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Applications de la p-induction en analyse harmonique

Jean-Philippe Anker

A la mémoire de Serge Reichenthal

La p-induction est la version Lp de l&apos;induction unitaire de G. W. Mackey
[28; part I]. Certains aspects du cas unitaire classique laissaient supposer qu&apos;elle

puisse fournir un cadre naturel à des phénomènes liés à l&apos;analyse Lp sur les

groupes localement compacts et permettre d&apos;en donner des démonstrations simples

et conceptuelles.
Parmi ceux que nous abordons dans ce travail, mentionnons ici les principes de

majoration de C. Herz (théorème 7 et exemple 11), ainsi que des techniques de

transferts de convoluteurs, notamment l&apos;induction, à partir d&apos;un sous-groupe (§ 2)

et le passage au quotient (exemples 10 et 13). L&apos;outil principal que nous avons eu
à développer est la continuité de la p-induction par rapport à une topologie de

Fell généralisée (théorème 13). Signalons à ce propos qu&apos;une difficulté à laquelle
nous nous sommes heurtés à plusieurs reprises a consisté à trouver le bon
substitut aux techniques hilbertiennes classiques.

Comme autre type d&apos;application de la p-induction, nour verrons qu&apos;un

procédé itéré fournit un tube de représentations isométriques autour de chaque
série principale unitaire d&apos;un groupe de Lie semi-simple (§ 4). Signalons que, dans

le cas sphérique, l&apos;existence d&apos;un tel tube avait été constatée par M. G. Cowling et

exploitée avec succès dans sa démonstration du phénomène de Kunze-Stein [7].

1. Généralités sur la p-induction

Nous reprenons maintenant les aspects généraux de la p-induction, qui ont fait
l&apos;objet de [24], [17], [31], et fixons à cette occasion les notations.

Soient G un groupe localement compact, H un sous-groupe fermé et 1 ^ p ^
oo. La p-induction associe à toute représentation tt de H - isométrique, fortement

* Extrait d&apos;un travail de thèse à l&apos;Université de Lausanne [3]
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continue, sur un espace de Banach B - une représentation de G du même type,
notée Ind§(p, tt). L&apos;espace sur lequel opère Ind^(p, ir) est un complété de
l&apos;espace CP(G, H; ir) des fonctions f:G-»B vérifiant:

i) la condition d&apos;homogénéité:

f(xh) Ô(h)1/p7T(h)-lf(x) (X 6 G, h G H),

où ô(h) AH(h)/AG(h) est le rapport des modules de H et de G,
ii) les conditions de régularité: /est continue, à support compact modulo H.
Avant de passer à la complétion de CP(G, H; tt), mentionnons l&apos;application de

Mackey /?-»[/] de CC(G; B) (fonctions continues, à support compact, de G dans

B) dans CP(G, H; ir) définie par le procédé d&apos;homogénéisation [f](x)
$Hdhô(h)-1/p7T(h)f(xh).

Remarques. 1) C&apos;est une application surjective, des sections étant données

par les applications /»—&gt; ^8/ associées aux fonctions de Bruhat |3 de la paire H&lt;=^G.

Rappelons qu&apos;il s&apos;agit là des fonctions continues i=0 sur G vérifiant:
i) supp P H KH est compact, pour tout compact K de G,
ii) JH dh (3(xh) 1, pour tout x e G,
(dont l&apos;existence est prouvée, par exemple, dans [29; ch. 8, 1.7-1.8]).
2) Du point de vue topologique, l&apos;application de Mackey est une application
quotient dans la catégorie des espaces localement convexes, CC(G;B) et
CP(G, H; tt) étant munis des topologies limite inductive stricte évidentes.

Introduisons maintenant, pour p &lt;o°, le complété LP(G, H; tt) de Cc(G, H; tt)
pour la norme intrinsèque

où q est une fonction continue &gt;0 sur G vérifiant la condition d&apos;homogénéité

q(xh) q(x) ô(h) (xeG,heH) et dqÇ la mesure quasi-invariante sur GlH qui lui
est associée par

dq(xH)\ dh^-=\ dxf(x) (JeCc(G))

(cf par exemple [28; ch. 8, 1.1-1.3] à ce sujet), P étant une fonction de Bruhat de

la paire H a G.

Il serait pénible de donner un sens raisonnable à L°°(G, H;tt). Nous nous
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contenterons, pour p °°, de l&apos;espace C0(G9 H; tt) des fonctions f:G—*B
vérifiant

i) f(xh) 7r(h)-7(x) (x € G, h e H),
ii) / est continue et s&apos;annule à l&apos;infini modulo H,

complète de C^(G, H, tt) pour la norme ||/IU supxeG |/(x)|.
La représentation Indg(p, tt) opère sur Lp(G,H;tt), resp. C0(G, H;tt) par

translations à gauche: {Indg (p, 7r)(g)/}(x) /(g~1x).

EXEMPLE 1. La représentation p-induite à partir de la représentation
triviale de {e} sur B est la représentation régulière à gauche

\pbM)ft(x)=f(&amp;-lx) de G sur Lp(G,fî), resp. C0(G,B).

La version dite de Mackey de la p-induction se déduit de la précédente par la
transformation /»-»//q1/p. Pour p °°, il n&apos;y a donc aucune différence. Pour p&lt;°°,

l&apos;espace initial est ici C?(G, H; tt), la norme

et la représentation

{Indg (p, 7r)(g)/Kx)

où m(e, xH) ——— est le module de quasi-invariance de la mesure dat.
q(x) q

EXEMPLE 2. La représentation p-induite à partir de la représentation
triviale de H sur B est la représentation quasi-régulière

{vp(g)f\(O m(g, Û1/Pf(g~&apos; .i) de G sur LP(G/H; B), resp. C0(G/H; B).

Remarque. Dans la version de Mackey, l&apos;espace LP(G, H; tt), resp.
CQ(G, H; ir) s&apos;identifie naturellement à l&apos;espace des sections Lp, resp. Co du fibre
induit GxHB GxB/(x, £)~(xh, Tr(h)&quot;1^) sur G/H. La théorie de l&apos;intégration

pour les sections d&apos;un tel fibre, qui se fait sur le modèle classique [5], fournit des

réalisations concrètes des espaces LP(G, H; tt).

