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The intégral homology of SL2 and PSL2 of euclidean imaginary
quadratic integers

Joachim Schwermer and Karen Vogtmann

Introduction

One way to study the cohomology of a group F of finite virtual cohomological
dimension is to find a finite dimensional contractible space X on which F acts

properly (such a space X always exists by [18], 1-7), and to then analyze the
action. In this paper we want to consider the arithmetic groups SL2(O) and
PSL2(O) SL2(O)/±I where 0 is the ring of integers in an imaginary quadratic
number field k ; the classical choice of X in this case is hyperbolic three-space H,
i.e., the associated symmetric space SL2(C)/SU(2). As early as 1892 Bianchi [2]
exhibited fundamental domains for the action of PSL2(Û) on H for some small
values of the discriminant. The space H has also turned out to be very useful in
studying the relation between automorphic forms associated to SL2(O) and the
cohomology of SL2(O) (cf. [12], [10]), and in studying the topology of certain
hyperbolic 3-manifolds (cf. [25]).

However, this choice of X is inconvénient for actual explicit computations of
the cohomology of r (P)SL2(Û) with intégral coefficients because the dimension
of H is three, whereas the virtual cohomological dimension of F is two, indicating
that it may be possible for F to act properly on a contractible space of dimension

two; in addition, the quotient F\H is not compact. A more useful space X for our
purposes is given by work of Mendoza [14], which we recall in §3; using
Minkowski&apos;s réduction theory (cf. §2), he constructs a F-invariant 2-dimensional
déformation retract I(k) of H such that the quotient of I(k) by any subgroup of F
of finite index is compact; I(fc) is endowed with a natural CW structure such that
the action of F is cellular and the quotient F\I(k) is a finite CW-complex.

The main object of this paper is to show how this construction can be used to
completely détermine the intégral homology groups of PSL2(O). This is done by
analyzing a spectral séquence which relates the homology of PSL2(€) to the

homology of the quotient space PSL2(û)\I(k) and the homology of the stabilizers
of the cells (cf. [5], VII). We will confine our computations to the cases where € is

a euclidean ring, i.e., O O_d is the ring of integers in fc Q(V-d)for d

1,2, 3,7 and 11. We will write out in détail the case d 2 (cf. §5), which contains
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574 JOACHIM SCHWERMER AND KAREN VOGTMANN

ail the essential features in the computations. In the other cases, we indicate

briefly any necessary modifications in the analysis of the spectral séquence and list
the results.

The complex I(fc) and spectral séquence may be used to compute homology
and cohomology groups for the groups SL2(Û), GL2(O) and PGL2(€) as well as

PSL2(Û). The homology of thèse groups with coefficients in the Steinberg module
has particular interest in algebraic K-theory ([15]). We indicate hère how to do
this computation for SL2(O^2) and list the results in the other euclidean cases

(cf. §6).
We conclude the paper with some observations on torsion classes in the

cohomology of subgroups of finite index in SL2(Û) which are not detected by the
torsion in the stabilizers of cells in I(k).

Both authors would like to thank the Institute for Advanced Study in
Princeton for its hospitality during the spring of 1981 when this work was begun,
and the Max Planck Institut in Bonn where this paper was finished. We would
also like to thank J. Smillie, E. Mendoza and F. Grunewald for helpful discussions

on this material.

Notation

(1) Z/m dénotes the cyclic group Z/mZ, meN
(2) If a is an élément of SL2(C), we dénote by à the matrix whose entries are

complex conjugates of the entries of a.

(3) For a group F, Fab dénotes the abelianization of F, i.e., the quotient of F by
its commutator subgroup.

§1. A spectral séquence

1.1 Let F be a group which acts cellularly on a contractible CW-complex X
of dimension dim X n. If or is a cell of X we let Fa dénote the stabilizer of or in
F, i.e. Fa {7 g F | yct a}. If X (resp. Xp) is a set of représentatives for F-orbits
of cells (resp. p-cells) of X, then there exists a natural spectral séquence (cf. [5],
VII, [18], p. 93ff.) whose F1-term is given by the homology groups H^{F^ Z^),
or 6 X, and which converges to the homology H*(F, Z) of F with trivial coefficients
Z. (Hère Za dénotes the F^ -module Z given by the homomorphism s : Fa -» {±1}
where e(y) l (resp.-1) if y fixes (resp. reverses) the orientation of cr.) This
spectral séquence can be constructed as follows: Let Cq(X) be the group of
cellular q-chains of X. If Xq dénotes the q-skeleton of X, one has Cq(X)
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Hq(Xq, Xq_x; Z). Then the action of F on X gives rise to a natural action of the

group algebra Z[F] on the cellular q-chains Cq(X). Let E* be a Z[F]-free
resolution of Z. Then we can form the double complex C*(X)®z[r]E*. Since X is

contractible, C* is exact except at C0(X), where cok (ax : Q(X)-&gt; C0(X)) Z.
Since Ep is free, C*(X)®z[r]Ep is still exact, except that cok (dx &lt;8&gt; l) Z®z[nEp.
Thus the horizontal filtration of the double complex gives us a spectral séquence
with

q&gt;0
a)

SP q=0
U&gt;

The differential d1 is given by d1 1 ® dE3|c, where dEj|e is the boundary map for
E*. Thus the spectral séquence converges to the homology H*(r, Z) with trivial
Z-coefficients, i.e., E2 ECO H*(F, Z).

