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Group actions on fibered three-manifolds

A1LAN L. EpmonDs! and CHARLES LIVINGSTON!

1. Introduction

In this paper we present several results about finite group actions on three-
dimensional manifolds. The results are primarily directed toward a geometric
understanding of periodic knots in the 3-sphere, that is, knots left invariant by
periodic homeomorphism of S* which fix a simple closed curve in the complement
of the knot.

One noteworthy application of the present techniques is that nontrivial
periodic knots have “Property R,” that is, surgery on such a knot cannot produce
S'x 82

Let G be a finite group acting effectively and smoothly on an orientable
3-manifold M, preserving orientation. The first result is that if the orbit manifold
M* contains an incompressible surface F*, then (after suitably adjusting the
embedding) the preimage of F* in M is an incompressible surface. The proof of
this makes use of the Equivariant Loop Theorem of Meeks and Yau [12, 13] and
is~given in Section 2.

An immediate corollary of this result is that a periodic knot has an invariant
incompressible Seifert surface. If there is a bound on the possible genera of the
incompressible Seifert surfaces of a given knot K (as is the case for fibered knots),
then the Riemann-Hurwitz formula places nontrivial bounds on the possible
periods of K. See Section 2. There is an extensive literature devoted to
the problem of determining the possible periods of a given knot
[1,5,6,7,11, 15,16, 18,22]. Most previous work on this problem has been
heavily algebraic in nature, in contrast to the present more geometric approach.

In Section 3 the preceding work is applied to prove that periodic knots have
Property R.

Now suppose that F is a compact, orientable surface and that G acts on
F %[0, 1] preserving orientation and leaving both F x{0} and F x{1} invariant. We
show that the action is equivalent to the level-preserving action which is the
product of the action of F x {0} with the trivial action on the interval [0, 1], except
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530 ALLAN L. EDMONDS AND CHARLES LIVINGSTON

possibly when the action on Fx{0} has fewer than four exceptional orbits and
orbit space the 2-sphere. The proof is given in Section 4 and makes essential use
of the Equivariant Dehn Lemma of Meeks and Yau [12, 13] and of the solution of
the classical Smith Conjecture [19], which corresponds to the case here that F is a
2-disk. After the first version of this paper was written we learned that W. Meeks
and G. P. Scott have proved the above result in the more difficult excluded case as
well.

An easy application of the preceding result, given in Section 5, is that quite
generally a group action on a surface bundle over the circle with unique fibering is
equivalent to a fiber-preserving action. In particular, any periodic fibered knot in
S? admits a fibering preserved by the corresponding group action.

The final section contains further applications of the preceding results to group
actions preserving fibered knots. In particular one has a very short list of fibered
knots of a given genus g which admit periods m which are maximal (m =2g+1)
or nearly maximal (m = g+1). Several instructive examples are given as well.
Finally we show that the present techniques give a partial answer to a question of
D. Goldsmith in the Kirby problem set [9; 1.28].

The techniques used in this paper are similar to those used by Gordon and
Litherland [4]. That work is primarily concerned with invariant incompressible
surfaces in the complement of the exceptional set, while our main interest is in
incompressible surfaces which intersect the exceptional set.

Quite similar and more complete results in the case G =7, are due to
Tollefson [21] and Kim and Tollefson [8].

2. Lifting incompressible surfaces

Throughout this section let G be a finite group acting effectively and smoothly
on an orientable, differentiable 3-manifold M preserving orientation. The excep-
tional set E for the action is the set of all points in M having nontrivial isotropy
group. If nonempty, E is a one-dimensional CW complex with all vertices of
valence one lying in dM. The exceptional set is a 1-manifold precisely if all
isotropy groups are cyclic. Let M™* denote the orbit manifold and let p : M — M*
be the orbit map. The set B = p(E) is called the branch set.