On peut réaliser la représentation Indg(p, tt) sur LP(G/H;B), resp.
C0(G/H; B) lorsqu&apos;il existe une section - admettons continue - s de G/H dans G:
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{Indg (p, ir)(g)fl(£) c(g, Of(g~l. Û, où c(g, £) 8(h)l/p7r(h)-1 (1-cocycle en g), h

étant l&apos;élément de H déterminé par g~ls(£) s(g~l. £)h.

EXEMPLE 3. Supposons qu&apos;il existe un sous-groupe fermé K de G pour
lequel l&apos;application (fc, h) &gt;-» kh soit un homéomorphisme de K x H sur G. La
représentation IndSCp,&apos;&quot;&quot;) est alors réalisée sur LP(K;B), resp. C0(K;B) par
{Indg(p,7r)(g)/}(fc)-c(g,k)/(g-1.fc), où c(g,k) ô(fi)1/p7r(h)-1, g-x.fc et h

étant les éléments de K et de H déterminés par g~lk (g&quot;1. k)h.

Ceci reste valable, pour p&lt;«&gt;, lorsque KH est un ouvert de G dont le
complémentaire est localement négligeable.

Terminons par une propriété classique de transitivité.

THEOREME 1 (induction par étages). Soit K un sous-groupe fermé intercalé
entre H et G. Les représentations Ind^ (p, IndH (p, tt)) et Ind^ (p, ir) sont alors

équivalentes.

Démonstration. En effectuant successivement les applications de Mackey
correspondant aux représentations a Ind^ (p, tt) et Ind£ (p, cr), on construit, à

partir d&apos;une fonction FeCc(GxK;B), la fonction

qui est continue sur G xK et fournit un élément de Cc(G, K; a). L&apos;image E de

CC(G x K; B) par cette double application de Mackey est un sous-espace dense de

LP(G, K; cr), resp. C0(G, K; a). Il contient en effet les éléments de la forme
l (/i€Q(G),/2eq:(K),feB). Considérons maintenant

les applications CC(G;B) *± Cc(GxK; B) définies par

~1/p

fixk)

(où a e CC(K) vérifie a ^0, J^ dk a(k) 1 et a été fixée une fois pour toutes) et
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Elles induisent, par les diagrammes commutatifs

Cc(G,B)-^Cc(GxK,B) Cc(G,B)+±-

n In et n n

Ccp(G,H,Tr)i^ E ccp(G,H,tt)^- E

[A]
les applications CPC{G, H, tt) «=* E données par

[A]

[A
(k)l~1/p-fj^l f(xk) et lA&apos;]F(x) F(x,e)

Les applications [A] et [A&apos;] sont inverses l&apos;une de l&apos;autre et commutent aux
translations à gauche Elles sont enfin isométriques En effet, si |3 et y sont des

fonctions de Bruhat des paires H&lt;= G et Kc G, on a, pour p&lt;co,

étant donné que, chaque x e G, la fonction k h&gt; j3(xk) est de Bruhat pour la paire
HczK

EXEMPLE 4 La représentation régulière (à gauche) pvGB est équivalente à la

représentation p-induite à partir de la représentation régulière (à gauche) p^B
Explicitement, le diagramme commutatif qui est au centre de la démonstration

précédente se résume ici à

Cc(GxH,B)

y
CC(G,B)\

[A]&apos;



Applications de la p -induction en analyse harmonique 627

OU

ou

où

k) f dh \^J^YIPF(xh, h~lk),

A&apos;F(x) =f

et où [A&apos;]F(x) F(x, e). Notons qu&apos;on a le même diagramme pour la version de

Mackey de la représentation Ind£ (p, pli,B), avec, dans ce cas,

l/pJx,h q(xfi)1/p&apos;

Remarquons que l&apos;identification de l&apos;espace LP(G;B), resp. C0(G;B) à l&apos;espace

des sections Lp, resp. Co du fibre induit par p^B fait apparaître la restriction à H
de la représentation régulière à droite {kp3B(g)f}(x) àG(g)1/pf(xg) de G sur
LP(G; B) comme intégrale directe Lp, resp. somme directe continue sur G/H de la

représentation régulière à droite k^B.

2. Entrelacements et convoluteurs induits*

Nous faisons apparaître la notion de convoluteur induit, considérée

précédemment par plusieurs auteurs comme un cas particulier de la notion
naturelle d&apos;entrelacement induit et obtenons, grâce à ce point de vue, des

démonstrations simples de ses propriétés.
Nous commençons par étudier la p-induction des entrelacements (classique

dans le cas unitaire). Donnons-nous deux représentations irx et tt2 de H
(isométriques, fortement continues, sur des espaces de Banach Bx et B2) et
considérons les représentations correspondantes Ind£j (p, tt\) et Ind^ (p, tt2) de G,
dans la version de Mackey. On obtient, à partir d&apos;un entrelacement T de ttx avec

tt2 (rappelons qu&apos;il s&apos;agit là des opérateurs bornés T de Bt dans B2 pour lesquels

* Les résultats de ce paragraphe ont fait l&apos;objet de l&apos;annonce [2].
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7T2(h)°T pout tout h g H), un entrelacement Indg(p, T) de Indg(p, ttJ
avec IndjjCp, tt2) en posant Indg(p, T)/= T°f, Le. en faisant opérer T fibre par
fibre. Notons que ||Indg(p, T)||^||T|| et que Indg(p, T) commute à la multiplication

ponctuelle par L°°(GIH), resp. Cb(GIH).

PROPOSITION 2. La p-induction T&gt;-&gt;lndg(p, T) des entrelacements est une
isométrie.

Démonstration. Montrons ||T|| ^ ||Ind2 (p&gt; T)|j pour p &lt; oo (le cas p =00 se traitant
de même). L&apos;inégalité ||^ • Indg(p, T)f\\p ^||Indg(p, T)||||^ • /||p, valable pour tout
/gC?(G, H, tt), ilfeL°°(GIH), s&apos;écrit

f dq(xH) |iA(xH)|p |T/(x)|p ^||Indg (p, T)||p f dq(xH) |^(xH)|p |/(x)|p.

On en tire facilement ||T||^||Indg(p, T)||.

Relevons que la p-induction jouit de toutes les propriétés fonctorielles
souhaitables. Nous allons encore donner deux caractérisations des entrelacements
p-induits. Dans le cas unitaire et lorsque 7rt tt2, la première caractérisation est

classique (cf. par exemple [4; ch. 16, § 3.B, theorem 3]); on la rencontre dans les

questions liées au théorème d&apos;imprimitivité de Mackey.

