Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 58 (1983)

Artikel: The integral homology of SL2 and PSL2 of euclidean imaginary
guadratic integers.

Autor: Schwermer, Joachim / Vogtmann, Karen

DOl: https://doi.org/10.5169/seals-44614

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-44614
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 58 (1983) 573-598 0010-2571/83/040573-26$01.50 + 0.20/0
© 1983 Birkhauser Verlag, Basel

The integral homology of SL, and PSL, of euclidean imaginary
quadratic integers

JoacHIM ScHWERMER and KAREN VOGTMANN

Introduction

One way to study the cohomology of a group I’ of finite virtual cohomological
dimension is to find a finite dimensional contractible space X on which I' acts
properly (such a space X always exists by [18], 1-7), and to then analyze the
action. In this paper we want to consider the arithmetic groups SL,(0) and
PSL,(0) = SL,(0)/+I where O is the ring of integers in an imaginary quadratic
number field k; the classical choice of X in this case is hyperbolic three-space H,
i.e., the associated symmetric space SL,(C)/SU(2). As early as 1892 Bianchi [2]
exhibited fundamental domains for the action of PSL,(0) on H for some small
values of the discriminant. The space H has also turned out to be very useful in
studying the relation between automorphic forms associated to SL,(0) and the
cohomology of SL,(0) (cf. [12], [10]), and in studying the topology of certain
hyperbolic 3-manifolds (cf. [25]).

However, this choice of X is inconvenient for actual explicit computations of
the cohomology of I' = (P)SL,(0) with integral coefficients because the dimension
of H is three, whereas the virtual cohomological dimension of I’ is two, indicating
that it may be possible for I" to act properly on a contractible space of dimension
two; in addition, the quotient I'\ H is not compact. A more useful space X for our
purposes is given by work of Mendoza [14], which we recall in §3; using
Minkowski’s reduction theory (cf. §2), he constructs a I'-invariant 2-dimensional
deformation retract I(k) of H such that the quotient of I(k) by any subgroup of I
of finite index is compact; I(k) is endowed with a natural CW structure such that
the action of I is cellular and the quotient I'\I(k) is a finite CW-complex.

The main object of this paper is to show how this construction can be used to
completely determine the integral homology groups of PSL,(0). This is done by
analyzing a spectral sequence which relates the homology of PSL,(0) to the
homology of the quotient space PSL,(0)\I(k) and the homology of the stabilizers
of the cells (cf. [5], VII). We will confine our computations to the cases where O is
a euclidean ring, i.e., 0 =0_, is the ring of integers in k=Q(—d) for d=
1,2,3,7 and 11. We will write out in detail the case d =2 (cf. §5), which contains
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574 JOACHIM SCHWERMER AND KAREN VOGTMANN

all the essential features in the computations. In the other cases, we indicate
briefly any necessary modifications in the analysis of the spectral sequence and list
the results.

The complex I(k) and spectral sequence may be used to compute homology
and cohomology groups for the groups SL,(0), GL,(0) and PGL,(0) as well as
PSL,(0). The homology of these groups with coeflicients in the Steinberg module
has particular interest in algebraic K-theory ([15]). We indicate here how to do
this computation for SL,(€_,) and list the results in the other euclidean cases
(cf. §6).

We conclude the paper with some observations on torsion classes in the
cohomology of subgroups of finite index in SL,(0) which are not detected by the
torsion in the stabilizers of cells in I(k).

Both authors would like to thank the Institute for Advanced Study in
Princeton for its hospitality during the spring of 1981 when this work was begun,
and the Max Planck Institut in Bonn where this paper was finished. We would
also like to thank J. Smillie, E. Mendoza and F. Grunewald for helpful discussions
on this material.

Notation

(1) Z/m denotes the cyclic group Z/mZ, meN

(2) If a is an element of SL,(C), we denote by a the matrix whose entries are
complex conjugates of the entries of a.

(3) For a group I', I'** denotes the abelianization of T i.e., the quotient of I" by
its commutator subgroup.

§1. A spectral sequence

1.1 Let I' be a group which acts cellularly on a contractible CW-complex X
of dimension dim X = n. If o is a cell of X we let I, denote the stabilizer of o in
Iie. I',={yel'|yo=0}. If X (resp. 3,) is a set of representatives for I'-orbits
of cells (resp. p-cells) of X, then there exists a natural spectral sequence (cf. [5],
VII, [18], p. 93ff.) whose E'-term is given by the homology groups H4(I',, Z,),
o € 3, and which converges to the homology H(I', Z) of I' with trivial coefficients
Z. (Here Z, denotes the I',-module Z given by the homomorphism ¢ :I", — {+1}
where e(y)=1 (resp.—1) if vy fixes (resp.reverses) the orientation of ¢.) This
spectral sequence can be constructed as follows: Let C,(X) be the group of
cellular g-chains of X. If X, denotes the g-skeleton of X, one has C,(X)=
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H,(X,, X,_1; Z). Then the action of I' on X gives rise to a natural action of the
group algebra Z[I'] on the cellular g-chains C,(X). Let Ey be a Z[I']-free
resolution of Z. Then we can form the double complex Cy(X)®zrEx. Since X is
contractible, Cy is exact except at Cy(X), where cok (9;: Cy(X) — Cy(X))=Z.
Since E, is free, C+(X)®y E, is still exact, except that cok (9, ® 1) =Z Qi E,.
Thus the horizontal filtration of the double complex gives us a spectral sequence
with

1 _
qu—

[0 q>0 1)

Z®FEp q =0

The differential d' is given by d' = 1 ® dg,, where dg, is the boundary map for
E. Thus the spectral sequence converges to the homology H (I, Z) with trivial
Z-coefficients, i.e., E?=E~= H(T, 7).

