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Classification des feuilletages totalement géodésiques de codimen-
sion un

Etienne Ghys

Introduction

Soit 9 un feuilletage de codimension un sur une variété M Pour étudier ^, il
peut être utile de construire une métrique riemannienne sur M adaptée au
feuilletage. Par exemple, on peut chercher une métrique telle que les feuilles de 9
soient des sous-variétés minimales. Ce problème a été résolu dans [Sul], où il est
montré qu&apos;une telle métrique existe relativement fréquemment (précisément
lorsqu&apos;aucune réunion finie de feuilles compactes orientées ne borde un domaine
de M. Voir aussi [Hae], [Rum].)

De manière analogue, on peut chercher une métrique telle que 9 soit
totalement géodésique, c&apos;est à dire telle que toute géodésique de M tangente à &amp;*

en un point soit entièrement contenue dans une feuille. Cela revient à imposer
l&apos;annulation en tout point de la seconde forme quadratique fondamentale des

feuilles. Divers auteurs ont considéré le problème de l&apos;existence d&apos;une telle
métrique ainsi que le problème inverse d&apos;existence d&apos;un feuilletage totalement
géodésique sur une variété riemannienne fixée. Ceux-ci obtiennent certaines
obstructions portant sur la variété ([Abe], [Bri], [Dom], [Fer]), sur les classes

caractéristiques ([Joh-Nav]) ou encore sur le comportement qualitatif de ^([Blu-
Heb], [Joh-Whi]).

Dans un travail précédent, en collaboration avec Yves Carrière ([Car-Ghy]),
nous avions étudié ce même problème en dimension trois. Rappelons le résultat
obtenu.

Soit A une matrice diagonalisable de SL^CZ). Le feuilletage du plan M2 par
droites parallèles à l&apos;une des directions propres de A définit un feuilletage sur le

tore T2 U2/Z2. Par produit, nous obtenons un feuilletage de codimension 1 sur
T2x[R clairement invariant par l&apos;application:

(m, r)eT2x|Rh-&gt;(A(m), r + l)eT2x(R.

La variété quotient, notée Ta est donc munie d&apos;un feuilletage de codimension

543
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1. (cf [Ghy-Ser] pour une description plus précise de ce feuilletage). Le résultat
du travail précédemment cité est le

THEOREME. Soif &amp; un feuilletage de codimension 1 (orientable, de classe

C°°) sur une 3-variété fermée orientable. Alors, il existe une métrique riemannienne
telle que &amp; soit totalement géodésique si et seulement si

• soit &amp; est transverse à une action localement libre du cercle (Le. une fibration
de Seifert)

• soif la variété ambiante est difféomorphe à T% (pour une certaine matrice A) et
le feuilletage &amp; est différentiablement conjugué au feuilletage décrit ci-dessus.

En un certain sens, il y a donc peu de feuilletages totalement géodésiques en
dimension 3. Le but de ce travail est de montrer que cette pauvreté relative
subsiste en dimension supérieure. Plus précisément, nous nous proposons de
décrire explicitement tous les feuilletages totalement géodésiques de codimension 1

sur les variétés riemanniennes compactes et sur certaines variétés non compactes.
Commençons par imiter la construction précédente, de façon à obtenir un

certain nombre d&apos;exemples de feuilletages de codimension 1. Pour cela, supposons

donnés
1°) un entier n^2
2°) un vecteur v de Un dont les coordonnées sont linéairement indépendantes

sur Q.
3°) une forme linéaire &lt;o sur Un telle que (oM^O.
A ces trois premières données, nous pouvons associer le groupe G(v, o&gt;)

formé des matrices A de SL(n, Z) telles que v soit vecteur propre de A et w
vecteur propre de fA. De plus, nous pouvons considérer le groupe G(v, eu) formé
des transformations affines du tore Tn de la forme

x € R7Zn -* Ax + b € Rn/Zn

où

A eG(v,£D) et b g R7Zn.

Supposons de plus que nous disposons
4°) d&apos;une variété B
5°) d&apos;un morphisme &lt;p du groupe fondamental de B dans G(v, û&gt;). Pour

simplifier les notations, nous noterons (D) le quintuplet (n, v, &lt;o, B, &lt;p). A l&apos;aide de

(D), nous pouvons faire la construction naturelle suivante. Le tore Tn est muni du

feuilletage linéaire de codimension 1 défini par la forme o&gt;. Soit B le revêtement

universel de B. Par produit, nous obtenons un feuilletage de codimension 1 sur
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ÉxTn évidemment invariant par toutes les transformations

(x, y)GÉxTn^(yx, &lt;p(y)(y))€BxTn

(Ici 7 représente un élément du groupe fondamental de B et 7 • x l&apos;action

correspondante sur B.)
On obtient, par passage au quotient, une variété feuilletée (MD, &amp;D) que nous

appellerons &quot;le feuilletage modèle associé à (D).&quot; La variété MD fibre sur B avec

une fibre difféomorphe à Tn. Remarquons que le vecteur v définit sur Tn un
champ de directions invariant par l&apos;action de G(v, a)). On obtient donc un
feuilletage canonique ^D, de dimension 1, transverse à ^D.

Nous pouvons maintenant formuler notre résultat.

THEOREME 1. Soit &amp; un feuilletage de codimension 1, transversalement
orientable, de classe C°°, sur une variété compacte orientable M II existe une
métrique riemannienne sur M telle que &amp; soit totalement géodésique si et seulement
si:

I) soit &amp; est transverse à une action localement libre du cercle (c&apos;est à dire aux
fibres d&apos;une fibration de Seifert généralisée sur M).

II) soit M est difféomorphe à MD et &amp; est différentiablement conjugué à un
&quot;feuilletage modèle&quot; associé à un certain quintuplet (D) (n, v, a), B, &lt;p).

Lorsque la variété M n&apos;est pas compacte mais complète, nous obtenons le
résultat partiel suivant:

THEOREME 2. Soit &amp; un feuilletage de codimension 1, transversalement

orientable sur une variété orientable et non compacte M. Supposons que Vune des

conditions suivantes est réalisée:

1) le groupe fondamental de M est de type fini et le feuilletage est de classe C°°.

2) le feuilletage &amp; est analytique.
Alors, il existe une métrique riemannienne complète sur M telle que $F soit

totalement géodésique si et seulement si:

I) soit &amp; est transverse à une action localement libre du cercle.

II) soit M est difféomorphe à MD et &amp; est différentiablement conjugué à un

feuilletage modèle associé à un certain quintuplet (n, v, oj, B, &lt;p)

III) soit &amp; est transverse à une fibration (triviale) de M de fibre R et de base B
dont la restriction à chaque feuille est un revêtement.

Les étapes essentielles de la démonstration sont les suivantes: si &amp; est

totalement géodésique, le flot orthogonal est riemannien (partie 1), ce qui impose
une structure très rigide pour ce flot. Dans un certain fibre principal M au-dessus



546 ETIENNE GHYS

de M, les adhérences des orbites du flot orthogonal (relevé dans M) fibrent M
Ces fibres sont des tores. En étudiant la trace sur ces tores du feuilletage $F relevé
dans M, on voit apparaître une distinction entre les cas I et II (partie 2). Dans la
partie 3, nous traitons le cas des feuilletages de type I. Pour les feuilletages de

type II, nous montrons (partie 4) que la structure induite par le feuilletage sur un
tore est essentiellement affine, ce qui nous permet de réduire le groupe structural
de la fibration étudiée à un groupe dont l&apos;homotopie est simple (seul le nx est non
nul). Il s&apos;agit ensuite de déformer la métrique riemannienne à travers des

métriques rendant SP géodésique de manière à ce que le groupe structural de la
nouvelle fibration en tores devienne discret (partie 5). Les parties 6 et 7

permettent de &quot;redescendre&quot; les résultats obtenus de M dans M et règlent le cas
où la variété est non compacte. On donne enfin (partie 8) quelques corollaires et

remarques.
C&apos;est grâce à de nombreuses discussions avec Yves Carrière que ce travail a pu

être réalisé. Sans son étude très détaillée des flots riemanniens, il aurait été

impossible d&apos;aborder ce problème. Je le remercie pour son intérêt et son amitié.

I. Feuilletages totalement géodésiques et flots riemanniens

Soit donc &amp; un feuilletage de codimension 1, de classe C°°, transversalement
orientable sur une variété orientable M que nous supposerons compacte pour
commencer. Soit g une métrique riemannienne sur M et &amp;1- le feuilletage de

dimension 1 orthogonal à ^. Dans [Car-Ghy], nous remarquions que:

PROPOSITION 1-1. ^ est totalement géodésique pour la métrique g si et
seulement si g est quasi-fibrée pour 9^±. H existe une métrique riemannienne telle

que &amp; soit totalement géodésique si et seulement si &amp; est transverse à un flot
riemannien.

