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Knot cobordism and amphicheirality

DANIEL CorAY and FRANCOISE MICHEL

Introduction

Let C, denote the cobordism group of n-dimensional knots. Cameron Gordon
has asked the following question ([Ha], problem 16):

Can every element of order 2 in C; be represented by a (—1)-amphicheiral knot?

A knot is called (—1)-amphicheiral if it is isotopic to its obvious cobordism
inverse (see §1 for a precise definition). Hence it is clear that the cobordism class
of any (—1)-amphicheiral knot has order two. Gordon’s question is about a partial
converse of this statement.

Actually the problem makes sense in any odd dimension. (We recall that
C, =0 for n even [K].) But, for n=2q—1, we show:

STATEMENT 1. The answer is negative for every q=2. More precisely, some
Alexander polynomials y have the following property: the cobordism class of every
knot whose Alexander polynomial is y has order two, but contains no (—1)-
amphicheiral knot.

STATEMENT 2. For q=1 the same polynomials provide many examples of
algebraic cobordism classes of order 2 which contain no (—1)-amphicheiral knot.
Since they are exceedingly numerous, it seems reasonable to expect that Gordon’s
question should have a negative answer also in the classical case.

For the proof we work with the algebraic invariants already used in [T], [Mic]
and [Hi]. One of the main features is a new (—1)-amphicheirality criterion, which
is considerably more general than those previously obtained. In particular it is
invariant under cobordism and applies to knots of any odd dimension.

We thank J. Hillman, who pointed out the interest of studying Gordon’s
problem in higher dimensions.
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602 DANIEL CORAY AND FRANCOISE MICHEL

§1. Statements of the results

We begin with some definitions:

1. An n-knot 3 is a smooth, oriented submanifold of S"*? which is
homeomorphic to S".

2. Let 0:S8"*?— S™*? be the reflection in some equatorial plane, (o(3))” the
image of X with the opposite orientation. By —3 we shall denote (o(3))”
regarded as a submanifold of S"*2. We call it the inverse of 3. As S #—3 is
null-cobordant, the cobordism class of —3 is the inverse of the cobordism class
of 3.

3. 3 is said to be (—1)-amphicheiral (‘“‘involutory’
Conway) if it is isotopic to —3.

4. For € =+1, let C*(Z) be the cobordism group of e-forms (cf. [L,] or [K]).
Associating a Seifert form to a (2q — 1)-knot induces a homomorphism ¢,,_; from
Cyoq_1 to CEV'(Z). The algebraic cobordism class of a (2q—1)-knot ¥ is the
image by ¢,,_; of the cobordism class of 3. We recall that ¢,,_, is injective if and
only if =2 ([L,] and [C-G])). It is the reason why our results do not answer
Gordon’s question when q =1.

5. For any polynomial A € Z[ X], of degree d (say), we define A* e Z[ X] by the
formula:

b

in the terminology of J.

A¥X)=XIA(X).

We recall that A is reciprocal if A=A%.

6. Given an irreducible reciprocal polynomial y € Z[ X], we define K to be the
number field Q[X]/(y), and O its ring of algebraic integers. As <y is reciprocal,
mapping X into X' induces an involution on K. We write & for the image of
a € K under this involution. Finally we set a=v(0) and adopt the following
terminology:

v has property P, if ad =—1 for some a in K;

v has property P, if ad =—1 for some a in the ring Og[1/a];

v has property P; if n3 =—1 for some unit n in O.

We are now in a position to give the precise statements that we shall prove. In
what follows, q is any positive integer, and 3 a (2q—1)-knot. If A is the
Alexander polynomial of 3, we have A = A*. Hence we can write:

l
AI&*H Yis

i=1

where the v; are distinct irreducible reciprocal polynomials. (The vy, are those
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reciprocal polynomials which appear with odd multiplicity among the irreducible
factors of A.)

THEOREM 1. If 3 is (—1)-amphicheiral then v; has property P,, for every i <l.

