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Classification des feuilletages totalement géodésiques de codimen-
sion un

ETiENNE GHYS

Introduction

Soit & un feuilletage de codimension un sur une variété M. Pour étudier %, il
peut étre utile de construire une métrique riemannienne sur M adaptée au
feuilletage. Par exemple, on peut chercher une métrique telle que les feuilles de &
soient des sous-variétés minimales. Ce probléme a été résolu dans [Sul], ou il est
montré qu’une telle métrique existe relativement fréquemment (précisément
lorsqu’aucune réunion finie de feuilles compactes orientées ne borde un domaine
de M. Voir aussi [Hae], [Rum].)

De maniere analogue, on peut chercher une métrique telle que F soit
totalement géodésique, c’est a dire telle que toute géodésique de M tangente a F
en un point soit entierement contenue dans une feuille. Cela revient a imposer
I’annulation en tout point de la seconde forme quadratique fondamentale des
feuilles. Divers auteurs ont considéré le probleme de I’existence d’une telle
métrique ainsi que le probleme inverse d’existence d’un feuilletage totalement
géodésique sur une variété riemannienne fixée. Ceux-ci obtiennent certaines
obstructions portant sur la variété ([Abe], [Bri], [Dom], [Fer]), sur les classes
caractéristiques ([Joh—-Nav]) ou encore sur le comportement qualitatif de F([Blu—
Heb], [Joh—-Whi)).

Dans un travail précédent, en collaboration avec Yves Carriére ([Car—Ghy]),
nous avions étudié ce méme probléme en dimension trois. Rappelons le résultat
obtenu.

Soit A une matrice diagonalisable de SL,(Z). Le feuilletage du plan R* par
droites paralléles a 'une des directions propres de A définit un feuilletage sur le
tore T?=[R?/Z>. Par produit, nous obtenons un feuilletage de codimension 1 sur
T?XR clairement invariant par 1’application:

(m, ) e T?xR— (A(m), t+1)e T>XR.

La variété quotient, notée T3 est donc munie d’un feuilletage de codimension
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1. (cf [Ghy-Ser] pour une description plus précise de ce feuilletage). Le résultat
du travail précédemment cité est le

THEOREME. Soit ¥ un feuilletage de codimension 1 (orientable, de classe
C®) sur une 3-variété fermée orientable. Alors, il existe une métrique riemannienne
telle que % soit totalement géodésique si et seulement si

- soit & est transverse a une action localement libre du cercle (i.e. une fibration
de Seifert)

- soit la variété ambiante est difféiomorphe a T (pour une certaine matrice A) et
le feuilletage % est différentiablement conjugué au feuilletage décrit ci-dessus.

En un certain sens, il y a donc peu de feuilletages totalement géodésiques en
dimension 3. Le but de ce travail est de montrer que cette pauvreté relative
subsiste en dimension supérieure. Plus précisément, nous nous proposons de
décrire explicitement tous les feuilletages totalement géodésiques de codimension 1
sur les variétés riemanniennes compactes et sur certaines variétés non compactes.

Commengons par imiter la construction précédente, de fagon a obtenir un
certain nombre d’exemples de feuilletages de codimension 1. Pour cela, suppo-
sons donnés

1°) un entier n=2

2°) un vecteur v de R" dont les coordonnées sont linéairement indépendantes
sur Q.

3°) une forme linéaire w sur R" telle que w(v) #0.

A ces trois premieres données, nous pouvons associer le groupe G(v, ®)
formé des matrices A de SL(n,Z) telles que v soit vecteur propre de A et w
vecteur propre de ‘A. De plus, nous pouvons considérer le groupe G(v, w) formé
des transformations affines du tore T" de la forme

xeR"/Z" — Ax+beR"/Z"
ou

AeG(v, w)etbeR"/Z"

Supposons de plus que nous disposons

4°) d’une variété B

5°) d’un morphisme ¢ du groupe fondamental de B dans G(v, w). Pour
simplifier les notations, nous noterons (D) le quintuplet (n, v, ®, B, ¢). A I'aide de
(D), nous pouvons faire la construction naturelle suivante. Le tore T" est muni du
feuilletage linéaire de codimension 1 défini par la forme w. Soit B le revétement
universel de B. Par produit, nous obtenons un feuilletage de codimension 1 sur
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B xT" évidemment invariant par toutes les transformations

(x, y)eBXT " (y - x, o(y)(y)e BXT"

(Ici y représente un €lément du groupe fondamental de B et vy -x l’action
correspondante sur B.)

On obtient, par passage au quotient, une variété feuilletée (Mp, Fp) que nous
appellerons “‘le feuilletage modele associé a (D).” La variété My, fibre sur B avec
une fibre difféomorphe a T". Remarquons que le vecteur v définit sur T" un
champ de directions invariant par Paction de G(v, w). On obtient donc un
feuilletage canonique ¥p, de dimension 1, transverse a %p,.

Nous pouvons maintenant formuler notre résultat.

THEOREME 1. Soit % un feuilletage de codimension 1, transversalement
orientable, de classe C*, sur une variété compacte orientable M. Il existe une
métrique riemannienne sur M telle que F soit totalement géodésique si et seulement
Si:

I) soit F est transverse a une action localement libre du cercle (c’est a dire aux
fibres d’une fibration de Seifert généralisée sur M).

II) soit M est difffomorphe a Mp et & est différentiablement conjugué a un
“feuilletage modeéle” associé a un certain quintuplet (D)= (n, v, », B, ¢).

Lorsque la variété M n’est pas compacte mais complete, nous obtenons le
résultat partiel suivant:

THEOREME 2. Soit % un feuilletage de codimension 1, transversalement
orientable sur une variété orientable et non compacte M. Supposons que l’une des
conditions suivantes est réalisée:

1) le groupe fondamental de M est de type fini et le feuilletage est de classe C*.

2) le feuilletage ¥ est analytique.

Alors, il existe une métrique riemannienne complete sur M telle que & soit
totalement géodésique si et seulement si:

I) soit & est transverse a une action localement libre du cercle.

II) soit M est difffomorphe a My, et ¥ est différentiablement conjugué a un
feuilletage modéle associé a un certain quintuplet (n, v, w, B, ¢)

III) soit & est transverse a une fibration (triviale) de M de fibre R et de base B
dont la restriction a chaque feuille est un revétement.

Les étapes essentielles de la démonstration sont les suivantes: si & est
totalement géodésique, le flot orthogonal est riemannien (partie 1), ce qui impose
une structure trés rigide pour ce flot. Dans un certain fibré principal M au-dessus
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de M, les adhérences des orbites du flot orthogonal (relevé dans M) fibrent M.
Ces fibres sont des tores. En étudiant la trace sur ces tores du feuilletage & relevé
dans M, on voit apparaitre une distinction entre les cas I et II (partie 2). Dans la
partie 3, nous traitons le cas des feuilletages de type I. Pour les feuilletages de
type II, nous montrons (partie 4) que la structure induite par le feuilletage sur un
tore est essentiellement affine, ce qui nous permet de réduire le groupe structural
de la fibration étudiée a un groupe dont I’homotopie est simple (seul le II; est non
nul). Il s’agit ensuite de déformer la métrique riemannienne a travers des
métriques rendant ¥ géodésique de maniere a ce que le groupe structural de la
nouvelle fibration en tores devienne discret (partie 5). Les parties 6 et 7
permettent de “redescendre” les résultats obtenus de M dans M et réglent le cas
ou la variété est non compacte. On donne enfin (partie 8) quelques corollaires et
remarques.

C’est grace a de nombreuses discussions avec Yves Carriere que ce travail a pu
étre réalisé. Sans son étude tres détaillée des flots riemanniens, il aurait été
impossible d’aborder ce probléme. Je le remercie pour son intérét et son amitié.

I. Feuilletages totalement géodésiques et flots riemanniens

Soit donc & un feuilletage de codimension 1, de classe C*, transversalement
orientable sur une variété orientable M que nous supposerons compacte pour
commencer. Soit g une métrique riemannienne sur M et %+ le feuilletage de
dimension 1 orthogonal a %. Dans [Car-Ghy], nous remarquions que:

PROPOSITION 1-1. & est totalement géodésique pour la métrique g si et
seulement si g est quasi-fibrée pour F*. Il existe une métrique riemannienne telle
que % soit totalement géodésique si et seulement si F est transverse a un flot
riemannien.