The vertical filtration of the double complex Cy(X)®zEx gives us

El,=H,(I, C,(X)) (2)

with the differential d' induced by d¢,x)- We note that C,(X) can be identified
with the direct sum @,Z[I"1®y.1Z,, where the sum is taken over o3, We
assume from now on that I, fixes o pointwise for every cell o. In this case the
orbit space I'\X inherits a CW-structure. One can then orient each cell of X in
such a way that the I'-action preserves orientations. In particular, it follows the
action of I', on Z is trivial. Thus we get

Ep ®Z[F] Cq (X)= 62 (Ep ®Z[F]Z[r ]®Z[r,]z)

= & (E,®zr,12) 3)

oeZ,

and the spectral sequence has

El = H(T, C,(X))= @ H,(T,, 2). (4)

oeX,

The differential d! in E' can be described in terms of the homology of the
stabilizers as follows. If o€ X is a p-cell in the orbit complex I'\X, and do =
3. +gr where g.el’ and 7€ 3 are (p—1)-cells in I'\X, then there are maps

(lo-r)* :H*(rm Z) - H*(Fg.,»r’ Z) (5)
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induced by the inclusion I, = I', ,, resp.
(g-r)* . H*(Fg,ﬂ Z) -> H*(FT’ Z)’ (6)

induced by the conjugation isomorphism a+~> g;'ag,. The restriction of the
differential d*: E; ,— E}_, , to Hy(I',,Z) is then given by

dltar,z) = 2(8:)% © (i) 7

where we sum over all 7€ 3 which occur in do. In other words, the d'-maps are
boundary maps ‘twisted’ by the identifications of do in the orbit complex I'\ X

§2. Reduction theory

Let k be an imaginary quadratic number field and € its ring of integers. In this
section we recall briefly reduction theory for the action of PSL,(0) on the Poincaré
upper half space H={(z, {)eC xR |{>0}. The version we use is based on the
notion ‘distance from a cusp’ and is a special case of Harder’s results [11]. These
were inspired by ideas of Siegel obtained in the case SL, (resp. SL,) over the ring
of integers of a totally real number field [20]. In fact, the proofs given by Siegel
there can be easily generalized to the case we are considering.

2.1 We denote by H={(z, {)eCxR|{=0}U{(, )} the extended upper
half space. The usual action of SL,(k) on H extends then to one on H. An

ab

element g = (c d) of SL,(k) acts on H by

g(z, 0)=(z',{) (1)
where

, _(az+b)(z+ d)+ act?
z= (cz +d)(Ez + d) + cét?

resp.

_ 4
" (cz+d)(Ez+d)+ cél?

{l
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We call an element (z, {) € H a cusp if either (z, ¢) = (o, ) or { =0 and z € k. The
set of cusps will be identified with kU {=}, the projective space over k. Let
A =a/B, a, BEk, be a cusp; in the case A = we write A =1/0. The distance from
a point (z, {)€ H to the cusp A is then defined by

lz=AP+ 2

n)\ (Zy g) = CN ’

A# o (2)

(and n.(z, 5)_= 1/{) where N, is the norm of the fractional ideal (o, B) (in O)
divided by B; note that N, depends only on A and not on the choice of a and B.

Remarks. (1) Note that each level set of the smooth function n, : H—>R, is a
horosphere at A. For A =, n;!(r), r>0, is a horizontal plane of height 1/r.

(2) The definition is intuitively motivated by the following alternative descrip-
tion. We can identify H with the set H of binary positive definite hermitian forms
on C? with determinant equal to one; a cusp A is identified with the line L, in C?
with slope A. The distance from a point (z, {) to a cusp A is then the area of a
fundamental domain for L, N ©%in C? measured using the hermitian form in H
corresponding to (z, {), and normalized so that n(0, 1)=1.

The distance function to a cusp has the following invariance property which
follows easily from the reinterpretation in remark (2): Let (z, ¢) be a point in H
and A a cusp of k; then for any ge SL,(0)

n.(g(z, 0) =n(z,0) (3)

The main results in reduction theory can then be formulated in terms of the n, as
follows (cf. [11], §1).

(i) For a given point (z, {)€ H and a fixed constant C there are only finitely
many cusps u such that n,(z, {)=C.

(ii) There is a constant C; (depending only on k) such that for every point
(z,{) in H there exists at least one cusp A of k such that n,(z, {)=C,.

(iii) There exists a constant C, with the following property: For each (z, {)e H
there is at most one cusp w of k such that n,(z, {) <G, i.e. if n,(z, {)<C, and
n,(z, ) <C, then p=p'.

For later use we fix such a constant C,. Elementary proofs of (i)—(iii) which
also yield actual values for C, and C, are given in ‘[14], (81).