En ce qui concerne les notions de métriques quasi-fibrées, de flots riemanniens,

introduites par [Rei], nous référons à [Car 1-2] qui utilise le même

language que le notre. En particulier, nous appellerons fréquemment &quot;flot&quot; un
feuilletage de dimension 1 même si aucun paramétrage de ce feuilletage n&apos;est

donné.
La proposition 1-1 signifie que l&apos;étude des feuilletages totalement géodésiques

se ramène à celle des flots riemanniens qui admettent un feuilletage transverse de

codimension 1. Or la structure des flots riemanniens est assez bien connue grâce à

[Mol] et surtout grâce à [Car 1-2]. Résumons les résultats essentiels.
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THEOREME 1-2 ([Mol]). Soit &lt;ë un feuilletage riemannien sur une variété

compacte M, alors les adhérences des feuilles de % sont des sous-variétés et forment
une partition de M.

THEOREME 1-3 ([Car-Car], [Car 1-2]). Soit &lt;ê un flot riemannien
(ie dim ^ 1) sur une variété compacte M, alors les adhérences des orbites de &lt;&amp; sont
des tores Tn et ^ restreint à chaque adhérence est conjugué à un flot linéaire de Tn.

Malheureusement les adhérences des orbites de ^ ne fibrent pas toujours M
(leur dimension peut varier). Un procédé efficace pour éliminer ce problème est le
suivant: soit M la variété fibrée au dessus de M dont la fibre au dessus du point x
de M est constituée des repères orthonormés de l&apos;orthogonal de Tx(^) dans

TX(M). Il est clair que M est un SO(p) fibre principal où p dim M —

THEOREME 1-4 ([Mol]). Il existe un feuilletage naturel % sur M de même

dimension que &lt;&amp; tel que:
1°) ^ est invariant par Vaction de SO(p) sur M
2°) ^ se projette sur &lt;é dans M
3°) ^ê est transversalement parallélisable complet; en particulier les adhérences

des feuilles de % fibrent M et la restriction de % à Vune de ces adhérences admet une
structure transverse de Lie.

Rappelons qu&apos;un feuilletage admet une structure transverse de Lie si son

pseudo-groupe transverse est un pseudo-groupe de translations sur un groupe de
Lie. Un feuilletage est transversalement parallélisable complet s&apos;il existe p champs
de vecteurs complets et transverses Xx,..., Xp, tels que, d&apos;une part, ils forment
une base du fibre normal en chaque point et que, d&apos;autre part, les flots associés

soient des automorphismes du feuilletage.
La fibration de M ainsi obtenue s&apos;appelle &quot;la fibration basique.&quot;

Soit maintenant $* un feuilletage totalement géodésique sur M. Au flot
riemannien &amp;1- correspond le fibre principal M muni du flot riemannien ^±. Bien
entendu, nous pouvons considérer l&apos;image réciproque du feuilletage S* dans M. Le
feuilletage &amp; (de codimension 1) ainsi obtenu est évidemment totalement
géodésique, son flot orthogonal étant ^&quot;L. L&apos;adhérence d&apos;une orbite de &amp;1- est un
tore Tn et ces adhérences fibrent M Enfin, sur chacune de ces adhérences, le flot
S&apos;1&apos; est conjugué à un flot linéaire et il est donc transversalement de Lie modelé
sur le groupe Rn~\ Le couple (^, ^x) peut donc être considéré comme une
&quot;désingularisation&quot; de (S^, 9X). Nous étudierons d&apos;abord ($, ^x) pour
redescendre ensuite dans M.
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Nous sommes déjà en mesure de démontrer la partie facile du théorème que
nous avons en vue. La proposition suivante est déjà dans [Car-Ghy].

PROPOSITION 1-5. Tout feuilletage transverse à une action localement libre
de S * est totalement géodésique pour une certaine métrique riemannienne complète,

DEMONSTRATION. Une action de S1 peut être rendue isométrique, donc
riemannienne.

PROPOSITION 1-6. SoitTT.M^B une fibration (triviale) de fibre R. Soit &amp;

un feuilletage transverse à tt tel que la restriction de tt à toute feuille de &amp; est un
revêtement. Alors il existe une métrique riemannienne complète telle que &amp; soit
totalement géodésique.

DEMONSTRATION. On part d&apos;une métrique complète sur B que l&apos;on

transporte sur les feuilles de 3^ à l&apos;aide de tt. On étend la métrique ainsi construite
en imposant aux fibres de tt d&apos;être orthogonales à &amp;. Puisque le choix de la
métrique sur les fibres de tt est arbitraire, on peut imposer à ces fibres d&apos;avoir une
longueur infinie de façon à obtenir une métrique complète sur M.

PROPOSITION 1-7. Les feuilletages modèles &amp;D sont totalement géodésiques

(pour une certaine métrique complète de MD).

DEMONSTRATION. H suffit de montrer que le supplémentaire canonique
^d à &amp;D correspondant au vecteur t; est un flot riemannien. On considère tout
d&apos;abord une métrique complète sur B et l&apos;on munit M d&apos;une métrique telle que la

projection p de MD sur B soit riemannienne. Soit U un ouvert trivialisant pour
p. Les fibres de p au dessus de U peuvent être définies par une action de
Tn sur p~x(U). En considérant la moyenne de al métrique dont nous disposons sur
p~x(U) sous l&apos;action de Tn, nous obtenons une métrique quasi-fibrée pour la
restriction de ^D à p~x(U). En utilisant une partition de l&apos;unité sur B, on construit
une métrique quasi-fibrée complète sur MD.

Tous les feuilletages cités dans le théorème sont donc bien totalement

géodésiques.
Peut-être est-il bon de donner un exemple simple illustrant les constructions

qui vont suivre. Soit X un champ de Killing sur S2; ce champ possède deux

singularités et toutes ses orbites sont fermées (de période 1 par exemple).
Munissons M^S^^xS1 d&apos;une métrique riemannienne induisant sur chaque facteur
S2x{*} la métrique usuelle et telle que le champ de vecteurs unitaires orthogonal
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à ces sphères S2x{*} soit N eX + d/d6 où eeR et d/dd représente le champ
habituel sur S1.

Le feuilletage 9 de M par sphères S2 est totalement géodésique, l&apos;adhérence

d&apos;une orbite de N est un tore T2 sauf pour deux orbites fermées si e est
irrationnel. Si e est rationnel toutes les orbites de N sont fermées et munissent M
d&apos;une fibration de Seifert. Le passage de M à M est ici le passage de S2xSî à

T1(S2)xS1-SO(3)xS1, le feuilletage $ est le feuilletage par fibres SO(3)x{*}
et les adhérences des orbites de &amp;x définissent maintenant une véritable fibration
(en cercles si eeQ, en tores T2 sinon). La déformation de métrique que nous
ferons plus loin consistera dans ce cas à approcher le réel e par un rationnel.

II. La trace du feuilletage sur une fibre

Comme nous l&apos;avons indiqué au paragraphe précédent, nous commençons par
étudier la situation relevée dans M D&apos;une manière générale, nous allons nous
intéresser au groupe structural de la fibration basique. Soit F une fibre de cette
fibration. Nous savons que F est difféomorphe à Tn et que la restriction de &amp;x à

F est linéaire. Etudions maintenant la trace de &amp; sur F.

PROPOSITION 2-1. La restriction de &amp; à F peut être définie par une action
localement libre de Rn~l. Cette action préserve §PfF et elle est définie à un
automorphisme de Un~l près. Trois cas sont possibles:

type Ia: Toutes les feuilles de §P\F sont compactes et &amp;\F peut être défini par une
action libre de Tn~\

type Ib: Le feuilletage &amp;\F possède au moins une feuille compacte et une feuille
non compacte.

type II: Les feuilles de &amp;\F sont denses. Il existe un homéomorphisme de Tn sur
F linéarisant &amp; et J^, le tel que, dans ces coordonnées &amp;fF soit constitué des droites

parallèles à un vecteur v fixe de Un (à coordonnées linéairement indépendantes sur
Q) et &amp;\F soit constitué des hyperplans parallèles à un hyperplan fixe d&apos;équation

ça 0 où io est une forme linéaire sur Un.

DEMONSTRATION. La première partie résulte du fait que la restriction de
91- à une fibre F est transversalement de Lie Un~l. Cela signifie que ^jjp peut être
défini par des submersions locales sur IRn~\les changements de cartes opérant par
translations sur (Rn~\ On peut donc définir sans ambiguïté n-1 champs de

vecteurs sur F, tangents à &amp;\F, commutant deux à deux, et se projetant localement

sur les champs —,..., de IRn~\ L&apos;action localement libre ainsi construite
dX aX
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préserve &amp;fF puisque ces champs de vecteurs sont localement projetables sur [Rn~\

La deuxième partie est une propriété bien connue des actions localement
libres de R&quot;&quot;1 sur Tn. Approchant ^jppar une fibration en cercles, on voit que 9\F
peut être défini par (n — 1) difïéomorphismes du cercle commutant deux à deux.
Ces difïéomorphismes ont donc un point périodique en commun ou bien sont
simultanément topologiquement conjugués à des rotations (cf. [Mor-Tsu] par
exemple).