En ce qui concerne les notions de métriques quasi-fibrées, de flots rieman-
niens, introduites par [Rei], nous référons a [Car 1-2] qui utilise le méme
language que le notre. En particulier, nous appellerons fréquemment ‘“flot” un
feuilletage de dimension 1 méme si aucun paramétrage de ce feuilletage n’est
donné.

La proposition 1-1 signifie que I’étude des feuilletages totalement géodésiques
se ramene a celle des flots riemanniens qui admettent un feuilletage transverse de
codimension 1. Or la structure des flots riemanniens est assez bien connue grice a
[Mol] et surtout grace a [Car 1-2]. Résumons les résultats essentiels.
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THEOREME 1-2 ([Mol]). Soit ¢ un feuilletage riemannien sur une variété
compacte M, alors les adhérences des feuilles de G sont des sous-variétés et forment
une partition de M.

THEOREME 1-3 ([Car-Car], [Car 1-2]). Soit 4 un flot riemannien
(ie dim % = 1) sur une variété compacte M, alors les adhérences des orbites de ¢ sont
des tores T" et G restreint a chaque adhérence est conjugué a un flot linéaire de T".

Malheureusement les adhérences des orbites de ¥ ne fibrent pas toujours M
(leur dimension peut varier). Un procédé efficace pour éliminer ce probléme est le
suivant: soit M la variété fibrée au dessus de M dont la fibre au dessus du point x
de M est constituée des reperes orthonormés de 'orthogonal de T,(%) dans
T.(M). 11 est clair que M est un SO(p) fibré principal ou p =dim M —dim .

THEOREME 1-4 ([Mol]). Il existe un feuilletage naturel $ sur M de méme
dimension que 4§ tel que:

1°) % est invariant par Uaction de SO(p) sur M

2°) ¢ se projette sur § dans M

3°) % est transversalement parallélisable complet; en particulier les adhérences
des feuilles de € fibrent M et la restriction de & a I’'une de ces adhérences admet une
Structure transverse de Lie.

Rappelons qu’un feuilletage admet une structure transverse de Lie si son
pseudo-groupe transverse est un pseudo-groupe de translations sur un groupe de
Lie. Un feuilletage est transversalement parallélisable complet s’il existe p champs
de vecteurs complets et transverses X, ..., X, tels que, d’une part, ils forment
une base du fibré normal en chaque point et que, d’autre part, les flots associés
soient des automorphismes du feuilletage.

La fibration de M ainsi obtenue s’appelle “la fibration basique.”

Soit maintenant % un feuilletage totalement géodésique sur M. Au flot
riemannien %* correspond le fibré principal M muni du flot riemannien %*. Bien
entendu, nous pouvons considérer 'image réciproque du feuilletage ¥ dans M. Le
feuilletage ¥ (de codimension 1) ainsi obtenu est évidemment totalement
géodésique, son flot orthogonal étant %*. L’adhérence d’une orbite de ¥* est un
tore T" et ces adhérences fibrent M. Enfin, sur chacune de ces adhérences, le flot
* est conjugué 2 un flot linéaire et il est donc transversalement de Lie modelé
sur le groupe R"'. Le couple (%, FY) peut donc étre considéré comme une
““désingularisation” de (%, ¥*). Nous étudierons d’abord (%, F pour redes-
cendre ensuite dans M.
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Nous sommes déja en mesure de démontrer la partie facile du théoréme que
nous avons en vue. La proposition suivante est déja dans [Car-Ghy].

PROPOSITION 1-5. Tout feuilletage transverse a une action localement libre
de S est totalement géodésique pour une certaine métrique riemannienne compléte.

DEMONSTRATION. Une action de S* peut étre rendue isométrique, donc
riemannienne.

PROPOSITION 1-6. Soit 7 : M — B une fibration (triviale) de fibre R. Soit ¥
un feuilletage transverse a w tel que la restriction de m a toute feuille de ¥ est un
revétement. Alors il existe une métrique riemannienne compléte telle que F soit
totalement géodésique.

DEMONSTRATION. On part d'une métrique compléte sur B que l'on
transporte sur les feuilles de & a ’aide de #. On étend la métrique ainsi construite
en imposant aux fibres de w d’étre orthogonales a %. Puisque le choix de la
métrique sur les fibres de 7 est arbitraire, on peut imposer a ces fibres d’avoir une
longueur infinie de fagon a obtenir une métrique compléte sur M.

PROPOSITION 1-7. Les feuilletages modéles ¥ sont totalement géodésiques
(pour une certaine métrique complete de Mpy,).

DEMONSTRATION. 11 suffit de montrer que le supplémentaire canonique
%, a Fp correspondant au vecteur v est un flot riemannien. On considere tout
d’abord une métrique compléte sur B et I'on munit M d’une métrique telle que la
projection p de Mp sur B soit riemannienne. Soit U un ouvert trivialisant pour
p. Les fibres de p au dessus de U peuvent étre définies par une action de
T™ sur p~'(U). En considérant 1a moyenne de al métrique dont nous disposons sur
p~'(U) sous l'action de T", nous obtenons une métrique quasi-fibrée pour la
restriction de 9, 4 p~'(U). En utilisant une partition de I’'unité sur B, on construit
une métrique quasi-fibrée compléte sur Mp,.

Tous les feuilletages cités dans le théoreme sont donc bien totalement
géodésiques.

Peut-étre est-il bon de donner un exemple simple illustrant les constructions
qui vont suivre. Soit X un champ de Killing sur S?; ce champ posséde deux
singularités et toutes ses orbites sont fermées (de période 1 par exemple).
Munissons M = $?Xx S' d’une métrique riemannienne induisant sur chaque facteur
S?x{*} la métrique usuelle et telle que le champ de vecteurs unitaires orthogonal
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a ces spheres S?x{*} soit N=eX+9/36 ou € <R et 3/30 représente le champ
habituel sur S'.

Le feuilletage % de M par spheres S est totalement géodésique, I'adhérence
d’une orbite de N est un tore T? sauf pour deux orbites fermées si € est
irrationnel. Si £ est rationnel toutes les orbites de N sont fermées et munissent M
d’une fibration de Seifert. Le passage de M a M est ici le passage de S2x S’ a
T.(S?)x8'=80(3)x S, le feuilletage & est le feuilletage par fibres SO(3) x{*}
et les adhérences des orbites de ¥+ définissent maintenant une véritable fibration
(en cercles si £ €Q, en tores T2 sinon). La déformation de métrique que nous

ferons plus loin consistera dans ce cas a approcher le réel £ par un rationnel.

II. La trace du feuilletage sur une fibre

Comme nous I’avons indiqué au paragraphe précédent, nous commengons par
étudier la situation relevée dans M. D’une maniére générale, nous allons nous
intéresser au groupe structural de la fibration basique. Soit F une fibre de cette
fibration. Nous savons que F est diff€omorphe a T" et que la restriction de F*a
F est linéaire. Etudions maintenant la trace de % sur F.

PROPOSITION 2-1. La restriction de % a F peut étre définie par une action
localement libre de R"~'. Cette action préserve 3%,‘,': et elle est définie a un
automorphisme de R"~' prés. Trois cas sont possibles:

type I,: Toutes les feuilles de .@ﬁ ¢ Sont compactes et §?|F peut étre défini par une
action libre de T" .

type I,: Le feuilletage .‘%F possede au moins une feuille compacte et une feuille
non compacte.

type II: Les feuilles de @f’lg sont denses. Il existe un homéomorphisme de T" sur
F linéarisant & et %+, ie tel que, dans ces coordonnées . soit constitué des droites
paralléles a un vecteur v fixe de R™ (a coordonnées linéairement indépendantes sur
Q) et %F soit constitué des hyperplans paralléles a un hyperplan fixe d’équation
o =0 ot w est une forme linéaire sur R".

DEMONSTRATION. La premicre partie résulte du fait que la restriction de
%* 3 une fibre F est transversalement de Lie R"~!. Cela signifie que %ix peut étre
défini par des submersions locales sur R" ', les changements de cartes opérant par
translations sur R"™'. On peut donc définir sans ambiguité n—1 champs de
vecteurs sur F, tangents a f?ﬂF, commutant deux a deux, et se projetant localement
d

3 de R"~'. L’action localement libre ainsi construite
Xn—1

d
sur les champs y oo
x4
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préserve :@r’tp puisque ces champs de vecteurs sont localement projetables sur R" .