2.2 Fundamental domain for PSL,(0). We conclude this section by reviewing
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the construction of a strict fundamental domain for the action of PSL,(0)=
SL,(0)/+I on H. To each cusp A of k we associate the set

H\)={(z, )e H| n\(z,{)=n,(z, ) for all cusps p# A};

this is called the minimal set of A. By property 2.1 (iii) of the distance function,
the set H(A) is non-empty. Moreover, each H(A) is a closed subset of H, and we
denote its boundary by I(A). The main facts in reduction theory imply that the
sets H(A) make up a locally finite closed covering of H. Note that the minimal sets
transform under an element of PSL,(0) in the following way

gH(A)=H(gA),  ge PSL,(0). (1)

We can now begin to construct the fundamental domain. One knows ([20],
p. 242) that there are exactly h, PSL,(0)-orbits of cusps of k, where h=h,
denotes the class number of k. Let A;,..., A, be representatives of these
PSL,(0)-orbits. Furthermore, denote by I, i=1,..., h, the isotropy group of A;
in PSL,(0), and let T(A;) be a fundamental domain for the action of I',, on H.
Now let F,=H(A,)NT(A,), i=1,..., h. Then

F=UF, @

is a fundamental domain for the action of PSL,(0) on H. We refer to Siegel’s
notes [20], p. 261-269, for a detailed proof.
Finally, we have as a consequence the following compactness criterion (cf.

[20], p.270): Let ry, ..., n, be positive real numbers. Then the set
F(ry,...,n)={(z,)eF|n(z,{)=r, forall 1=i=<h} (3)
is compact.

§3. The minimal incidence set

We now review Mendoza’s construction of a contractible CW-complex I(k)
with a PSL,(0)-action. I(k) is a 2-dimensional closed subspace of H with
PSL,(0)-equivariant deformation retraction from H to I(k). The quotient I'\I(k)
by a subgroup I of finite index of PSL,(0) is a compact finite CW complex, with
cell structure inherited naturally from I(k). In [14] he uses extensively the main
facts in reduction theory.
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3.1 The minimal incidence set I(k) of the given imaginary quadratic number
field k is defined as the set of all points (z, {) in H which lie in the minimal sets of
(at least) two different cusps, i.e. I(k) is formally given as

I(k) = y H(A) N H(w). (1)
A, diiti,r‘xt:)t cusps

By 2.2(1) one sees that I(k) is stable under the action of PSL,(0). Moreover, I(k)
is closed since the sets H(A) N H(u) form a locally finite closed covering of I(k).

Remark. If one does the same construction on the upper half plane (substitute
the real variable x for the complex variable z, and the projective space P,(Q) for
the cusps of k) one obtains the tree for SL,(Z) studied by Serre [19], p. 52.

3.2 THEOREM (Mendoza [14]). (i) The minimal incidence set I(k) in H
associated to an imaginary quadratic field k is a closed subspace of the symmetric
space H, such that I(k) is invariant under the proper action of PSL,(0) and the
quotient PSL,(O)\1(k) is compact. Moreover, I1(k) is a PSL,(0)-equivariant defor-
mation retract of H, and hence connected and contractible.

(i) The set I(k) is naturally endowed with the structure of a 2-dimensional
locally finite regular CW-complex. The action of PSL,(0) on I1(k) is cellular, and
so, PSL,(O)\I(k) is a finite CW-complex.

Since the thesis [14] of Mendoza is not easily at hand everywhere we sketch
his proof with his kind permission.

Ad(i). We observed already that I(k) is closed. To show that PSL,(O)\I(k) is
compact it suffices to exhibit a compact set K< H such that I(k)=T"- K. We take
K=I(k)NF where F is the fundamental domain described in 2.2. This set is
non-empty, closed, and by 2.1(iii) contained in F'=FN{(z, {)e H|n, (2, )= C,},
where A,, ..., A, are representatives of PSL,(0)-orbits of cusps. The compactness
criterion (cf. 2.2.(3)) implies that F' is compact. To show that I(k) is a deforma-
tion retract of H it suffices to prove that for each cusp A the boundary I(A) is a
deformation retract of H(A), since the sets H(A) make up a locally finite closed
covering of I(k) as pointed out before.

This latter assertion follows from the fact that the distance function n, is a
Morse function without critical points in H(A)—I(A). (The retraction is perpen-
dicular to the level sets of n,, i.e. we retract along a geodesic. For A # o this is a
vertical semicircle, for A = a vertical half line). The PSL,(0)-equivariance is a
direct consequence of 2.1.(3).
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Ad(ii). The main ingredient here is to prove that each set H(A)N H(un) with
A, p distinct cusps can be obtained by intersecting a finite number of hemispheres
with center in the plane { =0 and vertical half planes. Hence H(A)N H(w) is in a
natural way a regular cell. For the rather technical complete proof we refer to
[14], p.26-38.

Remarks. (1) The theorem is clearly true for any subgroup I' in PSL,(0) of
finite index. Furthermore, for any such I' one can refine the natural cell structure
such that the stabilizers I', in I' remain the same for all points x in an open cell.

(2) Note that the dimension of I(k) is exactly the same as the virtual
cohomological dimension of I.

3.3 If the class number of k is one, the reduction theory described in §2
coincides with classical reduction theory as initiated by Bianchi [2] and pursued by
Humbert [13] (for an account of the latter one see Swan [24]). Therefore, in this
case, the minimal incidence set I(k) can be obtained as the translation by I” of the
‘bottom’-boundary B(k) of the classical fundamental domains determined by
Bianchi and Humbert. Indeed, for someone familiar with the geometry of the
examples in [2] it is not too difficult to work out separately in each case of class
number one a fundamental domain for the action of PSL,(0) on H which is good
enough for actual cohomological computations. Part of this is done by Floge in his
unpublished thesis [8], where he also constructs fundamental domains in some
cases of class number two. He has used this to give group theoretical descriptions
of PSL,(0_,) ford=1, 2, 3,5,6,7, 10, 11 as amalgamated products of suitable
subgroups or as HNN-extensions of such products. But we preferred to use
Mendoza’s conceptual and systematic approach in order to have some general
foundations for later considerations in [9], [26].