Supposons que toutes les feuilles de &amp;\F sont fermées. Le stabilisateur d&apos;un

point m de F sour l&apos;action de W1&quot;1 est constant le long des feuilles de F)F (car
R&quot;&quot;1 est abélien). Ce stabilisateur est par ailleurs constant le long des orbites de

^jp puisque l&apos;action de R&quot;&quot;1 préserve &amp;\F. Par conséquent le stabilisateur est

indépendant du point m et §&gt;\F peut être défini par une action libre de Tn~1.

Apres avoir étudié une fibre F de la fibration basique, étudions un voisinage
de cette fibre.

LEMME 2-2. Soit II:M-^Ê la fibration basique et x un point de Ê. Soit F la
fibre /ï~1(x). Il existe un voisinage U de x et une trivialisation W de TI au dessus

de U:

telle que:
1°) pour toute feuille L de £jp, le difféomorphisme W envoie Lx{*} sur une

feuille de £jn-i&lt;u).

2°) pour toute feuille L&apos; de &amp;\F, le difféomorphisme W envoie L&apos;xU sur une

feuille de %-i(u).

DEMONSTRATION. Nous savons que ^x est un feuilletage transversalement

parallélisable complet. Si la dimension de B est p, il est donc facile de

construire p champs de vecteurs Xl9..., Xp sur un voisinage de F dans M tels

que
1°) les Xt sont tangents à 9
2°) les flots locaux X\ associés aux Xl sont des automorphismes de 9±.
3°) les champs induits sur Ê forment une base de T(Ê) au point x.
Dans ces conditions, la fonction

[(tl9..., g, m]€lRp x U~XliX% • • • Xyjn)

est définie pour (tl9 -. • &gt; %) appartenant à un voisinage de (0,..., 0). Ce voisinage

peut être identifié à un voisinage U de x et l&apos;on obtient la trivialisation cherchée.
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COROLLAIRE 2-3. Soit Diff (F, £|F, £jp) te groupe des difféomorphismes de F
préservant &amp;\F et &amp;(F muni de la topologie C°°. Alors le groupe structural de la

fibration basique peut se réduire à Diff (F, ^)F, ^F).

III. Les feuilletages de type la et lb

Grâce à 2-1 et 2-2, nous avons obtenu certaines cartes locales pour la fibration
basique FI. Pour étudier les changements de cartes, il nous faut étudier les

homéomorphismes d&apos;une fibre préservant la structure (^, &amp;1-).

LEMME 3-1. Supposons que (^,^x) est de type Ia ou Ib. Soit h un
homéomorphisme de F /I~1(x) préservant &amp;\F et &amp;fF. Alors h commute avec
Vaction de Mn~l sur F.

DEMONSTRATION. Sot L une feuille compacte de #,F. Celle ci s&apos;identifie à

Tn~~l à l&apos;aide de l&apos;action de IR&quot;&quot;1 nous disposons. Cette identification est

unique à une translation près de T%n~\ Le flot §&gt;\F définit une application de

premier retour de L dans L donc de Tn~x dans T&quot;&quot;1. Cette application est
clairement une translation à orbites denses.

Soit V h(L). L&apos;application de premier retour correspondant à L&apos; est
évidemment la même translation que celle de L. Par conséquent, puisque h

préserve ^x, la restriction de h à L considérée comme homéomorphisme de L
sur V et donc de Tn~x sur T&quot;&quot;1 doit commuter avec une translation à orbites
denses de Tn~\ II est bien connu (et facile de vérifier) que cela implique que h/L
est une translation. Dans le cas Ia, toutes les feuilles de #(Fsont compactes et h

commute avec l&apos;action de IR&quot;&quot;1 sur F. Dans le cas Ib, nous n&apos;avons obtenu cette
commutation que sur les feuilles compactes de &amp;\F. Notons s.m l&apos;action de
l&apos;élément s de (Rn~x sur le point m de F. Pour tout s de Mn~l, l&apos;homéomorphisme

gs :meF-*h~l(s • h(s~x • m))eF

préserve {&amp;\F,&amp;\p). Lorsque s varie et m reste fixe, le point gs(m) décrit une
courbe tangente à ^)F. Lorsque m appartient à une feuille compacte, nous venons
de voir que ce point ne dépend pas de s. Si maintenant m n&apos;est pas situé sur une
feuille compacte on peut construire un segment [m, m;] contenu dans &amp;\F et tel
que m&apos; soit dans une feuille compacte de &amp;\F. En considérant la variation de ce

segment par les gs (s variable), on voit que le point m doit rester fixe, c&apos;est à dire
que h commute avec l&apos;action de Mn~l.

Nous pouvons maintenant commencer la démonstration du résultat principal
de ce paragraphe.
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PROPOSITION 3.2. Si (£, ^x) est de type Ia ou Ib, alors &amp; est transverse à

une action localement libre du cercle.

DEMONSTRATION DANS LE CAS Ia: D&apos;après le lemme 3-1 et le lemme
2-2 on peut définir sans ambiguïté une action de Tn-1 sur M notée (s, x)»-»s.x
dont les orbites sont exactement les composantes connexes des traces des feuilles
de &amp; sur les fibres de la fibration basique. Par ailleurs l&apos;action naturelle de SO(p)
sur M préservant (^,^±), elle commute avec l&apos;action de Tn~l. Nous disposons
donc d&apos;une action de Tn~l x SO(p) sur M

Nous nous proposons de construire une fibration en cercles de M dont les
fibres soient tangentes à la fibration basique et transverses à &amp;. Cette fibration
doit être SO(p) équivariante de façon à ce qu&apos;elle induise dans M une fibration de

Seifert, c&apos;est à dire une action localement libre de S1 transverse à &amp;.

Munissons M d&apos;une métrique invariante par Faction de T&quot;&quot;1 x SO(p). Celle-
ci nous permet de paramétrer ^± et définit donc un flot *Pr transverse à &amp; et
commutant avec l&apos;action de T&quot;&quot;1 x SO(p). Considérons, pour chaque m de M, le

temps de premier retour T(m) de l&apos;orbite de Wr passant par m sur la feuille de
#jn-i(n(m)) passant par m. Puisque WTim)(m) et m appartiennent à la même orbite
de l&apos;action de TM~\ il existe s(m) de Tnl tel que

*T(m)(m) s(m) • m

II est clair que T(m) et s(m) ne dépendent en fait que de la projection JT(m)
de m dans la base de la fibration basique. En fait, le lemme de trivialisation 2-2 et
le lemme 3-1 montrent que s(m) ne dépend pas de m. Nous pouvons alors
construire une action de S1 sur M par:

R/ZxM-»M
(0, m) i-* (-Os(m)) - %T(m)(m)

(A priori 6s(m) ne signifie rien puisque OeU et s€Tn~1=Rn~1/Zn~1, mais nous
choisissons un représentant quelconque de s(m) dans Rn~\ ce qui ne pose aucune
difficulté puisque s{m) est en fait constant).

Ceci est bien une action de S1 telle que nous la souhaitions.

Avant d&apos;étudier le cas Ib, rappelons un résultat de [Car-Ghy], obtenu aussi

sous une forme un peu différente dans [Joh-Whi].

PROPOSITION 3-3. Soit &amp; un feuilletage totalement géodésique de codimen-
sion 1. Si 9 a une feuille compacte, alors &amp; est transverse à une action localement
libre de S1.
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(H suffit de remarquer que la feuille compacte est une section globale pour le flot
&amp;x et celui ci est donc défini par la suspension d&apos;une isométrie d&apos;une variété
compacte donc approchable par une isométrie périodique.)

Pour démontrer la proposition 3-2 dans le cas Ib, il nous suffit donc de
démontrer le

LEMME 3-4. Si (£, ^x) est de type Ib, alors &amp; {et donc &amp;) possède une feuille
compacte.

Fixons une fibre F de la fibration basique et soient mx et m2 deux points de F.

Commençons par montrer le résultat suivant:

LEMME 3-5. Si ml et m2 appartiennent à la même feuille de &amp;, alors il existe

un difféomorphisme h de F tel que h(mt) m2 et h préserve &amp;\F et £jp.

DEMONSTRATION DU LEMME 3-5. Si 7 : [0,1] -» M est un chemin de M
tangent à &amp; et reliant m! et m2, la projection de 7 dans Ê nous fournit un lacet
7&apos;:S1—&gt;B. L&apos;image réciproque de la fibration basique par 7&apos; nous donne un
Tn-fibre au dessus de S1 dont la monodromie est le difféomorphisme souhaité.
(On peut supposer cette monodromie dans Diff (F, £jF, £jp) d&apos;après le corollaire
2.3).

