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Applications de la p-induction en analyse harmonique™
JEAN-PHILIPPE ANKER

A la mémoire de Serge Reichenthal

La p-induction est la version LP de I’induction unitaire de G. W. Mackey
[28; part I]. Certains aspects du cas unitaire classique laissaient supposer qu’elle
puisse fournir un cadre naturel a des phénomenes liés a I’analyse LP sur les
groupes localement compacts et permettre d’en donner des démonstrations sim-
ples et conceptuelles.

Parmi ceux que nous abordons dans ce travail, mentionnons ici les principes de
majoration de C. Herz (théoréme 7 et exemple 11), ainsi que des techniques de
transferts de convoluteurs, notamment 'induction, a partir d’un sous-groupe (§ 2)
et le passage au quotient (exemples 10 et 13). L’outil principal que nous avons eu
a développer est la continuité de la p-induction par rapport a une topologie de
Fell généralisée (théoréme 13). Signalons a ce propos qu’une difficulté a laquelle
nous nous sommes heurtés a plusieurs reprises a consisté a trouver le bon
substitut aux techniques hilbertiennes classiques.

Comme autre type d’application de la p-induction, nour verrons qu’un
procédé itéré fournit un tube de représentations isométriques autour de chaque
série principale unitaire d’un groupe de Lie semi-simple (§ 4). Signalons que, dans
le cas sphérique, I’existence d’un tel tube avait été constatée par M. G. Cowling et
exploitée avec succes dans sa démonstration du phénoméne de Kunze-Stein [7].

1. Généralités sur la p-induction

Nous reprenons maintenant les aspects généraux de la p-induction, qui ont fait
I'objet de [24], [17], [31], et fixons & cette occasion les notations.

Soient G un groupe localement compact, H un sous-groupe fermé et 1=p=
. La p-induction associe a toute représentation 7 de H —isométrique, fortement

* Extrait d’un travail de thése & I'Université de Lausanne [3]
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continue, sur un espace de Banach B — une représentation de G du méme type,
notée Indf (p, 7). L’espace sur lequel opeére Ind§ (p, 7) est un complété de
I’espace C¥(G, H; m) des fonctions f: G — B vérifiant:

i) la condition d’homogénéité:

f(xh) =8(h)"’mw(h)"'f(x) (xeG,heH),

ou 8(h) = Ay (h)/Ag(h) est le rapport des modules de H et de G,

ii) les conditions de régularité: f est continue, a support compact modulo H.

Avant de passer a la complétion de C2(G, H; ), mentionnons I’ application de
Mackey f—[f] de C.(G; B) (fonctions continues, a support compact, de G dans
B) dans C¥%G, H; w) définie par le procédé d’homogénéisation [f](x)=
§r dh 8(h)™Par(h)f(xh).

Remarques. 1) C’est une application surjective, des sections étant données
par les applications f+—> Bf associées aux fonctions de Bruhat B de la paire H< G.
Rappelons qu’il s’agit 1a des fonctions continues =0 sur G vérifiant:

i) supp BN KH est compact, pour tout compact K de G,

ii) fy dh B(xh)=1, pour tout x € G,

(dont Pexistence est prouvée, par exemple, dans [29; ch. 8, 1.7-1.8]).

2) Du point de vue topologique, I’application de Mackey est une application
quotient dans la catégorie des espaces localement convexes, C.(G;B) et
C?(G, H; ) étant munis des topologies limite inductive stricte évidentes.

Introduisons maintenant, pour p <, le complété L?(G, H; w) de CX G, H; m)
pour la norme intrins€que

Ifl, = | L/H dy (<) "%f(’%] v [ axsw o],

ou g est une fonction continue >0 sur G vérifiant la condition d’homogénéité
q(xh) =q(x) 8(h) (x € G, he H) et d,¢ la mesure quasi-invariante sur G/H qui lui
est associ€e par

fxh)
L/H dq(xH)L dh —L dxf(x) (feC.(G))

(cf par exemple [28; ch. 8, 1.1-1.3] a ce sujet), B étant une fonction de Bruhat de
la paire H< G.
11 serait pénible de donner un sens raisonnable & L*(G, H; 7). Nous nous
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contenterons, pour p=», de l’espace Cy(G, H; m) des fonctions f:G— B
vérifiant

i) f(xh)y=m(h)"'f(x) (xeG, heH),

ii) f est continue et s’annule A I'infini modulo H,
complete de CZ(G, H, 7) pour la norme ||f||.. =sup, g |f(x).

La représentation Indg (p, w) opére sur L°(G, H; w), resp. Co(G, H; w) par
translations a gauche: {Indg (p, m)(g)f}(x) = f(g"*x).

EXEMPLE 1. La représentation p-induite a partir de la représentation
triviale de {e} sur B est la représentation réguliére a gauche

{p& s(8)fHx)=f(g"'x) de G sur L?(G, B), resp. Cy(G, B).
La version dite de Mackey de la p-induction se déduit de la précédente par la

transformation f—>f/q'/". Pour p =, il n’y a donc aucune différence. Pour p<c,
I’espace initial est ici Co(G, H; w), la norme

Ifl, = UG/H d, D I |

et la représentation

{Indg (p, m)(g)fH(x) = m(g, xH)'"f(g'x),

-1
ou m(g, xH) = q(qg(x)x) est le module de quasi-invariance de la mesure d,{.

EXEMPLE 2. La représentation p-induite a partir de la représentation
triviale de H sur B est la représentation quasi-réguliéere

{m? (N =m(g, £)'"f(g". {) de G sur L°(G/H; B), resp. Co(G/H; B).

Remarque. Dans la version de Mackey, l'espace LP(G, H;w), resp.
Co(G, H; m) s’identifie naturellement a I’espace des sections LP, resp. C, du fibré
induit G Xy B = G X B/(x, £) ~ (xh, (h)"'€) sur G/H. La théorie de 'intégration
pour les sections d’un tel fibré, qui se fait sur le modele classique [5], fournit des
réalisations concrétes des espaces LP(G, H; w).

On peut réaliser la représentation Ind§g(p, w) sur LP(G/H;B), resp.
Co(G/H; B) lorsqu’il existe une section — admettons continue ~ s de G/H dans G:
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{Indg (p, m)(@)fHL) = c(g, Of(g™" . ), ot c(g, {) = 8(h)""Pw(h) ™" (1-cocycle en g), h
étant ’élément de H déterminé par g 's({)=s(g™"'. Oh.