§4. Finite subgroups of PSL,(0)

In this section we list the finite groups which may occur as subgroups of
PSL,(0), together with their integral homology. These homology groups appear in
the spectral sequence described in §1 which we will use to compute the homology
of PSL,(0).

4.1 The only finite subgroups which occur in SL,(C) are the binary
polyhedral groups (see, e.g. [22], §4.4). Let x be an element of SL,(0) = SL,(C) of
finite order n. Then x has eigenvalues p and p, where p is a primitive nth root of
unity. Since tr x=p+p is in ONR =7, we must have n=1,2, 3,4 or 6. Thus the
only finite subgroups of SL,(0) which can occur are cyclic of the above orders, the
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quaternion group, binary tetrahedral group and binary octahedral group. Since
the stabilizer of any point in H is finite and contains =1, the possible stabilizers in
PSL,(0) are the cyclic groups of orders two and three, the Klein four-group
D,=7/2XZ/2, the symmetric group S; and the alternating group A,. The integral
homology of these groups can be computed by elementary means (see, e.g. [5])
and is given in the following tables:

4.2 LEMMA. The integral homology of the finite groups G =Z/n, (n>0), D,,
Ss, A, respectively is given as follows (for simplicity we neglect to write the trivial
coefficients Z)

z q=0
H,(Z/n)=14 Z/n q odd (1)
0 q even, q=>0
(7 q=0
H,(D,) = { (Z/2)"4>"? q odd (2)
L (Z]2)%? q even, ¢>0
rZ q=0
zf2 q=1(4)
H,(S3) =140 q=2(4) (3)
2/6 q=3 (4)
-0 q=0 (4), g>0.
(7 q=0
@12 z/3 q=6k+1
Zr2)- e z/2 q=6k+2
H (A= {(@/2)®Z/6 q=6k+3 (4)
(2/2) q=6k+4
@ZR)>®z2®2/6 q=6k+5
L(2/2) q=6(k+1)

In order to compute in the spectral sequence, we must also determine the
maps induced on homology by the inclusions of cyclic groups into D,, $; and A,;
these are given in the following series of lemmas.
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4.3 LEMMA. (1) Any inclusioni:Z/2— S, induces an injection on homology.
(2) An inclusion i:Z/3— S; induces an injection on homology in degrees
congruent to 3 mod 4 (and is otherwise zero).

Proof. One can directly compute the Leray spectral sequence of the extension
1-7/3—->8,—->7Z/2—>1

The action of Z/2 on Z/3 is the non-trivial action, and the result is that Ef,q =0 for
p, >0, E2,=H,(Z/2) and Ej_ =Z/3 in dimensions congruent to 3 mod 4, zero
otherwise. The diagrams

Z12 = 1Z]2

|

1—27/3 > S, > 72 —> 1

and
Z/3 = Z/3

I

1 —s Z/3 1 8§ — Zj2 a1

induce maps of H(Z/2) onto the bottom row of the spectral sequence, and of
H,(Z/3) onto the left-hand column of the spectral sequence, H,(Z/3) — H(Z/2,
H,(Z/3)). Since all differentials are zero (Hom (Z/2, Z/3)=0), these maps induce
maps on the abutment (H4(S;)) as claimed.

4.4 1LEMMA. Any inclusion i:Z/2 — D, induces an injection on homology in
all dimensions.

Proof. This is clear from the trivial extension

1-27/2-5D,—>7/2—1.

4.5 LEMMA. (1) An inclusion i:Z/3 — A, induces injections on homology
in all dimensions.

(2) An inclusion i:Z[2— A, induces injections on homology in dimensions
greater than 1, and is zero on H,.

Proof. We consider the spectral sequence of the extension

1-D,—>A,—Z/[3—>1. (3)
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The homology of Z/3 appears in the bottom row of the E>-term, and every
differential which originates in this row must be zero, since it lands in the
2-torsion group H,(Z/3; H,(D,)) for some q>0. Thus El,= 70> and the homol-
ogy of Z/3 injects into the homology of A,.

For a map i:7/2— A,, factor through the (unique) 2-sylow subgroup D,:

Z/2

l N @

1— D, £ A,—7/3—>1

Then the homology of Z/2 maps to the left-hand column of the spectral sequence
by the maps

H,(2/2) =*> H,(D,) ——> Hy(Z/3; H(D,)). (5)

The action of Z/3 on D, is non-trivial, and one can compute that the composition
7 ° ay in (5) is injective for ¢ =2, and zero for q =1; also E>, =0 for p and q>0,
so all the differentials are zero, and E*= E*. Thus the injectivity properties
extend to the abutment, and iy is injective for g>1.

§5. Integral homology of PSL,(0_,)

We denote by 0_, the ring of integers of the imaginary quadratic number field
k =Q(V—d), deN, d squarefree. In this section we will give a reasonably detailed
explanation of the calculations for the integral homology of PSL,(0_,) for d =2,
then list the results of our computations for the other cases where O_, is a
euclidean ring, i.e. d=1,3,7,11.

For simplicity, we leave out the coefficients Z when we mean trivial Z
coeflicients.

5.1 We begin with a notion of fundamental domain which takes the cell
structure on I(k) into account. A finite sub-complex F of I(k) is called a
fundamental cellular domain for PSL,(0)=T if I(k)=T - F and if points in open
induced 2-cells are not PSL,(0)-equivalent. If we denote by “~"" the cellular
equivalence relation on F induced by identification of O-cells or 1-cells, then it
follows easily that ~\F and PSL,(0)\I(k) are isomorphic CW-complexes.