Si l&apos;on fait la même construction que dans le lemme précédent dans le cas où
mx m2 et 7 un lacet tangent à &amp;, et si l&apos;on utilise le lemme 3-1, on obtient le

LEMME 3-6. Si c est un lacet de F tangent à &amp;\F9 alors c considéré comme
lacet d&apos;une feuille de &amp;, est dans le centre du groupe fondamental de cette feuille
defr

DEMONSTRATION DU LEMME 3-4. (et donc de la proposition 3-2 dans
le cas Ib via la proposition 3-3).

Rappelons tout d&apos;abord que &amp;\F peut être défini par la suspension de (n — 1)

difféomorphismes du cercle de classe C°° et commutant deux à deux.
Soit K c F la réunion des feuilles compactes de ^F. D&apos;après les hypothèses, K

est un fermé qui n&apos;est ni vide ni égal à F. Soit Kx la frontière de K. Tout
difféomorphisme de F préservant &amp;\F préserve K et donc Kv D&apos;après le lemme
3-5, Kt est la trace sur F d&apos;un fermé de M qui est saturé par 9. Ce fermé doit
contenir un ensemble minimal de &amp;. Si l&apos;on suppose que &amp; ne possède pas de
feuilles compactes, c&apos;est donc que Kt contient la trace sur F d&apos;un minimal
exceptionnel de &amp;.

D&apos;après le théorème de Sacksteder ([Sac]) une feuille de ce minimal contient
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un lacet dont l&apos;holonomie est hyperbolique (c&apos;est à dire dont la dérivée au point
fixe est différente de 1). D&apos;après [Ste], on peut supposer que ce germe
d&apos;holonomie est linéaire. Rappelons par ailleurs que tout germe de

difféomorphisme qui commute avec une contraction linéaire est lui même linéaire
et donc hyperbolique s&apos;il n&apos;est pas l&apos;identité.

Observons que l&apos;holonomie des feuilles de KX&lt;^F est non triviale car
arbitrairement près d&apos;une feuille de Kl9 il y a des feuilles non compactes. En
combinant l&apos;observation faite précédemment avec le lemme 3-6, on en déduit
qu&apos;il existe un lacet c tangent à une feuille de Kx dont l&apos;holonomie est hyperbolique.

Soit À la dérivée de cette holonomie au point fixe. Remarquons que toutes
les feuilles compactes de &amp;\F sont des tores Tn~l et que leurs groupes fondamentaux

sont tous canoniquement isomorphes. Dans chaque feuille compacte de ^(F,
nous pouvons construire un lacet homotope à c et considérer l&apos;holonomie de ce
lacet. On obtient ainsi un germe de difféomorphisme de R ayant un point fixe.
Soit K2 &lt;= Kx la réunion des feuilles de Kx telles que la dérivée de ce germe soit
égale à À en son point fixe. Il est clair que K2 est invariant par tout
difféomorphisme de F préservant (^(F, ^) (On utilise ici encore le lemme 3-1

impliquant qu&apos;un tel difféomorphisme doit préserver la classe d&apos;homotopie de c.)

Mais K2 ne peut contenir qu&apos;un nombre fini de feuilles compactes de &amp;\F. En
effet, le difféomorphisme C°° du cercle associé à c ne peut avoir qu&apos;un nombre fini
de points fixes où sa dérivée est égale à À. (La variation totale de la dérivée doit
être finie.)

Nous avons donc trouvé un nombre fini de feuilles compactes de ^jF
invariantes par tous les difféomorphismes de F préservant (&amp;\F, ^j^). Cette réunion
finie contient la trace sur F d&apos;une feuille compacte de &amp; d&apos;après 3.5.

IY. Réduction du groupe structural dans le cas II

De même que pour le cas I, il nous faut obtenir des informations sur les

homéomorphismes des fibres basiques préservant le couple de feuilletages

LEMME 4-1. Soit h un homéomorphisme du tore Tn tel que
1°) h préserve les orbites du flot linéaire parallèle au vecteur v à coordonnées

linéairement indépendantes sur Q.

2°) h préserve le feuilletage linéaire de codimension 1 transverse à v, à feuilles
denses, défini par la forme linéaire (o 0.

Alors h est en fait un difféomorphisme affine du type h(x) Ax + b où Ae
G(vy a&gt;) c SL(n, I) etbeTn= Un/Zn.
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DEMONSTRATION. Il est bien connu que le feuilletage de Tn d&apos;équation

a) 0 possède, à une constante multiplicative près, une unique mesure transverse
invariante (au sens de [Pla]). Cette mesure n&apos;est autre que celle obtenue par
intégration de co. Par conséquent, cette mesure transverse est multipliée par une
constante À sous l&apos;action de l&apos;homéomorphisme h. C&apos;est-à-dire que h est
&quot;transversalement affine.&quot; Puisque h préserve les orbites du flot linéaire parallèle à v,

on en déduit que la restriction de h à toute droite parallèle à v est affine de

pente À.

Soit d&apos;autre part A la matrice de SL(n,Z) induite par h sur Hx(Tn, Z)-Zn.
Comme h préserve deux feuilletages linéaires, il est facile de voir que A préserve
les &quot;nombres de rotation&quot; de ces feuilletages. Plus précisément v est vecteur

propre de A (car v est le &quot;vecteur de rotation&quot; du feuilletage linéaire de

dimension 1 parallèle k v). De même œ est vecteur propre de &apos;A (car o&gt; est la
&quot;forme de rotation&quot; du feuilletage défini par eu). Il est même clair que ^(eo) Àco

d&apos;après l&apos;interprétation de co comme mesure transverse faite plus haut.
Considérons maintenant l&apos;homéomorphisme W A~l ° h. Il préserve le couple

de feuilletages et, restreint à chaque orbite du flot parallèle à v, c&apos;est une
translation. En composant h&apos; avec une translation adéquate, on obtient un
homéomorphisme h&quot; ayant un point fixe, donc toute une droite dense parallèle à v
formée de points fixes, donc h&quot; est l&apos;identité. Par conséquent h était affine.

Introduisons maintenant un entier k dont le rôle sera important par la suite.
Les feuilles de eu 0 sont obtenues par une action localement libre de [Rn~\ ce

sont donc des &quot;cylindres&quot; du type Tk xUn~1~k. Nous appellerons k l&apos;&quot;invariant

de (#, #x).&quot; De manière équivalente si w s&apos;écrit Xr=i &lt;h dxt dans une base rationnelle

de IRn, alors n~k est le rang sur Q du système {a,}.
Résumons maintenant les lemmes 2-1, 2-2 et 4-1 en indiquant ce qu&apos;ils

signifient pour la fibration basique n:M-&gt;B. Tout point x de Ê admet un

voisinage trivialisant V et une carte (lemme 2-2)

Identifiant F à Tn à l&apos;aide de l&apos;homéomorphisme &quot;linéarisant&quot; du lemme 2-1,

nous obtenons une carte

Sur l&apos;intersection de deux ouverts trivialisants Vx et V2, les changements de cartes
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doivent être du type:

(x, m)eV1xTn&gt;-» (x, ife(m))€ V2x Tn

pour x dans Vxfï V2- D&apos;après 4-1, ifc(m) s&apos;écrit &lt;fe(m) Ax(m) + b(x), où
IR7Zn et Ax € G(u, a)). Puisque le changement de carte doit préserver le feuilletage

#, on voit que la courbe

doit rester tangente à un hyperplan parallèle à co 0.
Nous allons munir G(v, o&gt;) d&apos;une topologie de la manière suivante. Le groupe

de Lie Tn est feuilleté par &lt;o 0, il peut donc être muni de la topologie des

feuilles. On peut alors munir G(v, o&gt;) (qui ensemblistement est G(v, &lt;o) x Tn)
d&apos;une topologie en donnant à G(y, eu) la topologie discrète et à Tn la topologie
des feuilles. Nous appellerons cette topologie la &quot;topologie des feuilles de
G(u,&lt;o).&quot;

Ce paragraphe peut maintenant se résumer:

PROPOSITION 4.2. Le groupe structural de la fibration basique associée à un
feuilletage de type II peut se réduire à G(v, a)) muni de la &quot;topologie des feuilles.&apos;&apos;&apos;

REMARQUE 4-3. A priori, les cartes que nous avons construites pour la
fibration basique ne sont que continues. Cependant, nous pouvons les utiliser
pour transporter la structure différentiable de VxTn dans M Nous obtenons
ainsi une nouvelle structure différentiable dans M pour laquelle &amp; et ^x restent
difïérentiables. De même l&apos;action naturelle de SO(p) sur M préservant §P et ^\
le lemme 4-1 nous dit que cette action reste elle aussi différentiable dans cette
nouvelle structure. Dorénavant, nous supposerons M muni de cette structure.
Nous verrons cependant dans la partie VI que ce changement de structure était en
fait inutile.