EXEMPLE 3. Supposons qu’il existe un sous-groupe fermé K de G pour
lequel P'application (k, h)+>kh soit un homéomorphisme de KX H sur G. La
représentation Ind§ (p, ) est alors réalisée sur LP(K; B), resp. Co(K; B) par
{Ind§ (p, m)(@)f}(k) = c(g k)f(g™". k), ot c(g k)=8(h)'"mw(h)™", g'. k et h
étant les éléments de K et de H déterminés par g 'k =(g™*. k)h.

Ceci reste valable, pour p <, lorsque KH est un ouvert de G dont le
complémentaire est localement négligeable.
Terminons par une propriété classique de transitivité.

THEOREME 1 (induction par étages). Soit K un sous-groupe fermé intercalé
entre H et G. Les représentations Indg (p, Indf; (p, 7)) et IndS (p, w) sont alors
équivalentes.

Démonstration. En effectuant successivement les applications de Mackey cor-
respondant aux représentations o =Indy (p, ) et Indg (p, o), on construit, a
partir d’'une fonction F e C.(G X K; B), la fonction

[FKx, k) = L dl [‘A‘Zig ]_UbL dh [%—i‘%rh’w(mp(xl, 1=\ kh),

qui est continue sur G X K et fournit un élément de C?(G, K; o). L’image E de
C.(G X K; B) par cette double application de Mackey est un sous-espace dense de
L?(G, K; 0), resp. Co(G, K; o). 1l contient en effet les éléments de la forme

If,F. Rl =[fRf.®£]] = (f1€ C.(G), fe C.(K), £€ B). Considérons mainte-
nant les applications C.(G; B) % C.(G X K; B) définies par

A k -1/p
Af(x, k) = a(k*)[zgﬁ—,—(%] k)

(ol a € C,(K) vérifie a =0, fx dk a(k) =1 et a été fixée une fois pour toutes) et

Ak (k)
c(k)

A’F(x) = L dk ]_llpF(xk, k).
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Elles induisent, par les diagrammes commutatifs

C.(G, B)-25 C.(GXK; B) C.(G, B) <2~ C.(GXK; B)
[ ]l ll )] et [ ]l ll 1
C¥G, H; w) 2L E C(G, H; ) <21 E
. : [A]
les applications CX(G, H; ) f—ﬁ] E données par
k —1/p
[Alf(x, k) = [AK( )] f(xk) et [A']F(x)=F(x,e).
A (k)

Les applications [A] et [A’] sont inverses 'une de l'autre et commutent aux
translations a gauche. Elles sont enfin isométriques. En effet, si B et vy sont des
fonctions de Bruhat des paires H= G et K< G, on a, pour p <o,

o

LAY = | dxv( | dkpeao (LAY kP

| AT
=] dx dk k k)®
R R e IR0

=1 dx B If)P =l
G

étant donné que, chaque x € G, la fonction k > B(xk) est de Bruhat pour la paire
HcK.

EXEMPLE 4. La représentation réguliere (a gauche) p% g est équivalente a la
représentation p-induite a partir de la représentation réguliere (a gauche) pf p.
Explicitement, le diagramme commutatif qui est au centre de la démonstration
précédente se résume ici a

C.(GxH; B)

C.(G;B) [
[A]

(A1

E
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o
[F(x, k) = L dh [:EZ;]*UDF(m, k),
ot
O el ITEO)
ol

An(h)
Ag(h)

A'F(x) = L dh[ ]_I/DF(xh, hY)

et ot [A']F(x) = F(x, e). Notons qu’on a le méme diagramme pour la version de
Mackey de la représentation Ind§ (p, p% s), avec, dans ce cas,

A DR (€
[A]f(X)—{ql/p}x h q(xh)llp'

Remarquons que I’identification de I’espace L?(G; B), resp. Co(G; B) a I’espace
des sections LP, resp. C, du fibré induit par pg; g fait apparaitre la restriction 4 H
de la représentation réguliére a droite {A%p(g)f}(x)=As(g)'"f(xg) de G sur
L?(G; B) comme intégrale directe L?, resp. somme directe continue sur G/H de la
représentation réguliere a droite A} .

2. Entrelacements et convoluteurs induits™

Nous faisons apparaitre la notion de convoluteur induit, considérée
précédemment par plusieurs auteurs comme un cas particulier de la notion
naturelle d’entrelacement induit et obtenons, grice a ce point de vue, des
démonstrations simples de ses propriétés.

Nous commengons par étudier la p-induction des entrelacements (classique
dans le cas unitaire). Donnons-nous deux représentations m; et m, de H
(isométriques, fortement continues, sur des espaces de Banach B, et B,) et
considérons les représentations correspondantes Ind§ (p, ;) et Ind§ (p, ) de G,
dans la version de Mackey. On obtient, a partir d’un entrelacement T de m, avec
m, (rappelons qu’il s’agit 1a des opérateurs bornés T de B; dans B, pour lesquels

* Les résultats de ce paragraphe ont fait ’'objet de I"annonce [2].
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Toary(h)=my(h)°T pouttout h € H), unentrelacement Ind$(p, T) de IndS(p, 7;)
avec Indg (p, m,) en posant Indgj (p, T)f = Tef, i.e. en faisant opérer T fibre par
fibre. Notons que [Indg (p, T)||=||T|| et que Indg (p, T) commute & la multiplica-
tion ponctuelle par L*(G/H), resp. C?(G/H).

PROPOSITION 2. La p-induction T+ Ind$ (p, T) des entrelacements est une
isométrie.
Démonstration. Montrons || T||=||Indg (p, T)| pour p <« (le cas p=2x se traitant

de méme). L’inégalité ||y - Indf,(p, T)fll, =|Indfi(p, Dl |l - fll,, valable pour tout
feC2(G, H; w), ¢ € L°(G/H), s’écrit

L/H d,(xH) |[¢xH)|? | Tf(x)|° = |Ind§ (p, T )N"J d,(xH) |¢(xH)IP |f(x)|".

GI’H
On en tire facilement ||T||=|Ind§(p, T)|.