This (—1)-amphicheirality criterion is proved in §2. In practice, property P is
a lot more convenient to work with than P,. This makes the interest of the
following two propositions, where vy is assumed to be an irreducible reciprocal
polynomial such that y(1) = +1.

PROPOSITION 1. Suppose |y(0)| is a prime p and Z[X, X )/(y) = Ok[1/p].
Then v has property P, if and only if it has P;.

PROPOSITION 2. Suppose |y(0)| is a prime p and K is a Galois extension of
Q. Then vy has property P, if and only if it has P;.

For Proposition 1 we give a topological argument, while Proposition 2 is
established by purely algebraic means.

Remark. Proposition 2 will be used in §4 in constructing the appropriate
examples.
In §3 we prove:

THEOREM 2. Let 3 be a (2q—1)-knot whose Alexander polynomial vy is
irreducible. Then:
(1) vy has property P, if and only if the algebraic cobordism class of 3 has order
two;
(2) if 3 is cobordant to some (—1)-amphicheiral knot then y has property P,.

SCHOLIUM. If q=2 and v has property P, then the geometric cobordism class
of X is also of order two, as follows from [L,].

COROLLARY. To prove statements 1 and 2 of the introduction it is enough to
produce some irreducible, reciprocal polynomials y with the following properties:

(1) v is the Alexander polynomial of some (2q —1)-knot;

(2) vy has property Py;

(3) v fails to have property P,.

In §4 we show how to construct infinitely many irreducible Alexander polyno-
mials having property P; but not P,. As a matter of fact there are some examples
already in degree 2, but recall:
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Levine’s criterion [L,]. A reciprocal polynomial y € Z[ X], with degree d, is the
Alexander polynomial of some (2q — 1)-knot if and only if y(1)=¢%? and y(¢) is a
perfect square, where £ =(—1)3"!,

Now, if vy is any reciprocal polynomial of degree 2 such that y(1)=-1, we
observe that y(—1), being the discriminant of v, can be a perfect square only if y
is reducible! Therefore, by Levine’s criterion, no example with q even can be
obtained in degree 2. That is why we shall give two series of examples:

I. The quadratic case (which occurs only for odd values of q)
¥(X)=-pX*+Q2p+1)X-p,

where p runs through a certain set of primes: p =367, 379, 461, 751, 991, - - - (61
examples for p <10,000).

Remark. In [T], H. F. Trotter already observed that the knots with Alexander
polynomial y(X)=—-367X*+735X—367 are not (—1)-amphicheiral.

I1. The biquadratic case (which occurs for any q)
In §4 we prove the following theorem:

THEOREM 3. Let p be an odd prime and
y(X)=-pX*+(2p+1)X>—p.

Then v is irreducible. Moreover:
(1) v has property Py;
(2) v fails to have property P, if and only if p is congruent to 3 modulo 4 and
the fundamental unit of Q(v4p+1) has norm +1.

Remark. This yields infinitely many examples. Indeed the fundamental unit of
Q(V4p + 1) has norm +1 whenever 4p + 1 has a prime factor with odd multiplicity
which is congruent to 3 modulo 4 (e.g. p =19, 23, etc.), and also in certain other
cases, like p =367, 379, 751, 991, - - - etc.

Other examples. The following polynomials:
y(X)=X*-2AX3+(4A - 1)X?-2AX +1,

with A =36, 45, - - - (an infinity of examples), satisfy all three properties of the
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above corollary. This is proved in [C] with the techniques that we use in the proof
of Theorem 3. The particular interest of these examples is that they can be
realized as Alexander polynomials of some fibered knots.

§2. An amphicheirality criterion

Proof of Theorem 1. We recall that 3 is a (—1)-amphicheiral (2q —1)-knot
with Alexander polynomial A. To prove Theorem 1, we must show: if A=
y*"*1. u, where v is reciprocal, irreducible and prime to u, then y has property
P,.

