purpose of this paper is to apply the algebraic results of [1] and [3]
to the classification of a special type of simple knots, called Dedekind knots,
which are defined as follows. Let L be the knot module of K? ! and let A e Z[X],
A(1)= =1, be a generator of the annihilator ideal of the Z[X, X '}-module L (cf.
[9], [10] §7). We shall say that K**~! is a Dedekind knot if A is irreducible and
Z[X, X~ *]/(A) is Dedekind.

Non-fibered Dedekind (2qg — 1)-knots, q =3, are always easy to classify (see
Theorem 3). For fibered Dedekind knots we have two quite different cases: if the
Blanchfield form is indefinite, then we have the same kind of classification
theorem as for non-fibered knots. On the other hand, the classification of fibered
Dedekind knots with definite Blanchfield pairing seems very difficult.

In Sections 2 and 3 we give applications to the cancellation problem, to the
number of minimal Seifert surfaces, and to the symmetries of Dedekind knots.
For instance we shall give a complete criterion for a Dedekind knot to be
(—1)-amphicheiral.

I thank Neal W. Stoltzfus for useful conversations.

* Supported by the “Fonds National de la recherche scientifique” of Switzerland.
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1. An algebraic classification of the minimal Seifert surfaces of a given simple
(2q—1)-knot, g =3.

Let I'y=27[z], Ag=Z[z,z"",(1—2)"'] and let E, be the field of quotients of
Ay. These rings have involutions induced by Z=1-z.

Let N be a Z-torsion free, finitely generated I',-torsion I'y-module. We shall
say that an e-hermitian (¢ =+1) form h:NXN — E/I'y is unimodular if the
adjoint map from N to Homr (N, Ey/I';) which sends x to f,, defined by
f.(y)=h(y, x), is a conjugate-linear isomorphism.

The following is a consequence of results of Levine [8] and Trotter [14], [15]:

THEOREM 1. Let K*~! be a simple knot, q=3, and let b: L XL — E,/A, be
the associated Blanchfield form. The isotopy classes of minimal Seifert surfaces of
K%' are in bijection with the isometry classes of unimodular (—1)%"'-hermitian
forms

h:NxXN — E,/T’,
such that (N, h) ®r, Ao= (L, b).

DEFINITION. A form (N, h) as in Theorem 1 will be called a Trotter form.

Proof. Let A be a non-singular Seifert matrix associated with a minimal
Seifert surface of K**7 !, and let M, = A —z(A +(—1)?A’) where A’ denotes the
transpose of A. Let Aj/MAsAG, N=I5/M,I'g (A is an n X n-matrix) and let

b:LXL — EyA,
h:NXN— E,/I',

be the quotient forms associated with M, (cf. [14], p. 178). The (-1)3*!-
hermitian form b is the Blanchfield form of K27 ! (cf. [9], 14.3, p. 44). Clearly
(N, h)®r, Ag=(L, b). It is easy to check that if A and B are congruent Seifert
matrices, then the quotient forms associated to M, and Mg are isometric.
Conversely let h:NXN— Ey/I, be a unimodular (—1)?*'-hermitian form
such that (N, h) ®r, Ao = (L, b). Following Trotter (cf. [14], [15]) let us define a
trace function s:E,— Q by setting s(f) equal to the coefficient of z™' in the
Laurent expansion of f at infinity. Set [a,, a,]= s(h(a,, a,)) for a,, a;€ N. Then
[ :NXN~—Z is a unimodular (—1)*-symmetric Z-bilinear form (cf. [14] pp.
292-294). We have [za,, a,]=[a;, (1—2)a,], i.e. (N,[ ], z) is an isometric struc-
ture. It is easy to check that isometric (—1)**'-hermitian forms give rise to
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isomorphic isometric structures. Let S, Z be the matrices of [ ], z with respect to
a Z-basis of N. Set A =ZS™'. Then A is a Seifert matrix, i.e. A+(—1)2A'=S"'is
unimodular. A is non-singular as det (A)=det (Z). By [14], Proposition 2.11,
(L, b) is isometric to the quotient form associated to M,. Trotter’s main theorem
in [14] implies that A is in the S-equivalence class determined by K**~!. It is easy
to check that if two isometric structures are isomorphic then the corresponding
Seifert matrices are congruent so by Levine [8] the associated minimal Seifert
surfaces are isotopic.