La deuxieme partie est une propriété bien connue des actions localement
libres de R"~! sur T". Approchant ?;?IJ;: par une fibration en cercles, on voit que .% E
peut étre défini par (n—1) difféomorphismes du cercle commutant deux a deux.
Ces difféomorphismes ont donc un point périodique en commun ou bien sont
simultanément topologiquement conjugués a des rotations (cf. [Mor-Tsu] par
exemple).

Supposons que toutes les feuilles de %F sont fermées. Le stabilisateur d’un
point m de F sour ’action de R"™! est constant le long des feuilles de ﬁ,F (car
R"~! est abélien). Ce stabilisateur est par ailleurs constant le long des orbites de
& puisque l'action de R"™' préserve Fir. Par conséquent le stabilisateur est
indépendant du point m et F}’u_— peut étre défini par une action libre de T" .

Apres avoir étudié une fibre F de la fibration basique, étudions un voisinage
de cette fibre.

LEMME 2-2. Soit IT: M — B la fibration basique et x un point de B. Soit F la
fibre IT"'(x). Il existe un voisinage U de x et une trivialisation ¥ de Il au dessus
de U:

v :FxU—IT"Y(U)

telle que:

1°) pour toute feuille L de .?;?,LF, le diffeomorphisme ¥ envoie L X{*} sur une
feuille de Fiti-1 vy

2°) pour toute feuille L' de .@IF, le diffeomorphisme ¥ envoie L' X U sur une
feuille de % 1-1u).-

DEMONSTRATION. Nous savons que %* est un feuilletage transversale-
ment parallélisable complet. Si la dimension de B est p, il est donc facile de
construire p champs de vecteurs X, ..., X, sur un voisinage de F dans M tels
que

1°) les X, sont tangents 3 ¥

2°) les flots locaux X' associés aux X; sont des automorphismes de %*.

3°) les champs induits sur B forment une base de T(B) au point x.

Dans ces conditions, la fonction

[(ty,.... ), m]JeRPXUr> X3 X7 -+ Xi(m)

est définie pour (t,, .. ., t,) appartenant a un voisinage de (0, . . ., 0). Ce voisinage
peut étre identifié a un voisinage U de x et I’on obtient la trivialisation cherchée.
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COROLLAIRE 2-3. Soit Diff (F, .U}"F, ) le groupe des difféomorphismes de F
préservant ¥ et Fi. muni de la topologie C~. Alors le groupe structural de la
fibration basique peut se réduire a Diff (F, F}HF, E?ﬂ*p).

II1. Les feuilletages de type I, et I,

Grace a 2-1 et 2-2, nous avons obtenu certaines cartes locales pour la fibration
basique II. Pour étudier les changements de cartes, il nous faut étudier les
homéomorphismes d’une fibre préservant la structure (¥, ¥4).

LEMME 3-1. Supposons que (¥,%") est de type 1, ou I,. Soit h un
homéomorphisme de F=1I1""(x) préservant 57’715 et ?}rﬁF Alors h commute avec
Paction de R"™' sur F.

DEMONSTRATION. Sot L une feuille compacte de % . Celle ci s’identifie 3
T" ' a Paide de l'action de R"™' nous disposons. Cette identification est
unique a une translation prés de T."7'. Le flot %&c définit une application de
premier retour de L dans L donc de T" ' dans T""!'. Cette application est
clairement une translation a orbites denses.

Soit L'=h(L). L’application de premier retour correspondant a L' est
évidemment la méme translation que celle de L. Par conséquent, puisque h
préserve %, la restriction de h 2 L considérée comme homéomorphisme de L
sur L’ et donc de T" ! sur T"! doit commuter avec une translation 2 orbites
denses de T"'. 1l est bien connu (et facile de vérifier) que cela implique que h/L
est une translation. Dans le cas I, toutes les feuilles de %F sont compactes et h
commute avec ’action de R™™! sur F. Dans le cas I,, nous n’avons obtenu cette
commutation que sur les feuilles compactes de % Notons s.m I’action de
I’élément s de R" ! sur le point m de F. Pour tout s de R 1 I’homéomorphisme

ggmeF—h'Ys-h(s'-m)eF

préserve (F}]F, @ﬁ;). Lorsque s varie et m reste fixe, le point g,(m) décrit une
courbe tangente a F}*u:. Lorsque m appartient a une feuille compacte, nous venons
de voir que ce point ne dépend pas de s. Si maintenant m n’est pas situé sur une
feuille compacte on peut construire un segment [m, m'] contenu dans F}"*F et tel
que m' soit dans une feuille compacte de %F. En considérant la variation de ce
segment par les g, (s variable), on voit que le point m doit rester fixe, c’est a dire
que h commute avec ’action de R"™".

Nous pouvons maintenant commencer la démonstration du résultat principal
de ce paragraphe.
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PROPOSITION 3.2. Si (%, %") est de type I, ou I, alors ¥ est transverse a
une action localement libre du cercle.

DEMONSTRATION DANS LE CAS I,: D’apres le lemme 3-1 et le lemme
2-2 on peut définir sans ambiguité une action de T" ! sur M notée (s, x) > s.x
dont les orbites sont exactement les composantes connexes des traces des feuilles
de & sur les fibres de la fibration basique. Par ailleurs ’action naturelle de SO(p)
sur M préservant (%, %4), elle commute avec 'action de T"~ . Nous disposons
donc d’une action de T""'x SO(p) sur M.

Nous nous proposons de construire une fibration en cercles de M dont les
fibres soient tangentes a la fibration basique et transverses 3 %. Cette fibration
doit étre SO(p) équivariante de fagon a ce qu’elle induise dans M une fibration de
Seifert, c’est & dire une action localement libre de S' transverse a %.

Munissons M d’une métrique invariante par I’action de T"" ' xSO(p). Celle-
ci nous permet de paramétrer ¥* et définit donc un flot ¥, transverse 3 ¥ et
commutant avec I’action de T"~!x SO(p). Considérons, pour chaque m de M, le
temps de premier retour T(m) de I'orbite de ¥, passant par m sur la feuille de
%n—x(mm» passant par m. Puisque ¥r,,,(m) et m appartiennent a la méme orbite
de I’action de T" 7, il existe s(m) de T" ! tel que

Yre(m)=s(m) -m

Il est clair que T(m) et s(m) ne dépendent en fait que de la projection II(m)
de m dans la base de la fibration basique. En fait, le lemme de trivialisation 2-2 et
le lemme 3-1 montrent que s(m) ne dépend pas de m. Nous pouvons alors
construire une action de S' sur M par:

R/ZxM— M
(6, m) = (—0s(m)) - Yoremy(m)

(A priori 8s(m) ne signifie rien puisque 6€R et se T '=R""!/Z""?, mais nous
choisissons un représentant quelconque de s(m) dans R""?, ce qui ne pose aucune
difficulté puisque s(m) est en fait constant).

Ceci est bien une action de S! telle que nous la souhaitions.

Avant d’étudier le cas I, rappelons un résultat de [Car-Ghy], obtenu aussi
sous une forme un peu différente dans [Joh—Whi].

PROPOSITION 3-3. Soit ¥ un feuilletage totalement géodésique de codimen-
sion 1. Si ¥ a une feuille compacte, alors ¥ est transverse a une action localement
libre de S'.
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(11 suffit de remarquer que la feuille compacte est une section globale pour le flot
F* et celui ci est donc défini par la suspension d’une isométrie d’une variété
compacte donc approchable par une isométrie périodique.)

Pour démontrer la proposition 3-2 dans le cas I, il nous suffit donc de
démontrer le

LEMME 3-4. Si (¥, %") est de type I,, alors ¥ (et donc %) posséde une feuille
compacte.

Fixons une fibre F de la fibration basique et soient m, et m, deux points de F.
Commengons par montrer le résultat suivant:

LEMME 3-5. Si m, et m, appartiennent a la méme feuille de %, alors il existe
un difféeomorphisme h de F tel que h(m,)=m, et h préserve % et 5@-‘1#.-.

DEMONSTRATION DU LEMME 3-5. Si v:[0, 1]—> M est un chemin de M
tangent a & et reliant m, et m,, la projection de y dans B nous fournit un lacet
y':S'— B. L’image réciproque de la fibration basique par ¥ nous donne un
T"-fibré au dessus de S' dont la monodromie est le difféomorphisme souhaité.

(On peut supposer cette monodromie dans Diff (F, %F, @f;) d’apreés le corollaire
2.3).