Let X be the infinite cyclic covering of the complement of 3. Put M = H,(X);
this is a torsion module over Z[X, X !]. Let B:M XM — Q(X)/Z[X,X '] be the
Blanchfield pairing associated with 3 (cf. [L;], p. 15). If we write £ for (—1)3*,
the Blanchfield pairing is £-hermitian and unimodular (i.e. the adjoint of B yields
a Z[X, X ']-isomorphism between M and Homgx x-1{(M, Q(X)/Z[X,X'])) (cf.
[L;]). We recall that B can be constructed as follows ([L], Proposition 14.3, p.
44):

Let A be an rXr matrix which represents a Seifert pairing of 3 (see, for
example, [K]). We denote by A’ the transpose of A. Now M is isomorphic to

@Z[X, X ') N(AX —€eA")

and, with this presentation of M, the form B corresponds to (1— X)(AX —eA") 1.

As — A is a Seifert matrix for —3, it follows from the above that (M, —B) is the
Blanchfield pairing of —3. Now the isomorphism class of (M, B) is an invariant of
the isotopy class of 3. Hence the (—1)-amphicheirality of 3 yields a Z[X, X ']-
automorphism F of M such that B(F(a), F(B)) = —B(a, B) for all @ and B in M.

Let A, be any non-degenerate Seifert matrix in the S-equivalence class of A
(cf. [T]. Then A(X)=det (A, X —eAj) is independent of the choice of A,, and
A(0)=det (Ay) #0.

By assumption, A = y*'*!

- w, with coprime y and u. Let us define:
M, =uw(X)McKer y(X)**' and M, =y*"*"'(X)McKer u(X).

Clearly M, "M, =0. Since p and vy are both reciprocal, the Blanchfield pairing B
splits orthogonally on M, @ M,. Moreover, the index of M, ®©M, in M is finite;
therefore the restriction, B,, of B to M, is non-degenerate. Furthermore the
restriction, F,, of F to M, yields an isomorphism from (M,, B,) to (M,, —B,).
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We now define:

M ={aeM, |y (X)a =0}
Hi — Mi/(Mi—l + ’Y(X)Ml+1)

Put R=27Z[X, X ']/(y). Then H' is an R-module of finite rank e¢; (say) and the
Q[X, X ']-module M, ®, Q is isomorphic to:

@ @X, X V(y))~

As Y7 ,i-¢e=21+1, there is only a finite number of non-zero e;; and one of
them, say e, , must be odd. We write: n=e¢;,, H=H", and denote by [a] the class
in H of an element a € M. One can define a non-degenerate, €-hermitian form
b:HxH — Q(X)/Z[X, X '] by setting, for any a and B8 in M®:

b([al, [BD=B,(v" (X)a, B).

That the form b is well-defined is proved in [Mil], where it is also shown that b is
non-degenerate provided B, is.

As y(X)b(a, B) is in Z[X, X '] for all « and B in H, it follows that
b(a, B) = P(X)/v(X), where P(X) is some polynomial in Z[X, X ']. Setting
b'(a, B) = P(X) defines a non-degenerate e-hermitian form b': HXH — R, and F,
induces an R-isomorphism from (H, b") to (H, —b’). Since H is of rank n over R,
we see that A"H, the n-th exterior power of H, can be identified with an R-ideal
I In [B] (81, no 9, p. 31) the n-th exterior power of b’ is defined, and it is shown
that A"b’ is non-degenerate provided b’ is. Let f be the isomorphism from
(I, A"b") to (I, A"(—b')) which is induced by F,. We write R; for the ring of
coefficients of the R-ideal I, i.e. R; ={a e K | al = I}. We recall that a = y(0); so
RcOk[1/a].

LEMMA 1. R, c0k[1/a].