REMARQUE 4-4. La composante connexe de l&apos;identité de G(v, co) munie de
la topologie des feuilles est homéomorphe à TkxRn~1~fc. Par conséquent le

groupe fondamental de G(v9 a&gt;) est isomorphe à Zk et les groupes d&apos;homotopie

d&apos;ordres supérieurs sont nuls. L&apos;invariant fc est donc l&apos;unique obstruction à ce que
G(v, (o) ait le type d&apos;homotopie d&apos;un groupe discret. Notre but est de ramener
l&apos;étude des feuilletages de type II aux feuilletages modèles pour lesquels le groupe
structural de la fibration basique est discret. Ceci explique l&apos;importance de
l&apos;invariant fc dans ce qui suit.
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V. Déformation du flot orthogonal

Le but de ce paragraphe est de montrer que si l&apos;invariant fc est non nul, on
peut déformer ^± à travers les flots riemanniens pour obtenir un flot &lt;&amp; tel que
l&apos;invariant fc associé à (£, % soit nul. En d&apos;autres termes, nous allons perturber la

métrique sur la variété de telle sorte que l&apos;adhérence d&apos;une orbite du flot
orthogonal baisse de dimension et que la trace de &amp; sur ces nouveaux tores soit

par plans (et non par cylindres Tk xR&quot;&quot;*&quot;1). Evidemment cette déformation de

métrique se fait à travers des métriques rendant &amp; totalement géodésique.
Le groupe G(v, &lt;o) se surjecte sur tto(G(v, (o)) et donc sur G(v, cj). Ceci

permet de construire un morphisme &quot;d&apos;holonomie&quot; de la fibration basique:

H:ir1(Ê)-+G(v,ù&gt;)

Remarquons que si w est un vecteur propre pour toutes les matrices H(y),
nous pouvons sans difficulté construire sur les fibres de la fibration basique, un
feuilletage de dimension 1 dont les feuilles sont les droites parallèles à w ce qui a

un sens intrinsèque puisque M • w est fixe par H(y). Notre but est de montrer qu&apos;il

existe effectivement de tels vecteurs dès que fc est non nul, ce qui nous permettra
d&apos;effectuer la déformation souhaitée de &amp;¦*-. Pour cela, nous utiliserons quelques
lemmes d&apos;algèbre linéaire.

LEMME 5-1. SikfOet si A e G(v9 ai), soif A le réel tel que A(v) \v. Alors A

est un nombre algébrique de degré strictement inférieur à n.

DEMONSTRATION. Par définition de l&apos;entier fc, la forme a&gt; ne dépend que
de n-k coordonnées dans une certaine base rationnelle (e,), :Un de Rn. C&apos;est-à-

dire que co s&apos;écrit

n-k
*&gt;= z «*«?

1=1

où e* représente la base duale de ex et a, est un réel.

Puisque (o est vecteur propre de lA et &lt;o(v) £ 0, il est clair que &apos;Aa» Ao&gt;. Si
l&apos;on note (a,,) les coefficients de *A dans la base e*, cette dernière égalité ainsi

que l&apos;écriture de &lt;o montrent que A est aussi valeur propre de la sous-matrice de
rA formée des a,, avec i et / compris entre 1 et n-k. Par conséquent, A est

algébrique de degré inférieur à n - fc.

LEMME 5-2. Si fc^O et si AeG(v,&lt;o), alors v n&apos;est pas un vecteur propre
simple de A.
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DEMONSTRATION. On suppose toujours que les coordonnées de i; sont
linéairement indépendantes sur Q. Si v était un vecteur propre simple, les (n -1)
dernières lignes du système

avec vx fixé et v2, vn inconnus, formeraient un système de Cramer. Par
conséquent les coordonnées t)2 t)n pourraient être calculées rationnellement à

l&apos;aide de vx et de A. C&apos;est-à-dire que les rapports —,...,— appartiendraient au

corps Q(À). Celui-ci étant de dimension strictement inférieure à n, il existe des

rationnels at tels que

Ceci contredit le fait que les vt sont linéairement indépendants sur Q.

Les deux lemmes précédents nous ont permis de trouver d&apos;autres vecteurs

propres pour chaque A de G(v, co). Notre but cependant est de trouver un
vecteur propre commun à tous les H(y) qui soit différent de v. La situation est en
fait très simple grâce au

LEMME 5-3. G(v, w) est un groupe abélien libre de rang au plus rc-1.

DEMONSTRATION. Considérons le morphisme S de G(v, &lt;o) dans R*
associant à chaque matrice A de G(u, &lt;o) la valeur propre À telle que A(v) Au. Ce

morphisme est injectif; en effet, si A(v) v, alors le noyau de A-Id est un
sous-espace rationnel de Un contenant v, c&apos;est donc (Rn tout entier (nous disons
qu&apos;un sous-espace de IRn est rationnel s&apos;il possède une base formée de vecteurs
rationnels). Ceci montre que G(v,cû) est abélien. On montre de même que si

6(A) est rationnel, alors A id.

Ecrivons l&apos;égalité A(v) kv sous la forme
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Ceci permet d&apos;écrire

L&apos;image de 0 est donc contenue dans un Q-sous-espace vectoriel de R de

dimension au plus n. Le groupe G(v, &lt;o) est donc abélien libre de rang au plus n.
Si ce rang était exactement n, on trouverait une matrice A de G(v, a&gt;) non triviale
avec 0(A) rationnel.

REMARQUE 5-4. Pour v et &lt;o &quot;génériques,&quot; le groupe G(v, &lt;o) est trivial.
Lorsqu&apos;il est non trivial, le rang de G(d, oj) peut effectivement atteindre n -1. En
effet, soit A une matrice entière dont le polynôme caractéristique est (-l)nX(X-
bi) - • • (X—bn-i) + l où les bt sont des entiers arbitraires. Alors, les matrices A,
A-bj I,..., A-5n_! I sont de déterminant 1 et commutent deux à deux. Le
produit de ces n matrices est (-l)n+1 I, mais on peut choisir les entiers 6, de telle
sorte qu&apos;elles engendrent un groupe abélien libre de rang n-1. On peut par
ailleurs choisir les bt de telle sorte que A soit diagonalisable. On appelle alors v
l&apos;un des vecteurs propres et &lt;o la forme linéaire valant 1 sur v et s&apos;annulant sur
tous les autres vecteurs propres. On obtient ainsi un exemple où G(v, o&gt;) est de

rang n — 1.

Les trois lemmes précédents nous mènent alors au

LEMME 5-5. Si fc^l, il existe w non multiple de v tel que w soit un vecteur

propre commun à tous les éléments de G(v, co).

DEMONSTRATION. Le groupe G(v, co) opère sur Rn; par hypothèse la
droite R • v est fixe ainsi que le noyau de o&gt;. Nous avons donc une action

G(v, œ) x Ker co -» Ker co

D&apos;après le lemme 5-2, le vecteur propre v n&apos;est pas simple. Chaque élément de

G(v, (o) admet donc dans Ker co un vecteur propre correspondant à la même
valeur propre que v. Puisque G(v, co) est abélien, le théorème de Lie permet de

conclure.
Nous en arrivons au résultat principal de ce paragraphe.

PROPOSITION 5-6. Soif &amp; un feuilletage totalement géodésique tel que
(&amp;, &amp;1-) soit du type IL Alors, il existe une (autre) métrique riemannienne sur M
telle que si &lt;§ est le nouveau flot orthogonal à &amp; et $ le nouveau flot orthogonal à &amp;,
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on ait:
1°) ou bien &lt;S est défini par une action localement libre du cercle.

2°) ou bien la fibration basique correspondante à (&amp;, $) a un groupe structural
réductible à un groupe discret.

DEMONSTRATION. Le groupe structural de la fibration basique peut se

réduire à G(v, co) muni de la topologie des feuilles. Ce groupe a le type
d&apos;homotopie d&apos;un groupe discret dès que k est nul.

Si fc(^, ^x) est non nul, le lemme 5-5 nous fournit un plan de dimension deux
formé de vecteurs propres communs à toutes les matrices H(y). Ce plan contient,
arbitrairement près de u, un vecteur w tel que les adhérences des orbites du flot
linéaire de Tn parallèlle à w sont des tores Tn~\ A ce vecteur correspond un flot
riemannien &lt;S transverse à &amp;. Remarquons que ce flot est invariant par l&apos;action de

SO(p) sur M car cette action préserve (^, ^x) et elle est donc affine sur les fibres
(lemme 4-1).

Le feuilletage ^ provient donc d&apos;un feuilletage &lt;S riemannien sur M, transverse

à 9. Les fibres de la fibration basique de (^, $) sont maintenant de
dimension n — 1.