5.2 The case d =2.

Let w=+v-2; then w and 1 generate ©0_, as a free Z-module (lattice) in
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Q(+-2)=k. A fundamental cellular domain for the action of PSL,(0_,) on the
complex I(k) is the area on the unit hemisphere centered at (0, 0)< C XR" lying
above the rectangle in C with vertices +£(+v/2/2)i and 3 1+ (v/2/2)i (cf. 4.2.5 in [14]).
We label the vertices of this two-cell as follows:

pe(3g) (3 meGeFia) pe(Fi3)

If we let I'; denote the stabilizer in PSL,(0_,) of P, and I'; the stabilizer of the
one-cell P,P, then we have specific descriptions of these stabilizers as follows: Let

(1 w) _(1 —1) __(0 —1) _
a (w __1,b 1 0 amdc-—1 0.Then.

I',=(a)=17/2; I'=(a,c)=D,
23 =(b)=17/3; I'n={(a,b)y=A,
se=(a)=27/2; TI,=(a,by=A,

I'yy=(c)=2/2; TI,=(a,c)=D,

(2)

Note that the stabilizer of the only 2-cell is trivial. In pictorial form, the
fundamental domain and stabilizers are

P, <5>=':Z/2 P,

Z|2 =(c) (b)=12/3

P, (a)=Z/2 P,

The top and bottom edges of the rectangle are identified by the element
g= ((1) :’) of PSL,(0_,): gP,P,= P,P,. These are the only identifications, so the
quotient by PSL,(0_,) is a cylinder.

We now feed this information into the spectral sequence described in §1, with

El= @ H(I,)> H,.,(PSL,©0.,)).

p-cells o

There are only three non-zero columns, corresponding to the 0—, 1— and 2— cells
of the complex. In fact, since the stabilizer of the 2-cell is trivial, the third column
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is zero except that E; ,=Z. For q>0, the gth row is

H,(T')®H,(I,) <2~ H,(I',)® H,(I') ® H,(I',) 3)
i.e.
H,(D,) ® H,(A,) <=~ H,(Z/2)® H,(Z/3)® H,(Z/2)
(4)

(—iga+gec—ixc igxa+gyb—ixh) «—— (a, b, )

where the maps i, are induced by inclusion, and g, by conjugation by g. In
particular, g«:H,(I'\4) > H,(I';) is induced by the map from I';, to I'; sending

-1 -1
(0 ) to ( @ -—w)’ and gy :H,(I';3) — H,(I',) is induced by the map from

1 0 -1
I',; to I', sending (i (1)) to (1 lw w:)— 1).

The bottom row of the E'-term is just a Z-chain complex giving the homology
of the quotient; thus E},= E?,=2, and E,=0 for p=2. Since the third column
has disappeared entlrely by E2 we have E2 E~. Note that for q even and bigger
than zero 4.2.(1), implies that H,(Z/2)= H,(Z/3)=0, so E5,=E},=0 and Ej =
E;,=H,(D,)® H,(A,). For q odd we must calculate usmg the explicit descrip-
tion of the d‘-map given in 1.1.(7). For example, to calculate gy:H (I';,) =
H,(I',), we write a resolution for I';,=Z/2=(t), a resolution for I';=D, and
calculate the chain map induced by the map g:I';,— I'; given by t+> ac:

=1 7[2/2] el Z[z72] ——— Z[Z2] —> 0

| |

e (Z[Dz])3 2a+1 1-c 0 —> Z[D2]2 m Z[Dz] — 0.

0 a-1 c+1

With Z-coefficients, this becomes

0 ) 0
Z 2 > Z > 7 — > 7— 0
i 1
% 1 (1 (6)
1 1 1 (1
5 — - _‘2
Z 20000’Z 00 00722002(00)’7 > 0
(00200) 02—20 00 2
00200 00
00002
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The effect on homology is now easily calculated, the map gy :Z/2 — (Z/2)4>"

sends x to (x, x, ..., x). In a similar manner, we make use of lemmas 4.3.—4.5. to
calculate the other maps iy and g4. The end result is that the d'-map is given by

(Z/2)@+r2 ®ZR) DB (Z/3) <= 7202/307/2
(x—z,%...,%x—x)D(z0) — (z, v, x) (7)

We now have E3j =Kerd,=Z/3 and Ej,=coker d,=(H,(D,)® H,(A,)/
(im d, =(Z/2 @ Z/2)). Since E*>= E™, the spectral sequence has E*-term

q

q even Hq(ljz) @ H,(A,) 0
qodd | (H,(D,)®H,(A)@2822) 73

228 12)2 0
7281/3 7281/3
i Z

(8)

We can now state the theorem.

5.3 THEOREM. The integral homology of PSL,(0_,) is given by

(7 q=0

Z®17/6 q=1

Z/ADZ/6 q=2
H,(PSL,(0_)=) @2 ®2/3  q=0(3),q>0
2223 @73 q=1(3),q>1
L@pypevrezn q=203),q9>2

For q#2 these results follow directly from the above computation 5.2.(8) of
the E>-term of the spectral sequence together with the descriptions of the
homology of A, and D, given in §4. For q =2, the spectral sequence gives us an
exact sequence

1-2/2@7/2— H,(PSL,(0_,)) > Z/2D Z/3 - 1.