Proof. Put S =0g[1/a] and J=1 - S. Clearly the ring of coefficients, S;, of J
contains R;. Hence it is enough to show that S; <= S. But S is a Dedekind ring;
hence the ring of coefficients of any non-zero S-ideal is S itself. []

As f is an R-automorphism of I, there exists u in Ry, hence in Og[1/a] (by the
lemma), such that f(a)=ua for all @ in I. Now n is odd, hence A"(—=b")=—A"b".
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Let us take a and B in I, both non-zero; then (A"b’)(a, B) #0; so the relations

(A"D)(f(e), f(B)) = uit(A"b")a, B) = —(A"b") (e, B)

imply uit =—1. This completes the proof of Theorem 1. [

Proof of Proposition 1. Suppose vy has property P,. Under the assumptions of
Proposition 1, we show that y also has property P;. Let M=7Z[X, X ']/(v); we
define a unimodular hermitian form B:MXxXM — Q(X)/Z[X, X~ '] by setting
B(a, B) = ap/y(X) for any a and B in M.

As v has property P, and Og[1/y(0)]=2Z[X, X ']/(y), multiplication by an
element u in O[1/y(0)] such that uit = —1 yields an isomorphism from (M, B) to
(M, —B). Now the form (M, B) is always the Blanchfield pairing of some (2q — 1)-
knot, provided we choose q odd (see Theorem 12.1 in [L;]). Let A be a
non-degenerate Seifert matrix associated with such a knot. Assuming |y(0)| is a
prime number p, Trotter [T] (Corollary 4.7, p. 196) shows that (M, B) is
isomorphic to (M, —B) if and only if A is isomorphic to —A. (A word of caution:
Trotter calls Seifert form what is usually called Blanchfield pairing, as here.)

On the other hand, since v is irreducible, the isomorphism between A and —A
implies the existence of u in O such that uii = —1 (cf. [Mic]). This completes the
proof of Proposition 1. [

Proof of Proposition 2. We begin by showing that Proposition 2 can be
deduced from the following lemma:

LEMMA 2. Let F be a number field, O its ring of algebraic integers and
a eN*. Suppose there exists a Galois automorphism o : F — F such that o> =id (o is
an involution of F), and an element a in Og[1/a] such that o - o(a) =—1. If, for
some odd integer A eN*, every prime ideal 4 O dividing a and distinct from o ()
is such that 4" is principal, then there exists m in O such that no(n)=—1.

Lemma 2 implies Proposition 2:
We recall that p =|y(0)| is prime. Consider the following polynomial:

P00 =y(DX*Y 1= ) = YDEDX - +(-1)5(0)),

where d is the degree of y. As y(1)==+1, the polynomial ¢ is monic, and
@(0) = =p.

Let &, ..., &; be the roots of ¢. Since ¢ is irreducible, they are all distinct.
Moreover, K is Galois; hence they all lie in K. For every i, the ideal 4 =(§) is
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prime (with degree one), since Ngq(&)=+p. By construction it is principal and
d
@ =11 4
i=1

(We do not claim that the #; are all distinct!) Therefore all prime ideals dividing p
are principal. Thus Proposition 2 is a consequence of Lemma 2 (with F=K,
gla)=a&, a=p and A =1).

Proof of Lemma 2. Suppose « - o(a)=—1 for some a in Og[1/a]. We may
write the fractional ideal (a) as a product of prime ideals:

(@) =[] g2 2.1)

Since ao(a)=—1, we have:

V@) +0,(a@)=0 V4 (2.2)

If v (a)#0, it follows from (2.2) that either v (a) or v, (a) is negative;
hence # divides a. The relation (2.2) shows also that v (a) =0 if £=o(4).

Let us now consider the prime ideals #; # o(#;) which divide a. By assumption,
we may write 4 = (;) for some m; € F. Then the relations (2.1) and (2.2) imply:

a* =[] (ﬁ@) 2.3)

i ™

with w;€Z and n a unit in O We see that a*o(a)* =7 - o(n). Now A is odd;
hence 1 - o(n) =—1. This completes the proof of Lemma 2. [

§3. Knot cobordism classes of order two
Proof of the first assertion of Theorem 2. Let 3 be a (2q—1)-knot whose
Alexander polynomial vy is irreducible. Put € =(—1)% We recall some definitions

and basic facts about algebraic cobordism (for more details see [K]).