THEOREME 3. Un entrelacement S de Indg(p, tiy) avec Indg(p, tt2) est

induit à partir de H si et seulement s&apos;il vérifie une des deux conditions équivalentes
suivantes:

1) S commute à la multiplication ponctuelle par U°{GIH), resp. Cb(G/H),
2) supp (Sf) c supp / pour tout fe LP(G, H; tti), resp. C0(G, H; irj.

Précisons la notion de support d&apos;une fonction feLp(G, H; ttv): il s&apos;agit du plus
petit fermé de G/H en dehors duquel |/| 0 (pp). On peut également le définir

par dualité avec C™(G, H; rr*), Trf étant la contragrédiente de nl ou toute autre
représentation formant avec irt une paire duale de H (cf §3): £$Ésupp/ si et
seulement s&apos;il existe un voisinage V de £ dans G/H tel que (f, &lt;f&gt;) 0 pout tout

H; &lt;rr*) avec supp &lt;f&gt; c V.

Démonstration. Il est clair que les deux conditions sont nécessaires et il est

facile de déduire la seconde de la première. Le point délicat consiste à montrer

que tout entrelacement S de IndS (p, tï&quot;i) avec Ind2 (p, ^2) vérifiant la seconde

condition est induit par un entrelacement T de tti avec ir2. L&apos;idée de la preuve est

simple: on définit T en isolant l&apos;action de S sur la fibre au-dessus de H.
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Commençons par le cas p =&lt;» et par établir l&apos;inégalité

Supposons, par l&apos;absurde, qu&apos;il existe fe C0(G, H; ttx) avec \Sf(e)\ -\\S\\ \f(e)\ e&gt;

0. Il existe par suite un voisinage V de H dans G/H sur lequel ||S|||/(x)|^
\Sf(e)\-s/2. Choisissons une fonction auxiliaire t/f :G/H—&gt;[0,1] continue, à support

dans V et valant 1 sur un voisinage de H dans G/H. Comme, par hypothèse,
S(t^ • f)(e) Sf(e), on obtient ||S|| M &apos; /IU^|S(i£ • /)(e)|- e/2, ce qui est absurde.

Maintenant, l&apos;inégalité (*) et le fait que les vecteurs /(e), pour fe
C0(G9 H; ttx), décrivent Bt montrent que f(e) »-» Sf(e) définit un opérateur borné
T de Bx dans B2. On vérifie facilement que T est un entrelacement de irx avec tt2,
qui induit S.

Dans le cas p&lt;°°, considérons le sous-espace Eo de Cq(G, H; iri) engendré

par les fonctions de la forme fo lnâ^(p,7Ti)(u)f où ueCc(G) et fe
C~(G, H; TTi). Il jouit des propriétés suivantes:

— {/o(e) \foeEo} est dense dans B1?

— S(E0) est composé de fonctions continues (cf. lemme ci-dessous), ce qui permet
de reprendre la démonstration du cas p oo.

LEMME 4. Toute fonction de la forme /0 Indg(p, ir,)(u)/, où ueCc(G) et

feLp(G, H; tt,), est (égale pp modulo H à une fonction) continue.

Démonstration. Commençons par exprimer l&apos;opérateur intégral Ind^p, tt1)(u)
à l&apos;aide d&apos;un noyau:

{Indg (p, ïiOOO/Kx) f dq(yH) Ku(x, y)/(y) (fe C?(G, H; ir,)),
Jg/h

où

On en déduit une majoration d&apos;ordre technique:

pour tout compact K de G/H il existe une constante C^O telle que

|{Indg(p, ir,)(ii)fKx)|^ C Il/Hp (/g CT(G, H, tt,), xHe K).

Considérons maintenant une suite (/„)&lt;= C£(G, H; tt,) convergeant (en norme)
vers /. D&apos;après la majoration précédente, la suite des fonctions Ind^p, irt)(u)fn
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converge uniformément sur la préimage de tout compact de G/H vers une
fonction homogène continue /oo. Comme, d&apos;autre part, une sous-suite converge
(pp modulo H) vers /0, on a /0 /oo (pp modulo H).

Nous explicitons maintenant ce qui précède dans le cas particulier où tti tt2
est la représentation régulière (à gauche) pj^ de H sur LP(H), l&lt;p&lt;oo. Rappelons

que nous avons identifié au § 1 les représentations Indg (p, Ph) et ppG. La
p-induction des entrelacements correspond donc ici à un procédé d&apos;induction des

convoluteurs à droite. Explicitement,

EXEMPLE 5. Indg(p, Kph(ijl)) kpG(n) pour tout ^eM\H) (mesure bornée

sur H).

EXEMPLE 6. Plus généralement, si T est défini par convolution à droite par
une distribution T:TÇ(k) Ç*T(k) SHdr(h)^(fe)&quot;1^**-1), alors Indg(p, T) est

défini par convolution à droite par la distribution 8~1/pV (à support dans H):

{Indg (p, T)f}(x) f * (ô-1/p&apos;t)(x) £ drih) AH(h)-1/p&apos;

EXEMPLE 7. Dans le contexte abélien, l&apos;inclusion CVp(H)-&gt; CVP(G) des

convoluteurs correspond au relèvement mp(GIH±)-&gt;mp(G) des multiplicateurs.

PROPOSITION 5. U induction des convoluteurs à droite est un homo-
morphisme d&apos;algèbres isométrique.

Notons qu&apos;on passe facilement aux convoluteurs à gauche, au moyen des involu-
tions i(Ç)(h) AH(h)-1/pÇ(h~1) de LP(H) et i(f)(x) zlo(xr1/p/(x-1) de LP(G).

Remarque. L&apos;induction des convoluteurs coïncide avec les notions apparues
dans [8; §4] (G=M,H 1), puis [30; section 3] et [25; théorème 1.2] (cas

abélien), [23] (cas des pseudo-mesures), et finalement [26], [27; appendice], [9]
(cas général).