The vertical filtration of the double complex C*(X)®zlrjE* gives us

E pq Hq (F, Cp (X)) (2)

with the differential d1 induced by dc*(x)- We note that CP(X) can be identified
with the direct sum ©o.Z[F]®z[r&lt;T]2fr, where the sum is taken over aeXp. We

assume from now on that F^ fixes cr pointwise for every cell a. In this case the

orbit space F\X inherits a CW-structure. One can then orient each cell of X in
such a way that the F-action préserves orientations. In particular, it follows the
action of F^ on Z is trivial. Thus we get

Ep®zinCq{X)= 0(Ep®Z[

0 (Ep®2[rjZ) (3)
cre2q

and the spectral séquence has

E^ Hq(r, CP(X)) s 0 Hq{r^ Z). (4)
creXp

The differential d1 in E1 can be described in terms of the homology of the

stabilizers as follows. If creX is a p-cell in the orbit complex F\X, and da
2T±gTT, where greF and reX are (p-l)-cells in F\X, then there are maps

(U* : H*^, Z) -* H*(r^ Z) (5)
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induced by the inclusion 1^. —» FgrT, resp.

Htir^, 1) -* H*(rT, I), (6)

induced by the conjugation isomorphism a*-*%~lagT. The restriction of the
differential d1:E1p^^E1p_1^ to H^JT^Z) is then given by

^|HWr«Z) ^(gr)* ° 0&lt;rr)* (7)

where we sum over ail reX which occur in da. In other words, the d1-maps are
boundary maps &apos;twisted&apos; by the identifications of da in the orbit complex F\X

§2. Réduction theory

Let fc be an imaginary quadratic number field and 6 its ring of integers. In this
section we recall briefly réduction theory for the action of PSL2(6) on the Poincaré

upper half space H {(z, £)eCxR | £&gt;0}. The version we use is based on the
notion &apos;distance from a cusp&apos; and is a spécial case of Harder&apos;s results [11]. Thèse

were inspired by ideas of Siegel obtained in the case SL2 (resp. SLn) over the ring
of integers of a totally real number field [20]. In fact, the proofs given by Siegel
there can be easily generalized to the case we are considering.

2.1 We dénote by H {(z, £)eCxR| £&gt;0}U{(oo,oo)} the extended upper
half space. The usual action of SL2(k) on H extends then to one on H. An

élément g of SL2(k) acts on H by

where

acC2
Z &quot;

resp.
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We call an élément (z, f e H a cusp if either (z, Ç) (&lt;*&gt;, ») or £ 0 and z e fc. The
set of cusps will be identifiée! with fcU{oo}, the projective space over fc. Let
A a/p, a, p e fc, be a cusp; in the case A oo We write A 1/0. The distance from
a point (z, £)eH to the cusp A is then defined by

nK(z,Û
{ Z i A*« (2)

(and Moo(z, £) l/£) where Nx is the norm of the fractional idéal (a, fi) (in 0)
divided by |3j3 ; note that Nx dépends only on A and not on the choice of a and /3.

Remarks. (1) Note that each level set of the smooth function nA :H-*[R+ is a

horosphere at A. For A =«, n^{r), r&gt;0, is a horizontal plane of height 1/r.
(2) The définition is intuitively motivated by the following alternative description.

We can identify H with the set H of binary positive definite hermitian forms
on C2 with déterminant equal to one; a cusp A is identified with the line Lx in C2

with slope A. The distance from a point (z, f) to a cusp A is then the area of a

fundamental domain for Lx fl €2 in C2 measured using the hermitian form in H
corresponding to (z, £), and normalized so that nJO, 1) 1.

The distance function to a cusp has the following invariance property which
follows easily from the reinterpretation in remark (2): Let (z, f) be a point in H
and A a cusp of fc ; then for any g g SL2(O)

ngMz,0) nx(z,Ç) (3)

The main results in réduction theory can then be formulated in terms of the nA as

follows (cf. [11], §1).
(i) For a given point (z, £) e H and a fixed constant C there are only finitely

many cusps f/, such that ^(z, C) — C.

(ii) There is a constant Cx (depending only on fc) such that for every point
(z, 0 in H there exists at least one cusp A of fc such that nK(z, O — Cx.

(iii) There exists a constant C2 with the following property: For each (z, Ç)eH
there is at most one cusp jx of fc such that ^(z, £)&lt;C2 i-e- if ^(^&gt; 0&lt;C2 and
M*&gt; 0&lt;C2 then il jx&apos;.

For later use we fix such a constant C2. Elementary proofs of (i)-(iii) which
also yield actual values for Cx and C2 are given in [14], (§1).

2.2 Fundamental domain for PSL2{0). We conclude this section by reviewing
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the construction of a strict fundamental domain for the action of PSL2(Û)

SL2(O)/±I on H. To each cusp À of k we associate the set

H(À) {(z, QeH\ nk(z, f)&lt;^(z, f for ail cusps p f A};

this is called the minimal set of A. By property 2.1 (iii) of the distance function,
the set H(A) is non-empty. Moreover, each H(A) is a closed subset of H, and we
dénote its boundary by I(A). The main facts in réduction theory imply that the
sets H(A) make up a locally finite closed covering of H. Note that the minimal sets

transform under an élément of PSL2(O) in the following way

gH(A) H(gA), gePSL2(Û). (1)

We can now begin to construct the fundamental domain. One knows ([20],
p. 242) that there are exactly hk PSL2(0)-orbits of cusps of fc, where h hk

dénotes the class number of fc. Let A1?..., AH be représentatives of thèse

PSL2(0)-orbits. Furthermore, dénote by FK, i 1,..., h, the isotropy group of A,

in PSL2(€), and let T(\t) be a fundamental domain for the action of FKi on H.
Now let F, H(A,) H TU,), i 1,..., hk. Then

(2)

is a fundamental domain for the action of PSL2(Û) on H. We refer to Siegel&apos;s

notes [20], p. 261-269, for a detailed proof.
Finally, we hâve as a conséquence the following compactness criterion (cf.

[20], p. 270): Let rl9..., rh be positive real numbers. Then the set

F(ru rh) {(z, QeF\ nK(z, f)&gt;r, for ail 1 &lt;i&lt;h} (3)

is compact.