The integral homology of SL, and PSL, of euclidean imaginary quadratic integers 587

To resolve the ambiguity in the 2-torsion, we consider our spectral sequence with
Z[2-coefficients; we find that for 0=q =2,

q | @ZNR¥Pez)2 «7200802/2
(c—a,c0,a)<(a,0,c)

E'= |Z2@Z]2 <Z2®d0DZ/2
(c—a,0) «i(a,0,c)

ZI2DZ]2 < Z12BZ12DZ/2«1Z/2

(—a,a) «i(a, b, c)
P
giving
] . :
Z]126BZ/2 0
E*=E?= Z]2 Z]2
Z]2 Z]2 0

p

Thus H,(PSL,(0_,);Z/2)=(Z/2)>. By the universal coefficient theorem, this is
isomorphic to H,(PSL,(0_,))®Z/2® Tor (H,(PSL,(0_,)),Z/2) = H,(PSL,(0_,))®
Z/2@17/2. Therefore H,(PSL,(0_,))®7Z/2=(Z/2)?, so H,(PSL,(0_,))=
ZI6 D Z/4.

We will now list the theorems for the other euclidean cases, indicating briefly
any necessary modifications in the computations. We denote by S=
{(z, ) e H| |z|*+ {* = 1} the hemisphere with center (0, 0) and radius 1. For points
in S we will sometimes give only the first coordinate.

5.4 The case d=1. A fundamental cellular domain for the action of
PSL,(0_,) on the complex I(Q(vV-1)) is the set F={(z,{)eS|0=<Rez=},

0=1Im z <1}, the vertices are the points P, =(0, 1), P,= &, v3/2), P;=(3+1i, v2),
P, = (i, v/3/2). There are no further identifications (cf. [14], 4.1.9 or [2], §12). Let

S S A A

then the cellular domain and the stabilizers of the cells are given in pictorial form
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as follows:
(a)=7/3
(c,d)=S, (b,c)=A,
P, P,
(d)=12/2 (b)=12/3
<a7 d>ED2 <a’ b>ES3
(a)=1Z]2

By 4.3-4.5 the inclusion maps I';; > I, 1=i, j=<4, of the stabilizers induce
injections on homology, except for I';,— I', and I',; — I',. These induce (cf. 4.2.)
injections on homology of degree n if n=3 mod 4, and otherwise induce the zero
map.

5.5 THEOREM. The integral homology of PSL,(0_,) is given by

(7 q=0

(212)% @ (2/2)* q=12k+1
12 e zZnr)y*ez/3 q=12k+2
Z12)* ® (Z/12)* B 2/3 q=12k+3
(Z/2)%* @ (2/2)* q=12k+4
(212)%* ® (Z/2)° q=12k+5
H,(PSL,0_,)={ (Z/2)* @ (2/2)*® 7/3 q=12k+6
Z2)* & (Z/2)° B Z/3 q=12k+7
(Z/2)% @ (2/2)° q=12k+8
(Z/2)% @ (Z/2) q=12k+9
@rRPrdzr)yez/3 q=12k+10
@nrRPe@r)y°ez/3 q=12k+11
| @/2)* @ (2/2)® q=12(k+1)

where k eN.

5.6 The case d=3. A fundamental cellular domain for the action of
PSL,(0_5) on the complex I(Q(v—3)) is a subset of the unit hemisphere S; the
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following picture contains all the information we need. The exact coordinates of
the points P, can be easily worked out if the reader so desires. (cf. [14], 4.2.3 or
[2], §13). Let

(0 —1) _(0 w) _(o w2) “
““(1 DA VE R Y L d VR )
where @ = ()(1+ /3 i). We have in pictorial form

Z]2={b)

(h, C>= SB (2)

Z[2={c)

The map d:Ej,—E;, is injective for q=2; for q=1,
d,:H,(Z/2)® H,(Z/3)® H,(Z/2) —» H,(S;) D H,(A,) & H,(A,) sends (a, b, c) to
(—a—c, —b, b), and for q =0, the d,-maps are the boundary maps for the integral
homology of the (contractible) fundamental domain.

5.7 THEOREM. The integral homology of PSL,(0_,) is given by

(7 q=0
(Z/2)** q=12k>0
Z/13 D (Z/2)* q=12k+1
ZIADZ2 D (Z)2)** q=12k+2
Z16 D23 D (Z/2)** q=12k+3
(Z/2)* q=12k+4
H,(PSL,(0_5)) =3 Z/6 ® (Z/2)* ® (Z/2)** q=12k+5
(Z/2)* ® (Z/2)** q=12k+6
Z/6 D Z/3 D (Z/2)** q=12k+7
(Z/12)* @ (Z/2)* q=12k+8
216 @ (Z/2)* & (Z/2)** q=12k+9
(Z/2)* ® (Z/2)* q=12k+10
(Z2)*DZ/I6DZ3DZ/2)* q=12k+11

where k eN.
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5.8 The case d=7. The fundamental cellular domain for the action of
PSL,(0_,) on the complex I(Q(v—7)) is again a subset of the hemisphere S; the
domain and the stabilizers of the cells are given in pictorial form as follows, if we

where o = Q)(1+v-=7). (cf. [14], 4.2.11. or [2], §16).

(a)=17/2
(a, c)= S; < {(a, b)= S5
P, P;
(c)=12/2 (b)=12/3
Pl P2
(@, c)=S; . (a,b)=S;
(a)=12/2

The element g = (0 ) sends P, P, to P;P,, so the quotient of I(Q(W-T7)) by

1 w—-1

PSL,(0_,) is topologically a Mobius band. The homology of each stabilizer is

periodic of period 2 or 4 by 4.2. so we need only compute the induced maps on

H, and Hj; to calculate the E*= E*-term of the spectral sequence. The result is:
5.9 THEOREM. The integral homology of PSL,(€_,) is given by

A q=0
Z1DZ2 q=1

H,(PSL,(0_,)) = {
e 2/6 q=2,3(4)

LZ/2 q=0,1(4) q=4

5.10 The case d=11. From the topological point of view the situation is
quite similar to the case d =7. Let w = &)(1++v-11), and put

e e P )
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The fundamental cellular domain for the action of PSL,(€0_,,) on the complex
I(Q(v/—11)) is again a subset of the hemisphere S; the domain and the stabilizers
of the cells can be visualized as follows: (cf. [14], 4.2.12 or [2], §16).