Si I’on fait la méme construction que dans le lemme précédent dans le cas ou
my =m, et y un lacet tangent a %, et si I’on utilise le lemme 3-1, on obtient le

LEMME 3-6. Si c est un lacet de F tangent a %, alors ¢ considéré comme
lacet d’une feuille de %, est dans le centre du groupe fondamental de cette feuille
de #.

DEMONSTRATION DU LEMME 3-4. (et donc de la proposition 3-2 dans
le cas I, via la proposition 3-3).

Rappelons tout d’abord que @IF peut étre défini par la suspension de (n—1)
difféomorphismes du cercle de classe C* et commutant deux a deux.

Soit K < F la réunion des feuilles compactes de .@]F. D’aprés les hypothéses, K
est un fermé qui n’est ni vide ni égal a F. Soit K; la frontiere de K. Tout
difféomorphisme de F préservant .@Fu.— préserve K et donc K,;. D’aprés le lemme
3-5, K, est la trace sur F d’un fermé de M qui est saturé par %. Ce fermé doit
contenir un ensemble minimal de %. Si I'on suppose que % ne posséde pas de
feuilles compactes, c’est donc que K, contient la trace sur F d’un minimal
exceptionnel de %.

D’aprés le théoréme de Sacksteder ([Sac]) une feuille de ce minimal contient
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un lacet dont I’holonomie est hyperbolique (c’est a dire dont la dérivée au point
fixe est différente de 1). D’aprés [Ste], on peut supposer que ce germe
d’holonomie est linéaire. Rappelons par ailleurs que tout germe de
difféomorphisme qui commute avec une contraction linéaire est lui méme linéaire
et donc hyperbolique s’il n’est pas I'identité.

Observons que ’holonomie des feuilles de K; < F est non triviale car arbit-
rairement prés d’une feuille de K, il y a des feuilles non compactes. En
combinant I’observation faite précédemment avec le lemme 3-6, on en déduit
qu’il existe un lacet ¢ tangent a une feuille de K; dont ’holonomie est hyperboli-
que. Soit A la dérivée de cette holonomie au point fixe. Remarquons que toutes
les feuilles compactes de %F sont des tores T" ' et que leurs groupes fondamen-
taux sont tous canoniquement isomorphes. Dans chaque feuille compacte de .@?ip,
nous pouvons construire un lacet homotope a ¢ et considérer ’holonomie de ce
lacet. On obtient ainsi un germe de diff€omorphisme de R ayant un point fixe.
Soit K, < K, la réunion des feuilles de K, telles que la dérivée de ce germe soit
égale a A en son point fixe. Il est clair que K, est invariant par tout
difféomorphisme de F préservant (%F, .@ﬁ:) (On utilise ici encore le lemme 3-1
impliquant qu’un tel difféomorphisme doit préserver la classe d’homotopie de c.)

Mais K, ne peut contenir qu’un nombre fini de feuilles compactes de F}ﬂp En
effet, le difféomorphisme C* du cercle associé a ¢ ne peut avoir qu’un nombre fini
de points fixes ou sa dérivée est égale a A. (La variation totale de la dérivée doit
étre finie.)

Nous avons donc trouvé un nombre fini de feuilles compactes de % in-
variantes par tous les diffomorphismes de F préservant (%F, & ie). Cette réunion
finie contient la trace sur F d’une feuille compacte de ¥ d’apres 3.5.

IV. Réduction du groupe structural dans le cas II

De méme que pour le cas I, il nous faut obtenir des informations sur les
homéomorphismes des fibres basiques préservant le couple de feuilletages
(9|F5 g]Jl-:‘)'

LEMME 4-1. Soit h un homéomorphisme du tore T" tel que

1°) h préserve les orbites du flot linéaire paralléle au vecteur v a coordonnées
linéairement indépendantes sur Q.

2°) h préserve le feuilletage linéaire de codimension 1 transverse a v, a feuilles
denses, défini par la forme linéaire @ =0.

Alors h est en fait un difféomorphisme affine du type h(x)=Ax+b ou Ae
G(v,w)=SL(n,Z) et be T" =R"/Z".
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DEMONSTRATION. Il est bien connu que le feuilletage de T" d’équation
o = 0 posséde, a une constante multiplicative pres, une unique mesure transverse
invariante (au sens de [Pla]). Cette mesure n’est autre que celle obtenue par
intégration de w. Par conséquent, cette mesure transverse est multipliée par une
constante A sous I’action de I’homéomorphisme h. C’est-a-dire que h est ‘‘trans-
versalement affine.” Puisque h préserve les orbites du flot linéaire parallele a v,
on en déduit que la restriction de h a toute droite paralléle a v est affine de
pente A.

Soit d’autre part A la matrice de SL(n,Z) induite par h sur H\(T", Z)=27".
Comme h préserve deux feuilletages linéaires, il est facile de voir que A préserve
les “nombres de rotation” de ces feuilletages. Plus précisément v est vecteur
propre de A (car v est le ‘“‘vecteur de rotation” du feuilletage linéaire de
dimension 1 paralléle 4 v). De méme w est vecteur propre de ‘A (car w est la
“forme de rotation” du feuilletage défini par w). Il est méme clair que ‘A (w) = Aw
d’aprés l'interprétation de w comme mesure transverse faite plus haut.

Considérons maintenant ’homéomorphisme h’' = A~! o h. Il préserve le couple
de feuilletages et, restreint a chaque orbite du flot parallele a v, c’est une
translation. En composant h’' avec une translation adéquate, on obtient un
homéomorphisme h” ayant un point fixe, donc toute une droite dense parallele a v
formée de points fixes, donc h"” est I'identité. Par conséquent h était affine.

Introduisons maintenant un entier k dont le role sera important par la suite.
Les feuilles de w =0 sont obtenues par une action localement libre de R"™!, ce
sont donc des “cylindres” du type T* XR""'"*. Nous appellerons k I’“invariant
de (¥, %#4).” De maniére équivalente si w s’écrit Y, a; dx; dans une base ration-
nelle de R™, alors n—k est le rang sur Q du systeme {a;}.

Résumons maintenant les lemmes 2-1, 2-2 et 4-1 en indiquant ce qu’ils
signifient pour la fibration basique II : M — B. Tout point x de B admet un
voisinage trivialisant V et une carte (lemme 2-2)

VXF—II'(V)

Identifiant F 3 T" a 'aide de ’homéomorphisme ‘‘linéarisant”” du lemme 2-1,
nous obtenons une carte

VXT" - I (V)

Sur P’intersection de deux ouverts trivialisants V; et V,, les changements de cartes
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doivent étre du type:
(x, m)e ViXT" > (x, §(m))e V, X T"

pour x dans V;NV,. D’apres 4-1, ¢ (m) s’écrit . (m)=A,.(m)+ b(x), ou b(x)e
R"/Z" et A, € G(v, w). Puisque le changement de carte doit préserver le feuille-
tage %, on voit que la courbe

xe Ve b(x)eR"/Z"

doit rester tangente a un hyperplan parallele a3 w =0.

Nous allons munir G(v, @) d’une topologie de la maniére suivante. Le groupe
de Lie T" est feuilleté par w =0, il peut donc étre muni de la topologie des
feuilles. On peut alors munir G(v, ») (qui ensemblistement est G(v, @)X T")
d’une topologie en donnant 2 G(v, w) la topologie discréte et a T™ la topologie
des feuilles. Nous appellerons cette topologie la “topologie des feuilles de
G(v, w).”

Ce paragraphe peut maintenant se résumer:

PROPOSITION 4.2. Le groupe structural de la fibration basique associée a un
feuilletage de type II peut se réduire a G(v, w) muni de la ‘“topologie des feuilles.”

REMARQUE 4-3. A priori, les cartes que nous avons construites pour la
fibration basique ne sont que continues. Cependant, nous pouvons les utiliser
pour transporter la structure différentiable de VxT™ dans M. Nous obtenons
ainsi une nouvelle structure différentiable dans M pour laquelle ¥ et $* restent
différentiables. De méme P’action naturelle de SO(p) sur M préservant & et &+,
le lemme 4-1 nous dit que cette action reste elle aussi différentiable dans cette
nouvelle structure. Dorénavant, nous supposerons M muni de cette structure.
Nous verrons cependant dans la partie VI que ce changement de structure était en
fait inutile.