§3. The minimal incidence set

We now review Mendoza&apos;s construction of a contractible CW-complex I(k)
with a PSL2(0)-action. I(fc) is a 2-dimensional closed subspace of H with
PSL2(0)-equivariant déformation retraction from H to l(k). The quotient F\I(k)
by a subgroup F of finite index of PSL2(O) is a compact finite CW complex, with
cell structure inherited naturally from I(fc). In [14] he uses extensively the main
facts in réduction theory.
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3.1 The minimal incidence set I(fc) of the given imaginary quadratic number
field k is defined as the set of ail points (z, £) in H which lie in the minimal sets of
(at least) two différent cusps, i.e. I(k) is formally given as

I(k)= U H(À)flHW (1)

A,fx distinct cusps

By 2.2(1) one sees that I(k) is stable under the action of PSL2(Û). Moreover, I(k)
is closed since the sets H(À) H H(jut) form a locally finite closed covering of I(k).

Remark. If one does the same construction on the upper half plane (substitute
the real variable x for the complex variable z, and the projective space PX(Q) for
the cusps of k) one obtains the tree for SL2(l) studied by Serre [19], p. 52.

3.2 THEOREM (Mendoza [14]). (i) The minimal incidence set I(k) in H
associated to an imaginary quadratic field k is a closed subspace of the symmetric
space H, such that I(k) is invariant under the proper action of PSL2(Û) and the

quotient PSL2(O)\I(k) is compact. Moreover, I(k) is a PSL2(O)-equivariant
déformation retract of H, and hence connected and contractible.

(ii) The set I(k) is naturally endowed with the structure of a 2-dimensional
locally finite regular CW-complex. The action of PSL2(€) on I(k) is cellular, and
so, PSL2(O)\I(k) is a finite CW-complex.

Since the thesis [14] of Mendoza is not easily at hand everywhere we sketch
his proof with his kind permission.

Ad(i). We observed already that I(fc) is closed. To show that PSL2(Û)\I(k) is

compact it suffices to exhibit a compact set Kc H such that J(fc) F • K. We take

K I(k)HF where F is the fundamental domain described in 2.2. This set is

non-empty, closed, and by 2.1(iii) contained in F Ffl{(z, f)e H | nK(z, £)^ C2},

where An AH are représentatives of PSL2(0)-orbits of cusps. The compactness
criterion (cf. 2.2.(3)) implies that F&apos; is compact. To show that I(k) is a déformation

retract of H it sufïices to prove that for each cusp À the boundary I(À) is a

déformation retract of H(A), since the sets H(À) make up a locally finite closed

covering of I(k) as pointed out before.
This latter assertion follows from the fact that the distance function nK is a

Morse function without critical points in H(\)- I(À). (The retraction is perpen-
dicular to the level sets of nk, i.e. we retract along a géodésie. For À^o° this is a

vertical semicircle, for À °o a vertical half line). The PSL2(^)-equivariance is a

direct conséquence of 2.1.(3).
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Ad(ii). The main ingrédient hère is to prove that each set H(À)flH(/x) with
A, jut distinct cusps can be obtained by intersecting a finite number of hémisphères
with center in the plane £ 0 and vertical half planes. Hence H(À)flH(/x) is in a

natural way a regular cell. For the rather technical complète proof we refer to
[14], p. 26-38.

Remarks. (1) The theorem is clearly true for any subgroup F in PSL2(0) of
finite index. Furthermore, for any such F one can refine the natural cell structure
such that the stabilizers Fx in F remain the same for ail points x in an open cell.

(2) Note that the dimension of I(k) is exactly the same as the virtual
cohomological dimension of F.

3.3 If the class number of k is one, the réduction theory described in §2

coincides with classical réduction theory as initiated by Bianchi [2] and pursued by
Humbert [13] (for an account of the latter one see Swan [24]). Therefore, in this

case, the minimal incidence set I(k) can be obtained as the translation by F of the
&apos;bottom&apos;-boundary B(k) of the classical fundamental domains determined by
Bianchi and Humbert. Indeed, for someone familiar with the geometry of the

examples in [2] it is not too difficult to work out separately in each case of class

number one a fundamental domain for the action of PSL2(0) on H which is good
enough for actual cohomological computations. Part of this is done by Flôge in his

unpublished thesis [8], where he also constructs fundamental domains in some
cases of class number two. He has used this to give group theoretical descriptions
of PSL2(0-d) for d 1, 2, 3, 5, 6, 7, 10, 11 as amalgamated products of suitable

subgroups or as HNN-extensions of such products. But we preferred to use
Mendoza&apos;s conceptual and systematic approach in order to hâve some gênerai
foundations for later considérations in [9], [26].

§4. Finite subgroups of PSL2(Û)

In this section we list the finite groups which may occur as subgroups of
PSL2(O), together with their intégral homology. Thèse homology groups appear in
the spectral séquence described in §1 which we will use to compute the homology
of PSL2(Û).

4.1 The only finite subgroups which occur in SL2(C) are the binary
polyhedral groups (see, e.g. [22], §4.4). Let x be an élément of SL2(Û) &lt; SL2(C) of
finite order n. Then x has eigenvalues p and p, where p is a primitive nth root of
unity. Since tr x p + p is in 6 HR Z, we must hâve n 1,2,3,4 or 6. Thus the

only finite subgroups of SL2(€) which can occur are cyclic of the above orders, the



The intégral homology of SL2 and PSL2 of euclidean imaginary quadratic integers 581

quaternion group, binary tetrahedral group and binary octahedral group. Since

the stabilizer of any point in H is finite and contains ±1, the possible stabilizers in
PSL2(O) are the cyclic groups of orders two and three, the Klein four-group
D2 Z/2xZ/2, the symmetric group S3 and the alternating group A4. The intégral
homology of thèse groups can be computed by elementary means (see, e.g. [5])
and is given in the following tables:

4.2 LEMMA. The intégral homology of the finite groups G Z/n, (n &gt; 0), D2,
S3, A4 respectively is given as follows (for simplicity we neglect to write the trivial
coefficients Z)

Hq(Z/n)

Hq(D2)

Hq(A4)

q odd

q even, q &gt; 0

q odd

q even,

z

Z/2

0

Z/6

0

z

(Z/2)k

(Z/2)k

(Z/2)k

(Z/2)k

(Z/2)k

(Z/2)k

0Z/3
ez/2
ez/6

e z/2 e z/6

q 0

q l(4)
q 2(4)

q^3(4)
&lt;-0(4),

q=6k+l
q=6k+2
q=6k+3
q=6k+4
q=6k+5
c? 6(k + :

(1)

(2)

(3)

(4)

In order to compute in the spectral séquence, we must also détermine the

maps induced on homology by the inclusions of cyclic groups into D2, S3 and A4;
thèse are given in the following séries of lemmas.
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4.3 LEMMA. (1) Any inclusion i:Z/2 —» S3 induces an injection on homology.
(2) An inclusion i : Z/3 -» S3 induces an injection on homology in degrees

congruent to 3 mod 4 (and is otherwise zéro).

Proof. One can directly compute the Leray spectral séquence of the extension

The action of Z/2 on Z/3 is the non-trivial action, and the resuit is that E2pq 0 for
p, q&gt;0, Epo Hp(Z/2) and Eo,q Z/3 in dimensions congruent to 3 mod 4, zéro
otherwise. The diagrams

Z/2 - Z/2

¦i i
1 &gt; Z/3 &gt; S3 &gt; Z/2 &gt; 1

and

Z/3 Z/3

i i
1 &gt; Z/3 -^ S3 &gt; Z/2 &gt; 1

induce maps of H*(Z/2) onto the bottom row of the spectral séquence, and of
H*(Z/3) onto the left-hand column of the spectral séquence, Hq(Z/3)—»H0(Z/2,
Hq(Z/3)). Since ail differentials are zéro (Hom (Z/2, Z/3) 0), thèse maps induce

maps on the abutment (H*(S3)) as claimed.

4.4 LEMMA. Any inclusion i:Z/2—&gt; D2 induces an injection on homology in
ail dimensions.

Proof. This is clear from the trivial extension

4.5 LEMMA. (1) An inclusion i:Z/3-»A4 induces injections on homology
in ail dimensions.

(2) An inclusion i:Z/2—&gt; A4 induces injections on homology in dimensions

greater than 1, and is zéro on Ht.

Proof. We consider the spectral séquence of the extension

*l. (3)



The intégral homology of SL2 and PSL2 of euclidean imaginary quadratic integers 583

The homology of Z/3 appears in the bottom row of the E2-term, and every
differential which originates in this row must be zéro, since it lands in the
2-torsion group Hp(Z/3; Hq(D2)) for some q&gt;0. Thus E2pfi E~o? and the homology

of Z/3 injects into the homology of A4.
For a map i;Z/2-&gt; A4, factor through the (unique) 2-sylow subgroup D2:

1/2

i
Then the homology of Z/2 maps to the left-hand column of the spectral séquence
by the maps

Hq(Z/2) -^-&gt; Hq(D2) -^U H0(Z/3;Hq(D2)). (5)

The action of Z/3 on D2 is non-trivial, and one can compute that the composition
tt ° a* in (5) is injective for q &gt;2, and zéro for q 1 ; also E^ 0 for p and q &gt; 0,
so ail the differentials are zéro, and E2 E°°. Thus the injectivity properties
extend to the abutment, and z* is injective for q&gt;\.

§5. Intégral homology of PSL2(Û^d)

We dénote by û_d the ring of integers of the imaginary quadratic number field
k Q(V-d), deN, d squarefree. In this section we will give a reasonably detailed
explanation of the calculations for the intégral homology of PSL2(Û_d) for d 2,
then list the results of our computations for the other cases where €_d is a
euclidean ring, i.e. d 1, 3,7,11.

For simplicity, we leave out the coefficients Z when we mean trivial Z
coefficients.

5.1 We begin with a notion of fundamental domain which takes the cell
structure on I(k) into account. A finite sub-complex F of I(k) is called a

fundamental cellular domain for PSL2(€) F if I(k) F • F and if points in open
induced 2-cells are not PSL2(0)-equivalent. If we dénote by &quot;-&quot; the cellular
équivalence relation on F induced by identification of 0-cells or l-cells, then it
follows easily that ~\F and PSL2(û)\I(k) are isomorphic CW-complexes.

5.2 The case d 2.

Let (o y/-2; then co and 1 generate 0_2 as a free Z-module (lattice) in
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Q(V~2) fc. A fundamental cellular domain for the action of PSL2(O_2) on the

complex I(fc) is the area on the unit hémisphère centered at (0,0)çCx|R+ lying
above the rectangle in C with vertices ±(V2/2)i and |±(&gt;/2/2)î (cf. 4.2.5 in [14]).
We label the vertices of this two-cell as follows:

i V2

If we let F, dénote the stabilizer in PSL2(O_2) of P,, and Ty the stabilizer of the
one-cell PtPt, then we hâve spécifie descriptions of thèse stabilizers as follows: Let

o) andc

(2)

Note that the stabilizer of the only 2-cell is trivial. In pictorial form, the
fundamental domain and stabilizers are

P4

Px &lt;a) Z/2 P2

The top and bottom edges of the rectangle are identified by the élément

g J of PSL2(O_2) • gPi-P2 ^4^*3- Thèse are the only identifications, so the

quotient by PSL2(€_2) is a cylinder.
We now feed this information into the spectral séquence described in §1, with

p-cells a

There are only three non-zero columns, corresponding to the 0-, 1- and 2— cells

of the complex. In fact, since the stabilizer of the 2-cell is trivial, the third column
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is zéro except that J32sO Z. For q&gt;0, the qth row is

î.e.