Remark. The existence of at least one minimal Seifert surface follows from
Trotter, [13] and Levine, [8].

Let b and h be unimodular e-hermitian forms as in Theorem 1. Let ¢ € Z[X]
be the minimal polynomial of z:L—L and let I'=Z[X]/(¢). Set A(X)=
(1-X)%2*p(1/1—X)eZ[X]. We have AL =0 and A(1)==1. Notice that A is a
generator of Ann, (L), cf. Levine [11], proof of Theorem 7.1. Let A=
Z[X, X 'J/(A\) = Ao/(A). Then L is a A-module and b takes values in (1/A)Ay/Aq=
A. So we can consider b and h as unimodular e-hermitian forms b:L XL — A.
h:NXN—-T.

We shall apply Theorem 1 to give a short proof of a theorem of Trotter, in a
special case. Let FeZ[X] be the characteristic polynomial of z:L — L.

THEOREM 2 (Trotter, [14] Corollary 4.7). Let K** < S?3*! be a simple
knot, q =3, such that F(0)=+p where p is a prime. Then the knot K**~' has only
one isotopy class of minimal Seifert surfaces.

Let us assume that ¢ is irreducible. As ¢ and F have the same irreductible
factors, F is then a power of ¢. If the constant term of F is p, where p is a prime
number, then we must have F = ¢.

Let I'=Z[a]. Then A =[a™!, @ '] where @ =1— a. We have ¢(0) = %p, there-
fore I'/(a)=F,, so (a) is a maximal ideal.

In the special case where ¢ is irreducible, Theorem 2 is a consequence of the
following lemma:

LEMMA. Let (I, hy) and (J, h,) be two unimodular €-hermitian forms where 1
and J are I'-ideals, such that (I, h\))@A =(J, h,)®A. Then (I, h,)=(J, h,).

Proof of Lemma. We want to show that if I and J are I'-ideals such that
IA =JA then a*a™I=1J for some integers k, m. As I is noetherian we can write
I=1,NL, J=J,NJ, where the I’s, J;’s are the intersection of a finite number of
primary ideals (cf. [17] Chap. IV §4 Theorem 4). We can assume that the radicals



Higher dimensional simple knots and minimal Seifert surfaces 649

of I, J, are prime to P=(a) and to P and that the radical of the primary
components of I, and J, is P or P. By [17] Chap. IV §10 Theorem 17 the
hypothesis IA =JA implies that I, =J,. Let Q be a P-primary component of I,.
Then there exists an integer n such that o™ € Q. Let us assume that n is minimal
with this property. If n=0 then we have finished. We have Q< P therefore
Q'=a"'QcT. Then either Q' =T or Q' is P-primary so we can repeat the above
procedure. We finally obtain a«™**Q =TI Therefore I, =(a*a™), and a similar
result holds for J,.

Let hi:IXI—T, hy,:IXI—T be two unimodular e-hermitian forms such
that (I, h,) ®-A =(I, h,) ®-A. We have h;(x, y)=a;xy, i=1,2. As h, and h, are
unimodular, a,a;' = u is a unit of I'. There exists x € A such that xX = u. We have
xA = A, therefore x = va*a™ where v is a unit of I So x% = a**"&** ™ v = u.
This implies that k =—m, so xX = v0 = u, therefore h; and h, are isometric.

2. Dedekind knots

Let K** '<S§%*1 be a simple knot, g=2, and let b:L XL —> A be the
associated Blanchfield form, A =Z[X, X~ ']/(A) as above. We shall say that K**~!
is a Dedekind knot if A is irreducible and A is Dedekind. We shall now apply the
results of [1] and [3] to the classification of Dedekind knots and of their minimal
Seifert surfaces.