A4:<a) C> (a>=Z/3 <a7 b>=A4
P, P,

Z/2={c) (by=12/3
PP

A4=<d7 C) <d>=ll3 (d, b>=A4

1
_q O) sends P, P, to P;P,, and there are no further identifica-

tions, so the quotient PSL,(0_, )\I(Q(~v—11)) is topologically a M6bius band. The
d'-maps in odd dimensions q=3 are (x,y)—>(x—y,y—x) on 3-torsion and
injective on 2-torsion; for g =1, the d'-map is the same on 3-torsion but zero on
H,(Z/2). There is ambiguity in the 2-torsion of H,(PSL,(0_,,)) which can be
resolved, as in the case d =2, by looking at the spectral sequence with Z/2-
coefficients. The result is:

The element g = (

5.11 THEOREM. The integral homology of PSL,(€_,,) is given by

(7 q=0
VA VAR, qg=1
ZI6DZ/4 q=2

H,(PSL,(0_,,))=
a(PSL(0_4,)) ﬁ(Z/Z)kH@Z/:; q=3k-1>2

@)+ z/3 q=3k>0
L(Z2) D73 q=3k+1>1

where k eN.

§6. Integral cohomology of SL,(0_,) and homology with Steinberg coefficients

The complex I(k) and spectral sequence in §1 (resp. a cohomological analogue
of it) may be used to compute homology and cohomology groups for the groups
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SL,(0_,;), PGL,(0_;) and GL,(0_,) as well as PSL,(0_,). The homology of
SL,(0_,) with coefficients in the Steinberg module St (2)_; of (Q(V—d))? has
particular interest for algebraic K-theory, (cf. [15]); we indicate here how to do
this computation for d =2 and list the results for the other euclidean cases. Since
homology with Steinberg coefficients is dual to cohomology in degree >2 (see
6.4.) we begin by computing the integral cohomology of SL,(0_,).

6.1 As noted in §5, the groups which may possibly appear as finite subgroups
of SL,(€_,) are the cyclic groups of orders 2, 3, 4 and 6, the quaternion group Q,
the binary octahedral group D and the binary tetrahedral group Te. Any finite
subgroup of SL,(C) acts freely on the maximal compact subgroup SU, < SL,(C),
which is a 3-sphere. Such a subgroup must therefore have periodic cohomology of
period dividing 4, so we need only compute four cohomology groups to obtain
each of the following cohomologies:

rZ q=0
0 q=1(4)
HY(Q)=XZ2® Z]2 q=2(4) (1)
0 q=3(4)
L Z/8 q=04),q>0
rZ q=0
0 q=1(4)
HY(D)=1 Z/4 q=2(4) (2)
0 q=34)
\Z[12 q=004),q>0
rZ q=0
0 q=1(4)
HY(Te)=% Z/3 q=2(4) (3)
0 q=34)
\Z[24 q=0(4),q>0
rZ q=0
H9(Z/n)={0 q odd 4)
\Z/n q even, q>0

6.2 We now specialize to the case d =2, and look at the spectral sequence of
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§1 in cohomology (cf. [5], VII), we have

Ef'= & HYI,)=> H"(SL,(0-,)). (1)

orbits of
p-cells o,

Note that the stabilizer of the 2-cell in the fundamental cellular domain for the
action of SL,(0_,) on I(@Q(V-2)) is now Z/2, and not trivial as it was for
PSL,(0_,). The E,-term and d;-maps are as follows:

q
4 Z/8D 724 — 7|4 D Z/6 DZ/4 —> Z]2

(xa }’)"""""“’()’ - X, 05 0)
3 0 0 0
2Ry ez2/3—1/4DZ/6DZ/4 —> Z/2

(2)
(x1, X5, ) (2x,,0,2x, —2x,)
1 0 0 0
0 VA YA ZEBZ@Z———%Z

(x, y)———(y—x,0,0)
(a, ba C) —_ (C_b)
1 2 3

p

The result of these computations is

6.3 THEOREM. The integral cohomology of SL,(0_,) is given by

(7 q=0
z q=1
H9(SL,(0_5)) ) Z/3 q=2(4)
Z]2DZ/6 q=3(4)
Z/2®7Z/24 q=0(4),q>0
LZ/12 q=1(4),q>1

6.4 To obtain the homology of SL,(0_,) with coefficients in the Steinberg
module St (2)_,, we use Farrell-Tate cohomology theory H* for SL,(0_,) (cf. [7]
or [5], chap. X). By a general result of Borel-Serre ([4], 11.4) the group SL,(C_,)
is a virtual duality group of dimension 2 (in the sense of [3] or [6], §3) whose
dualizing module is the Steinberg module St (2)_, = H*(SL,(0_,), Z[SL»(0_,)]) with
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its natural SL,(0_,)-action (cf. [4], 11.4. and 8.6). Thus, for q>2, there is an
isomorphism ([6], 11.7.):

H,(SL,(0_,), St (2)_,) = H'"%(SL,(0_,)). (1)

For 0=q=2, there is an exact sequence relating Farrell-Tate cohomology, the
regular cohomology and homology with Steinberg coefficients (cf. [6], 11.8.); for
simplicity we abbreviate H* = H*(SL,(0_,)) resp. H* = H*(SL,(0_,)):

0— H™'— H,(SL,(0_,), St (2)_,)
— H°—> A~ H,(SL,(0_,), St (2)_,) 2)

— H'- 25 H'— H,(SL,(0_,), St (2)_,) > H>— H? — 0.