Hq(r12)©Hq(r23)0Hq(r14)

Hq{D2)®Hq(A4) +£- Hq(Z/2)0Hq(Z/3)0Hq(Z/2)

(a, b, c)

(3)

(4)

where the maps i* are induced by inclusion, and g* by conjugation by g. In
particular, g*:Hq(F14)-* ff^A) is induced by the map from Fl4 to J^ sending

J to
_ j, and g^:Hq(r23)^Hq(r2) is induced by the map from

F23 to F2 sendmg ^ J to
x ^

The bottom row of the E^-term is just a Z-chain complex giving the homology
of the quotient; thus Eq,0 E*t0 Z, and E2p# 0 for p &gt; 2. Since the third column
has disappeared entirely by £2, we hâve E2 - E°°. Note that for q even and bigger
than zéro 4.2.(1), implies that Hq(Z/2) Hq(Z/3) 0, so Elq E\A 0 and EZ,q

Ejq Hq(D2)© Hq(A4). For q odd, we must calculate using the explicit description

of the d1-map given in 1.1.(7). For example, to calculate g*:Hq(r14)-&gt;
Hq{rx), we write a resolution for ri4 Z/2 (f&gt;, a resolution for F1 D2 and
calculate the chain map induced by the map g:F14-+Fi given by t*-*ac\

Z[Z/2] ZK/2]

/û + 1 1-C 0 v

l 0 a-1 c+V

With Z-coefïicients, this becomes

(5)

Z[DJ 0.

(1)
(6)

(0 0)
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The effect on homology is now easily calculated, the map g*:Z/2-*(Z/2fq+3)/2
sends x to (x, x,..., x). In a similar manner, we make use of lemmas 4.3. -4.5. to
calculate the other maps i* and g*. The end resuit is that the d^map is given by

)/2 0 (Z/2)k © (Z/3)

(x - 2, x,..., x, x - x) © (z, 0)

We now hâve É\q Ker dx Z/3 and

Z/2 ©Z/3 ©Z/2

(z, y, x) (7)

\q Ker àx Z/3 and E^q coker d1 (Hq(D2)eHq(A4))/
1 (Z/2©Z/2)). Since E2 E°°, the spectral séquence has E°°-term

q even

q odd

Hq(D2)©Hq(A4) 0

(Hq(D2) © Hq(A4))/(Z/2 © Z/2) Z/3

Z/2©Z/2 0

Z/2 ©Z/3 Z/2 ©Z/3

(8)

We can now state the theorem.

5.3 THEOREM. The intégral homology of PSL2(€_2) is given by

Z©Z/6
Z/40Z/6
(Z/2)2&lt;l/3©Z/3

k(Z/2)2(«+1V3©Z/3

q^0(3),q&gt;0

,q&gt;2

For q^2 thèse results follow directly from the above computation 5.2.(8) of
the E°°-term of the spectral séquence together with the descriptions of the

homology of A4 and D2 given in §4. For q 2, the spectral séquence gives us an

exact séquence

Z/2 0 Z/2 -&gt; H2(PSLS(€_2)) -» Z/2 © Z/3 -&gt; 1.
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To résolve the ambiguity in the 2-torsion, we consider our spectral séquence with
Z/2-coefficients; we find that for 0&lt;q&lt;2,

giving

(Z/2)3 ©Z/2

(c-a, c,0, a)

Z/2 ©Z/2

(c-a.0)
Z/2 ©Z/2

(-a, a)

*-Z/2©0©Z/2
*-i(a,0,c)
^-Z/2©0©Z/2
«h (a, 0, c)

&lt;-Z/2 ©Z/2© Z/2 «-Z/2

*-i(a,b,c)

Z/2©Z/2
Z/2

Z/2

0

Z/2

Z/2

Thus H2(PSL2(0_2);Z/2) (Z/2)3. By the universal coefficient theorem, this is

isomorphic to H2(PSL2(0_2))®Z/2»Tor(H1(PSL2(0.2)),Z/2) H2(PSL2(O_2)) ®
Z/2 0 Z/2. Therefore H2(PSL2(&lt;?_2)) ® Z/2 s (Z/2)2, so H2(PSL2(&lt;?_2)) s
Z/6 0Z/4.

We will now list the theorems for the other euclidean cases, indicating briefly
any necessary modifications in the computations. We dénote by S

{(z, £) e H | |z|2 + £2 1} the hémisphère with center (0, 0) and radius 1. For points
in S we will sometimes give only the first coordinate.

5.4 The case d l. A fundamental cellular domain for the action of
PSLviO-J on the complex I(Q(V-1)) is the set F {(z, f)€ S10&lt;Re z&lt;i
0 &lt; Im z &lt; J}; the vertices are the points Px (0,1), P2 (|, V3/2), P3 {\+|i, V2),

^4 (kh &gt;/3/2). There are no further identifications (cf. [14], 4.1.9 or [2], §12). Let

-n- »-U!)- ni 3.

then the cellular domain and the stabilizers of the cells are given in pictorial form
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{a)=113

(a,d)
(a)=Z/2

(a,b)=S3

By 4.3-4.5 the inclusion maps Ft) -* F,, 1 ^ i, j^ 4, of the stabilizers induce
injections on homology, except for F34-+ F4 and r23--» F2- Thèse induce (cf. 4.2.)
injections on homology of degree n if n 3 mod 4, and otherwise induce the zéro

map.

5.5 THEOREM. The intégral homology o

(Z/2)8k 0 (Z/2)2

(Z/2)8fc0(Z/2)2©Z/3

(Z/2)8ke(Z/2)4©Z/3

(Z/2)8ke(Z/2)2

(Z/2)8k e (Z/2)5

(z/2)8ke(z/2)4ez/3
(Z/2)8k©(Z/2)6©Z/3

(Z/2)8k © (Z/2)6

(Z/2)8k © (Z/2)7

(Z/2)8k©(Z/2)6©Z/3

(Z/2)8k©(Z/2)10©Z/3

(Z/2)8k © (Z/2)8

.j) is given by

12fc + 2

12k + 7

12k + 8

12fc + 1

12fc + l
12(fc +

where keN.