Relevons que la p-induction jouit de toutes les propriétés fonctorielles
souhaitables. Nous allons encore donner deux caractérisations des entrelacements
p-induits. Dans le cas unitaire et lorsque 7 = 7,, la premiére caractérisation est
classique (cf. par exemple [4; ch. 16, § 3.B, theorem 3]); on la rencontre dans les
questions liées au théoréme d’imprimitivité de Mackey.

THEOREME 3. Un entrelacement S de Ind$§(p, ;) avec Ind§ (p, m,) est
induit a partir de H si et seulement s’il vérifie une des deux conditions équivalentes
suivantes:

1) S commute a la multiplication ponctuelle par L*(G/H), resp. C*(G/H),

2) supp (Sf) =supp f pour tout fe L?(G, H; ), resp. Co(G, H; ).

Précisons la notion de support d’une fonction fe L?(G, H; m;): il s’agit du plus
petit fermé de G/H en dehors duquel |f|=0 (pp). On peut également le définir
par dualité avec C2(G, H; n¥), =¥ étant la contragrédiente de m; ou toute autre
représentation formant avec m; une paire duale de H (cf §3): {¢suppf si et
seulement s’il existe un voisinage V de ¢ dans G/H tel que (f, $)=0 pout tout
$cC2(G,H; 7¥) avec suppp < V.

Démonstration. 11 est clair que les deux conditions sont nécessaires et il est
facile de déduire la seconde de la premiére. Le point délicat consiste a montrer
que tout entrelacement S de Ind§ (p, m,) avec Indg (p, m,) vérifiant la seconde
condition est induit par un entrelacement T de 7, avec ,. L’idée de la preuve est
simple: on définit T en isolant I'action de S sur la fibre au-dessus de H.
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Commengons par le cas p == et par établir I'inégalité

(+) ISfle)l=lISllIf(e)l  (fe Co(G, H; ).

Supposons, par absurde, qu’il existe f e Co(G, H; m,) avec |Sf(e)|—||S|||f(e)| =& >
0. I existe par suite un voisinage V de H dans G/H sur lequel ||S||f(x)|=
|Sf(e)| — €/2. Choisissons une fonction auxiliaire ¢ : G/H — [0, 1] continue, 2 sup-
port dans V et valant 1 sur un voisinage de H dans G/H. Comme, par hypotheése,
S(¢ - f)(e) = Sf(e), on obtient ||S||{|¢ - fl.=|S - f)(e)|— /2, ce qui est absurde.

Maintenant, I'inégalit€ (*) et le fait que les vecteurs f(e), pour fe
Co(G, H; 7,), décrivent B, montrent que f(e) — Sf(e) définit un opérateur borné
T de B, dans B,. On vérifie facilement que T est un entrelacement de r, avec m,,
qui induit S.

Dans le cas p <o, considérons le sous-espace E, de C3(G, H; ;) engendré
par les fonctions de la forme f,=Indg(p, m)u)f, ou ueC.(G) et fe
CZ(G, H; r4). 11 jouit des propriétés suivantes:

—A{fo(e) | foe E,} est dense dans B;,
— S(E,) est composé de fonctions continues (cf. lemme ci-dessous), ce qui permet
de reprendre la démonstration du cas p =,

LEMME 4. Toute fonction de la forme f,=Ind§ (p, m)(w)f, ot ue C.(G) et
fe L?(G, H; m;), est (égale pp modulo H a une fonction) continue.

Démonstration. Commengons par exprimer I'opérateur intégral Ind§ (p, m;)(u)
a I’aide d’un noyau:

{Indg (p, m)(w)f}(x) = J d,(yH) K, (x, y)f(y) (fe CZ(G, H; m,)),

G/H

K, (x, y)=q(x)""Pq(y) """ Ac(y)™ L dh 8(h)"Pu(xhy ") m;(h).

On en déduit une majoration d’ordre technique:
pour tout compact K de G/H il existe une constante C =0 telle que

KIndg (p, m)WfX)=Clfll,  (fe CI(G, H, m), xH e K).

Considérons maintenant une suite (f,) = C2(G, H; m;) convergeant (en norme)
vers f. D’aprés la majoration précédente, la suite des fonctions Indg (p, m,)(w)f,
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converge uniformément sur la préimage de tout compact de G/H vers une
fonction homogene continue f,. Comme, d’autre part, une sous-suite converge
(pp modulo H) vers f,, on a f,={. (pp modulo H).

Nous explicitons maintenant ce qui précéde dans le cas particulier ou 7, = m,
est la représentation réguliere (a2 gauche) pf; de H sur LP(H), 1 <p <. Rappe-
lons que nous avons identifié au § 1 les représentations Ind§ (p, py) et p%. La
p-induction des entrelacements correspond donc ici a un procédé d’induction des
convoluteurs a droite. Explicitement,

d“("H)<T{q{'"}x,H’ ! f,’p,}_m> (f, ¢ € C.(G)).

(Indg (p, TS, &) = j -

G/H

EXEMPLE 5. Ind§ (p, A%(w)) = A%(n) pour tout w e M*(H) (mesure bornée
sur H).

EXEMPLE 6. Plus généralement, si T est défini par convolution a droite par
une distribution 7: Té(k) = éx7(k) = [y dv(h) A, (h) '&é(kh ™), alors Ind§ (p, T) est
défini par convolution 2 droite par la distribution 8 *'r (a support dans H):

{Indj (p, T)f}x)=f*(8""P'7)(x) = L dr(h) Ag(h)™" Ag(h)Pf(xh™").

EXEMPLE 7. Dans le contexte abélien, I'inclusion CV?(H)— CV?(G) des
convoluteurs correspond au relevement m?(G/HY) — m?(G) des multiplicateurs.

PROPOSITION 5. L’induction des convoluteurs a droite est un homo-
morphisme d’algébres isométrique.

Notons qu’on passe facilement aux convoluteurs a gauche, au moyen des involu-
tions «(¢)(h) = Ag(h) Pé(h™") de LP(H) et v(f)(x) = Ag(x) " *f(x~ ") de L*(G).

Remarque. L’induction des convoluteurs coincide avec les notions apparues
dans [8; §4] (G=R, H=1Z), puis [30; section 3] et [25; théoréeme 1.2] (cas
abélien), [23] (cas des pseudo-mesures), et finalement [26], [27; appendice], [9]
(cas général).