Let us denote E the field of quotients of A and F the fixed field of the
involution. For every real embedding of F which extends to an imaginary
embedding of E we have a signature invariant of b: L X L — A. We shall say that
b is definite if F is totally real, E is totally imaginary and if every signature is
maximal. Otherwise we say that b is indefinite. The determinant of (L, b) is the
rank one form

det (b):A"LXA"L - A
(1A -+ - AXp, y1A - - - Ay,) — det (b(x;, yj)ij)

where n =rank, (L).

If £ =—1 and rank, (L) is even, we also need a finite number of pfaffians. Let
A’'=ANF and let p be a prime A’-ideal such that pA = P2, The involution on A/P
is trivial (cf. [6], §5), and the skew-hermitian form b induces a non-singular
skew-symmetric form b on L = L/PL. Let us denote by Pf, (b) a pfaffian of this
form. If (M, b) is another lattice such that ¢ : (L, b) — (M, b) is an isometry, then
Pf, (L, b) - det (¢) = Pf, (M, b).
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Let us recall the classification theorem of [3]. We have the following
hypothesis:
(*) Either A# T (or equivalently A(0)# +1) or the e-hermitian forms b;:L; X
L; — A are indefinite.

THEOREM 3. Assume that the hypothesis (*) is satisfied. Then two unimodu-
lar € -hermitian forms by : L, X L, — A and b,: L, X L, — A are isometric if and only
if they have the same rank, same signatures and isometric determinants, and if
moreover € = —1 and the forms have even rank, there exists an isometry f between

det (b,) and det (b,) such that det (f) Pf, (b;)=Pf, (b,) mod P if pA = P>.

Proof. This is a consequence of [3], Theorem 2 and Remark 1. Notice that if p
is a prime of I"=I'"NF such that pA’=A’ then pI'= PP with P# P. Indeed,
pA’'= A’ implies that p contains aa (see the proof of Theorem 2). The minimal
polynomial of a over I'' is X*>— X+ aa. Therefore I'/pl'=T"/p[X]/(X*—-X)=
I''fpxI"/p.

The isotopy classes of simple (2q—1)-knots, q =2, are in bijection with the
isometry classes of Blanchfield forms (cf. Kearton [7] or Levine [8] and Trotter
[14].) Therefore the above theorem gives an isotopy classification of Dedekind
knots satisfying (*). Notice that all non-fibered (2q —1)-knots, q =3, satisfy (*).
Indeed, an easy application of the h-cobordism theorem shows that a simple
(2q—1)-knot, q =3, is fibered if and only if A(0)=1.

COROLLARY 1. Let K, and K, be Dedekind (2q— 1)-knots such that the
associated Blanchfield forms satisfy (*), and let K be any (2q—1)-knot. If the
connected sum K, + K is isotopic to K,+ K then K, and K, are isotopic.

In particular, cancellation holds for non-fibered (2q—1)-Dedekind knots if
q=3.

Proof. Let b,, b, and b be the Blanchfield forms of K;, K, and K. We have an
isometry between b, L b and b, 1L b where L denotes orthogonal sum. The knot
modules of K; and K, clearly have the same annihilator A €Z[X], A(1)=1. Let
A =7Z[X, X~ ')/(A). Taking tensor product over Z[X, X '] with A and then taking
the Z-torsion free part we may assume that b:L X L — A, where L is a projective
A-module of finite rank. Now Theorem 3 implies that b, and b, are isometric.

In the fibered definite case there are counter-examples to cancellation (cf. [2]).
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Minimal Seifert surfaces

The isotopy classes of the minimal Seifert surfaces of a given simple (2q —1)-
knot K, q =3, are classified by the isometry classes of the Trotter forms associated
to K (cf. Theorem 1). Therefore Theorem 3 implies the following

COROLLARY 2. Let K**™! be a Dedekind knot such that the associated
Blanchfield form is indefinite and that I is Dedekind. Let S, and S, be two minimal
Seifert surfaces of K and let (Ny, h,) and (N,, h,) be the associated Trotter forms.