REMARQUE 4-4. La composante connexe de l'identité de G(v, @) munie de
la topologie des feuilles est homéomorphe & T*XR" '™, Par conséquent le
groupe fondamental de G(v, w) est isomorphe 2 Z* et les groupes d’homotopie
d’ordres supérieurs sont nuls. L’invariant k est donc I'unique obstruction a ce que
G(v, ®) ait le type d’homotopie d’un groupe discret. Notre but est de ramener
I’étude des feuilletages de type II aux feuilletages modéles pour lesquels le groupe
structural de la fibration basique est discret. Ceci explique I'importance de
I'invariant k dans ce qui suit.
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V. Déformation du flot orthogonal

Le but de ce paragraphe est de montrer que si I'invariant k est non nul, on
peut déformer * a travers les flots riemanniens pour obtenir un flot 4 tel que
I’invariant k associé a (@, @) soit nul. En d’autres termes, nous allons perturber la
métrique sur la variété de telle sorte que l’adhérence d’une orbite du flot
orthogonal baisse de dimension et que la trace de & sur ces nouveaux tores soit
par plans (et non par cylindres T* XR""*"!), Evidemment cette déformation de
métrique se fait A travers des métriques rendant % totalement géodésique.

Le groupe G(v, w) se surjecte sur mo(G(v, w)) et donc sur G(v, ). Ceci
permet de construire un morphisme “d’holonomie” de la fibration basique:

H:m(B)— G(v, w)

Remarquons que si w est un vecteur propre pour toutes les matrices H(y),
nous pouvons sans difficulté construire sur les fibres de la fibration basique, un
feuilletage de dimension 1 dont les feuilles sont les droites paralleéles a w ce qui a
un sens intrinséque puisque R - w est fixe par H(y). Notre but est de montrer qu’il
existe effectivement de tels vecteurs dés que k est non nul, ce qui nous permettra
d’effectuer la déformation souhaitée de ¥*. Pour cela, nous utiliserons quelques
lemmes d’algébre linéaire.

LEMME 5-1. Si k#0 et si A € G(v, w), soit A le réel tel que A(v) = Av. Alors A
est un nombre algébrique de degré strictement inférieur a n.

DEMONSTRATION. Par définition de I’entier k, la forme @ ne dépend que
de n—k coordonnées dans une certaine base rationnelle (e;);-;, de R". C’est-a-
dire que w s’€crit

n—k
@ = Z aie?
i=1

ou e¥ représente la base duale de ¢; et o; est un réel.

Puisque w est vecteur propre de ‘A et w(v) #0, il est clair que ‘A w = Aw. Si
I'on note (a;) les coefficients de ‘A dans la base e?, cette derniére égalité ainsi
que 'écriture de @ montrent que A est aussi valeur propre de la sous-matrice de
‘A formée des a; avec i et j compris entre 1 et n—k. Par conséquent, A est
algébrique de degré inférieur a n—k.

LEMME 5-2. Si k#0 et si A€ G(v, w), alors v n’est pas un vecteur propre
simple de A.
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DEMONSTRATION. On suppose toujours que les coordonnées de v sont
linéairement indépendantes sur Q. Si v était un vecteur propre simple, les (n—1)
dernieres lignes du systeme

Ay, ..., 0)=A(vy,...,0,)

avec v, fixé et v,,...,v, inconnus, formeraient un syst¢me de Cramer. Par
conséquent les coordonnées v,, . . ., v, pourraient étre calculées rationnellement a

. . g (% U, . .
l'aide de v, et de A. C’est-a-dire que les rapports —=, . .., — appartiendraient au
Uy Uy

corps Q(A). Celui-ci étant de dimension strictement inférieure a n, il existe des
rationnels ¢; tels que

n v‘
a1+ Z a,-—'=0.
i=2 Ui

Ceci contredit le fait que les v; sont linéairement indépendants sur Q.

Les deux lemmes précédents nous ont permis de trouver d’autres vecteurs
propres pour chaque A de G(v, w). Notre but cependant est de trouver un
vecteur propre commun a tous les H(y) qui soit différent de v. La situation est en
fait tres simple grace au

LEMME 5-3. G(v, w) est un groupe abélien libre de rang au plus n—1.

DEMONSTRATION. Considérons le morphisme 6 de G(v, ) dans R* as-
sociant a chaque matrice A de G(v, ) la valeur propre A telle que A(v) = Av. Ce
morphisme est injectif; en effet, si A(v)=wv, alors le noyau de A-Id est un
sous-espace rationnel de R" contenant v, c’est donc R" tout entier (nous disons
qu’un sous-espace de R" est rationnel s’il posséde une base formée de vecteurs
rationnels). Ceci montre que G(v, w) est abélien. On montre de méme que si
0(A) est rationnel, alors A = id.

Ecrivons I’égalité A (v)= Av sous la forme

a,: " a,\ [0 Uy

Un Un
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Ceci permet d’écrire

(5 U,
A:a1+a2_g+° . ‘+an~"‘.
U, (]

L’image de 6 est donc contenue dans un Q-sous-espace vectoriel de R de
dimension au plus n. Le groupe G(v, w) est donc abélien libre de rang au plus n.
Si ce rang €tait exactement n, on trouverait une matrice A de G(v, @) non triviale
avec 0(A) rationnel.

REMARQUE 5-4. Pour v et w “‘génériques,” le groupe G(v, ) est trivial.
Lorsqu’il est non trivial, le rang de G(v, w) peut effectivement atteindre n —1. En
effet, soit A une matrice entiére dont le polyndme caractéristique est (—1)"X(X —
b))+ (X—=b,_;1)+1 ou les b; sont des entiers arbitraires. Alors, les matrices A,
A-b, I,...,A—b,_, I sont de déterminant 1 et commutent deux a deux. Le
produit de ces n matrices est (—1)"*! I, mais on peut choisir les entiers b; de telle
sorte qu’elles engendrent un groupe abélien libre de rang n—1. On peut par
ailleurs choisir les b; de telle sorte que A soit diagonalisable. On appelle alors v
I’'un des vecteurs propres et w la forme linéaire valant 1 sur v et s’annulant sur
tous les autres vecteurs propres. On obtient ainsi un exemple ol G(v, w) est de
rang n—1.

Les trois lemmes précédents nous menent alors au

LEMME 5-5. Si k=1, il existe w non multiple de v tel que w soit un vecteur
propre commun a tous les élements de G(v, ).

DEMONSTRATION. Le groupe G(v, w) opere sur R"; par hypothese la
droite R - v est fixe ainsi que le noyau de w. Nous avons donc une action

G(v, w) XxKer w — Ker o

D’apres le lemme 5-2, le vecteur propre v n’est pas simple. Chaque €lément de
G (v, w) admet donc dans Ker w un vecteur propre correspondant a la méme
valeur propre que v. Puisque G(v, w) est abélien, le théoreme de Lie permet de
conclure.

Nous en arrivons au résultat principal de ce paragraphe.

PROPOSITION 5-6. Soit ¥ un feuilletage totalement géodésique tel que
(%, %) soit du type II. Alors, il existe une (autre) métrique riemannienne sur M
telle que si 4 est le nouveau flot orthogonal a F et 4 le nouveau flot orthogonal a #,
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on ait:

1°) ou bien 9 est défini par une action localement libre du cercle.

2°) ou bien la fibration basique correspondante a (¥, %) a un groupe structural
réductible a un groupe discret.

DEMONSTRATION. Le groupe structural de la fibration basique peut se
réduire 3 G(v, w) muni de la topologie des feuilles. Ce groupe a le type
d’homotopie d’un groupe discret dés que k est nul.

Si k(%, %) est non nul, le lemme 5-5 nous fournit un plan de dimension deux
formé de vecteurs propres communs a toutes les matrices H(vy). Ce plan contient,
arbitrairement prés de v, un vecteur w tel que les adhérences des orbites du flot
linéaire de T parallelle & w sont des tores T"'. A ce vecteur correspond un flot
riemannien 9 transverse 3 %. Remarquons que ce flot est invariant par I’action de
SO(p) sur M car cette action préserve (%, F4) et elle est donc affine sur les fibres
(lemme 4-1).

Le feuilletage % provient donc d’un feuilletage % riemannien sur M, trans-
verse a %. Les fibres de la fibration basique de (%, %) sont maintenant de
dimension n—1.

Si (%, 9) est de type I, ou I, on utilise la proposition 3-3 et % est donc
transverse 2 une action localement libre de S'.