Two embedded surfaces F and F' in a 3-manifold N are said to be disk
equivalent if there is a sequence F, =F, F,, . .., F, = F’ of surfaces in N such that
for eagh k, 1<k =n, there exist disks D, cint F, and D;<int F,_, such that
F,— Dy, =F,_,—Dy. If N is irreducible, then standard techniques show that disk
equivalent surfaces are isotopic.

Let F be a surface in a 3-manifold N such that FNAN =9dF. A compressing
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disk for F is a 2-disk D <int N such that DN F=49D and dD is a homotopically
nontrivial simple loop on F. If F has a compressing disk or is a nullhomotopic
2-sphere or is a 2-disk which can be deformed rel oF into dN, then F will be
called compressible; otherwise F is said to be incompressible.

A surface F in the orbit manifold M™ is said to be transverse to the branch set
B provided that F only meets B in the subset B, of points where B is a
1-manifold and F is transverse to B, in the usual sense.

As indicated previously we shall need the following basic result of Meeks-Yau
[12, 13]. We quote from [4].

EQUIVARIANT LOOP THEOREM. Let N be a 3-manifold, and G a finite
group acting on N. Suppose F is a compressible component of ON. Then there exists
a compressing disk D for F such that for all g € G, either g(D)=D or g(D)ND =
D.

Although Meeks and Yau only assert the result when N is compact and
orientable, the theorem is true in the generality given. Further one may assume G
acts freely on G(oD).

THEOREM 2.1. Any two-sided incompressible surface in the orbit manifold
M* is disk equivalent to an incompressible surface F* which meets the branch set B
transversely and such that F = p~'(F*) is a two-sided incompressible surface in M.

Proof. It may be assumed that F* is an incompressible surface in M™* which is
transverse to B and meets the non-singular part of B in the minimum number of
points possible for incompressible surfaces in its disk equivalence class. Transver-
sality implies that F=p~'(F*) is a surface in M.

Suppose that F is compressible in M. If a component F; of F is a null-
homotopic 2-sphere, then F; =3A where A is a homotopy 3-cell in M. Let H be
the subgroup of G leaving A invariant. Then F=8H(A) and F*=09p(4), a
2-sphere. Moreover p(4) is a simply connected 3-manifold with boundary F*,
and this implies that F* is compressible.

Similarly, if some component F; of F is a disk homotopic into M, it follows
that F* is a disk homotopic into dM*, contradicting incompressibility of F*.

Finally suppose F contains no spheres or disks. Let N be an invariant tubular
neighborhood of F in M. Then the manifold W = (M —0M)—int N has as bound-
ary two copies of int F, and has compressible boundary. By the Equivariant Loop
Theorem there is a compressing disk D, for W in W such that for any ge G
either g(D,) =D, or g(D,)ND,= . By using an equivariant product structure
in N one may expand D, to a compressing disk D for F such that for g € G either
g(D)=D or g(D)ND=.
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Let D*=p(D) in M*. Then D* is a disk transverse to the branch set B,
D*NB consists of at most one point and D*NF*=9D*. Let F§ be the
component of F* meeting D*. First suppose F§ is neither a 2-sphere nor a
2-disk. Since F§ is incompressible there is a 2-disk D¥ < F§ with 0D¥ = aD*. The
minimality condition on F* implies that D meets B in at most one point.
Therefore each component of p~'(D¥) is a disk in F. Since the boundary of some
component of p~(D¥) is aD, it follows that D is not a compressing disk for F
after all. If F§ is a 2-sphere, then dD* divides F§ into two 2-disks F* and F3.
Since F contains no 2-sphere and dD is nontrivial on F, each F* must contain at
least two branch points, while D* contains at most one. One of the two 2-spheres
D*U F¥ or D*U F% must be incompressible and meet B in fewer points than F§
did. This contradicts the choice of F. If F§ is a 2-disk, then aD* divides F§ into a
2-disk F¥ and an annulus F%. Since no component of F is a 2-disk, and 8D is
nontrivial on F, p~'(F%) does not consist of disks, and so F*¥ meets B at least
twice. But D* meets B at most once. Thus a disk move would reduce F*NB, a
contradiction. This completes the proof. [J

Remark. It follows that if the orbit manifold M* is sufficiently large, then so
is M.