Then S, and S, are isotopic if and only if there exists an isometry f:det (N, h,) —
det (N,, h,) such that

pr (Nb hl) det (f)Epr (Nz, hz) mod P lf pF: P2.

Remark. We have A =I'Ta"', @ '] so if I' is Dedekind then A is Dedekind
too. But the converse is not true. I thank Jonathan Hillman for the following
example: let A(X)=9X*-3X>—11X?-3X+9, then ¢(X)=X*-2X3>+34X>—
33X +9, A =Z[X, X 'J/(\), '=7[X]/(¢).

Then A is Dedekind by Levine’s criterion (cf. [10], §28). On the other hand
¢(X)e (3, X)?, so I' is not Dedekind by Uchida’s criterion (cf. [16]).

COROLLARY 3. If K**! is a Dedekind knot, q =3, such that the associated
Blanchfield form is indefinite and that I' is Dedekind, the number of isotopy classes
of minimal Seifert surfaces of K only depends on A.

If moreover A(0) = =p where p is a prime number, then K has only one isotopy
class of minimal Seifert surfaces. (This is a generalization of Theorem 1, in the case
of Dedekind knots.)

Remark. The above corollary is no longer true if the Blanchfield form is
definite. For instance let A(X)=aX?*+(1-2a)X +a, ¢(X)=X?>—X+a, where a
is a positive integer, a# 1, and 1—4a is square free. Then E=Q[X]/(A)=
Q(+v1—4a) is an imaginary quadratic field. Let p(n) be the number of partitions of
n into the sum of positive integers. There are at least p(n) unimodular forms
h:NxN — I, rank (N) =4n such that (N, h) ®r A is isomorphic to (1) L-- - 1L(1)
(cf. [2], Remark 2). On the other hand the number of unimodular forms
h :Nx N — I such that (N, h) ® A is isomorphic to (1) L{—1)L- - - L (1) does not
depend on n.

3. Symmetries of knots

If X is an oriented manifold, let us denote X~ the same manifold with the
opposite orientation. We shall say that a knot K?*~'< §%9*! is invertible if it is
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isotopic to (K**7')” < §29*! (+1)-amphicheiral if it is isotopic to K24~ c (S2a*1)"
and (—1)-amphicheiral if it is isotopic to (K**™1)~ < (§?**')~, F. Michel [11] has
translated these conditions into algebraic conditions on the Blanchfield form
(L, b) associated to K**~', q =2. Let us define (L, b) as follows: L is equal to L as
Z-modules, and the A-module structure of L is given by A*x = Ax. Let b(x, y)=
b(x,y). Then K**~! is invertible if (L, b)=(L, b), (+1)-amphicheiral if (L, b)=
(L, —b) and (—1)-amphicheiral if (L, b)= (L, —b) (see [11], [5]).

In this section we shall apply Theorem 3 to determine the symmetries of
Dedekind knots.

COROLLARY 4. Let K**™! be a Dedekind knot, q =2, and let (L, b) be the
corresponding Blanchfield form. Then K*3~! is (—1)-amphicheiral if and only if

a) (F. Michel [11]) rank (L) is odd and there exists a unit u of A such that
ut =—1

b) rank, (L) is even and every signature of b is zero.

Proof. 1t is easy to see that the conditions are necessary. Let us prove that they
are also sufficient:

a) an isometry is given by multiplication with u

b) Asrank (L) is even, det (—b) = det (b), and we have Pf, (—b) = (—1)" Pf, (b)
where 2n =rank, (L). Therefore f(x) =(—1)"x gives an isometry between det (b)
and det (—b) such that det (f) Pf, (b)=Pf, (—b) mod P if pA =P> As b and —b
are indefinite and have same signatures, they are isometric by Theorem 3.