Si (%, 9) est de type 11, on itere le procédé jusqu’a obtenir un couple (%, 9)
pour lequel I'invariant k(%, §) est nul.

Une fois cette déformation effectuée, le groupe structural de la fibration
basique est réduit a un groupe ayant le type d’homotopie d’un groupe discret. Soit
o le quotient de G (v, w) par la composante connexe de I'identité (isomorphe 2
R"~1). Si nous possédons une section s 2 la projection naturelle de G(v, ) sur 7,
qui soit un homomorphisme de groupes, nous pouvons réduire le groupe struc-
tural au sous groupe discret s() de G(v, w) (En effet G(v, w)/s(m,) est contrac-
tile et homéomorphe 2 R™™'). Pour terminer la démonstration de la proposition, il
nous suffit donc de montrer le

LEMME 5-8. La projection naturelle de G(v, ) sur w, admet une section qui
est un homomorphisme de groupes.

DEMONSTRATION. Notons 7 le groupe T"/Kerw. Le groupe G(v, w)
opére sur T" tout en préservant Ker w, il opére donc sur 7. Un élément de m,
s’écrit donc comme un couple (A, B) ou A appartient 2 G(v,w) et B a 7. Le
produit de (A, B) et de (A’, B') est (AA’, AB’'+B) ou AB’ désigne 'action de A
sur B'. Soit pr la projection naturelle de T" sur 7.

Trouver une section de 7, dans G(v, w) revient donc a trouver une section de
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pr, de T dans T", qui soit équivariante sous les actions de G(v, w) sur T" et 7.

Remarquons tout d’abord que la restriction de pr au sous-groupe de torsion de
T"(noté Tor (T")) est un isomorphisme sur le sous-groupe de torsion de 7 (noté
Tor (7). En effet, I'élément (x,, ..., x,,) mod Z"@®Ker w est de torsion dans 7 s’il
existe un entier p tel que:

p(x, ..., %)=(ky, ..., k)+(ay,...,an)

avec
(ky,...,k)eZ" et(ay,...,a,)cKerw.
Dans I'image réciproque de (x,,..., x,,) mod Z"@Ker w par pr, il y a un unique

élément de torsion, en ’occurrence

ay

<x1~-——, - ,xn—g—") mod Z"
p p

La section s que nous cherchons est donc parfaitement définie sur Tor (7).

D’autre part, la droite R - v se plonge dans T". Ce plongement noté i, suivi de
la projection pr de T" sur 7 donne une application surjective prei de R sur 7. Le
noyau de preoi est un groupe abélien libre engendré par n réels &,,..., &,
linéairement indépendants sur Q.

Le groupe G(v, w) opére sur R - v et sur 7. Bien entendu, ’application prei est
équivariante sous ces actions. Soient A,,..., A, un systtme de générateurs
de G(v, w) et Aq,..., A, les valeurs propres correspondantes, i.e. A;p=A\u. Il
est clair que D7, Z - ¢ est invariant par multiplication par \; puisque c’est le
noyau de I’application équivariante prei. Par conséquent, le Q-espace vectoriel

=1 Q- & est aussi invariant par multiplication par A;. Soit K le sous-corps de R
engendré par les réels A, La droite R apparait comme un K-espace vectoriel et

=1 Q- & comme un K-sous-espace vectoriel de R. Soit E un supplémentaire
du K-sous-espace D], Q- & dans R. Nous avons alors:

R=EG§(§91Q§)

T =R/Ker (proi)=E€B(éQ/Z . é)
i=1
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C’est a dire

7= proi(E)®Tor (1)

La section équivariante s que nous cherchons de 7 dans T" est maintenant définie
par:

s(prei(e))=i(e) si ecE

s(1) = (preijrorerm) '(r) si TeTor (r)

Cette section est clairement €quivariante par ’action de G(v, w) car E est un
K-espace vectoriel. Ceci termine la démonstration du lemme 5-8 et donc de la
proposition 5-7.

V1. Interprétation des résultats dans M

Partant du feuilletage & sur M, nous supposerons effectuée la déformation de
la métrique dont il €tait question au paragraphe précédent. Nous nous placerons
de plus dans le seul cas qui nous reste a étudier, c’est a dire celui ou la fibration
basique possede un groupe structural discret (cas 2 de la proposition 5-6). Nous
noterons de nouveau F* pour % car nous n’utiliserons plus ’ancienne métrique
(non perturbée).

Puisque le groupe structural est discret, nous pouvons décrire (¥, %) par:

M=BxT"(x, m)~ (v - x, e(y)(m))

ou B est le revétement universel de la base B de la fibration basique, y un
élément quelconque de 7,(B) et ¢ un morphisme de m,(B) dans G(v, w). Cet
élément ¢(y) s’écrit:

@(y)(m) = H(y)(m)+b(y)

ou b(y)e T" et H est le “morphisme d’holonomie” déja considéré. (Ici encore v
et w ne sont plus les mémes qu’avant la perturbation de la métrique).

Dans cette description, le feuilletage % est décrit par I’équation w =0 et le
feuilletage ¥* est donné, dans chaque {*}x T" par la direction v.

On peut toujours supposer qu’il existe y tel que ¢(y) n’est pas une translation
de T" car sinon la fibration basique serait principale et I’on trouverait une action
localement libre de S' transverse a %.
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Nous disposons donc d’une description explicite de %. Pour étudier &, il faut
étudier I’action de SO(p) sur M. Bien entendu cette action en induit une autre sur
B puisqu’elle préserve la fibration basique. Nous nous proposons de montrer que
SO(p) opére librement sur B ce qui fera apparaitre (M, ¥) comme un mode¢le
dont la base B est le quotient de B par SO(p).

L’action de SO(p) sur~1\;1 se reléve en une action de Spin (p) (le revétement
universel de SO(p)) sur B x T". Notons R(x, m) I'image de I’élément (x, m) de
B < T" sous I’action de 1’élément R de Spin (p).

LEMME 6-1. L’action de Spin (p) sur B x T" s’écrit sous la forme:
R(x, m)=(R(x), m + u(R, x))
ou R(x) désigne I’ action de Spin (p) sur é et u(R, x) est un vecteur du noyau de w.

DEMONSTRATION. Ecrivons tout d’abord que I’action étudiée préserve la
fibration basique

R(x, m)=(R(x), f(R, x, m))
Pour x et R fixés, I’application m — f(R, x, m) préserve le feuilletage, donc
R(x, m)=(R(x), A(R, x)m + u(R, x))

ou A(R, x)e G(v, w) et u(R, x)eT".

Par continuité A (R, x) =id. Si m et R sont fixés et x varie, R(x, m) doit rester
sur une méme feuille de % De méme, si m et x sont fixés et R varie, R(x, m) doit
rester sur une méme feuille de %. Par conséquent, lorsque R et x varient, u(R, x)
reste sur une feuille du feuilletage linéaire de T" défini par w. Puisque u(id, x) =
0, u(R, x) reste sur la feuille passant par 0 et peut donc étre identifi€ a2 un vecteur
du noyau de w. On a donc bien la description souhaitée de I’action:

R(x,m)=(R(x), m+u(R, x)) ou u(R,x)eKerw.

Nous nous proposons de simplifier encore cette écriture en montrant que I’on
peut toujours supposer u(R, x)=0. La description que nous avons donnée de
(M, %) comme quotient de B xT" n’est évidemment pas unique. Si h est un
difféomorphisme de }§~ X T" préservant les deux feuilletages et commutant avec
Paction de r,(B) sur I§~ x T", nous pouvons considérer h comme un ‘‘changement
de coordonnées” sur B x T" compatible avec nos données.
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LEMME 6-2: Il existe un tel difffomorphisme h, envoyant le point (x, m) sur le
point de coordonnées (x,, m,) tel que, dans ces nouvelles coordonnées, I’action de
Spin (p) s’écrive

R(x4, m;) =(R(xy), m,).

Autrement dit, quitte & changer les coordonnées dans B x T", on peut toujours
supposer que u(R, x) est identiquement nul.

DEMONSTRATION. II est clair que u(R, x) vérifie les relations suivantes:

u(R,R;, x) =u(R,, x)+u(R;, Ry(x))
u(R, v - x) = H(y)u(R, x)

exprimant le fait que R(x, m) définit effectivement une action et que cette action
commute a celle de m,(B). Si 'on pose

u(x)= j u(R, x) dR eKer w
Spin (p)

et si ’on définit h par:
h:(x, m)—(x;, m;) =(x, m + u(x))

on obtient évidemment le diff€omorphisme cherché.