5.6 T?ic case d 3. A fundamental cellular domain for the action of
PSL2(C_3) on the complex 7(Q(V-3)) is a subset of the unit hémisphère S; the
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following picture contains ail the information we need. The exact coordinates of
the points P, can be easily worked out if the reader so desires, (cf. [14], 4.2.3 or
[2], §13). Let

0 -1 /O &lt;o\ /O &lt;o2\
&gt; L2 o)&apos; C L o)

where w ©(l + V3 i). We hâve in pictorial form

Z/2 (b) ^p

(1)

Z/2 &lt;c&gt;

(a)

{a, c) A4

(2)

The map djiEj^-^E^,, is injective for qs2; for q l,
di : Hj(Z/2) 0 Hi(Z/3) © H^Z/2) -* H^Ss) 0 Hi(A4) 0 H^A*) sends (a, b, c) to
(—a -c, -b, b), and for q 0, the di-maps are the boundary maps for the intégral
homology of the (contractible) fundamental domain.

5.7 THEOREM. The intégral homology of PSL2(Û_3) is given by

(Z/2)4k

Z/30(Z/2)4k

Z/40Z/2 0(Z/2)4k

Z/6 0Z/3 0(Z/2)4k

(Z/2)4k

Z/6 0(Z/2)20(Z/2)4k

(Z/2)40(Z/2)4k

Z/60Z/3 0(Z/2)4k

(Z/2)40(Z/2)4k

Z/60(Z/2)20(Z/2)4k

(Z/2)20(Z/2)4k

(Z/2)40Z/6 0Z/3 0(Z/2)4k

q 12k&gt;0

q 12k + l
q 12k + 2

q 12k + 3

q 12fc+4

q 12k + 5

q 12fc + 6

q 12k + 7

q 12k + 8

q 12k + 9

q 12fc + li

q 12fc + l
where fceN.
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5.8 The case d 7. The fondamental cellular domain for the action of
PSL2{C7) on the complex I(Q(-J-7)) is again a subset of the hémisphère S; the
domain and the stabilizers of the cells are given in pictorial form as follows, if we
let

\ -1\ 0 - 1\
o)

where a&gt; (§)(l + V-7). (cf. [14], 4.2.11. or [2], §16).

Z/2

Z/2

&lt;â,c)

The élément g

(à) 1/2

M a) — 1/
sends P^ to P3P4, so the quotient of I(Q(V-7)) by

PSL2(0_7) is topologically a Môbius band. The homology of each stabilizer is

periodic of period 2 or 4 by 4.2. so we need only compute the induced maps on

Hl and H3 to calculate the E2 E°°-term of the spectral séquence. The resuit is:

5.9 THEOREM. The intégral homology of PSL2(Û_7) is given by

zez/2

LZ/2

q=2,3(4)

q » 0,1(4) &lt;?s

5.10 The case d ll. From the topological point of view the situation is

quite similar to the case d 7. Let w (|)(1 + V-11), and put

-2U A -1\ / 0 1\
\i o&gt; C U o&gt;
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The fundamental cellular domain for the action of PSL2(€_n) on the complex
I(Q(V-11)) is again a subset of the hémisphère S; the domain and the stabilizers
of the cells can be visualized as follows: (cf. [14], 4.2.12 or [2], §16).

(a,c)

(c)

A4 (a, c)

The élément g

(a) 1/3

{à) 113

\-l 0/
sends PXP2 to P3P4, and there are no further identifications,

so the quotient PSL2(&lt;9_11)\I(Q(V-11)) is topologically a Môbius band. The

d^maps in odd dimensions q&gt;3 are (jc, y)^-»(x~y, y — x) on 3-torsion and

injective on 2-torsion; for q 1, the d^map is the same on 3-torsion but zéro on
Hx(Z/2). There is ambiguity in the 2-torsion of H2(PSL2(0_n)) which can be

resolved, as in the case à 2, by looking at the spectral séquence with Z/2-
coefficients. The resuit is:

5.11 THEOREM. The intégral homology of PSL^Û^) is given by

zez/3
Z/6 0Z/4
(Z/2)k+10Z/3

(Z/2)k0Z/3
q 3k-l&gt;2

q 3k&gt;0

q=3k+l&gt;l

where keM.

§6. Intégral cohomology of SL2(Û_d) and homology with Steinberg coefficients

The complex I(k) and spectral séquence in §1 (resp. a cohomological analogue
of it) may be used to compute homology and cohomology groups for the groups
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SL2(0_d), PGL2(C_d) and GL2{C_d) as well as PSL2(C_d). The homology of
SL2(ff_d) with coefficients in the Steinberg module St(2)_d of (Q(V-d))2 has

particular interest for algebraic K-theory, (cf. [15]); we indicate hère how to do
this computation for à 2 and list the results for the other euclidean cases. Since

homology with Steinberg coefficients is dual to cohomology in degree &gt;2 (see

6.4.) we begin by Computing the intégral cohomology of SL2(C_d).