Si (^, &lt;§) est de type Ia ou Ib, on utilise la proposition 3-3 et &amp; est donc
transverse à une action localement libre de S1.

Si (&amp;, $) est de type II, on itère le procédé jusqu&apos;à obtenir un couple (^, &lt;S)

pour lequel l&apos;invariant fc(^, ^) est nul.
Une fois cette déformation effectuée, le groupe structural de la fibration

basique est réduit à un groupe ayant le type d&apos;homotopie d&apos;un groupe discret. Soit

tt0 le quotient de G(v, co) par la composante connexe de l&apos;identité (isomorphe à

R&quot;&quot;1). Si nous possédons une section s à la projection naturelle de G(v, oy) sur tt0,
qui soit un homomorphisme de groupes, nous pouvons réduire le groupe structural

au sous groupe discret s(tt0) de G(v, w) (En effet G(v, &lt;o)/s(7ro) est contractile

et homéomorphe à [Rn~a). Pour terminer la démonstration de la proposition, il
nous suffit donc de montrer le

LEMME 5-8. La projection naturelle de G(v, &lt;o) sur ir0 admet une section qui
est un homomorphisme de groupes.

DEMONSTRATION. Notons t le groupe Tn/Kero&gt;. Le groupe G(v,&lt;d)

opère sur TM tout en préservant Ker w, il opère donc sur t. Un élément de tt0
s&apos;écrit donc comme un couple (A, p) où A appartient à G(v, o&gt;) et 0 à t. Le
produit de (A, 0) et de (A&apos;, ^&apos;) est (AA\A$&apos; + f$) où Ap&apos; désigne l&apos;action de A
sur £&apos;. Soit pr la projection naturelle de Tn sur t.

Trouver une section de ir0 dans G(u, &lt;*&gt;) revient donc à trouver une section de
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pr, de t dans Tn, qui soit équivariante sous les actions de G(v, o&gt;) sur Tn et t.
Remarquons tout d&apos;abord que la restriction de pr au sous-groupe de torsion de

Tn(noté Tor(Tn)) est un isomorphisme sur le sous-groupe de torsion de r (noté
Tor (t)). En effet, l&apos;élément (xu xj mod Zn©Ker co est de torsion dans t s&apos;il

existe un entier p tel que:

p(xu ...,xn) (ku • • • &gt; K) + («i,• ••,«„)

avec

(kl9..., K)elT et (a1?..., on)eKer a&gt;.

Dans l&apos;image réciproque de (xu ,xn)modZn©Kereu par pr, il y a un unique
élément de torsion, en l&apos;occurrence

La section s que nous cherchons est donc parfaitement définie sur Tor(r).
D&apos;autre part, la droite M • v se plonge dans Tn. Ce plongement noté i, suivi de

la projection pr de Tn sur t donne une application surjective pr°i de IR sur t. Le
noyau de pr°i est un groupe abélien libre engendré par n réels ^,...,4,,
linéairement indépendants sur Q.

Le groupe G(v, cj) opère sur M - v et sur t. Bien entendu, l&apos;application pr°i est

équivariante sous ces actions. Soient Al5...,Ak un système de générateurs
de G(v, (o) et À1,...,Àk les valeurs propres correspondantes, i.e. AIu Àli;. Il
est clair que ©r=i2 • è est invariant par multiplication par À, puisque c&apos;est le

noyau de l&apos;application équivariante pr°i. Par conséquent, le Q-espace vectoriel
©T=i Q • ê est aussi invariant par multiplication par À,. Soit K le sous-corps de U

engendré par les réels A,. La droite U apparaît comme un K-espace vectoriel et
©T=iQ * £ comme un K-sous-espace vectoriel de IR. Soit E un supplémentaire
du X-sous-espace 0T=i Q * £ dans (R. Nous avons alors:

t =IR/Ker (pr&lt;&gt;0- JS©(©Q/Z
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C&apos;est à dire

r pr° i(JE)©Tor(T)

La section équivariante s que nous cherchons de t dans Tn est maintenant définie

par:

s(pr°i(e)) i(e) si eeE
s(t) (pr o ilTor(Tn)) -1(t) si re Tor (r)

Cette section est clairement équivariante par l&apos;action de G(v, w) car E est un
K-espace vectoriel. Ceci termine la démonstration du lemme 5-8 et donc de la
proposition 5-7.

VI. Interprétation des résultats dans M

Partant du feuilletage &amp; sur M, nous supposerons effectuée la déformation de
la métrique dont il était question au paragraphe précédent. Nous nous placerons
de plus dans le seul cas qui nous reste à étudier, c&apos;est à dire celui où la fibration
basique possède un groupe structural discret (cas 2 de la proposition 5-6). Nous
noterons de nouveau ^± pour % car nous n&apos;utiliserons plus l&apos;ancienne métrique
(non perturbée).

Puisque le groupe structural est discret, nous pouvons décrire (^, ^x) par:

M Ê x T7(x, m)-(y x, &lt;p(y){m))

où Ê est le revêtement universel de la base Ê de la fibration basique, 7 un
élément quelconque de tti(Ê) et &lt;p un morphisme de ttxCB) dans G(u, (o). Cet
élément ç(y) s&apos;écrit:

où b(y)e Tn et H est le &quot;morphisme d&apos;holonomie&quot; déjà considéré. (Ici encore v
et a) ne sont plus les mêmes qu&apos;avant la perturbation de la métrique).

Dans cette description, le feuilletage &amp; est décrit par l&apos;équation a) 0 et le
feuilletage ^x est donné, dans chaque {*}x Tn par la direction v.

On peut toujours supposer qu&apos;il existe 7 tel que &lt;p(y) n&apos;est pas une translation
de Tn car sinon la fibration basique serait principale et l&apos;on trouverait une action
localement libre de S1 transverse à ^.
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Nous disposons donc d&apos;une description explicite de &amp;. Pour étudier ^, il faut
étudier l&apos;action de SO(p) sur M Bien entendu cette action en induit une autre sur
Ê puisqu&apos;elle préserve la fibration basique. Nous nous proposons de montrer que
SO(p) opère librement sur Ê ce qui fera apparaître (M, ^) comme un modèle
dont la base B est le quotient de B par SO{p).

L&apos;action de SO(p) sur M se relève en une action de Spin (p) (le revêtement
universel de SO{p)) sur ÊxTn. Notons R(x, m) l&apos;image de l&apos;élément (x, m) de

ÊxTn sous l&apos;action de l&apos;élément JR de Spin (p).

LEMME 6-1. L&apos;action de Spin (p) sur ÊxTn s&apos;écrit sous la forme:

R(x, m) (R(x), m + u(R, x))

où R(x) désigne Vaction de Spin (p) sur B et u(R, x) est un vecteur du noyau de co.

DEMONSTRATION. Ecrivons tout d&apos;abord que l&apos;action étudiée préserve la
fibration basique

Pour x et R fixés, l&apos;application m *-*f(R, x, m) préserve le feuilletage, donc

R(x, m) (R(x), A(JR, x)m + u(R, x))

où A(JR, x) g G(v, (o) et u(R, x) e Tn.
Par continuité A(R, x) id. Si m et jR sont fixés et x varie, R(x, m) doit rester

sur une même feuille de §*. De même, si m et x sont fixés et jR varie, R(x, m) doit
rester sur une même feuille de &amp;. Par conséquent, lorsque R et x varient, u(R, x)
reste sur une feuille du feuilletage linéaire de Tn défini par &lt;o. Puisque u(id, x)
0, u(R, x) reste sur la feuille passant par 0 et peut donc être identifié à un vecteur
du noyau de &lt;o. On a donc bien la description souhaitée de l&apos;action:

R(x, m) (JR(x), m + u(R, x)) où u(R, x) e Ker &lt;o.

Nous nous proposons de simplifier encore cette écriture en montrant que l&apos;on

peut toujours supposer u(R,x) 0. La description que nous avons donnée de

(M, à) comme quotient de ÊxTn n&apos;est évidemment pas unique. Si h est un
difféomorphisme de Êx Tn préservant les deux feuilletages et commutant avec
l&apos;action de tt^Ê) sur Ê x Tn, nous pouvons considérer h comme un &quot;changement

de coordonnées&quot; sur ÊxTn compatible avec nos données.
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LEMME 6-2: II existe un tel difféomorphisme h, envoyant le point (x, m) sur le

point de coordonnées (xl9 mj tel que, dans ces nouvelles coordonnées, Vaction de

Spin (p) s&apos;écriw

R(xu mx) (jR(Xi), mt).

Autrement dit, quitte à changer les coordonnées dans ÊxTn, on peut toujours

supposer que u(R, x) est identiquement nul

DEMONSTRATION. Il est clair que u(R, x) vérifie les relations suivantes:

u(RtR2, x) u(R2, x) + u(Rl9 R2(x))

u(R,yx) H(y)u(R,x)

exprimant le fait que R(x,m) définit effectivement une action et que cette action
commute à celle de tti(Ê). Si l&apos;on pose

u(x)=\
•&apos;Spin

u(R, x)
(p)

et si l&apos;on définit h par:

h : (x, m) »-* (xl9 mt) (x,m + u(x))

on obtient évidemment le difféomorphisme cherché.