DEFINITION. An n X n integral matrix B represents an g-form if the matrix
B +¢B' is invertible over Z.

If A is a Seifert matrix associated with 3, then A +eA" is the matrix of the
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intersection form on a Seifert surface of 3. Since 3 is a sphere, this intersection
form is unimodular [K]. Hence A represents an e-form.

DEFINITION. An e-form is null-cobordant if it is represented by a matrix of

0 A
the form ( A Al)’ where the A; are all square integral matrices.
2 3

Let C*(Z) be the group of cobordism classes of £-forms. On tensoring with Q,
we obtain an injective map from C°(Z) to the group of cobordism classes of
rational e-forms, say, C°(Q).

The first assertion of Theorem 2 can therefore be stated as follows: Given a
Seifert matrix A of 3, then A@® A is null-cobordant if and only if v has property P,.
This fact can be deduced from Levine’s description of C°(Q) [L,] or from
Stoltzfus’s computation of C°(Z) [St], but we shall give here a direct and
elementary proof.

As in §1, K is the number field Q[X]/(y). Let H*(K) be the Witt group of
non-degenerate e-hermitian forms B: M XM — K, where M runs through the
finite-dimensional vector spaces over K.

LEMMA 3. Suppose M is a one-dimensional vector space over K. Then the
class of B in H*(K) has order two if and only if vy has property P;.

Proof. If vy has property P,, then aa = —1 for some « in K. Multiplication by «
yields an automorphism of M that carries B into —B. Thus B® B is isomorphic to
B®(—B); therefore its Witt class is zero.

As B has rank one, if the Witt class of B@ B is zero, this form is represented

by a matrix of the form ( % gl) with B, € K. If B € K* is the determinant of B,
then: P P2
B = eB. (3.1)

As the determinant is defined up to an element of K* of the form n - 7, we obtain
the relation:

det (B®B) = B> = —¢&B1B1n7. (3.2)

If we write a = 78,7, the relations (3.1) and (3.2) show that a - @ =—1. This
completes the proof of Lemma 3. []
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In the S-equivalence class of Seifert matrices corresponding to 3, we can
choose one which is non-degenerate [T). Call it A. Then the rank of A is equal to
the degree, d, of y. Let M be a d-dimensional vector space over Q. The matrix
T=—-eA 'A" represents an automorphism of M. Put X - a = T(a). This action of
Q[X] induces on M the structure of a one-dimensional K-vector space. There
exists an e-hermitian form B : M X M — K such that the relation:

(aa) (A +eA")(B) =tracek g aB(a, B) (3.3)

is satisfied for all a in K and a, B in M (see [Mil]). Now, using (3.3), a direct
computation shows that A@ A is null-cobordant if and only if the Witt class of B
has order two. By Lemma 3 this completes the proof of assertion (1).

Proof of the second assertion of Theorem 2. Suppose 3 is cobordant to 3.
Then the Fox—Milnor relation shows that the Alexander polynomial of 3’ is of the
form & - 8* - vy for some integral polynomial 8 (for a proof see [L,], p. 237). If,
moreover, 3 is (—1)-amphicheiral, it follows from Theorem 1 that y has property
P,. This completes the proof of Theorem 2. [J

§4. Explicit examples

In this section, which is purely number-theoretical, we show that there exist
infinitely many irreducible Alexander polynomials of low degree having property
P, but not P,.

I. The quadratic case

PROPOSITION 3. Let p be an odd prime, D the square-free part of 4p+1,
and

y(X)=-pX*+Q2p+1)X—p.