La traduction de la seconde caractérisation du théoréme 3 nous ameéne a
définir la notion de support d’un convoluteur S de LP(G):xé¢suppS si et
seulement s’il existe dans G des voisinages U de e et V de x tels que (Su, v)=0
pour tout u, ve C,(G) avec suppu< U, suppvc< V.



Applications de la p-induction en analyse harmonique 631

Remarques. 1) Cette notion coincide avec

— le support de la mesure — ou plus généralement de la distribution — o, lorque S
est défini par convolution (a droite ou a gauche) par o,

— la définition [23; p. 117],

— le support défini par dualité avec AP(G), lorsque S est une pseudo-mesure [23;
p. 101],

— le spectre du multiplicateur m, lorsque, dans le contexte abélien, S = m.

2) Le support d’'un convoluteur est conservé par induction.

THEOREME 6. Un convoluteur — a droite, resp. a gauche —S de LP(G) est
induit a partir de H si seulement s’il vérifie une des deux conditions équivalentes
suivantes:

1) S commute a la multiplication ponctuelle par L*(G/H), resp. L*(H\ G),
2) S a son support dans H.

C’est un corollaire immédiat du théoréme 3, le support de S étant, dans le cas
d’un convoluteur a droite, le plus petit fermé F de G tel que supp (Sf) < (supp f)F
pout tout fe C.(G) (le support de Sf étant pris au sens des mesures).

Remarque. Le seconde caractérisation, au moyen du support, a été prouvée
dans [30; lemma 3.2] (cas abélien), [23; theorem B] (cas des pseudo-mesures, H
moyennable ou normal dans G) et finalement [26], [27; appendice] (cas général).
Notre démonstration du cas général, techniquement assez voisine de [30; loc. cit.],
présente I'avantage d’étre directe et relativement simple.

3. Coefficients de représentations p-induites et transferts de convoluteurs.

Dans ce paragraphe nous établissons des propriétés fonctionnelles des coeffi-
cients de certaines représentations p-induites, découlant principalement de la
continuité de la p-induction, et en déduisons par dualité des transferts
d’opérateurs, notamment de convoluteurs. Signalons a ce propos que, sauf
mention explicite, on travaillera ici avec des convoluteurs a gauche.

Dans ce paragraphe nous considérons toutes les représentations par paires
duales. Une paire duale d’un groupe localement compact G est composée de deux
représentations et ¥ de G - isométriques, fortement continues, sur des espaces
de Banach B et B* - mises en dualité par un couplage, i.e. une forme bilinéaire
(,) sur B X B* vérifiant

i) (m(Q)E m*(@)E*)=( &%) (geG, é€B, £ e BY),
i) |¢] = sup K& ™), €% = sup Kn, €%  (£€B, *eB¥).

n*=1
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EXEMPLE 8. Soit 7 une représentation de G —isométrique, fortement con-
tinue, sur un espace de Banach B. Les vecteurs £* du dual B* pour lesquels la
fonction g > w*(g)¢* ="'mw(g) ' €* est continue composent un sous-espace fermé,
faiblement dense B§. La représentation w* de G sur B§, appelée contragrédiente
de m, forme avec 7 une paire duale. Toute représentation de G en dualité avec =
est contenue dans 7*, et coincide méme avec 7w* lorsque B est réflexif.

EXEMPLE 9. Les représentations Ind§ (p, w) et Indg (p’, #*), induites
a partir d’'une paire duale (m, 7*) de H suivant des indices p et p’ conjugués

. 1 .
(1.e. 5+;)—,= 1), forment une paire duale de G pour le couplage

. b= j d, (xHD) (f&x), ¢(x))

G/H q(x) B

L dx BXF(x), (X)),
resp.

G )= d(cHNF), )

G/H

dans la version de Mackey.

Le premier principe de majoration de Herz permet de contrdler les coefficients
des représentations p-induites de H a G a l'aide des coefficients de la
représentation quasi-réguliere #° de G sur LP(G/H), resp. Cy(G/H).
Considérons une paire duale induite (Ind§ (p, 7), Ind§ (p’, 7*)) — dans la version
de Mackey.

THEOREME 7 (premier principe de majoration de Herz en p-induction). En
posant |f| (xH) =|f(x)|, |&|(xH)=|d(x)] (xeG), on a [Indg (p, m)(g)f, d)=
(m®() Ifl, |#l) pout tout g€ G avec |Ifll, =lIflllp, o= Il ] llp-

Remarque. Ce principe a été énoncé par C. Herz pour la représentation
réguliere de G sur LP(G) [20]. La version dans le cadre de I'induction unitaire est
due a G. Arsac [13; § 3].

Il fournit par dualité un transfert d’opérateurs. Supposons 1<p <« et soit u
une mesure positive sur G définissant un opérateur borné 7?(u) sur L?(G/H) par

(wP(n)f, &) =Jcdn(gXn"(2)f, b).

COROLLAIRE 8. Si la paire duale induite (Ind§(p, 7) IndH (p’, 7*)) est
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réflexive, u définit un opérateur borné Ind§ (p, w)(n) sur L°(G,H;m) par
(Indg (p, m)(w)f, d) = du(g)Ind§ (p, 7)(R)f, @) avec ||[Indg (p, m)(I = |l7® ()l

Remarque. Dans le cas particulier de la représentation réguliere de G sur
L°(G), ce résultat est contenu dans [27; prop. 1].

Définissons maintenant une topologie en terme de voisinages sur les paires
duales d’un groupe localement compact G. Etant donné une paire duale (m, 7*)
de G, &,,...,&.€B_, £F,..., B« n1, ..., 01 M(G) et € >0, le voisinage
correspondant Vi, .«((&); (£%); (u); ) de (ar, m*) est composé des paires duales
(w, ®*) pour lesquelles il exists My, ..., Nw € By, N%, ..., nke B« avec

19 [w(m)é, f?)"(w(ﬂk)")i, T)T)‘ <e
(i=1,....,mj=1,...,n,k=1,...,r),

2°) Y wuw)E|-| Y e(wnl<e
(i,k)el (i,k)el
“ Y afw)EE|-| Y o*(w)ntl<e
G.k)eJ (G.k)eJ

Ic{1,...,mix{1,...,r},Jc{1,...,0}x{1,..., .