COROLLARY 2.2. Let K be a knot in an integral homology 3-sphere 3
invariant under a semifree orientation-preserving action of the cyclic group C,, of
order m, with fixed set A (the “axis”) disjoint from K. Then K bounds an
incompressible Seifert surface invariant under C,,.

Proof. Since C,, has fixed points the quotient map p:3 — 3™ induces a
surjection H,(Z; Z) — H,(2*; Z). It follows that 3* is also an integral homology
3-sphere containing the knot K*=p(K). Let F* be an incompressible Seifert
surface for K™ meeting the branch set transversely a minimum number of times.
Then by Theorem 2.1 p~}(F*) is the required incompressible Seifert surface for
K 0O

Note that in the situation of Corollary 2.2 the linking number k(K, A)=
Ik(K*, A¥) is relatively prime to m. Otherwise p~'(K*)=ap '(F*) would be
disconnected.

The following well known lemma is the basis for further restrictions on the
periods of knots.

LEMMA 2.3. Let F be a compact, connected, orientable surface of genus g=>0
with one boundary component. If F admits a semifree, orientation-preserving action
of the cyclic group C,, with nonempty fixed set, then m <2g+1.
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Proof. The Riemann-Hurwitz formula for the regular branched cyclic covering
p : F— F* says that

1-2g=m(1-2g*)—k(m—-1)

where g* is the genus of the orbit surface F* and k is the number of branch
points. If k=1, then mg*=g; so m=g/g*=g If k>1, then

m=02g—-1+k)/2g*-1+k)
=Q2g—-1+k)/(k—-1)
=2¢g+1. O

Remark. The maximum value m =2g+1 occurs only when k =2. Otherwise
m=g+1. If m=g+1, then k=<3. For all other values of k=4, m=g.

COROLLARY 2.4. (cf. [15]). If K is a fibered knot in S* of genus g and period
m, then m <2g+1.

Proof. 1t is well known that a fibered knot has a unique incompressible Seifert
surface, up to isotopy. See Lemma 5.1. By Corollary 2.2 K has an invariant
Seifert surface of genus g. By Lemma 2.3 m=2g+1. O

See Section 6 for more precise results in this direction, where it will be shown
that very few fibered knots of genus g admit periods greater than g.

3. Periodic knots have Property R

Let K be a knot in S which is invariant under a semifree, orientation-
preserving action of a cyclic group C,,, with nonempty fixed point set A disjoint
from K. The manifold obtained by O-surgery on K is defined to be M(K, 0)=
(S*—int N(K))UB?x S where N(K) is a tubular neighborhood of K and the
image of the meridian B X pt is a longitude of K (nullhomologous in S*— K).

THEOREM 3.1. If K is a periodic knot in S* and w,(M(K, 0))=Z, then K is
unknotted (and M(K,0)=S'x S?).

Proof. One may assume that the tubular neighborhood N(K) is invariant
under a given C,, action. As in the proof of Theorem 2.1 K has an invariant
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Seifert surface. Therefore the group action leaves a preferred longitude invariant,
and it is possible to extend the action on S>—int N(K) to M(K, 0). The fixed
point set of the extended action is A U(0x S"). The quotient of M(K, 0) by the
induced C,, action may be described as the result of 0-surgery on the quotient of
K under the original action. Put succinctly, M(K, 0)* = M(K*, 0). In particular
then H,(M(K, 0)*;Z)=Z, generated by the image of the core 0 X S*. Therefore
M(K, 0)* contains a nonseparating incompressible surface S* (in fact a 2-sphere).
It may be assumed that among all incompressible surfaces disk equivalent to S*,
S* meets the branch set transversely in M(K, 0)* a minimum number of points.

By Theorem 2.1, and its proof, the inverse image S of $* in M(K, 0) is an
invariant, incompressible surface in M (K, 0). Because m;(M(K, 0))=Z, S must be
a 2-sphere or a collection of m 2-spheres.