La traduction de la seconde caractérisation du théorème 3 nous amène à

définir la notion de support d&apos;un convoluteur S de Lp(G):x^suppS si et
seulement s&apos;il existe dans G des voisinages U de e et V de x tels que (Su, v) 0

pour tout u, v€CC(G) avec supp mc[/, supp v^V.
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Remarques. 1) Cette notion coïncide avec

— le support de la mesure - ou plus généralement de la distribution - a, lorque S

est défini par convolution (à droite ou à gauche) par a,
— la définition [23; p. 117],
— le support défini par dualité avec AP(G), lorsque S est une pseudo-mesure [23;

p. 101],

— le spectre du multiplicateur m, lorsque, dans le contexte abélien, S m.
2) Le support d&apos;un convoluteur est conservé par induction.

THEOREME 6. Un convoluteur - à droite, resp. à gauche-S de LP(G) est
induit à partir de H si seulement s&apos;il vérifie une des deux conditions équivalentes
suivantes:
1) S commute à la multiplication ponctuelle par U°{GIH), resp. L°°(H\G),
2) S a son support dans H.

C&apos;est un corollaire immédiat du théorème 3, le support de S étant, dans le cas
d&apos;un convoluteur à droite, le plus petit fermé F de G tel que supp (S/) cz (supp f)F
pout tout feCc(G) (le support de Sf étant pris au sens des mesures).

Remarque. Le seconde caractérisation, au moyen du support, a été prouvée
dans [30; lemma 3.2] (cas abélien), [23; theorem B] (cas des pseudo-mesures, H
moyennable ou normal dans G) et finalement [26], [27; appendice] (cas général).
Notre démonstration du cas général, techniquement assez voisine de [30; loc. cit.],
présente l&apos;avantage d&apos;être directe et relativement simple.

3. Coefficients de représentations p-induites et transferts de convoluteurs.

Dans ce paragraphe nous établissons des propriétés fonctionnelles des coefficients

de certaines représentations p-induites, découlant principalement de la
continuité de la p-induction, et en déduisons par dualité des transferts
d&apos;opérateurs, notamment de convoluteurs. Signalons à ce propos que, sauf
mention explicite, on travaillera ici avec des convoluteurs à gauche.

Dans ce paragraphe nous considérons toutes les représentations par paires
duales. Une paire duale d&apos;un groupe localement compact G est composée de deux

représentations tt et tt* de G - isométriques, fortement continues, sur des espaces
de Banach B et B*-mises en dualité par un couplage, i.e. une forme bilinéaire

sur B x B* vérifiant

0 &lt;ir(g)fc ir*(g)f &gt; &lt;è e (g e G, £ g B, f* e B*),

ii) ||| sup |&lt;&amp; tî*&gt;|, \e\ sup |&lt;tî, r&gt;l « e B, e e B*).
h*| h|
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EXEMPLE 8. Soit ir une représentation de G - isométrique, fortement
continue, sur un espace de Banach JB. Les vecteurs £* du dual £* pour lesquels la
fonction g •-&gt; 7r*(g)£* VCg)&quot;1^* est continue composent un sous-espace fermé,
faiblement dense B*. La représentation tt* de G sur B*&gt; appelée contragrédiente
de 7r, forme avec tt une paire duale. Toute représentation de G en dualité avec tt
est contenue dans tt*, et coincide même avec tt* lorsque B est réflexif.

EXEMPLE 9. Les représentations Ind§ (p, tt) et Ind§ (p&apos;, ?r*), induites
à partir d&apos;une paire duale (tt, tt*) de H suivant des indices p et p&apos; conjugués

(i.e. —I—;= 1 forment une paire duale de G pour le couplage
\ p p /

/, 4&gt;) f dq(xH) &lt;/(x)^U)) f
Jg/h Q\x) Jg

resp.

{f,&lt;f&gt;)=\ dq(xH)(fto,&lt;t&gt;(x))
Jg/h

dans la version de Mackey.

Le premier principe de majoration de Herz permet de contrôler les coefficients
des représentations p-induites de H à G à l&apos;aide des coefficients de la

représentation quasi-régulière ttp de G sur LP(G/H), resp. C0(G/H).
Considérons une paire duale induite (Ind2(p, tt), Ind^Cp&apos;, 7r*))-dans la version
de Mackey.

THEOREME 7 (premier principe de majoration de Herz en p-induction). En
posant |/|(xH) |/(x)|, \&lt;f&gt;\(xH) \&lt;t&gt;(x)\ (xeG), on a |&lt;Indg (p, ir)(g)/, &lt;f&gt;)\ ^
(irP(g) \f\, |*|&gt; pout tout g e G avec ||/||p |||/|||p, ||^||p. || |&lt;^| ||p,

Remarque. Ce principe a été énoncé par C. Herz pour la représentation
régulière de G sur LP(G) [20]. La version dans le cadre de l&apos;induction unitaire est

due à G. Arsac [13; §3].

Il fournit par dualité un transfert d&apos;opérateurs. Supposons Kp&lt;œet soit /ut

une mesure positive sur G définissant un opérateur borné irp(/ui) sur LP(G/H) par

COROLLAIRE 8. Si la paire duale induite (IndS(p, ir) indS (p&apos;, ir*)) est
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réftexive, n définit un opérateur borné IndïHp, ttXjui) sur LP(G, H;ir) par
&lt;Indg(p, ir)(n)/, &lt;*&gt;&gt; JGdpi(g)&lt;Indg(p, ir)(g)/, &lt;*&gt;&gt; avec ||Indg(p, ir)G*)||£ ||ir«V)||.

Remarque. Dans le cas particulier de la représentation régulière de G sur
LP(G), ce résultat est contenu dans [27; prop. 1].

Définissons maintenant une topologie en terme de voisinages sur les paires
duales d&apos;un groupe localement compact G. Etant donné une paire duale (tt, ir*)
de G, (u £m€ JBW £f,..., f*€Bw.f ^i,..., ^eM^G) et e&gt;0, le voisinage
correspondant V(irfl|r*)((ê); (£*); (jutk); e) de (ir, tt*) est composé des paires duales

(eu, û&gt;*) pour lesquelles il exists r\x,..., Tjm g Bw, t|Ï, tj* € B^* avec

1°)

(i 1,..., m, j 1,..., n, fc 1,..., r),

2°)
(t,k)€l

I(j,k)eJ

(i,fc)el

r}, Jc{l,..., n}x{l,..., r}).

Cette topologie possède toutes les propriétés souhaitables. Elle coïncide en effet

avec la topologie régionale [16; § 6] sur les représentations unitaires continues de

G, et par conséquent avec la topologie de Fell-Jacobson [14] sur le dual unitaire
G. Elle fournit également les analogues Lp des phénomènes d&apos;adhérence

caractérisant la moyennabilité.