6.1 As noted in §5, the groups which may possibly appear as finite subgroups
of SL2(C_d) are the cyclic groups of orders 2, 3, 4 and 6, the quaternion group Q,
the binary octahedral group D and the binary tetrahedral group Te. Any finite
subgroup of SL2(C) acts freely on the maximal compact subgroup SU2 &lt;=¦ SL2(C),
which is a 3-sphere. Such a subgroup must therefore hâve periodic cohomology of
period dividing 4, so we need only compute four cohomology groups to obtain
each of the following cohomologies:

Hq(Te)

0

Z/20Z/2
0

1-1(4)
q-2(4)
&lt;ï-3(4)

q-2(4)
q-3(4)

(2)

q-2(4)
q-3(4)

(3)

H«(2/n)=&lt;0 odd

even, q &gt; 0

(4)

6.2 We now specialize to the case d 2, and look at the spectral séquence of
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§ 1 in cohomology (cf. [5], VII), we hâve

593

orbits of
p-cells trp

Note that the stabilizer of the 2-cell in the fundamental cellular domain for the
action of SL2{0_2) on J(Q(V-2)) is now Z/2, and not trivial as it was for
PSL2(Û_2). The E1-term and d^maps are as follows:

4

3

2

1

0

Z/8 ©Z/24

(*, y)1—

0

(Z/2)2 © Z/3 —?Z/4 © Z/6 © Z/4

Z/4 ©Z/6 ©Z/4

-»(y-x,o,O)
0

Z/2

0

•Z/2
(2)

1( x2, y)h-* (2x2,0,2xj -
0 0

(a, b, c) (c-ft)
1 2 3

The resuit of thèse computations is

6.3 THEOREM. The intégral cohomology of SL2(&lt;7_2) is given by

Z

z
Z/3

Z/2 ©Z/6
Z/2 ©Z/24

Z/12

q 0

q l
q-2(4)
q-3(4)
q 0(4)

q 1(4)

6.4 To obtain the homology of SL2(6-2) with coefficients in the Steinberg
module St (2)_2, we use Farrell-Tate cohomology theory H* for SL2(€_2) (cf. [7]
or [5], chap. X). By a gênerai resuit of Borel-Serre ([4], 11.4) the group SL2(0_2)
is a virtual duality group of dimension 2 (in the sensé of [3] or [6], §3) whose

dualizing module is the Steinberg module St (2)_2 H2(SL2(C-2)&gt; IiSL2(€^2)]) with
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its natural SL2(0_2)-action (cf. [4], 11.4. and 8.6). Thus, for q&gt;2, there is an

isomorphism ([6], 11.7.):

_2), St (1)

For 0&lt;q^2, there is an exact séquence relating Farrell-Tate cohomology, the

regular cohomology and homology with Steinberg coefficients (cf. [6], 11.8.); for
simplicity we abbreviate H* H*(SL2(Û_2)) resp. H* H*(SL2(&lt;9_2)):

0 -* H1 -&gt; H2(SL2(O_2), St (2)_2)

?_2),St(2)_2) (2)

-^ H1 —U H1 -&gt; HO(SL2(0_2), St (2)_2) -* H2 -^-* H2 -&gt; 0.

The spectral séquence 6.2(1) can be used to compute H*(SL2(Û_2)); we have ([5],
X, 4.1.)

Note that for the finite groups F^, the Farrell-Tate groups Hq(Fo.) coincide with
the standard Tate cohomology groups. The maps at : H1 —&gt; H\ in (2) are then
induced by the maps on the cohomology of the stabilizers Fa in the spectral

séquences; thèse are the standard maps from cohomology to Tate cohomology,
i.e. for a finite group Fa of order \Fa\ the map H&apos;iF^)-^ H1^) is an isomorph-
ism for i&gt;0 and H0^) —»H0^) is the morphism Z-:&gt;1l\r(T\. We use thèse

remarks to prove

6.5 THEOREM The cohomology of SL2(O_2) with coefficients in the Steinberg

module St (2)__2 is given by

0

zez/2
Z0Z/2 0Z/6
Z/3

Z/12

Z/20Z/24
Z/20Z/6

q 0

— 1

r\

4-3(4)
q^0(4),

q-K4),
q-2(4),

q&gt;0

q&gt;l

q&gt;2
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Proof For q&gt;3, 6.4.(1) says that ft,(SL2(0_2), St(2)_2)) H1

since H*(SL2(€_2)) is periodic of period 4, and Hl(SL2(Û_2)) Hl(SL2(€.2)) for
i&gt;3 (cf. [6], 11.4), the resuit follows from our calculation of H*(SL2(&lt;^_2)) in
Theorem 6.3. For 0 &lt; q &lt;2, the resuit follows from the calculations of the maps a,
in 6.4.(2) as outlined above.

We now state the results of our computations of Hq(SL2(O_d), St (2)_d) in the
other euclidean cases:

6.6 THEOREM. The cohomology of SL2(€_d) for d 1, 3,7,11 with coefficients

in the Steinberg module St (2)_d is given by

HJSL2(Û^),

HJSL2(O_3),

HJSL2(0_7), St(2)_7)

0

Z/4

Z©Z/6
1/2® 1/2

0

Z/120Z/8

lie

&apos;0

Z/6

Z0Z/4
Z/3

0

Z/240Z/6

&apos;0

z

z©z/i2
Z/4

Z/4

Z/12

.Z/12

q 0

q l
q=2
q^3(4)

q 0(4),q&gt;0

q l(4),q&gt;l

q-2(4),q&gt;2

q 0

q \

q=2
q 3(4)

q 0(4),q&gt;4

q 0

q l
q 2

q»3(4)

q 0(4),q&gt;4

q l(4),q&gt;5

q 2(4), qs6

(1)

(2)

(3)
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0 q=0
ZeZ/2 q l
Z0Z/120Z/2 q 2

Z/3 q 3(4) (4)

Z/6 q

Z/240Z/2 q

Z/12 0Z/2 q

Remark. Up to 2-torsion Hq(SL2(@-1), St (2)_x) was déterminée by Stafïeldt
([23], Thm. IV.1.3.).