Then -y is irreducible. Moreover:
(1) +y has property P, if and only if all prime factors of D are congruent to 1
modulo 4;
(2) 7 fails to have property P, if and only if the fundamental unit of Q(~D) has
norm +1.

Proof. The discriminant 4p +1 of vy is not a square, since it is congruent to 5
modulo 8. Hence # is irreducible.
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(1) As K=Q(vD), it is clear that P, holds if and only if the equation
x*—Dy*=-1 4.1)

can be solved with x,yeQ. A local calculation and the Hasse-Minkowski
theorem show that this is the case if and only if all prime factors of D are
congruent to 1 modulo 4. (In fact this is a well-known result on sums of two
squares.)

(2) This is an immediate consequence of Proposition 2, since |y(0)|=p and
K/Q is Galois. [

EXAMPLES. As is well-known, the fundamental unit of Q(v'D) has norm +1
if and only if the period of the continued fraction expansion of /D is even.

There is a very efficient algorithm for determining that period (see [Si], p. 296;
and [P], §26, pp. 102-103, for a useful refinement). In point of fact the
fundamental unit itself is detected by this procedure, which involves a computer
calculation whose only difficulty is the number of digits to be handled (for
D =991, already thirty digits are required!). The two smallest examples” illus-
trating Proposition 3 are:

p =367; D=13-113; n=56+38
p=379; D =37-41; n=19+é

(We denote by n the fundamental unit of Q(v'D), and 6 = (1++vD)/2.)

Remark. In these examples, D is never a prime. This follows from an
elementary result, which will be used again later:

LEMMA 4. Suppose D is a prime congruent to 1 modulo 4. Then equation
(4.1) can be solved with x,yeZ. Hence the fundamental unit of Q(¥D) has
norm —1.

A proof can be found in [Mo], Chap. 8. The idea is to start from the
fundamental solution of the Pell equation t*— Du*=1. The assumptions on D
enable one to write

t+1

t—-1 —_
> =x*“ and > = Dy*~,

with x, yeZ. Then (x, y) is a solution of (4.1).

M A complete list with p <50,000 is available on request.
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I1. Proof of Theorem 3
Let 7 be any root of the polynomial

v(X)=-pX*+(2p+ 1) X*—p.

As the other roots are —7 and +1/7, we see that K =Q(7) is a Galois extension of
Q. Moreover, K contains Q(7%) =Q(vD), where as above we denote by D the
square-free part of 4p + 1. Since p is odd, 4p + 1 is congruent to 5 modulo 8, hence
D# 1. the fixed field of the involution T+>1/7 is the field Q(o), with o =7+ 1/7 =
v(4p +1)/p. From this we see that K/Q is an extension of degree 4 (whence v is
irreducible), with Galois group Z/2 xZ/2. Therefore K contains three quadratic
subfields:

K=Q(7)

N

ki=Q(Vp)  k,=Q(WD) k;=Q(0)

~.7

It is useful to observe that the involution 7+ 1/7 induces the ordinary conjugation
on k, and on k,:vp+>—+p, resp. vD+—>—VD.

(1) We wish to prove that v has property P,. Now an element a € K can be
written in the form a = x + yv/p with x, y e Q(o). Therefore we have to show that
the equation

x*>—py*=-1 (4.2)

can be solved with x, y e Q(o). Equivalently, we are reduced to showing that the
homogeneous equation

x>—py*+2%=0 (4.3)

has a non-trivial solution in Q(o).

By the Hasse-Minkowski theorem for the number field Q(o) (see for example
[C-F], ex. 4.8, p. 359), it will suffice to show that (4.3) can be solved non-trivially
in all completions of Q(o). Since the quadratic form in (4.3) is defined over Q, it is
indefinite for each of the two real embeddings of Q(o). Therefore it suffices to
consider the non-archimedean valuations.