Cette topologie posséde toutes les propriétés souhaitables. Elle coincide en effet
avec la topologie régionale [16; § 6] sur les représentations unitaires continues de
G, et par conséquent avec la topologie de Fell-Jacobson [14] sur le dual unitaire
G. Elle fournit également les analogues LP des phénomenes d’adhérence
caractérisant la moyennabilité.

PROPOSITION 9. Soit 1<p<w®, G est moyennable si et seulement si la
représentation triviale 1 de G sur C adhére a la représentation réguliere de G sur
L?(G).

La démonstration repose sur I'expression de la moyennabilité par les condi-
tions de Reiter.

Remarque. On peut caractériser de la méme maniere la moyennabilité d’un
espace homogéne G/H [12], ou plus généralement encore la moyennabilité d’une
action de G sur une espace localement compact X [1; premiére partie].

PROPOSITION 10. Soient (m, m*) une paire duale de G opérant dans des
espaces de Banach B, B* et 1 <p <. Si G est moyennable, (w, w*) adhére alors a

la paire duale (p% g, p%.p+)-
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Démonstration. La moyennabilité de G se traduit par I’existence d’une suite
pout la propriété P, de Reiter, i.e. d’'une suite généralisée (Sk ) c)eu=g OU K est
une famille fondamentale de compacts de G (fondamentale signifiant que tout
compact de G est contenu dans un compact K e X), € un ensemble de nombres
réels >0 admettant 0 comme borne inférieure — ¥ X & étant muni de 'ordre
“Kie)=(K',e')© KcK' etez=e" —et sg,. € C.(G) avec sg . =0, [ dx sg . (x) =
1, lle(2)sk.c — skelli <& pout tout ge K. Notons que (s¢?) et (s¥?) sont alors des
suites pour les propriétés P, et P,.

Considérons les fonctions (a valeurs vectorielles) de la forme

A(s"P®E)(x) =s(x)Pm(x)71E  AGVPREF)(x) = s(x)"P ¥ (x) €
ol §=sg,, £€ B, £*c B*. L’identité

(p%.6(g) A(sP®E), A(s"P'® &%)y ={p(g)s'P, s ) (w(g)E, £F)
fournit Pestimation sur les coefficients

[ (w)é; %) —(p% p(k) A(sP®&), A(s"' R &%) | <||ull |£]1€*] e*P

pour toute mesure p a support dans K. On a, d’autre part, les estimations
suivantes sur les normes:

<(Xledled)e e,

i

<(Ztlg)er

||Z mue —“Z o (i) AP @)
| |Z () €

D

\Z p%pe(:) AP REY)

pI

pour toute famille finie de mesures u; a support dans K. On en tire facilement que
(, w*) adhere (p% g, p% 5+

Avant de passer a la continuité de la p-induction, déduisons de la proposition
précédente des transferts de convoluteurs. Nous supposerons a cet effet que B est
un p-espace [21], i.e. essentiellement un (sous-espace fermé d’un) espace L? avec
P=q=2 ou p=q=2. Rappelons qu’alors tout opérateur borné T sur L?(G)
s’étend, par Tz (f®¢&) = TfF® ¢, en un opérateur borné Ty sur LP(G, B), de méme
norme.

COROLLAIRE 11. Toujours dans le cas oit G est moyennable, on a ||7w(w)||<
lloB ()|l pour tout u e M'(G).
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Remarque. Dans le cas particulier ou B est un espace LP, il s’agit de la
transférence de Coifman et Weiss [6; § 2]. Relevons que la propriété d’extension
est ici une conséquence banale du théoréme de Fubini.

Avec I'hypothese supplémentaire que la paire duale (7, 7™*) est réflexive, nous
prolongeons maitenant a £(L?(G)) (opérateurs bornés sur L?(G)) la contraction
p&(w) = m(w) du corollaire 11. Etant donnée une suite (s) pour la propriété P;,
considérons les formes trilinéaires F,(T, & £¥) =(TgA(s'"?® &), A(s'"' Q £*)) sur
L(LP(G))x B x B*. Par compacité faible de la boule-unité, la suite (F,) posséde
un point d’accumulation faible F., qui correspond a une contraction t,, de
L(LP(G)) dans L(B) par {t(T)¢ &*)=F.(T, & &*). Les cas intéressants sont
ceux ou t(T) est intrinséque, i.e. indépendant des choix de la suite (s) et du point
d’accumulation F.; on le note alors t(T).

PROPOSITION 12. On suppose toujours G moyennable.

i) t applique £(L°(G)) dans le bicommutant de w(G).

ii) t,, est intrinseque sur les convoluteurs associés aux mesures bornées:
t(p%(w)) = 7 () pour tout w € M'(G). Elle ’est plus généralement sur la fermeture
(normique) cvP(G) des convoluteurs a support compact: si T est un tel convoluteur et
a € AP(G) vaut identiquement 1 au voisinage de son support, on a (t(T)§, £*)=
(T, almw(-)&, €F)) dans la dualité avec AP(G)*.

Démonstration de ii). Dans la dualité entre CV?(G)=PMP"(G) et AP(G),
F,(T, & €%) s’écrit (T, {p(-)s'", s""'W ()& &*)). Comme T =aT et que les fonc-
tions u, ={p(-)s'’?, sV?’) forment une unité approchée (bornée) dans A”(G) (cf.
par exemple [22, lemma 3, p. 121]) F,(T, & &¢*) converge vers (T, a{mw ()&, £*)).
Par conséquent,

(D& &%) =(T, afm ()& £™)).

EXEMPLE 10.  est la représentation quasi-réguliere de G sur L°(G/H), H
étant un sous-groupe fermé normal dans G. Rappelons que I’application de
Mackey [fl(xH) =y dh f(xh) (f € C.(G)) est dans ce cas prolongée par I’applica-
tion de Reiter Ty; de M'(G) sur M'(G/H), définie par

j AT O WO = | du() wxH) (e C.GIHD)
G/H

G

* Pour tout renseignement sur les espaces A?(G), PMP(G), ... nous renvoyons aux travaux de C.
Herz (par exemple [21], [23]), ainsi qu’a I'exposé [11] de P. Eymard.
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La proposition précédente peut étre légeérement précisée dans ce contexte:

i) t, applique £(L?(G)) dens CV?(G/H);

ii) t est un homomorphisme de cv?(G) dans cv?(G/H); explicitement,

— t(p%(r)) = p%/p(Tur) pour p e M(G),

— t(T)Tuf=T(Tf) pour T a support compact, fe C.(G).