If S is not connected, then M(K, 0)—S consists of m components cyclically
permuted by the action. In this case the action would have empty fixed point set.
This contradiction implies that S is a single invariant 2-sphere, which must
therefore meet the fixed point set in exactly two points.

Since the core 0XS* of B2x S' represents a generator of H;(M(K, 0)), the
intersection number of 0 X S' with S must be +1. But S meets 0XS' at most
twice. Therefore S meets 0 xS once and the original axis A once.

Finally, the manifold obtained by removing from M(K, 0) a small tubular
neighborhood of 0x S is just S>—int N(K). But in this space S becomes a disk
with boundary a longitude of K. Hence K is unknotted.

4. Actions on F>x[0, 1]

As the second step toward standardizing actions on fibered knots and other
fibered 3-manifolds we show how to straighten actions on the product of a surface
with the unit interval.

Let F be a compact surface and G be a finite group of diffeomorphisms of
Fx[0,1], leaving Fx{0} and Fx{1} invariant. The restriction of G to F x{0}
induces an action of G on F : g(x) = meg(x, 0) where wx: FX[0,1]— F is the
projection. The associated straight action of G on FX[0, 1] is given by g(x, t) =

(g(x), t).

THEOREM 4.1. Let F be a compact, orientable surface and let G be a finite
group acting smoothly and effectively on F X[0, 1], preserving orientation and
leaving Fx{0} and Fx{1} invariant. Assume that the orbit space F/G is not a
2-sphere with less than 4 branch points. Then the given action is equivalent to its
associated straight action, by a diffeomorphism of F X[0, 1] which is the identity on
F x{0}.
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Proof. It is easy to see that one may assume F is connected: Separate orbits of
components may clearly be handled separately; if F; is component of F such that
G(F,) =F, let H be the subgroup of G leaving F,x[0, 1] invariant and suppose
the action of H can be straightened, so there is a diffeomorphism ¢ : F, X
[0, 1]— F, x[0, 1] such that ¢ | F, x{0} is the identity and ¢(h(x), t) = ho(x, t) for
heH, xe Fy, te[0, 1]; define 6 : Fx[0, 1]— FX[0, 1] by 8(g(x), t) = go(x, t) for
g€ G, xe F,, te[0, 1]; then 0 is the required equivariant diffeomorphism satisfy-
ing 0(g(x),t)=g0(x, t) for all ge G, x€F, te[0, 1].

So suppose F is connected. We proceed by induction on the ordered pairs
(r, b) = (genus of F, number of components of 3F), ordered lexicographically.

If r=0, then b=1 since (0, 0) is an excluded case. If b =1, then F is a disk. In
this case G must be cyclic. The solution of the Smith Conjecture [19] then shows
that the action on FX[0, 1] can be straightened. Note that if one assumes the
action is already straight on 9F X[0, 1], then the action can be straightened
rel 9F [0, 1].

Inductively, first consider the cases where F has nonempty boundary (b=1).
Covering space theory shows that we may assume the action is already straight on
dF X[0, 1]. We show inductively that the action on FX[0, 1] can be straightened
by a diffeomorphism which is the identity on FXx{0}UoF x[0, 1]. Choose an
invariant family of disjoint, properly embedded arcs A,,..., A,, © F, where m is
the order of G, such that if F is cut open along A,, ..., A,, then the complexity
(r, b) is reduced. Such a family is easily constructed as the preimage of an arc A*
in the orbit surface F/G which, if homotopic into dF/G, does not cut off a disk
containing less than two branch points.

Let B, =A; x{1} in Fx{1},1=i=m. This family of arcs is probably not
G-invariant. We may isotope {B;}, rel end points, to an invariant collection as
follows: Impose a G-invariant hyperbolic metric on F X {1} with totally geodesic
boundary curves. (If S is an annulus, one must use a euclidean metric instead.)
Each B; is then homotopic, rel end points, to a unique geodesic arc C; with the
same end points as B;. By the uniqueness of the choice of these geodesics the
collection {C;} is G-invariant.