If p=1 (mod4), we know that p is a sum of two squares; hence (4.3) is
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already solvable over Q. (By Lemma 4 we know that (4.2) is even solvable over
Z.) Thus we may assume without loss of generality that p=3 (mod 4). Then
pD =3 (mod 4); hence the ideal (2) ramifies in Q(o) =Q(VpD). Therefore it is
enough to prove that (4.3) has a non-trivial solution in all non-archimedean
completions of Q(o) whose residue field is of characteristic #2. Indeed, by the
product formula ([C-F], ex. 4.5, p. 358), the number of places where a quadratic
form in three variables does not represent zero is even; but there is only one
prime ideal above (2).

By a well-known result (a special case of the Chevalley-Warning theorem),
(4.3) has non-trivial solutions in every finite field. By Hensel’s lemma (cf. [C-F],
p. 83), these solutions can be lifted over the corresponding completions, provided
the characteristic of the residue field is not equal to 2 or p. In addition, the ideal
(p) ramifies in Q(o) = Q(vpD); therefore all we have to show is that (4.3) can be
solved f-adically, where 4 denotes the unique ideal above (p).

Since (p) = #°, locally we can write p = 7r>n, where 7 is a uniformizing element
and m a g-adic unit. Now, if we write Y = 7ry, we are reduced to showing that

x*—-nY?*+2z%*=0

has a non-trivial g-adic solution. Since now 7 is a unit, the above argument with
Hensel’s lemma applies. This completes the proof that y has property P,.

(2) Let us examine under what conditions vy has property P,. In each quadratic
subfield k; of K there is a fundamental unit g,. Now since the involution 7+—1/7
acts as the ordinary conjugation on k; and k,, it is clear that y has property P; (a
fortiori P,) if either £, or €, has norm —1. As we saw in LLemma 4, &, has norm
—1 if p=1 (mod 4); and only then, since obviously (4.2) has no rational solution
for p=3 (mod 4). This proves one of the implications in the second assertion of
Theorem 3. In order to establish the converse, we first note that the two
properties P, and P; are in fact equivalent in our case, as follows from Proposi-
tion 2. Therefore we are reduced to proving the following lemma:

LEMMA 5. Suppose £, and &, have norm +1. Then v fails to have property P;.

Proof. The general theory of units in biquadratic fields is fairly well under-
stood (cf. [Kur], [Kub], [N]); but the special shape of the polynomial vy yields
some further information, which will be needed. Let Uy be the group of units in
the ring of integers Ox. As K is totally real, we choose once for all a real
embedding and denote by Ug the free Z-module of rank 3 consisting of all
positive units. Correspondingly, we agree that €,, €, and &5 are elements of Uk.
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(a) A classical argument [Kur] shows that the sub-Z-module R < Uy gener-
ated by &,, £, and &, is of finite index in Ux. For if n € Uy is any unit then n°€ R.
Indeed, let ' be the conjugate of  above k,. Then

Ni,(m) =nm' = £¢7,

and similarly:
' =+e5, mA==e5 (a,bcel).
Hence %=+ n%(nm'717’) = =efede5eR.

Remark. This argument shows that the index J =[Ux: R] is in fact a divisor of
8. Kuroda [Kur] has shown that, in the general case, there are seven essentially
distinct possibilities and that every divisor of 8 can occur. In our present case,
however, J is always equal to 2, since we prove below that Uy is generated by €.,
g, and Ves.

(b) Suppose now mi ==x1 for some unit n; then n> belongs to the submodule
R'< R which is generated by £, and &,. Indeed, we have just seen that n>=
efe5es; in addition £3=£5;. From the assumption m7 =+1 we therefore get:
1=n2%7?%= €%, which is possible only if ¢ =0.

(¢) Suppose vy has property P, i.e. there exists a unit me Ug such that
nm =—1. Then n¢ R’, since by assumption £,&, = £,&, = +1. Further we know, by
(b) above, that n? is of the form £$e5 with a, beZ. Since n¢ R’, we see that a and
b are not both even. This implies that at least one of the numbers €,, €, and £,¢,
is a square in K. Therefore the lemma will be proved once we show that none of the
numbers €, €, and €,&, is a square in K.