Signalons que la surjectivité de t:cv®(G)— cv?(G/H) vient d’étre démontrée
[10].

Dans le contexte abélien, on peut interpéter la contraction m?(G) — m?(H*)
correspondant a t,, comme un procédé abstrait de restriction des multiplicateurs a
H*. Elle est en effet donnée par la restriction 3 H* pour les multiplicateurs
correspondant a cv?(G) (ce sont les multiplicateurs m pour lesquels la translation
X — pg(X)m est continue de G dans mP(G)); cest encore le cas pour les
multiplicateurs uniformément continus lorsque la suite (s) est suffisamment
réguliére, au sens ou les fonctions u, ={p(.) s'’*, s'®) forment déja une unité
approchée (bornée) dans A(G) - 1’existence de telles suites étant assurée par la
propriété de Falner ponctuelle [18; §3.6]. Nous ne savons pas si c’est vrai pour tous
les multiplicateurs continus.

Venons-en a la continuité de la p-induction (1=p =).

THEOREME 13. Soit (1, 7*) une paire duale de H adhérant a une famille (2.
La paire duale induite (Ind§ (p, w), Ind§ (p’, 7*)) adhére alors aux paires duales
(Ind§ (p, w), Ind§ (p’, @*)) induites a partir de (2.

La démonstration se lit sur les expressions suivantes de coefficients et de
normes:

19 (Indg (p, M(WF@ &), [6 @ £¥]) = L dh 8(h) 0™ % f(h) (mr(h)E, £¥)

pour tout w e M,(G) (mesure sur G a support compact), f, ¢ C.(G), £€€B,,
¢*€B,+, o on a posé ¢™(x)=Ag(x)'P(x7);
p]llp

Z m{(i * f)xu}&| lorsque p=o

i

Z 77{5_”"(#; *f) e 1}

i

2) |2 1mag . mwr@el] -| [ axew

resp. sup

xeG

pour toute famille finie de u;e M.(G), fie C.(G), §&€B,, ou on a posé
(i * i) (h) = p; * f; (xh).
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Remarque. La continuité de I'induction unitaire est due a J. M. G. Fell ((15;
theorem 4.1], [16; §6]).
Supposons dorénavant H moyennable. Le phénoméne d’adhérence décrit a la

proposition 10 se transmet alors par continuité aux paires duales induites a partir
de H.

COROLLAIRE 14. Soient (m, m*) une paire duale de H opérant dans des
espaces de Banach B, B* et 1<p<w. La paire duale induite
(Indg (p, ), Indg (p', m*)) adhére alors a la paire duale (p% g, p% g+).

En particulier, étant donné une suite (s) pour la propriété P, sur H, chaque
coefficient (Ind§ (p, w)()[f], [¢]) est limite uniforme sur tout compact de G des
coefficients {p% 5()A'(s'" ®f), A'(s"” ® ¢)), avec convergence des normes:

I, =tim {lA"G™ @l WSy =lim [|A"(s™> D D)y,

ol on a posé
A'(s"P @ f)(x) =J dh 8(h) " VPs(h )P (h)f(xh),
H

AP @) (x) = j dh 8(h) V"' s(h )P 7 *(h)d(xh).

H

EXEMPLE 11. On retrouve ainsi le second principe de majoration de Herz, tel
que I'a énoncé N. Lohoué [27; lemme 2]:
chaque coefficient (w®(.)f, @) de la représentation quasi-réguliére de G sur L?(G/H)
est limite uniforme sur tout compact de G d’une suite (dénombrable lorsque H est
o-compact) de coefficients {p(-)f;, d;) de la représentation réguliére de G sur
L*(G), avec contrdle des normes: |f|l, = [fll, lldill, = llbll,.

EXEMPLE 12. Les deux séries principales p-induites de G = SL(2, R) (cf §4)
adhérent a la représentation régulieére de G sur L°(G).

Pour terminer, tirons du corollaire précédent des transferts de convoluteurs,
tout comme nous I'avons fait a partir de la proposition 10. A cet effet, nous
supposerons a nouveau que B est un p-espace et que la paire duale
(Ind§ (p, w), Ind§ (p', w*)) considérée est réflexive.

Etant donné une suite (s) pour la propriété P; sur H et une fonction de
Bruhat 8 de la paire H< G, on obtient une contraction t(,, de £(L°(G)) dans
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Z(L?(G, H; m)) comme point d’accumulation faible des formes trilinéaires
Fio(T, f, &) =(TpA'(s'* @ Bf), A'(s"" ®Bp)) sur L(L°(G)XL(G, H; m)x
LP(G, H; 7¥).

Remarques. 1) L’opérateur t{;, dépend en général de la suite (s) et du point
d’accumulation choisi, mais pas de B. En effet, si 8, et B, sont des fonctions de
Bruhat de la paire H< G, la suite (F; g — F{z) converge faiblement vers 0.

2) Nous ne savons pas si t{,, applique CV?(G) dans le bicommutant de la
représentation Ind§(p, 7). Il est par contre facile de montrer que 'image de tout
convoluteur a droite est un entrelacement.

PROPOSITION 15. i) t{est intrinseque sur cv®(G). Explicitement:
— t'(p&(p)) = IndG(p, m)(w) pour u e M(G),

— t'(T)[f]1=[Tgf] pour T a support compact, f< C.(G, B).
ii) t{, est également intrinseque sur CV*(G), (convoluteurs positifs)™*:

t'(p%(w)) =1Ind§ (p, w)(n), ou {Ind§ (p, m)(w)f, )=
- L du(g) (IndS (b, M(@)f, b,

Démonstration. 1) La premiére identité résulte directement du corollaire 14, la
seconde de la convergence de

(Tl (s ® ), A'(s"” ® &)
- j dxj dh 8(h)" (e (h) Ty fo(xh), d(x))p(h)s ", 577
G H

VEers

(Tafs], [6] = j dxjH dh 8(h)~° () Tufo(xh), (x))

G

pour tout fo=pg g(w)f (ue C.(G), fe C.(G, B)), ¢ € C.(G, B¥)).

ii) Chaque mesure (Ind§ (p, m)(g)[f], [¢]) dr(g), étant limite faible des me-
sures (p% 5(g2)A'(s""®f), A'(s""' ®)) du(g), est bornée (compacité faible des
boules fermées dans M'(G)). Par conséquent, les expressions

(p&.s(W)A' (s ®f), A'(s""' @ $)) = L d.(g) (p&,5(8)4’(s*®f), A'(s" ®4))

* Rappelons que tout convoluteur positif T de L°(G) est défini par une mesure positive u sur G,
i.e. T=p%(w):fr>u*f.
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convergent vers

(IndS (p, m(WIFL [6]) = L du(g)Ind$ (b, m(@)IfL [6]).