Moreover {C;} consists of embedded, pairwise disjoint arcs. The essential facts
here are that the minimum number of self-intersections in an arc representing a
given relative homotopy class is realized by its geodesic representative and that
the minimum number of intersections between two arcs representing two given
relative homotopy classes is also realized by their geodesic representatives. A
proof of these assertions follows the lines of the proof of the analogue of the
second statement in the context of closed curves as given in [3; ExpoSe 3,
Proposition 10]. Since the B; are disjoint and embedded, it follows that the same
is true of the C,.
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The closed curves a; = A; X{0}UdA, X[0, 1]U G, form a G-invariant family of
pairwise disjoint simple loops in a(F %[0, 1]). Each «; is nullhomotopic in F X
[0, 1], since o; = A; X{0}U A, X[0, 1]U A, x{1}. By the Equivariant Dehn Lemma
[13], there is a G-invariant family of disjoint, embedded disks D, < F x[0, 1] with
aD, = a;. Since FX[0, 1] is irreducible, | D, is isotopic to |J A; X[0, 1]. There-
fore, cutting F X [0, 1] open along |J D; results in a new G-manifold of the form
F’' %[0, 1] where the product structure imposed on the copies of D; extends that
on 9F X[0, 1]. One may apply covering space theory to straighten the action on
the copies of D, prior to cutting open along |J D;. Now the inductive hypothesis
says that the action on F’'X[0, 1] is equivalent rel 9F' X[0, 1] to the associated
straight action. Gluing F’'X[0, 1] back together along the cuts provides an
equivalence of the given action on FX[0, 1] with its associated straight action.

Finally suppose dF = ¢ and either the orbit space F* has positive genus or is a
sphere with at least four branch points. Choose an invariant family of disjoint
embedded simple loops A,,..., A, < F, m=|G|, which are homotopically non-
trivial in F. Such a family is constructed as the preimage of a suitable closed loop
in F* which does not bound a disk containing less than two branch points.

Let B; = A, X{1}, 1 =i <m. This family of loops is not in general G-invariant.
But by replacing them with a corresponding set of geodesics for a G-invariant
hyperbolic metric on F X {1} we obtain an invariant family of simple, closed loops
{G} such that C, =B, for each i.

Now the Equivariant Dehn Lemma (for planar domains) of Meeks-Yau [13]
implies that there is a G-invariant family of disjoint embedded annuli V, <
Fx[0, 1] with 9V, = A; Xx{0}U C.. Since C,=A; x{1} and F %[0, 1] is irreducible,
V, is isotopic rel A; X0 to A, X[0, 1]. Thus the given action is equivalent to one
which preserves the family {A; X[0, 1]} and is straight there. Now cut open along
U A, x[0, 1], apply the inductive hypothesis, and glue back together to complete
the argument. O

Remark. We have been informed that W. Meeks and G. P. Scott have proved
Theorem 4.1 without the hypothesis that F/G is not a 2-sphere with fewer than
four branch points. The proofs involve singular incompressible surfaces.

5. Actions on bundles over the circle

Let M denote a compact, connected, orientable 3-manifold which fibers over
the circle S?, in such a way that oM, if nonempty, is a torus which inherits an
induced fibering by restriction, and satisfies H,(M; Q) =Q. For example M might
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be the complement of an open tubular neighborhood of a fibered knot in a
homology sphere. The condition on homology is used to insure that M admits an
essentially unique fibering. The following lemma is well known.

LEMMA 5.1. Any two connected, properly embedded, non-separating, two-
sided, incompressible surfaces F,, F, < M are isotopic.