(d) We consider first &,. If it were a square in K, there would exist a, B € k,
such that &, = (a+ BVp)?>=(a®+ pB?) +2aB+p. Of course B#0, since &, is not a
square in k,. But the coefficient of +/p must vanish, hence a =0. Thus we get:
g,=pB> with Bek, This is impossible, since p does not ramify in k,=
Q(v4p +1). (One can also proceed as in (g) below: B is in fact an element of O, ,
and p does not divide the unit ,.) We have shown that €, is not a square in K.

(e) Let us examine ;. As p=3 (mod4), we can write &, =a;+bVp with
a,, by€Z. We claim that b, is odd. To see that, it suffices to repeat the argument
by which one proves Lemma 4: if b, were even, the equality a3—pb:=1 would
imply

)
uv=p —2- s

where
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are coprime integers. Since p is a prime, either u or v is a square. In either case
we get a contradiction: if u=s> and v=pt?, then s’—pt>’=u—v=—1; hence
s+tvVpek, would be a unit of norm —1. If v=s> and u=pt? then s*—pt®=
v—-u=1, and 1<|s|<|a,|. This is impossible, for the fundamental unit &,
corresponds to a solution of the Pell equation s®>—pt?=1 for which |s|>1 is
minimal.

) We put p=+p, §=(1+vVD)/2. As D=1 (mod 4), one checks easily that
Ok is the free Z-module with basis {1, p, 8, p8}. (This follows also from [L], chap.
3, 83, prop. 17.) Thus any element £€ Ox can be written in the form ¢ =a+ Bp
with @, B €0,_. Then £ takes the form (a?+ pB?) +2aBp. On writing o = a + bd
with a, b € Z, we reach the following conclusion: when &2 is expressed in the Z-base
{1, p, 8, pb}, the coefficients of p and p& are even.

(g) Putting (e) and (f) together, it is immediate that &, = a,+ b,p is not a square
in K, since b, is odd. Finally, let us write &,=a,+b,8, with a,, b,eZ; the
coefficients of p and pd in the product £,¢, are then respectively b,a, and b,b,. If
£1&, were a square in K, these integers would have to be even. But b, is odd;
hence both a, and b, should be even. This is clearly not the case, since ¢, is not
divisible by 2. This shows that &,¢, is not a square in K and completes the proof
of the lemma. O

Remark. In (a) above it is claimed that Uy is generated by ¢, €, and Ve;. In
view of the results gathered so far, it is enough to prove that ¢, is a square. Now
the situation we are in is quite exceptional in that the fundamental unit &5 is given
by an explicit formula! Indeed let

n:=8p+1)+4vpdp+1). (4.4)

It is a simple exercise to show that (8p+1, 4) is the fundamental solution of the
Pell equation x>~ p(4p+1)y>=1. Hence m;=¢; if 4p+1 is square-free; other-
wise 13 = g3 for some v eN. Moreover, n; is the square of

Vns=2Vp+ApTieK 4.5)

Furthermore, v is necessarily odd, since vn; does not lie in k;. Hence in all cases
€3 is a square, and J =2.

It is a firmly established tradition that unit computations in a number field
culminate in the determination of the class number. As J=2, one has the
following formula, ((Kub], Satz S, p. 80):

H= %hlhzhg, (4-6)
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in which h; (resp. H) denotes the class number of the field k, (resp. K). We see
that the product h,h,h, is always even. This is not surprising; indeed, using (4.4)
or (4.5), one shows easily that every prime factor of D is the square of a
non-principal ideal of ki, and therefore accounts for a factor 2 in hs.

Note. The proof of Theorem 3 shows that there exist infinitely many polyno-
mials of degree four having the required properties. For the quadratic case we do
not know whether the constructed family of polynomials is infinite (but we believe
$0).
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