PROPOSITION 9. Soit Kp&lt;oo. G est moyennable si et seulement si la
représentation triviale 11 de G sur C adhère à la représentation régulière de G sur
Lp(G).

La démonstration repose sur l&apos;expression de la moyennabilité par les conditions

de Reiter.

Remarque. On peut caractériser de la même manière la moyennabilité d&apos;un

espace homogène G/H [12], ou plus généralement encore la moyennabilité d&apos;une

action de G sur une espace localement compact X [1; première partie].

PROPOSITION 10. Soient (tt, tt*) une paire duale de G opérant dans des

espaces de Banach B, B* et Kp&lt;°°. Si G est moyennable, (tt, ir*) adhère alors à

la paire duale (ppGtB,



634 JEAN-PHILLIPPE ANKER

Démonstration. La moyennabilité de G se traduit par l&apos;existence d&apos;une suite

pout la propriété Px de Reiter, i.e. d&apos;une suite généralisée (%,e)(K,6)eXx«, où 3C est

une famille fondamentale de compacts de G (fondamentale signifiant que tout
compact de G est contenu dans un compact Ke3{), &lt;£ un ensemble de nombres
réels &gt;0 admettant 0 comme borne inférieure - % x &lt;£ étant muni de l&apos;ordre

&quot;(K9e)MK&apos;,e&apos;)OKcK&apos; et e ^e&apos;&quot;-et %,e e CC(G) avec sK,e ^0, SGdxsKJx)
1, ||p(g)sK,e&quot;&quot;SK,elli&lt;e Pout tout gG^- Notons que (sK,e) et (s]lPé) sont alors des

suites pour les propriétés Pp et PP&apos;.

Considérons les fonctions (à valeurs vectorielles) de la forme

où s sKtE, ÇeB, f €B*. L&apos;identité

&lt;P&amp;,e(g) ^(s1/P®l), ^(s1/p&apos;®|*)) &lt;p(g)s1/p, S1/P&apos;&gt;&lt;7r(g)è f *&gt;

fournit l&apos;estimation sur les coefficients

pour toute mesure jx à support dans K. On a, d&apos;autre part, les estimations
suivantes sur les normes:

pour toute famille finie de mesures ^ à support dans K. On en tire facilement que
(-n-, 7T*) adhère (p&amp;tB, Pg,b*)-

Avant de passer à la continuité de la p-induction, déduisons de la proposition
précédente des transferts de convoluteurs. Nous supposerons à cet effet que B est

un p-espace [21], i.e. essentiellement un (sous-espace fermé d&apos;un) espace Lq avec

p^q^2 ou p^q^2. Rappelons qu&apos;alors tout opérateur borné T sur LP(G)
s&apos;étend, par TB(/®£) T/®è en un opérateur borné TB sur LP(G, B), de même

norme.

COROLLAIRE 11. Toujours dans le cas où G est moyennable, on a ||

||p&amp;Gi)|| pour tout |u,€ M\G).
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Remarque. Dans le cas particulier où B est un espace Lp, il s&apos;agit de la

transférence de Coifman et Weiss [6; § 2]. Relevons que la propriété d&apos;extension

est ici une conséquence banale du théorème de Fubini.
Avec l&apos;hypothèse supplémentaire que la paire duale (tt, tt*) est réflexive, nous

prolongeons maitenant à 5£(LP(G)) (opérateurs bornés sur LP(G)) la contraction
Pg(^) *-* &apos;n&apos;(M&apos;) du corollaire 11. Etant donnée une suite (s) pour la propriété Ply
considérons les formes trilinéaires FS(T, £ Ç*) (TBA(sl/p®£;), 4(s1/p&apos;®£*)&gt; sur
££(Lp{G))*BxB* Par compacité faible de la boule-unité, la suite (Fs) possède
un point d&apos;accumulation faible F*,, qui correspond à une contraction f(s&gt; de

5£{LP{G)) dans i?(B) par &lt;r(s)(T)ê^*&gt; F0O(T,|,|*). Les cas intéressants sont
ceux où f(s)(T) est intrinsèque, i.e. indépendant des choix de la suite (s) et du point
d&apos;accumulation F^; on le note alors t(T).

PROPOSITION 12. On suppose toujours G moyennable.
i) f(s) applique j£(Lp(G)) dans le bicommutant de tt(G).
ii) t(s) est intrinsèque sur les convoluteurs associés aux mesures bornées:

^(Pg(m-)) &apos;&quot;&quot;(M&apos;) pour tout jul e M1 (G). Elle l&apos;est plus généralement sur la fermeture
(normique) cvp(G) des convoluteurs à support compact: si Test un tel convoluteur et

aeAp(G) vaut identiquement 1 au voisinage de son support, on a (f(T)£, £*)
&lt;T, a&lt;ir(-)fe £*» dans /a duattré at&gt;ec AP(G)*.

Démonstration de ii). Dans la dualité entre CVP(G) PMP(G) et AP(G),
FS(T,££*) s&apos;écrit &lt;T, &lt;p(-)s1/p, s1/p&apos;)&lt;ir(-)è I*». Comme T aT et que les fonctions

ws =&lt;p(*)s1/p, s1/p) forment une unité approchée (bornée) dans AP(G) (cf.

par exemple [22, lemma 5, p. 121]) FS(T,££*) converge vers &lt;T, a&lt;ir(-)£ f*)&gt;.

Par conséquent,

EXEMPLE 10. 7T est la représentation quasi-régulière de G sur LP(G/H), H
étant un sous-groupe fermé normal dans G Rappelons que l&apos;application de

Mackey [f](xH) $Hdhf(xh) (feCc(G)) est dans ce cas prolongée par Vapplication

de Reiter TH de M\G) sur hi\G/H), définie par

f dOirfiXf) &lt;K£) f

* Pour tout renseignement sur les espaces AP(G), PMP{G), nous renvoyons aux travaux de C
Herz (par exemple [21], [23]), ainsi qu&apos;à l&apos;exposé [11] de P Eymard
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La proposition précédente peut être légèrement précisée dans ce contexte:
i) r(s) applique «S?(LP(G)) dens CVP(G/H);

ii) t est un homomorphisme de cvp(G) dans cvp(G/H); explicitement,
— KpUijl)) ph/niTH^) pour |ut e M\G),
— t(T)THf=TH(Tf) pour T à support compact, feCc(G).