The spectral sequence 6.2(1) can be used to compute H*(SL,(0_,)); we have ([5],
X, 4.1.)

Epi= @ HYT,)=> HP*4(SLy(0_),)). (3)

oel,

Note that for the finite groups I,, the Farrell-Tate groups H9(I',) coincide with
the standard Tate cohomology groups. The maps a;: H' — H, in (2) are then
induced by the maps on the cohomology of the stabilizers I', in the spectral
sequences; these are the standard maps from cohomology to Tate cohomology,
i.e. for a finite group I', of order |I,| the map H'(I',)— H(I’,) is an isomorph-
ism for i>0 and H(I,)— HT,) is the morphism Z— Z/|I’,|. We use these
remarks to prove

6.5 THEOREM The cohomology of SL,(0_,) with coefficients in the Stein-
berg module St (2)_, is given by

(0 q=0
Z2®7Z]2 q=1
2D7212072/16 q=2
H,(SL,(0_,), St (2)_5) =3 Z/3 q=3(4)
Z/12 q=04),q>0
712 ®12)24 q=1@),q>1
| Z/2Z/6 q=2(4),q>2
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Proof. For q=3, 6.4.(1) says that H,(SL,(0_,), St(2)_,))=H""(SL,(0_,));
since H*(SL,(0_,)) is periodic of period 4, and H(SL,(0_,))=H'(SL,(0_,)) for
i=3 (cf. [6], 11.4), the result follows from our calculation of H*(SL,(€_,)) in
Theorem 6.3. For 0 < g =2, the result follows from the calculations of the maps «;

in 6.4.(2) as outlined above.

We now state the results of our computations of H, (SL,(0_,), St (2)_,) in the

other euclidean cases:

6.6 THEOREM. The cohomology of SL,(0_,) for d=1,3,7,11 with coeffi-

cients in the Steinberg module St (2)_, is given by

Hq(SL2(0_1), St (2)_,) =%

(0

Z/4
2D17/6
Z/2©17Z/2
0

Z/12D 72/8

H,(SL,(0 ), $t(2) ) =

H,(SL,(0_;), St (2)_7) =1

Zl6

\
(0

Z6

VAS WAL
Z/3

0
Z]24 D Z/6
Z/4

(0

z
Z1®17/12
Z/4

Z/4

Z/12

LZ/12

(1)

(2)

3)
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(0 q=0
ZD1Z/2 q=1
ZDZ/12®2]2 q=2
H,(SL,(6_1,), St (2)_1) =1 2/3 q=34) (4)
Z/6 q=004),q=4
2/24DZ/2 q=14),q=5
z12®122 q=2(4), =6

Remark. Up to 2-torsion H,(SL,(€_,), St (2)_,) was determined by Staffeldt
(23], Thm. IV.1.3.).

6.7 Torsion classes in H*(PSL,(0_,)). We conclude this paper with some
observations concerning torsion classes in H*(PSL,(0_,)). There is a natural map
between the usual cohomology and the Farrell cohomology of a subgroup I' of
finite index in PSL,(0_,)

H*(I)— H*(T)

which is an isomorphism for q > vcd(I'), and one has H*()=0 if I is torsionfree.
It is shown in [6], §15 that a great deal of information about H*(I') can be
extracted from the finite subgroups of I'. The arguments there are of a general
nature. As pointed out in §4 there is only 2- and 3-torsion in H *(PSL,(©_,)), and
in the euclidean cases d =1, 2, 3, 7, 11 we considered this is also true for the usual
cohomology H*(PSL,(0_,)) (cf. §5).

We will give now some examples of subgroups I" of small index in PSL,(0_,),
d =1, 3, where one has torsion classes in the low-dimensional cohomology of T,
whose order p is different from 2 and 3. It would be of great interest to have an
arithmetic explanation for these phenomena. For more details on this subject see
[9].

(1) The group PSL,(0_;) is generated by the matrices

0 ) (Y

where o =—1/2-/3/2. In [9] it will be shown that there are seven conjugacy
classes of subgroups of index 12 in PSL,(€_;). One of these classes can be
represented by the torsionfree group

L={x,y|xyxlyxy 'x'yx~ty'=1)
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where x = a resp. y = bch. We note that the manifold I,\ H is homeomorphic to
the complement of the figure-eight-knot in the three sphere S* (cf. [16], [17]); in
particular one has H,(I,)=TI'$"=Z.

Another class can be represented by

I;={(u,v|uvuvuv’ uv uv’*=1)
where u =a? v=abc aba ¢"'bc"'ba™'. One sees easily that

H(I')=T*=2&12/5

and uv is indeed an element of order 5 in I"3°. This implies that there is a torsion

class of order 5 in H*(I';).
(2) For a given prime ideal f of degree 1 in the ring of integers O_; of

Q(v—1) we consider the group

a b

. d) € PSL,(0_,)|ce f}

-

Denote by p = N(f) the norm of f. Then machine computation (cf. [9])
shows, for example, if p=101 that

T()*=7/4DZ125DZ/17.

There are other examples of this type due to Grunewald.
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