EXEMPLE 13. Dansle cas particulier de la représentation quasi-réguliere 7° de
G sur L7(G/H), I'assertion i) est le théoréme 9 de [22]. L assertion ii), combinée
avec le corollaire 8, fournit quant a elle la proposition 1 de [27]: une mesure
positive p. sur G définit un convoluteur p% () de LP(G) si et seulement si u définit
un opérateur borné w° () sur L°(G/H) par (7" (n)f, ¢) = du(gX{wP(g)f, ¢); dans

ce cas |lp&(p)ll=|l7®(w)l.
Résumons maintenant les propriétés de tf,, lorsque H est de plus normal dans

G.

a) t(s est une contraction de L(L°(G)) dans L(L°(G/H)).

b) L’image de tout convoluteur a droite de L?(G) est un convoluteur a droite
de LP(G/H).

c) t' est un homomorphisme de cv?(G) dans cv”(G/H). Explicitement:

— t'(p%(w)) = p%el Tear) pour u e M'(G),

—t'(T)Tyf = Ty (Tf) pour T a support compact, f € C.(G).

d) t! applique CV?(G), sur CV?(G/H),, en préservant les normes:

C(o%(w) = (), o (mP(W)f, d)= L du(g) (o%r(gH)S, ),

avec [lp&(w)|| =[l7° (w)).

Signalons pour terminer le bon comportement de t(;, dans le contexte abélien.
La contraction m®(G)— m?(HY) correspondante est en effet donnée par la
restriction a H* pour tous les multiplicateurs continus, lorsque la suite (s) est
suffisamment réguliere (au sens vu précédemment). On retrouve ainsi un résultat
connu ([30; cor. 4.6, part (b)] ou [25; théoréme I.1]).

4. Séries principales py-induites

Nous terminons par un exemple de représentations p-induites. Nous
considérons tout d’abord le cas particulier de SL(2, R) et passerons ensuite au cas
général d’un GLSS (groupe de Lie semi-simple, connexe, non compact, de centre
fini).

Les séries principales unitaires de G =SL(2,R) sont composées des

)=sen (a)* al?

, ) ) ) . ) . a ¥
représentations induites a partir des caracteres xs,,\( 0 1/a
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(=0,1; AeR) du sous-groupe triangulaire P. Nous nous intéressons ici aux
représentations p-induites 7%, a partir de x, .
Les décompositions univoques G = KAN et P=MAN, ou

- (0 S o), = )

A={G a0k v={G )

conduisent a la réalisation compacte de w¢, sur le sous-espace L7 (K), resp. C,(K)
des fonctions de parité ¢ dans L?(K), resp. C(K):

{meA(@)f}(ke) = m(g, ke)llpﬁuzf(g_l * ko),

~

ou

xeR}

i _ ———( dcos(6/2)+bsin(6/2) ccos(6/2)+asin (0/2))
g ke=vmlg, ke)(—c cos (0/2)—a sin (6/2) d cos (6/2)+ b sin (6/2)/°
a b
g~ (c d)’

m(g, ko) =[(d cos (6/2) + b sin (8/2))*+ (c cos (6/2) + a sin (6/2))*]*

et

est le module de quasi-invariance de la mesure dé.

1 0
La décomposition univoque G = VPUwWP, ou V= {( ) b eR} et w=

-x 1

(_?1 é), conduit quant a elle a la réalisation nilpotente de =2, sur L°(R),

1=p<oo:

(m2A(@)0) =sgn (bx+ ) b+ |2 f(ZES), ()

Rappelons qu’on obtient le prolongement analytique (. ,)..c de la série
principale unitaire (72,),<r €n remplagant le paramétre i\ € iR par un paramétre
z eC dans la réalisation compacte. On produit de la sorte des représentations
fortement continues sur L%(K) [32; 8.3].

LEMME 16. Les représentations w¢ , et w, . coincident — du moins sur C.(K) —
lorsque z =1/p—1/p'+iA.
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La série principale p-induite (w?,)\r S’identifie donc a la droite d’équation
Re z=1/p—1/p’ dans le prolongement analytique (7, ,)..c de la série principale
unitaire correspondante.

4
iAt o
-1 1/p—1/p’ +1
oo-induction induction p-induction 1-induction
unitaire

Remarques. 1) Le fait que les représentations sphériques ry,, dans la
réalisation nilpotente, sont isométriques sur LP(R) lorsque Rez=1/p—1/p’ -
facile a vérifier au demeurant: £ (ax+c

dx \bx+d
démonstration de M. G. Cowling du phénoméne de Kunze-Stein pour SL(2,R)
[7; section 3]. La p-induction en donne une interprétation naturelle.

2) Les différentes séries principales p-induites sphériques (§,)\eg décrivent
toute la bande —1=Re z=1 correspondant aux fonctions sphériques ¢,(g)=
(70..(g)1, 1)k bornées.

)==(bx+d)‘2—est a la base de la

Le cas de SL(2,R) est typique d’un GLSS de rang 1. Pour traiter le cas général
d’'un GLSS G de rang n, nous ferons appel a des résultats classiques sur las
structure des sous-groupes paraboliques de G [33; 1.2]. Fixons une décomposition
d’Iwasawa G = KAN et notons, comme de coutume, M le centralisateur de A
dans K et P=MAN le sous-groupe parabolique minimal correspondant. Les
séries principales unitaires de G sont composées des représentations induites 2
partir des représentations o X e™ (m exp Hn) = a(m)e™* de P, ou o € M (dual
unitaire de M), A ea* (dual de lalgébre de Lie a de A). Nous allons décrire un
procédé permettant d’intercaler (n—1) sous-groupes fermés entre P et G:P°=

PcPlc---cP"=G, et nous intéresser, pour un multi-indice px=(py,..., Pn)
donné, i la représentation 2% obtenues 2 partir de o X e par p;-induction de P
a P, ..., p,-induction de P"" ' a4 G.