Nous sommes maintenant en mesure de démontrer une version presque
complète du théorème principal:

PROPOSITION 6-3. Si &amp; est un feuilletage totalement géodésique de

codimension 1, orientable sur une variété compacte orientable M, alors
1°) soit &amp; est transverse à une action localement libre de S1

2°) soit &amp; est topologiquement conjugué à un feuilletage modèle (MD, &amp;D).

DEMONSTRATION. D&apos;après le lemme 6-2, les points fixes de l&apos;action de

Spin (p) sur B correspondent aux points fixes de l&apos;action de Spin (p) sur Ê x Tn.

Remarquant que M est un SO(p) fibre principal, on en déduit que l&apos;action de

SO(p) sur Ê est elle aussi libre. Si B est le quotient de B sous cette action, on en
déduit la description de (M, &amp;) sous la forme

M Éx Tn/(x, m) ~ (y • x,
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(Remarquons que &lt;p : tt^Ê) -» G(u, o&gt;) se factorise à travers ttx(B) car, d&apos;après

6-2, le groupe SO(p) opère trivialement sur Tn.) Ceci est précisément un modèle

VII. Fin de la démonstration du théorème principal

II nous reste essentiellement à nous débarrasser du changement de structure
différentiable (Remarque 4-3) et à étudier le cas où M n&apos;est pas compacte.

Observant qu&apos;une action continue et localement libre du cercle, peut être
lissée sans difficulté, il nous faut étudier le cas des feuilletages modèles.

LEMME 7-1. On peut toujours se limiter à Vétude des modèles pour lesquels les

coordonnées &lt;ol9..., con de w dans la base canonique de (Rn)* sont telles que —l est

algébrique. l

DEMONSTRATION. Si &lt;o n&apos;est pas vecteur propre simple de &apos;A avec

A g G(v, a&gt;), alors v n&apos;est pas non plus vecteur propre simple de A. Nous avons
déjà observé au paragraphe 5 que si v est vecteur propre multiple de tous les

éléments de G(v, co), nous pouvons déformer la métrique et faire baisser la
dimension de la fibration basique. Cette déformation étant faite, o&gt; peut être

supposé vecteur propre simple. Les réels —,...,— peuvent alors être calculés

rationnellement en fonction des coefficients d&apos;une matrice A de G(v, &lt;*&gt;) et de la

valeur propre À correspondante. Ils sont donc algébriques.

PROPOSITION 7-2. Le changement de structure différentiable effectué en 4-3
était en fait inutile.

DEMONSTRATION. Le feuilletage £,F initial était obtenu par no-l
difféomorphismes du cercle commutant deux à deux. Lorsque nous avons effectué

la déformation de la métrique, la dimension des fibres est passée de nQ à n et la

trace de &amp; sur ces nouvelles fibres est obtenue par la suspension de n-1
difféomorphismes du cercle dont les nombres de rotation sont —,...,—. Par

ù)l ù)i
conséquent parmi les no-\ difféomorphismes initiaux, certains avaient un
nombre de rotation algébrique. On conclut à l&apos;aide de [Her] qui montre qu&apos;un

groupe abélien de difféomorphismes C°° du cercle dont un élément a un nombre
de rotation irrationnel algébrique, est C°°-conjugué à un groupe de rotations.
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Pour terminer, il nous faut traiter le cas où M est non compacte mais
complète. Le feuilletage ^x reste riemannien, et ^x reste transversalement
parallélisable complet, les théorèmes 1-2 et 1-4 restent valables. Nous devons
trouver l&apos;équivalent de 1-3 lorsque M n&apos;est pas compacte.

PROPOSITION 7-3. Soit &lt;§ un flot transversalement de Lie modelé sur le

groupe de Lie G, sur une variété N (orientable mais éventuellement non compacte).
On suppose que les orbites de $ sont denses et que la structure transverse est

complète. Alors deux cas sont possibles.

1) soit N est compacte.
2) soit N U et le flot est de codimension zéro.

DEMONSTRATION. Supposons que la dimension de N est supérieure à

deux et montrons que N est compacte. On suppose % engendré par le groupe à

un paramètre &lt;pt. Pour chaque point x de N, l&apos;orbite positive ou l&apos;orbite négative
de x est dense dans N. En remarquant que le groupe des automorphismes de ^
agit transitivement sur N (la structure est complète), et en inversant au besoin
l&apos;orientation des orbites, on peut donc supposer que, pour tout x de N, l&apos;orbite

positive de x est dense dans N.

Soit Dx un disque fermé, plongé dans N et transverse à cê, et soit x un point de
l&apos;intérieur de Dx. Ce disque s&apos;identifie à un voisinage de l&apos;élément neutre du

groupe transverse G. Soit D2C=D1 le disque de centre x et de rayon e où la
métrique utilisée est une métrique invariante à gauche sur G et où e est choisi de

telle sorte que le disque de centre x et de rayon 2e soit entièrement contenu dans

Di. Soit D3&lt;=^D2 le disque de centre x et de rayon e/3. Enfin soient xu...,xk
k points de D2 tels que les disques Ax de centre xl et de rayon e/3 recouvrent D2
(remarquons que Ax c Dx). Pour chaque i, il existe un réel tx positif, tel que (pti(xt)

appartienne à D3 car les orbites de &lt;pt sont positivement denses. Considérons
l&apos;holonomie du chemin joignant xl à (pti(xl). C&apos;est un germe de translation à

gauche de G et donc un germe d&apos;isométrie. De par le choix des rayons de D2, D3
et 4,, cette isométrie se prolonge en une isométrie hx définie sur At tout entier et à

valeurs dans D2. Puisque la structure transverse à ^ est complète, il est clair que
pour tout y de Al9 les points y et h, (y) appartiennent à la même feuille de cê. De
manière plus précise, il existe fc fonctions continues ^(y) définies sur Ax telles que:
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Soit

Tl=Max|tl(y)| et T&gt;MaxTt
yeA, i

Pour tout y de D2, la portion de l&apos;orbite de y située entre y et (pT(y) recoupe au
moins une fois D2. Si l&apos;on considère l&apos;ensemble des points de N de la forme &lt;p,(y)

avec yeD2 et O^f^T, on obtient un compact invariant par les &lt;pt avec t^O.
Puisque toutes les orbites positives de &lt;pt sont denses, ce compact est N tout entier
et, en particulier, N est compact.

Soit (M, &amp;) un feuilletage totalement géodésique sur une variété non
compacte. Si l&apos;adhérence d&apos;une orbite de SP± est compacte, on est tenté de reproduire
intégralement la démonstration qui vient d&apos;être donnée dans le cas compact. La
difficulté est alors de démontrer la proposition 3-2. Cette proposition est elle
même basée sur la proposition 3-3 et sur le lemme 3-4. Ces deux derniers
résultats sont les seuls qui ne s&apos;étendent pas clairement lorsque M est non
compacte.

PROPOSITION 3-3 (cas non compact). Si Vadhérence d&apos;une orbite de 9^ est

compacte et si &amp; a une feuille fermée, alors &amp; est transverse à une action localement
libre du cercle.

DEMONSTRATION: Soit F cette feuille fermée. Par hypothèse chaque
orbite de ^± rencontre F une infinité de fois; soit W: F-+F l&apos;application de

premier retour. C&apos;est une isométrie de F. L&apos;adhérence H du groupe engendré par
W est un sous-groupe de Lie abélien du groupe des isométries de F. Par
conséquent H est isomorphe à Tk x RlxF où F est abélien discret. Puisque H
contient un sous-groupe monogène dense, on en déduit que H est isomorphe à 0,
Z ou à Tk x F où F est un groupe fini. Le premier cas signifie que W id c&apos;est à

dire que les orbites de &amp;1- sont des cercles. Dans le second cas le groupe engendré

par ¥&quot; est fermé ce qui impliquerait que les orbites de ^± seraient fermées mais

non compactes, et nous avons exclu ce cas. Enfin, dans le dernier cas, V est

approchable par un élément de torsion de Tk x F, et donc par une isométrie
périodique. 9X est alors approchable par une action localement libre du cercle.

En ce qui concerne le lemme 3-4, nous ne sommes parvenus à le généraliser
au cas où M est non compacte que sous certaines conditions.

LEMME 3-4 (cas non compact). Supposons que Vadhérence d&apos;une orbite de
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&amp;x est compacte et que Vune des conditions suivantes est réalisée

1) le groupe fondamental de M est de type fini.
2) le feuilletage &amp; est analytique.

alors, si &amp; est de type Ib, &amp; possède une feuille fermée.