The following is a consequence of Corollary 4:

COROLLARY 5. Let K>3 ! be a Dedekind knot, q =2, which has order two in
the knot cobordism group (i.e. K** '+ K> ! is nullcobordant where + denotes

connected sum). Assume that the associated Blanchfield form has even rank. Then
K?*37 ' is (—1)-amphicheiral.

In the case of odd rank, D. Coray and F. Michel have given counter-examples
to the above statement in [4].

Let C, be the group of isomorphism classes of A-ideals and let C, ={ce C,
such that if I e ¢ then I =xI with xX = &} (notice that if c € C, contains an ideal I
such that I = xI, xX = ¢, then every J € ¢ has this property. Indeed, let J = al then
J = (aja)x)).

The following is a generalization of results of F. Michel, (cf. [11], Propositions
2 and 3):
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COROLLARY 6. Let K**™! be a Dedekind knot, q=2, such that the as-
sociated Blanchfield form (L, b) satisfies (*). Let ¢ be the ideal class of the
A-module L. Then K>3 7! is invertible (resp. (+1)-amphicheiral) if and only if the
signatures of b and b (resp. —b) are equal and c € C, with & =(—=1)""Y (resp.
e =(—1)"?), where n =rank, (L).

Proof. 1t is easy to check that there conditions are necessary, let us prove that
they are also sufficient. Let us choose a basis e;,...,e, of V such that L =
Ie,PAe,D- - -DAe, with I=xI, xk =¢. We can identify V and V using the
isomorphism f: V — V, f(Ae;) = A*e,, We have L = Je, D Ae,D- - - D Ae,,, and mul-
tiplication by +x gives an isometry between det (L, b) and e(—1)"@*V det (L, b). If
n is even and b is skew-hermitian, we see that Pf, (L, b) =Pf, (L, b) for pA = P2,
Theorem 3 now gives the desired result.

In the fibered definite case there are counter-examples to the above corollary.
Let for instance A =Z[&] where & is a 52th root of unity. Then there exists a
non-trivial A-ideal I such that I* is principal and that I supports a rank one form
b (cf. [12], [1] §1). Notice that I is not isomorphic to I, therefore (I, b) cannot be
isometric to (I, b). So by unique factorisation of definite forms (cf. [2]) bLbL1b
cannot be isometric to b 1L b 1 b.

EXAMPLE. Let I be a A-ideal which supports a rank one form b. Let
(L, b)=(I, b) L(I,—b). The simple (2q—1)-knot, q=2, which has Blanchfield
pairing (L, b") is clearly (+1)-amphicheiral, but it also has the two other symmet-
ries by Corollary 4 and Corollary 6. This answers a question of J. Hillman in [5],
for the special case A =Z[w, s3], I=(5, w+1), with w=1++v-211/2.

4. Rank one forms

Theorem 3 essentially reduces the classification of non-fibered Dedekind
(49 +1)-knots, g =1, to the classification of rank one hermitian forms. These have
been studied in [1], §1 and §2. Let C,, C,,, denote the ideal class groups (recall
A'={xe A such that x=x}) and let N:C, — C,. be the norm homomorphism.
Let U, be the group of units of A, and N(u)=uii. Let I(A) be the set of
isomorphism classes of rank one forms, which is a group under tensor product.
The following diagram summarizes the relation between I'-lattices and A -lattices.

The rows and columns are exact.
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1——> Ker(f)—> Ker(g)— Ker(h) — Y — 1

v l«

1—> UFI/N(UF) > I(F) > Ker (NF) — 1

f gl h
A%

1'—‘)UA'/N(UA) >I(A) > Ker (NA)—‘—)l

Ll

X 1 1

EXAMPLE. Let ¢o(X)=X?-X+122, AMX)=112X?>-223X+112 A=
Z[X, X ')/(\), T'=Z[X]/(¢). Then we have the following diagram:

1 > 1T —— Z/14 —Z/2 —> 1

| I

1—7Z2 — 72%X7/14 — 7Z/14 —> 1

v v J’

1—7Z/2%X2]2 —> Z/2X7Z]2 —>1
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