6.7 Torsion classes in H2(PSL2(O_d)). We conclude this paper with some
observations concerning torsion classes in H*(PSL2(€_d)). There is a natural map
between the usual cohomology and the Farrell cohomology of a subgroup F of
finite index in PSL2(û_d)

which is an isomorphism for q &gt; vcd(F), and one has H*(F) 0 if F is torsionfree.
It is shown in [6], §15 that a great deal of information about H*(F) can be
extracted from the finite subgroups of F. The arguments there are of a gênerai
nature. As pointed out in §4 there is only 2- and 3-torsion in H*(PSL2(€_d)), and
in the euclidean cases d 1,2, 3,7,11 we considered this is also true for the usual

cohomology H*(PSL2(O.d)) (cf. §5).
We will give now some examples of subgroups F of small index in PSL2(Û_d),

d 1, 3, where one has torsion classes in the low-dimensional cohomology of F,
whose order p is différent from 2 and 3. It would be of great interest to hâve an
arithmetic explanation for thèse phenomena. For more détails on this subject see

[9].
(1) The group PSL2(6-3) is generated by the matrices

0 / 0H-l 0\

where a&gt; — 1/2+V3/2. In [9] it will be shown that there are seven conjugacy
classes of subgroups of index 12 in PSL2(Û_3). One of thèse classes can be
represented by the torsionfree group
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where x a resp. y bcb. We note that the manifold F2\H îs homeomorphic to
the complément of the figure-eight-knot m the three sphère S3 (cf. [16], [17]); in

particular one has H1(r2) rfsZ.
Another class can be représentée! by

r7 (u, v | uv uvuv2 uv~1uv2= 1)

where w a2, v abc aba c~1bc~1ba~1. One sees easily that

and uv îs indeed an élément of order 5 in F7b. This implies that there îs a torsion
class of order 5 m H2CT7).

(2) For a given prime idéal / of degree 1 in the ring of integers 0-x of
Q(V-l) we consider the group

Dénote by p N(f) the norm of /. Then machine compilation (cf. [9])
shows, for example, if p 101 that

ro(f)ab

There are other examples of this type due to Grunewald.

REFERENCES

[1] Alperin, R, Homology of SL2(IM) Comment Math Helvetici 55 (1980), 364-377
[2] Bianchi, L, Sut gruppi di sostituzioni hnean con coefjkienti appartenenti a corpt quadratici

imaginait Math Annalen 40 (1892), 332-412
[3] Bieri, R and Eckmann, B Groups with homological duahty generahzing Pomcaré duahty,

Invent Math 20 (1973), 103-124
[4] Borel, A and Serre, J P Corners and anthmette groups, Comment Math Helvetici 48 (1973)

436-491
[5] Brown, K S Cohomology of groups, Graduate Texts in Maths vol 87, Berhn-Heidelberg-New

York 1982
[6] Brown, K S, Groups of virtually finite dimension In Homological group theory, ed C T C

Wall London Math Soc Lect Note Séries 36, Cambridge 1979, 27-70
[7] Farrell, F T, An extension of Tate cohomology to a class of infinité groups J Pure Appl

Algebra 10 (1977), 153-161
[8] Floge, D, Zur Struktur der PSL2 uber einigen imaginar-quadratischen Zahlnngen Math

Zeitschnft 183 (1983), 255-279
[9] Grunewald, F and Schwermer, J, Subgroups of small index in Bianchigroups, in préparation



598 JOACHIM SCHWERMER AND KAREN VOGTMANN

[10] Grunewald, F and Schwermer, J A non-vanishing theorem for the cuspidal cohomology of
SL2 over imaginary quadratic integers, Math Annalen 258 (1981), 183-200

[11] Harder, G A Gauss-Bonnet formula for discrète anthmetically defined groups Ann scient Ec
Norm Sup (4) 4 (1971), 409-455

[12] Harder, G Penod intégrais of cohomology classes which are represented by Eisenstein séries In
Automorphic forms, Représentation theory and anthmetic (Bombay colloq 1979), Berhn-
Heidelberg-New York 1981, 41-115

[13] Humbert, G Sur la réduction des formes d&apos;Hermite dans un corps quadratique imaginaire C R
Acad Se Pans, 161 (1915), 190-196

[14] Mendoza, E Cohomology of PGL2 over imaginary quadratic integers Bonner Math Schriften,
no 128, Bonn 1980

[15] Quillen, D Finite génération of the groups Kt of rings of algebraic integers In Algebraic
K-Theory I, ed H Bass, Lect Notes m Maths 341, Berlm-Heidelberg-New York 1973

[16] Riley, R, A quadratte parabohe group Math Proc Camb Phil Soc 77 (1975), 281-288
[17] Schwermer, J A note on hnk compléments and anthmetic groups, Math Annalen 249 (1980),

107-110
[18] Serre, J P, Cohomologie des groupes discrets In Prospects in Mathematics, Annals of Math

Studies 70, Pnnceton 1971, 77-169
[19] Serre, J P, Arbres, amalgames et SL2, Astérisque 46, Pans 1977

[20] Siegel, C L, On Advanced Analytic Number theory Lectures on maths and physics, vol 23,
Tata Institute, Bombay 1961

[21] Soûle, C, The cohomology of SL3(Z) Topology 17 (1978), 1-22
[22] Springer, T A, Invariant Theory, Lect Notes m Maths 585, Berhn-Heidelberg-New York

1977

[23] Staffeldt, R Réduction theory and K3 of the Gaussian integers, Duke Math Journal 46 (1979),
773-798

[24] Swan, R Generators and relations for certain spécial hnear groups, Advances m Math 6 (1971),
1-78

[25] Thurston, W P Three dimensional manifolds, Kleinian groups and hyperbohe geometry Bull
A M S (N S 6 (1982), 357-381

[26] Vogtmann, K, On SL2 of non-euchdean imaginary quadratic integers, m préparation

Mathemattsches Institut
Unwersitât Bonn
Wegelerstrasse 10
D-5300 Bonn 1

Dept of Mathematics
Columbia Unwersity
New York NY 10027
USA

Received November 3, 1982


	The integral homology of SL2 and PSL2 of euclidean imaginary quadratic integers.