DEMONSTRATION. Si le groupe fondamental de M est de type fini, la
démonstration du lemme 3-4 donnée au paragraphe III est valable puisque le
théorème de Sacksteder s&apos;applique aux pseudo-groupes de type fini. Si le feuilletage

est analytique réel, la réunion des feuilles compactes de &amp;\F ne peut contenir
qu&apos;un nombre fini de feuilles compactes. Cette réunion finie contient donc la trace
sur F d&apos;une feuille fermée de &amp; d&apos;après 3-5.

Nous pouvons donc décrire les feuilletages &amp; totalement géodésiques sur les

variétés riemanniennes complètes non compactes en imposant l&apos;une des deux
conditions 1) et 2) du lemme précédent.

Si l&apos;adhérence d&apos;une orbite de &amp;x est compacte, le problème se traite
exactement comme nous l&apos;avons fait dans le cas où M est compacte. Sinon toutes
les orbites sont fermées et celles-ci définissent une fibration de M de fibre M et de
base fî, transverse à &amp;. Puisque M est supposée complète, toute feuille de &amp;

apparaît comme un revêtement de B. On peut donc écrire

M B xR/(x, y) ~ (y • x,

où

est le morphisme d&apos;holonomie. Les feuilles de &amp; sont définies par l&apos;équation

y Cst. Ceci achève la démonstration du théorème 2.

VIII. Remarques finales

Les corollaires qui suivent sont des conséquences immédiates du théorème

principal. Certains d&apos;entre eux peuvent d&apos;ailleurs se démontrer directement.

Rappelons tout d&apos;abord un résultat de [Car-Ghy].

PROPOSITION 8-1. Soit &amp; un feuilletage totalement géodésique, de codimen-
sion 1, transversalement orientable, sur une variété riemannienne complète M Soit

M le revêtement universel de M, &amp; le relevé de &amp; dans M et &amp;1- le flot orthogonal à
§?. Alors (J*, 9X) est un produit, c&apos;est à dire qu&apos;il existe un difféomorphisme de M
sur L xR envoyant les feuilles de &amp; sur Lx{*} et celles de &amp;x sur {*}xR.
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COROLLAIRE 8-2. Soit &amp; un feuilletage totalement géodésique de codimension

1 sur la variété riemannienne complète M, alors
• ou le groupe fondamental de M contient un sous-groupe distingué abélien libre

non trivial
• ou M est un produit BxR et le feuilletage est transverse aux fibres {*}xR.

Ce corollaire, ainsi que celui qui suit est déjà dans [Car 1], lorsque M est
supposée compacte.

DEMONSTRATION. Dans le cas où les adhérences des orbites de &amp;x sont
non compactes, nous savons que M est un produit B xR. Sinon, l&apos;adhérence d&apos;une

orbite de ^x est un tore Tn (n &gt; 1). L&apos;image du groupe fondamental de ce tore
dans celui de M est alors un sous-groupe distingué abélien. Ce sous-groupe est

non trivial car certaines classes d&apos;homotopie de Tn correspondent à des transversales

fermées à &amp; et celles ci ne peuvent être triviales d&apos;après 8-1.

COROLLAIRE 8-3. Si M admet une métrique riemannienne à courbure
strictement positive ou si M est compacte et admet une métrique à courbure

strictement négative, alors, il n&apos;existe aucun feuilletage totalement géodésique sur M
(même pour une autre métrique de M).

DEMONSTRATION. Une variété à courbure strictement positive est
compacte et possède un groupe fondamental fini. Le corollaire 8-2 exclut donc la
possibilité d&apos;existence d&apos;un feuilletage totalement géodésique sur une telle variété.

Le groupe fondamental d&apos;une variété compacte à courbure strictement
négative ne peut contenir de sous-groupe abélien de rang 2 et son centre est

trivial. Les modèles ainsi que les fibres de Seifert ne peuvent donc pas être des

variétés compactes à courbure strictement négative.

En ce qui concerne le comportement qualitatif des feuilles, nous avons le

COROLLAIRE 8-4. Si &amp; est totalement géodésique sur une variété compacte
M et si &amp; possède une feuille compacte ou un minimal exceptionnel, alors &amp; est

transverse à une action du cercle. Sinon, toutes les feuilles sont denses et le

feuilletage possède une structure transverse affine (c&apos;est-à-dire que le pseudogroupe

transverse peut se réduire à un pseudo-groupe de transformations affines de

R). En particulier, dans ce dernier cas, le premier nombre de Betti de M est non nul
(cf. [Fed-Fur]).

Il est bien connu que la classe des feuilletages transverses à des fibrations en
cercles est très diversifiée; presque tous les phénomènes qualitatifs rencontrés en
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codimension 1 se rencontrent dans cette classe. Les feuilletages modèles
possèdent par contre une remarquable propriété de rigidité:

COROLLAIRE 8-5. Soit (MD, &amp;D) un feuilletage modèle compact pour lequel
v est vecteur propre simple (d&apos;après 7-1, on peut toujours se limiter à ces modèles).
Alors (MD,&amp;D) possède un &quot;module de stabilité&apos;&quot; fini, c&apos;est à dire que Von peut
décrire les feuilletages voisins de &amp;D à Vaide d&apos;un nombre fini de paramètres (à
conjugaison C°° près).

DEMONSTRATION. Un feuilletage proche d&apos;un feuilletage totalement
géodésique est encore totalement géodésique (pour une autre métrique). Si &amp;&apos; est

proche de &amp;D, grâce à l&apos;hypothèse faite sur v, on voit facilement que ^&apos; doit aussi

être conjugué à un modèle associé à (D&apos;) (n, v\ &lt;o&apos;, B, &lt;p&apos;) correspondant au
même entier n et à la même base B que (D). Le morphisme &lt;p&apos; s&apos;écrit

avec

H&apos;(y)eSL(n,l) et b&apos;(y)eTn.

De la proximité de &amp;&apos; et &amp;D, on déduit que H&apos; H, a) (of et u t/. Par

conséquent, &lt;p&apos; et &lt;p ne différent que par le terme b&apos;(y). Les valeurs de b&apos;(y) pour
y décrivant un système de générateurs de tt\(B) fournissent un nombre fini de

paramètres décrivant les feuilletages voisins de &amp;D.

Sans vouloir faire une étude détaillée des déformations des feuilletages
modèles, donnons un exemple typique. Supposons que le groupe fondamental de

B soit le groupe libre à deux générateurs a, |3 noté L(a, |3) et soit (M, 9) le

feuilletage modèle correspondant au morphisme &lt;p défini par

Les feuilletages proches peuvent être décrits par deux paramètres uu u2 de Tn. Le
feuilletage &amp;Ul,u2 est associé au morphisme &lt;pUl,U2 défini par:

&lt;Put,u2(&lt;x) (A, ut) € G(v, (o)
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Bien entendu, deux couples (uu u2) et (u[, u2) peuvent correspondre à des

feuilletages conjugués. Par exemple, soit jc0 tel que Axo + u1 xQ, si l&apos;on conjugue
&lt;Puuu2 Par *a translation (id,x0), on obtient &lt;po,U2 On peut donc se limiter aux
déformations pour lesquelles ul 0. De même, si u2 est un petit élément de
Ker (cû) c Tn, le feuilletage ^0 u2 est conjugué à ^0 o- Cependant, il existe
effectivement des déformations non triviales Pour le constater, calculons le groupe
fondamental de la feuille de &amp;UtM2 passant par le point x de Tn. Ce groupe est le

sous-groupe de L(a, |8) défini par:

{7 € L(a, p),çUi U2(y)(x) - x e Ker (©)}

Si (ul9 u2) (0, 0) et x =0, ce groupe est L(a, j3) tout entier.
C&apos;est à dire que la feuille de ^0&gt;0 passant par 0 e Tn est un fibre en Un~l au

dessus de JB. Si b désigne la dimension de B, le fc-ème nombre de Betti de cette
feuille est donc non nul. Si u1 0 et w2^Ker(V), pour tout x de Tn, le groupe
fondamental de la feuille de ^Ul U2 passant par x ne contient pas |3, c&apos;est donc un

sous-groupe strict de L(a, /3). Cette dernière feuille est donc un fibre en IR&quot;&quot;1 au
dessus d&apos;une variété B&apos; qui est un revêtement non trivial de B. Si B&apos; est non
compacte, le b-ème nombre de Betti de cette feuille est nul; si B&apos; est compacte, le

groupe fondamental de cette feuille est un sous-groupe strict d&apos;indice fini de

L(a, /3), c&apos;est donc un groupe libre ayant au moins 3 générateurs. Quoiqu&apos;il en

soit, si u2é Ker (eu), aucune feuille de ^0 U2
n&apos;est homéomorphe à la feuille de ^00

passant par 0. Les feuilletages ^Oo et ^o,u2 ne sont donc pas conjugués.
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