Suivant la coutume, notons g={@DaPn et p=mBPaPn les décompositions
correspondantes des algébres de Lie de G et de P, 3 I’ensemble des racines
restreintes de (g,a), %, le sous-ensemble des racines positives—si bien que
n=@, s 8a> 8. étant I'espace-poids correspondant a a —et ay, ..., a, les racines
simples. Posons o' =@}, _;Ra, (a ayant été identifié 4 a* au moyen de la forme de
Killing de g, 3'=3,Nd,3,=3"\3""! (avec la convention 3°=0), p,=
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3 Yees, (dimg,)a et introduisons les sous-algebres a; =Rp;,

n= @ g, nj=G€92ga, b= D g, b= D._g.

ael’! a3 -
m = EmBd G/, p'=bBp= m"@(@j °k)@ (S?,- "k)

de g. Les sous-groupes analytiques A’, A, N, N, V', V, M§, P§ de G
correspondants sont fermés. M’ = MM} et P'= MP} sont encore des sous-
groupes fermés d’algebre de Lie m' et p’. Le sous-groupe parabolique P! admet
la décomposition de Langlands P' = M'(A;;; - - A,)(Ni1 - -+ N,). Son module
est trivial sur M’ et sur N;; il est donné par A;(exp H) = exp [-2 Yy~; pi (H)] sur A.

Remarque. En variant la numérotation des racines simples on obtient ainsi
toutes les familles maximales de sous-groupes emboités entre P et G.

La génération suivante du théoréme d’induction par étages permettra de
réaliser simplement les représentations w2%. Soient Hy:Ho< H,<---< H,, une
famille de groupes localement compacts emboités, 7 une représentation de H,
(isométrique, fortement continue, sur un espace de Banach B) et px=(p1, ..., Pn)
un multi-indice. Fixons sur chaque quotient H;/H;_, une mesure quasi-invariante
d,{; associ€e a une fonction homogene continue g; : H; — (0, «©) et posons q'(h) =
q;(h)"" - - - q,(h))'"* (h; € H;). Notons C2+(Hy; ) I'espace des fonctions f: H, —
B vérifiant

i) f(haho) = [é_n_&.)]’ ETNLY ™

AH (hO) AH (ho) W(ho)ulf(hn) (hn € Hm hO € HO),

ii) f est continue, a support compact modulo Hj,
et LP(Hy; ) son complété pour la norme (intrinseéque)

UFle. = “H o () @ ()0
' 'UHI,HO dy,(hiHo) q'(h)) ™ |f(h, - - - hl)lpl]"Z"’l - _]Hm

(avec les modifications habituelles lorsque p; = ).

LEMME 17. La représentation Indff,;;_1 (Dn» - - - Indff2 (py, 7) - - ) est équivalente
a la représentation {Indy, (p, w)(g)f}(h,) =f(g'h,) de H, sur L**(Hy; ).

La démonstration est semblable a celle du théoréme 1.
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Les décompositions d’Iwasawa généralisées P' = K'’AN, ou K' = KNP’ (c’est
le normalisateur de A;,; - -+ A, dans K), conduisent a la réalisation compacte de
P sur LP(Ky; o):

(mn @) = exp| — (Z @Im)oy +id) (G0 [ . ),

i

ou g 'k=(g'. k)exp H(g 'k) n dans la décomposition G = KAN.
Lorsque tous les indices p; sont finis, on peut également donner une réalisation
nilpotente de wox, basée sur des décompositions de Bruhat généralisées.

Pour commencer, rappelons la décomposition de Bruhat G =L1,,.w PWP, ou
W est le groupe de Weyl de 3, identifié a M'/M, M’ étant le normalisateur de A
dans K. La double classe PwP de I’élément w € W échangeant 3, avec —3, est un
ouvert de G, dont le complémentaire est une sous-variété de dimension
inférieure. Comme o 'Nw=V(=V"), il en est de méme de VP; de plus,
I’application (v, p) — vp est un difféomorphisme de V X P sur VP.

Le groupe de Weyl W' de 3’ s’identifie quant a lui 28 M'NP//M (M'N P’ est
le normalisateur de A dans K'); il admet la décomposition univoque W’ =
WW™' ot W,={weW'|w. 3"'N(-3,)=J}. La décomposition de Bruhat
généralisée P'=11,,.w NywP'™! fait apparaitre & son tour V,;P~' comme un
ouvert de P, dont le complémentaire est une sous-variété de dimension
inférieure, la paramétrisation (v, p’~ ') — v;p' ™! étant un difféomorphisme.

Ces décompositions permettent de réaliser (pp) m5% sur I'espace L°*(V;9,),
complété de C.(V;9,) pour la norme

= [[ o[, awitrwn- oo ]

par

{rea(@)f}w) =olm(g™ o)™ exp[ - (Z @/p)e; + i)\)(H(g“‘v))]f(g“‘ . v),

ou g 'v=(g'. v)m(g 'v) exp H(g 'v)n dans la carte VMAN.
On obtient 2 nouveau le prolongement analytique (7,.),..» de la série
principale unitaire (m2,),c» €n complexifiant le paramétre i €ia® dans la

réalisation compacte.

LEMME 18. Les représentations 7., et wi% coincident—du moins sur
C(K, M; o) - lorsque z =Y ; (2/p;)p; +iA.
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La série principale py-induite (mw8%)\..~ s’identifie donc au plan d’équation
Re z =Y (1/p;—1/p))p; dans le prolongement analytique (f,.).cz de la série
principale unitaire correspondante.

Remarques. 1) Le fait que les représentations sphériques g, dans la
réalisation nilpotente, sont isométriques sur LP*(V) est 4 la base de la
démonstration de M. G. Cowling du phénoméne de Kunze-Stein dans le cas
général [7; sections 5 et 6]. La py-induction en donne une interprétation
naturelle.

2) Les coefficients sphériques (mf% ()1, 1)x fournis par les différentes séries
principales py-induites sphériques décrivent toutes les fonctions sphériques
bornées de (G, K) [19].
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