Nous sommes maintenant en mesure de démontrer une version presque
compléte du théoréme principal:

PROPOSITION 6-3. Si % est un feuilletage totalement géodésique de
codimension 1, orientable sur une variété compacte orientable M, alors

1°) soit & est transverse a une action localement libre de S*

2°) soit F est topologiquement conjugué a un feuilletage modeéle (Mp, p).

DEMONSTRATION. D’apres le lemme 6-2, les points fixes de ’action de
Spin (p) sur B correspondent aux points fixes de P’action de Spin (p) sur B x T™.
Remarquant que M est un SO(p) fibré principal, on en déduit que I’action de
SO(p) sur B est elle aussi libre. Si B est le quotient de B sous cette action, on en
déduit la description de (M, %) sous la forme

M=BXT"/(x,m)~(y - x, @(y)(m))
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(Remarquons que ¢:m(B) — G(v, ®) se factorise a travers ,(B) car, d’apres
6-2, le groupe SO(p) opére trivialement sur T".) Ceci est précisé ment un modele
(MD9 g D)-

VII. Fin de la démonstration du théoréme principal

Il nous reste essentiellement a nous débarrasser du changement de structure
différentiable (Remarque 4-3) et a étudier le cas ou M n’est pas compacte.

Observant qu’une action continue et localement libre du cercle, peut étre
lissée sans difficulté, il nous faut étudier le cas des feuilletages modéles.

LEMME 7-1. On peut toujours se limiter a I’étude des modeéles pour lesquels les

. . @;
coordonnées w,, . . . , w, de w dans la base canonique de (R")* sont telles que — est
” . w

algébrique. !

DEMONSTRATION. Si @ n’est pas vecteur propre simple de ‘A avec
A € G(v, w), alors v n’est pas non plus vecteur propre simple de A. Nous avons
déja observé au paragraphe 5 que si v est vecteur propre multiple de tous les
éléments de G(v, w), nous pouvons déformer la métrique et faire baisser la
dimension de la fibration basique. Cette déformation étant faite, w peut étre

. ’ w w ~ »
supposé vecteur propre simple. Les réels —, ..., — peuvent alors &tre calculés
w4 w1

rationnellement en fonction des coefficients d’'une matrice A de G(v, w) et de la
valeur propre A correspondante. Ils sont donc algébriques.

PROPOSITION 7-2. Le changement de structure différentiable effectué en 4-3
était en fait inutile.

DEMONSTRATION. Le feuilletage %F initial était obtenu par ny—1
difféomorphismes du cercle commutant deux a deux. Lorsque nous avons effectué
la déformation de la métrique, la dimension des fibres est passée de ny a n et la
trace de % sur ces nouvelles fibres est obtenue par la suspension de n—1

s . . ® @
difféomorphismes du cercle dont les nombres de rotation sont -—3, ...,—. Par
w, w,
conséquent parmi les ny—1 difféomorphismes initiaux, certains avaient un
nombre de rotation algébrique. On conclut & I’aide de [Her] qui montre qu’un
groupe abélien de difféomorphismes C” du cercle dont un élément a un nombre
de rotation irrationnel algébrique, est C™-conjugué a un groupe de rotations.
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Pour terminer, il nous faut traiter le cas ou M est non compacte mais
compléte. Le feuilletage %* reste riemannien, et $* reste transversalement
parallélisable complet, les théorémes 1-2 et 1-4 restent valables. Nous devons
trouver I’équivalent de 1-3 lorsque M n’est pas compacte.

PROPOSITION 7-3. Soit ¢ un flot transversalement de Lie modelé sur le
groupe de Lie G, sur une variété N (orientable mais éventuellement non compacte).
On suppose que les orbites de 4§ sont denses et que la structure transverse est
complete. Alors deux cas sont possibles.

1) soit N est compacte.

2) soit N=R et le flot est de codimension zéro.

DEMONSTRATION. Supposons que la dimension de N est supérieure a
deux et montrons que N est compacte. On suppose ¥ engendré par le groupe a
un parametre ¢,. Pour chaque point x de N, I'orbite positive ou I’orbite négative
de x est dense dans N. En remarquant que le groupe des automorphismes de ¥
agit transitivement sur N (la structure est compléte), et en inversant au besoin
l'orientation des orbites, on peut donc supposer que, pour tout x de N, I’orbite
positive de x est dense dans N.

Soit D, un disque fermé, plongé dans N et transverse a ¥4, et soit x un point de
I'intérieur de D;. Ce disque s’identifie a un voisinage de I’élément neutre du
groupe transverse G. Soit D, < D, le disque de centre x et de rayon £ ou la
métrique utilisée est une métrique invariante a gauche sur G et ou ¢ est choisi de
telle sorte que le disque de centre x et de rayon 2¢ soit entierement contenu dans
D,. Soit D;< D, le disque de centre x et de rayon &/3. Enfin soient xi, ..., X
k points de D, tels que les disques 4; de centre x; et de rayon &/3 recouvrent D,
(remarquons que 4; = D,). Pour chaque i, il existe un réel ¢; positif, tel que ¢, (x;)
appartienne a D; car les orbites de ¢, sont positivement denses. Considérons
I’holonomie du chemin joignant x; a ¢,(x;). C’est un germe de translation a
gauche de G et donc un germe d’isométrie. De par le choix des rayons de D,, D,
et 4,, cette isométrie se prolonge en une isométrie h; définie sur 4; tout entier et a
valeurs dans D,. Puisque la structure transverse a ¥ est complete, il est clair que
pour tout y de 4, les points y et h;(y) appartiennent a la méme feuille de 4. De
maniere plus précise, il existe k fonctions continues t;(y) définies sur A; telles que:

6(x) =1
<P:i(y)()’) =h;(y)e D,
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Soit

T, =Max|;(y)] et T>MaxT,
yea; i

Pour tout y de D,, la portion de l'orbite de y située entre y et ¢r(y) recoupe au
moins une fois D,. Si ’on considére ’ensemble des points de N de la forme ¢,(y)
avec ye D, et 0t=<T, on obtient un compact invariant par les ¢, avec t=0.
Puisque toutes les orbites positives de ¢, sont denses, ce compact est N tout entier
et, en particulier, N est compact.

Soit (M, %) un feuilletage totalement géodésique sur une variété non com-
pacte. Si I’adhérence d’une orbite de #* est compacte, on est tenté de reproduire
intégralement la démonstration qui vient d’étre donnée dans le cas compact. La
difficulté est alors de démontrer la proposition 3-2. Cette proposition est elle
méme basée sur la proposition 3-3 et sur le lemme 3-4. Ces deux derniers
résultats sont les seuls qui ne s’étendent pas clairement lorsque M est non
compacte.

PROPOSITION 3-3 (cas non compact). Si I’adhérence d’une orbite de F* est
compacte et si F a une feuille fermée, alors F est transverse a une action localement
libre du cercle.

DEMONSTRATION: Soit F cette feuille fermée. Par hypothése chaque
orbite de F* rencontre F une infinité de fois; soit ¥: F— F Papplication de
premier retour. C’est une isométrie de F. L’adhérence H du groupe engendré par
¥ est un sous-groupe de Lie abélien du groupe des isométries de F. Par
conséquent H est isomorphe & T*x R'XTI ou I' est abélien discret. Puisque H
contient un sous-groupe monogene dense, on en déduit que H est isomorphe a 0,
Z ou a T* XTI ou I est un groupe fini. Le premier cas signifie que ¥ =id c’est a
dire que les orbites de #* sont des cercles. Dans le second cas le groupe engendré
par ¥ est fermé ce qui impliquerait que les orbites de F* seraient fermées mais
non compactes, et nous avons exclu ce cas. Enfin, dans le dernier cas, ¥ est
approchable par un élément de torsion de T*XT, et donc par une isométrie
périodique. &+ est alors approchable par une action localement libre du cercle.

En ce qui concerne le lemme 3-4, nous ne sommes parvenus a le généraliser
au cas ou M est non compacte que sous certaines conditions.

LEMME 3-4 (cas non compact). Supposons que I’adhérence d’une orbite de
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F* est compacte et que ’une des conditions suivantes est réalisée
1) le groupe fondamental de M est de type fini.
2) le feuilletage ¥ est analytique.

alors, si ¥ est de type I,, ¥ posséde une feuille fermée.