Signalons que la surjectivité de t :cvp(G)-^cvp(G/H) vient d&apos;être démontrée
[10].

Dans le contexte abélien, on peut interpéter la contraction mp(G)-+ mp{H±)
correspondant à f(s) comme un procédé abstrait de restriction des multiplicateurs à
H^. Elle est en effet donnée par la restriction à Hx pour les multiplicateurs
correspondant à cvp(G) (ce sont les multiplicateurs m pour lesquels la translation
x^&gt;pô(x)m est continue de G dans mp(G))\ c&apos;est encore le cas pour les

multiplicateurs uniformément continus lorsque la suite (s) est suffisamment
régulière, au sens où les fonctions us=(p(.) s1/p, s1/p) forment déjà une unité
approchée (bornée) dans A(G)-l&apos;existence de telles suites étant assurée par la
propriété de F0lner ponctuelle [18; §3.6]. Nous ne savons pas si c&apos;est vrai pour tous
les multiplicateurs continus.

Venons-en à la continuité de la p-induction (l^p^œ).

THEOREME 13. Soif (ir, tt*) une paire duale de H adhérant à une famille Q.

La paire duale induite (Indg (p, tt), Ind§ (p\ tt*)) adhère alors aux paires duales
dS (p, û&gt;), Ind§ (p\ &lt;o*)) induites à partir de û.

La démonstration se lit sur les expressions suivantes de coefficients et de

normes:

1°) &lt;Indg (p, ir)Gi)[f®a I4&gt; ® H&gt; \ dh ô(hrVp&lt;t&gt;x * li * f(h) &lt;ir(h)fc £*&gt;

pour tout julgMc(G) (mesure sur G à support compact), /, &lt;J&gt;eCc(G),

où on a posé &lt;^x(x)

2°) ||LIndg(p,ir)(^OK®£]|| =|| dxfi(x]

Z &apos;n&quot;{(iULt * /i)x,h)ÊI lorsque p oo

pour toute famille finie de /x,eAt.(G), /ieCc(G), ^eB^, où on a posé

resp. sup
xeG
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Remarque. La continuité de l&apos;induction unitaire est due à J. M. G. Fell ([15;
theorem 4.1], [16; §6]).

Supposons dorénavant H moyennable. Le phénomène d&apos;adhérence décrit à la
proposition 10 se transmet alors par continuité aux paires duales induites à partir
deK

COROLLAIRE 14. Soient (ir, tt*) une paire duale de H opérant dans des

espaces de Banach B, B* et l&lt;p&lt;œ. La paire duale induite
(Indg (p, tt), Indg (p&apos;, ir*)) adhère alors à la paire duale (ppGtB, Pg,b*)-

En particulier, étant donné une suite (s) pour la propriété Px sur H, chaque
coefficient (IndH (p, 7r)(.)[f], [&lt;t&gt;]) est limite uniforme sur tout compact de G des

coefficients &lt;Pg,bC)^&apos;(s1/p®/), A&apos;(s1/p&apos;®4&gt;)&gt;, avec convergence des normes:

||[/Jlp lim \\à&apos;(s1/p &lt;g)/)||p, |MP, lim ||4&apos;(s1

où on a posé

4&apos;(s1/p&lt;S&gt;/)(*) f dhô(h)-1/ps(h-l)Vpir(h)f(xh),

Af(sVp&apos;&lt;8)&lt;t&gt;)(x) f /11/l

EXEMPLE 11. On retrouve ainsi le second principe de majoration de Herz, tel

que l&apos;a énoncé N. Lohoué [27; lemme 2]:
chaque coefficient &lt;ttp(.)/, &lt;f&gt;) de la représentation quasi-régulière de G sur LP(G/H)
est limite uniforme sur tout compact de G d&apos;une suite (dénombrable lorsque H est

a-compact) de coefficients (p(&apos;)ft, &lt;&amp;) de la représentation régulière de G sur
LP(G), avec contrôle des normes: \\ft\\p I|/1

EXEMPLE 12. Les deux séries principales p-induites de G SL(2, R) (cf §4)

adhèrent à la représentation régulière de G sur LF(G).

Pour terminer, tirons du corollaire précédent des transferts de convoluteurs,
tout comme nous l&apos;avons fait à partir de la proposition 10. A cet effet, nous

supposerons à nouveau que B est un p-espace et que la paire duale

(Indg (p, tt), Indg (p&apos;, ir*)) considérée est réflexive.
Etant donné une suite (s) pour la propriété Px sur H et une fonction de

Bruhat p de la paire Hc:G9 on obtient une contraction t{s) de if(Lp(G)) dans
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if(Lp(G, H, tt)) comme point d&apos;accumulation faible des formes tnlméaires
F&apos;s 3(T, /, &lt;« (TBâ&apos;(s1/p ® |3f), 4V/p ® W)&gt; sur i£(Lp(G)) x LP(G, H, tt) x

Remarques 1) L&apos;opérateur f(&apos;s) dépend en général de la suite (s) et du point
d&apos;accumulation choisi, mais pas de j3 En effet, si j8x et /32 sont des fonctions de

Bruhat de la paire HcG, la suite (Frs&amp;x-Frs&amp;2) converge faiblement vers 0

2) Nous ne savons pas si t[s) applique CVP(G) dans le bicommutant de la
représentation Indg(p, tt) II est par contre facile de montrer que l&apos;image de tout
convoluteur à droite est un entrelacement

PROPOSITION 15 î) t&apos;(s)est intrinsèque sur cvp(G) Explicitement
— t&apos;(pUn)) Indg(p, it)(il) pour /x e M\G),
— t&apos;(T)[f] [TBf] pour T à support compact fe CC(G, B)
n) t[s) est également intrinsèque sur CVP(G)+ (convoluteurs positifs)*

(p, ir)0i), où &lt;Indg (p, ir)(n)f, &lt;t&gt;)=

£ dfi(g)&lt;Indg(p,7r)(g)/,«&gt;

Démonstration î) La première identité résulte directement du corollaire 14, la
seconde de la convergence de

(TBA&apos;(sl/p&lt;8&gt;fo),à&apos;(s1/p&lt;S)&lt;t&gt;))