Proof sketch. One may suppose that F; is the fiber of a fibering M — S'. Let
M=F,XR be the corresponding infinite cyclic covering. Because F, in non-
separating, connected, and two-sided, intersection with F, defines a surjective
homomorphism (M) — Z, which must coincide, up to sign, with the correspond-
ing homomorphism associated with the fibration since H,(M; Z)/torsion=Z. Thus
F, lifts homeomorphically to an incompressible surface F =M. If m(F,) —
(M) were not also surjective, then an argument with Van Kampen’s theorem
would imply that r,(M) is not finitely generated. (Compare [20; p. 97].)

THEOREM 5.2. Let G be a finite group acting by orientation-preserving
diffeomorphisms on the fibered 3-manifold M as above, with exceptional set E
disjoint from M. Assume (i) that the orbit manifold M* is not S*xS* where
S2 X point meets the branch set in less than four points, and (ii) that H;(M; Q) =
Q. Then the given fibering of M is isotopic to a fibering in which G maps fibers into
fibers.

Proof. The quotient M* is a manifold with dM™, if nonempty, a torus. If
oM+ &, this immediately implies H,(M*;Q)#0. In general H,(M*;Q)=
H,(M;Q)°, nonzero by assumption. Therefore M* contains a nonseparating,
connected, two-sided incompressible surface F*. We may assume that F* meets
the branch set B transversely in a minimal number of points. Then by Theorem
2.1 the preimage F of F* in M is an incompressible surface. Let F,, .. ., F, be the
components of F. By Lemma 5.1 each component F; is isotopic to a fiber of M.
Cutting M open along F one obtains a group action on F X I. By Theorem 4.1 this
action is equivalent to a straight action on F X I, each component of F X {t} being a
fiber. Reidentifying Fx{0} with Fx{1} one obtains the required equivariant
fibering. [

Remarks. If the action has fixed points then F is connected, and each fiber is
G-invariant. The recent result of Meeks-Scott mentioned earlier shows that
the hypothesis (i) above can be dropped.

COROLLARY 5.3. The quotient M* fibers over S*. O
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G

Figure 1

An alternative elementary proof of the corollary invokes Stallings’ fibering
theorem [20]. Compare [16].

6. Applications to fibered knots

Let K = S? be a fibered knot invariant under a smooth, orientation-preserving,
semifree action of the cyclic group C,, of order m, having fixed axis A, a knot
disjoint from K. The solution of the Smith Conjecture [19] implies that A is
unknotted, and hence that the orbit space is again S* with branch set B = A* also
an unknotted circle. The following simply interprets Theorem 5.2 in this setting.

PROPOSITION 6.1. The fibering of K is isotopic to a fibering preserved by the
action of C,, so that the axis A is transverse to the fibers; thus the quotient knot K*
inherits a fibering with all fibers transverse to the branch set B. []

Let F< S? denote a typical fiber for the knot K transverse to A and let F*
denote its image in the orbit space. Note that since the axis is connected the local
two-dimensional representations of C,, in the tangent space of F at the points of
FN A are all equivalent to rotation by +2wk/m for some fixed integer k.

Our first application of Proposition 6.1 is based on combining Corollary 2.4
with the fact that a genus O fibered knot is unknotted.

PROPOSITION 6.2. For g=1 the only fibered knot of genus g which is
invariant under an action of C,, as above, with m =2g+1, is the (2,2g+1) torus
knot, up to orientation.

Proof. One can check using the Riemann-Hurwitz formula that C,, m=
2g+1, acts semifreely on a surface F of genus g with one boundary component,
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/\K,

&

Figure 2

only so that the quotient F* is disk with two branch points. Therefore the
quotient of an m-periodic knot K is an unknotted circle K* in $3, and the branch
set B is transverse to each disk fiber for K* | meeting each fiber in exactly two
points. The only such link {K*, B} up to orientation is shown in Figure 2. One
easily checks that the preimage of K* must be the (2, £m) torus knot. [

PROPOSITION 6.3. For g=1 the only fibered knots of genus g which are
invariant under an action of C,, as above, with m =g+ 1, are the (3, +m) torus
knot and the (3, £m) Turk’s head knot.