DEMONSTRATION. Si le groupe fondamental de M est de type fini, la
démonstration du lemme 3-4 donnée au paragraphe III est valable puisque le
théoreme de Sacksteder s’applique aux pseudo-groupes de type fini. Si le feuille-
tage est analytique réel, la réunion des feuilles compactes de %F ne peut contenir
qu’un nombre fini de feuilles compactes. Cette réunion finie contient donc la trace
sur F d’une feuille fermée de & d’aprés 3-5.

Nous pouvons donc décrire les feuilletages & totalement géodésiques sur les
variétés riemanniennes complétes non compactes en imposant I'une des deux
conditions 1) et 2) du lemme précédent.

Si I’adhérence d’une orbite de %* est compacte, le probléme se traite
exactement comme nous I’avons fait dans le cas ou M est compacte. Sinon toutes
les orbites sont fermées et celles-ci définissent une fibration de M de fibre R et de
base B, transverse a ¥. Puisque M est supposée complete, toute feuille de F
apparait comme un revétement de B. On peut donc écrire

M=BxR/(x,y)~ (v * x, o(¥)(¥))

L

ol
¢ :m,(B) — Diff " R)

est le morphisme d’holonomie. Les feuilles de % sont définies par I’équation
y =Cst. Ceci achéve la démonstration du théoreme 2.

VIII. Remarques finales

Les corollaires qui suivent sont des conséquences immédiates du théoréme
principal. Certains d’entre eux peuvent d’ailleurs se démontrer directement.
Rappelons tout d’abord un résultat de [Car-Ghy].

PROPOSITION 8-1. Soit ¥ un feuilletage totalement géodésique, de codimen-
sion 1, transversalement orientable, sur une variété riemannienne compléte M. Soit
M le revétement universel de M, ¥ le relevé de ¥ dans M et ¥* le flot orthogonal a
F. Alors (¥, %*) est un produit, c’est a dire qu’il existe un difféomorphisme de M
sur L xR envoyant les feuilles de % sur L x{+} et celles de F* sur {*}XR.
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COROLLAIRE 8-2. Soit # un feuilletage totalement géodésique de codimen-
sion 1 sur la variété riemannienne compléte M, alors
- ou le groupe fondamental de M contient un sous-groupe distingué abélien libre
non trivial
* ou M est un produit B XR et le feuilletage est transverse aux fibres {*}xR.

Ce corollaire, ainsi que celui qui suit est déja dans [Car 1], lorsque M est
supposée compacte.

DEMONSTRATION. Dans le cas ou les adhérences des orbites de F* sont
non compactes, nous savons que M est un produit B XR. Sinon, I’adhérence d’une
orbite de F* est un tore T" (n>1). L’image du groupe fondamental de ce tore
dans celui de M est alors un sous-groupe distingué abélien. Ce sous-groupe est
non trivial car certaines classes d’homotopie de T" correspondent a des transver-
sales fermées a & et celles ci ne peuvent étre triviales d’apres 8-1.

COROLLAIRE 8-3. Si M admet une métrique riemannienne a courbure
strictement positive ou si M est compacte et admet une métrique a courbure
strictement négative, alors, il n’existe aucun feuilletage totalement géodésique sur M
(méme pour une autre métrique de M).

DEMONSTRATION. Une variété a courbure strictement positive est com-
pacte et posséde un groupe fondamental fini. Le corollaire 8-2 exclut donc la
possibilité d’existence d’un feuilletage totalement géodésique sur une telle variété.

Le groupe fondamental d’une variété compacte a courbure strictement
négative ne peut contenir de sous-groupe abélien de rang 2 et son centre est
trivial. Les modeéles ainsi que les fibrés de Seifert ne peuvent donc pas étre des
variétés compactes a courbure strictement négative.

En ce qui concerne le comportement qualitatif des feuilles, nous avons le

COROLLAIRE 8-4. Si F est totalement géodésique sur une variété compacte
M et si F posséde une feuille compacte ou un minimal exceptionnel, alors ¥ est
transverse a4 une action du cercle. Sinon, toutes les feuilles sont denses et le
feuilletage posséde une structure transverse affine (c’est-a-dire que le pseudo-
groupe transverse peut se réduire a un pseudo-groupe de transformations affines de
R). En particulier, dans ce dernier cas, le premier nombre de Betti de M est non nul
(cf. [Fed-Fur)).

Il est bien connu que la classe des feuilletages transverses a des fibrations en
cercles est tres diversifiée; presque tous les phénoménes qualitatifs rencontrés en
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codimension 1 se rencontrent dans cette classe. Les feuilletages modéeles
possedent par contre une remarquable propriété de rigidité:

COROLLAIRE 8-5. Soit (Mp, %) un feuilletage modeéle compact pour lequel
v est vecteur propre simple (d’apres 7-1, on peut toujours se limiter a ces modeéles).
Alors (Mp, %) posséde un ‘“module de stabilité” fini, c’est a dire que ’on peut
décrire les feuilletages voisins de %, a I’aide d’un nombre fini de parametres (a
conjugaison C pres).

DEMONSTRATION. Un feuilletage proche d’un feuilletage totalement
géodésique est encore totalement géodésique (pour une autre métrique). Si F' est
proche de %p, grace a I’hypothese faite sur v, on voit facilement que %' doit aussi
étre conjugué a un modeéle associé a (D')=(n,v’, ', B, ¢’) correspondant au
méme entier n et a la méme base B que (D). Le morphisme ¢’ s’écrit

@'(y)(m) =H'(y)(m)+b'(y)
avec
H'(y)eSL(n,Z) et b'(y)eT™

De la proximité de F’' et Fp, on déduit que H'=H, w =o' et v=1v". Par
conséquent, ¢’ et ¢ ne différent que par le terme b'(7y). Les valeurs de b'(y) pour
v décrivant un systeme de générateurs de m(B) fournissent un nombre fini de
parameétres décrivant les feuilletages voisins de %,.

Sans vouloir faire une étude détaillée des déformations des feuilletages
modeles, donnons un exemple typique. Supposons que le groupe fondamental de
B soit le groupe libre a deux générateurs «, B noté L(a, B) et soit (M, %) le
feuilletage modéle correspondant au morphisme ¢ défini par

e(a)=(A,0)e G(v, w)
¢(B) = (id, 0) e G(v, w)

Les feuilletages proches peuvent étre décrits par deux parametres u,, u, de T". Le
feuilletage %, ., est associ€ au morphisme ¢, , défini par:

1,U2

Cun,(@) = (A, u)) € G(v, »)
®u,u,(B) = (id, uy) € G(v, ®)
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Bien entendu, deux couples (u,, u,) et (uj, u3) peuvent correspondre a des
feuilletages conjugués. Par exemple, soit x, tel que Axy+ u; = x,, si ’on conjugue
©u,u, Par la translation (id, x,), on obtient ¢,,,. On peut donc se limiter aux
déformations pour lesquelles u; =0. De méme, si u, est un petit élément de
Ker (w) = T", le feuilletage %, est conjugué a %,,. Cependant, il existe effec-
tivement des déformations non triviales. Pour le constater, calculons le groupe
fondamental de la feuille de #,_,_ passant par le point x de T". Ce groupe est le
sous-groupe de L(a, B) défini par:

{veL(a, B), u u(v)(x)—x eKer (w)}

Si (uy, uy)=(0,0) et x =0, ce groupe est L(a, B) tout entier.

C’est a dire que la feuille de %, passant par 0 T" est un fibré en R*™! au
dessus de B. Si b désigne la dimension de B, le b-€éme nombre de Betti de cette
feuille est donc non nul. Si u; =0 et u, ¢ Ker (w), pour tout x de T", le groupe
fondamental de la feuille de %, , passant par x ne contient pas 3, c’est donc un
sous-groupe strict de L(a, B). Cette derniere feuille est donc un fibré en R" ™! au
dessus d’une variété B’ qui est un revétement non trivial de B. Si B’ est non
compacte, le b-€éme nombre de Betti de cette feuille est nul; si B’ est compacte, le
groupe fondamental de cette feuille est un sous-groupe strict d’indice fini de
L(a, B), c’est donc un groupe libre ayant au moins 3 générateurs. Quoiqu’il en
soit, si u, ¢ Ker (w), aucune feuille de %, ,, n’est homéomorphe a la feuille de %,
passant par 0. Les feuilletages %,, et %,,, ne sont donc pas conjugués.
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