J dx| dh8(hr1/p(7r(h)TBf0(xh), &lt;f&gt;(x))(p(h)sVp, sVp)

vers

(lTBfol M) £ dx^ dh ô(hr1/p(rr(h)TBf0(xh), 4&gt;M)

pour tout fo=PPGB(u)f (u€Cc(G),/eCc(G,B)), c^gCc(G,B*))
h) Chaque mesure (Indg (p, 7r)(g)[/], [^&gt;]) djm,(g), étant limite faible des

mesures &lt;p&amp;B(g)4&apos;(s1/p&lt;8&gt;/), A&apos;(s1/P®&lt;t&gt;))dii(g), est bornée (compacité faible des

boules fermées dans Ml(G)) Par conséquent, les expressions

(PpaB(n)A&apos;(s1&quot;&gt;®f),A&apos;(st/&lt;&apos;

* Rappelons que tout convoluteur positif T de LF(G) est défini par une mesure positive /x sur G,

e T^
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convergent vers

(Indg (p, 7r)Gi)[/], [&lt;«&gt; | d|x(g)&lt;Indg (p, ir)(g)[f], [&lt;£]&gt;.

EXEMPLE 13. Dans le cas particulier de la représentation quasi-régulière ttp de
G sur LP(G/H), l&apos;assertion i) est le théorème 9 de [22]. L&apos;assertion ii), combinée
avec le corollaire 8, fournit quant à elle la proposition 1 de [27]: une mesure
positive ix sur G définit un convoluteur Pg(jul) de LP(G) si et seulement si \i définit
un opérateur borné ttp(^l) sur LF(GIH) par (ttp(jll)/, &lt;f&gt;) JG dyu{g){irv(g)f, 4&gt;)\ dans

Résumons maintenant les propriétés de f(&apos;s), lorsque H est de plus normal dans
G.

a) t[s) est une contraction de i?(Lp(G)) dans £(LP(G/H)).
b) L&apos;image de tout convoluteur à droite de LF(G) est un convoluteur à droite

de U{GIH).
c) t&apos; est un homomorphisme de cvp(G) dans cvp(G/H). Explicitement:
— t&apos;(PUv)) Pc,H(THH) pour txeM\G),
—t&apos;(T)THf=TH(Tf) pour T à support compact, fsCc(G).
d) t&apos; applique CVP(G)+ sur CVP(G/H)+, en préservant les normes:

où &lt;7TPG*)/, &lt;/&gt;&gt;-[ dn(g)(ppG/H(gH)f,&lt;f&gt;),

avec ||

Signalons pour terminer le bon comportement de t[s) dans le contexte abélien.
La contraction mp(G) —» mp(H-*-) correspondante est en effet donnée par la
restriction à H^ pour tous les multiplicateurs continus, lorsque la suite (s) est

suffisamment régulière (au sens vu précédemment). On retrouve ainsi un résultat
connu ([30; cor. 4.6, part (b)] ou [25; théorème 1.1]).

4. Séries principales p*-induites

Nous terminons par un exemple de représentations p-induites. Nous
considérons tout d&apos;abord le cas particulier de SL(2, U) et passerons ensuite au cas

général d&apos;un GLSS (groupe de Lie semi-simple, connexe, non compact, de centre
fini).

Les séries principales unitaires de G SL(2, R) sont composées des

représentations induites à partir des caractères *e,x(n j sgn (a)e |a lX
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(e=0,1; keU) du sous-groupe triangulaire P. Nous nous intéressons ici aux
représentations p-induites 7r^x à partir de Xe,x*

Les décompositions univoques G KAN et P MAN, où

conduisent à la réalisation compacte de ir£A sur le sous-espace Ve(K), resp. Q(.K&apos;)

des fonctions de parité e dans LP(K), resp. C(K):

m(g, fc9)1/p+iW2/(g-1 • fce),

ou

-i _ / J à cos (0/2) + b sin (0/2) c cos (0/2) + a sin (0/2)\
g .fce- m(8&apos;k»)\_ccos(0/2)-asin(0/2) à cos (0/2) + b sin (0/2))&apos;

et

m(g, fce) i(d cos (0/2) + b sin (0/2))2 + (c cos (0/2) + a sin (0/2))2]&quot;1

est le module de quasi-invariance de la mesure dd.

La décomposition univoque G VPU wP, où V= j ] x€R | et w

/ 0 1\
\ 1 n/&apos;

con^u^ Quant à elle à la réalisation nilpotente de 7rgA sur If (M),

sgn (ta + d)E |ta + d|-*&gt;-* /(^). g

Rappelons qu&apos;on obtient le prolongement analytique (ire3Z)zec de la série

principale unitaire (ttI^kgu ^n remplaçant le paramètre ik e iU par un paramètre
zeC dans la réalisation compacte. On produit de la sorte des représentations
fortement continues sur Ll(K) [32; 8.3].

LEMME 16. Les représentations tt^x et iretZ coïncident - du moins sur Ce(K) -
lorsque z 1/p — 1/p&apos; + iÀ.
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La série principale p-induite {irl&gt;k)kGR s&apos;identifie donc à la droite d&apos;équation

Re z - l/p-l/pr dans le prolongement analytique Oire,z)zec de la série principale
unitaire correspondante.

ik-
-1

&lt;A

1/p-l/p&apos; + 1

-induction induction
unitaire

p-induction 1-induction

Remarques. 1) Le fait que les représentations sphériques irOiZ, dans la
réalisation nilpotente, sont isométriques sur LP(U) lorsque Re z 1/p - 1/p&apos; -
facile à vérifier au demeurant: — (- : (bx + d)~2 - est à la base de la

dx \bx + d/
démonstration de M. G. Cowling du phénomène de Kunze-Stein pour SL(2, (R)

[7; section 3], La p-induction en donne une interprétation naturelle.
2) Les différentes séries principales p-induites sphériques (irgx)XeR décrivent
toute la bande — l^Rez^l correspondant aux fonctions sphériques &lt;£2(g)

&lt;*o,z(g)l, 1)k bornées.

Le cas de SL(2, U) est typique d&apos;un GLSS de rang 1. Pour traiter le cas général
d&apos;un GLSS G de rang n, nous ferons appel à des résultats classiques sur las

structure des sous-grdupes paraboliques de G [33; 1.2]. Fixons une décomposition
d&apos;Iwasawa G KAN et notons, comme de coutume, M le centralisateur de A
dans K et P MAN le sous-groupe parabolique minimal correspondant. Les
séries principales unitaires de G sont composées des représentations induites à

partir des représentations aXelX (m expHn) cr(m)elX(H) de P, où a s M (dual
unitaire de M), A g a* (dual de l&apos;algèbre de Lie a de A). Nous allons décrire un
procédé permettant d&apos;intercaler (n -1) sous-groupes fermés entre P et G:P°
PcP1c-cPn G, et nous intéresser, pour un multi-indice p* (pl9..., pn)

donné, à la représentation tt^% obtenues à partir deo-x elK par px-induction de P
à P1,..., pn -induction de Pnl à G.