Proof. The group C,, must act on the typical fiber F of genus g=m —1 with
orbit surface a disk and exactly three branch points. According to [10] the only
three-stranded braids (up to conjugation in the braid group, and reversal of
orientation) closing to unknotted circles, are the two depicted in Figure 3. The
preimages of K* in the two cases are precisely, the (3, £m) torus knot and the
(3, £m) Turk’s head knot. [

Figure 3
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Remark. In working with specific examples the following observation, based
on a fundamental result of Murasugi [15], is often helpful. If a knot K in S3 is
invariant under an action of the cyclic group C,, and the linking number of the
axis with K is A, then A is completely determined by m. In the case of fibered
knots this readily implies that the genus of the quotient fibered knot K™ is
determined by m as well.

To see this assertion about A, let p be any prime divisor of m, of order r in m.
According to Murasugi

Ac (=[5 '[f()] mod p,

where §,(t)=(t*—1)/(t—1). Notice that §,(t) has no repeated factors as a
polynomial with coefficients in Z,. This is because the derivative of t* —1 has no
nontrivial roots, since A is relatively prime to p.

If there were two C,, actions on (S>, K) with axes having different linking
numbers with K, say A; and A,, then we would have

[&, O '[f()] =[8,,()F ' [£.(D]" mod p.
Now suppose g(t) is an irreducible factor of this product, of order n. Then one has
n=g,(p"—1)+8,p" =¢e,(p"—1)+8,p,

where ¢; is the order of g in 8, and §; is the order of g in f;. Since 8, has no
repeated roots, g is 0 or 1. One concludes that £, =¢,, and hence that the
factorization of §,, is the same as that of §,,. In particular they have the same
degree, so Ay =A,.

The preceding uniqueness results do not hold in the presence of larger
numbers of branch points, as the following example (inspired by a similar
construction of Morton [14]) shows.

EXAMPLE. There exist infinitely many distinct genus two fibered knots with
C, actions. Consider the link {K*, B,.} in Figure 4, where n denotes the number
of half twists. For all n, B, is unknotted. Let K, be the preimage of K* in S*
under the two-fold cover of S branched along B,. Then K, is a genus two fibered
knot with a C, action.

The Alexander polynomial of K, can be readily computed to be
A () =t*+(m*+n-1)r+(=2n*-2n+ D>+ (n*+n-Dt+1.

Thus the knots K, are all distinct, for n>0.
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Figure 4

To compute Ak (t) proceed as follows: S$*— K* is fibered by disks and hence
S?>—(K*UB,) is fibered by 5 times punctured disks. The monodromy for that
fibration is the product of twists o; with each o; corresponding to one half twist in
the braid B,,. The monodromy for the genus 2 fibration of K, is the product of the
lifts of the a; to the branched covering space. The Alexander polynomial of K, is
the characteristic polynomial of the monodromy. Details of the calculation are left
to the reader.

In cases where the quotient knot has positive genus further complexities arise.

EXAMPLE. Consider the two unknotted curves B; and B, in the comple-
ment of the trefoil knot K* as depicted in Figure 5. In each case it is easy to
check that B; can be made transverse to the standard fibration of the trefoil
complement, meeting each fiber exactly once. The preimage K; of K* under the
two-fold cover of S> branched along B, is the granny knot. The preimage K, of
K* under the two-fold cover of S* branched along B, is the knot 8,; in the
standard knot tables [17].

In [9; 1.28] D. Goldsmith posed the following question. Suppose p : M — S is
a cyclic cover of degree m branched over a link B; suppose K* is an unknotted

\

Figure 5

=

—5

«
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simple closed curve such that K =p~'(D®) is a fibered knot in M. Is B isotopic to
a braid about K*? (The same question makes sense if K* is just a fibered knot.)
When M is a rational homology sphere, this is an immediate consequence of
Theorem 5.2. If the degree m is a prime power and B is connected, then M is
necessarily a rational homology sphere (see [2; §4]), so the answer is also yes in
this case.
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