Suivant la coutume, notons g ï©a0n et p m©o©n les décompositions
correspondantes des algèbres de Lie de G et de P, X l&apos;ensemble des racines

restreintes de (g, a), X+ le sous-ensemble des racines positives-si bien que
« ©ae5;+9otJ 9« étant l&apos;espace-poids correspondant à a -et ai,..., a» les racines

simples. Posons a1 =©k=iRafc (û ayant été identifié à a* au moyen de la forme de

Killing de g, X1 =X+HaJ,XJ X)\XJ~1 (avec la convention J£° 0), p,
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èEaei;, (dimç$a)a et introduisons les sous-algèbres a, ^IRp,,

«es1 ae2 ae-21 ote-X

mJ b10m©oJ0nJ, pJ bJ0p m10(© ak)0(®

de g. Les sous-groupes analytiques A1, A,, NJ, N,, VJ, V,, M^, P^ de G
correspondants sont fermés. M1 MMq et P1 — MP]0 sont encore des sous-

groupes fermés d&apos;algèbre de Lie mJ et pJ. Le sous-groupe parabolique P1 admet
la décomposition de Langlands PJ M](AJ+1 • • • An)(NJ+1 • • • JVn). Son module
est trivial sur MJ et sur N; il est donné par A;(exp H) exp [-2 Xk&gt;j Pk(H)] sur A.

Remarque. En variant la numérotation des racines simples on obtient ainsi

toutes les familles maximales de sous-groupes emboîtés entre P et G.
La génération suivante du théorème d&apos;induction par étages permettra de

réaliser simplement les représentations tt^% Soient H% : Ho cz Hx c • • • c Hn une
famille de groupes localement compacts emboîtés, tt une représentation de Ho
(isométrique, fortement continue, sur un espace de Banach B) et p# (pi,..., pn)

un multi-indice. Fixons sur chaque quotient HJHj-x une mesure quasi-invariante
Çj associée à une fonction homogène continue q} : H, —&gt; (0, oo) et posons tfih,)

fln(h,)1/p&quot; (MU). Notons CMH*; ir) l&apos;espace des fonctions /:Hn -^
B vérifiant

ii) / est continue, à support compact modulo Ho,
et LP*(H#; ir) son complété pour la norme (intrinsèque)

L-Wi/Ho

l/pn

(avec les modifications habituelles lorsque p, =oo).

LEMME 17. La représentation Ind^ x (pn,... Indf^ (px, ir) • • •) est équivalente
à la représentation {IndHs(e (p*, 7r)(g)/}(hn)=/(g~1feM) de Hn sur U*{H*, ir).

La démonstration est semblable à celle du théorème 1.
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Les décompositions d&apos;Iwasawa généralisées PJ K&apos;AN, où K1 K H PJ (c&apos;est

le normalisâteur de AJ+1 • • • An dans K), conduisent à la réalisation compacte de

7r*% sur U*(K*; a):

1. k),

où g~lk (g&quot;1. k) exp H(g~lk) n dans la décomposition G KAN.
Lorsque tous les indices Pj sont finis, on peut également donner une réalisation

nilpotente de tt^% basée sur des décompositions de Bruhat généralisées.
Pour commencer, rappelons la décomposition de Bruhat G =LJwe wPwP, où

W est le groupe de Weyl de X, identifié à M&apos;/M, M étant le normalisateur de A
dans K. La double classe PcjP de l&apos;élément weW échangeant X+ avec -X+ est un
ouvert de G, dont le complémentaire est une sous-variété de dimension
inférieure. Comme &lt;o~lN&lt;o V(= Vn), il en est de même de VP; de plus,
l&apos;application (v, p)*-*vp est un difféomorphisme de VxP sur VP.

Le groupe de Weyl W} de X] s&apos;identifie quant à lui à M DP1&apos;/M (M&apos;HP* est

le normalisateur de A dans K1); il admet la décomposition univoque W]

WjW-\ où WJ={w6WI|w.r1nH+) 0}. La décomposition de Bruhat
généralisée PJ ^U^^w^NjWP1 ~l fait apparaître à son tour VjP1&quot;1 comme un
ouvert de PJ, dont le complémentaire est une sous-variété de dimension

inférieure, la paramétrisation (vp p1&quot;1) *-^Vjp&apos;~~l étant un difféomorphisme.
Ces décompositions permettent de réaliser (pp) ir^ sur l&apos;espace

complété de Cc(V;^&gt;o.) pour la norme

p2/p,

par
ar ç -|P2/pt -|i/Pn

crimig-&apos;vT1 exp[- (l (2/Pj)ft + iAJ^g-M)]^&quot;1. v),

où g~1u (g&quot;1. t;)m(g&quot;1i?)expH(g~li;)n dans la carte VMAN.
On obtient à nouveau le prolongement analytique (-7To.,2)2 ea* de la série

principale unitaire (7r^x)Xeo* en complexifiant le paramètre i\eia* dans la

réalisation compacte.

LEMME 18. Les représentations tt^ et tt^x coïncident - du moins sur

C(K, M; a) - lorsque z I, (2/P/)Pj + ÎÀ.
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La série principale p*-induite (7r^)Xeû* s&apos;identifie donc au plan d&apos;équation

Rez=Xj (l/pj-l/p&apos;j)pj dans le prolongement analytique (tt^)*ea* de la série
principale unitaire correspondante.

Remarques. 1) Le fait que les représentations sphénques rc^ 2, dans la
réalisation nilpotente, sont isométriques sur LP*(V) est à la base de la
démonstration de M. G. Cowling du phénomène de Kunze-Stem dans le cas

général [7; sections 5 et 6]. La p^-induction en donne une interprétation
naturelle.

2) Les coefficients sphériques (tt^(-)I, 1)k fournis par les différentes séries

principales p^-induites sphériques décrivent toutes les fonctions sphériques
bornées de (G, K) [19].
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