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Quasilinear elliptic eigenvalue problems

MicHAEL STRUWE™Y

Summary. The generalized Palais-Smale condition introduced in [26] is applied to obtain multiple
solutions of variational eigen-value problems with quasilinear principal part, thereby extending some
well-known existence results for semilinear elliptic problems.

1. Introduction

Let £ be a bounded domain in R" and let a =(a®?),., <, be a uniformly
elliptic, symmetric, and bounded matrix function a:Q xRN —R"™". For ue
H{?*(2;RY) define the energy integral

E(u)= %J a*®(x, u) a,u’ dgu’ dx. (1.1)

By convention, repeated Greek indices are summed from 1 to n, Latin indices
from 1 to N. Unless otherwise stated all integrals are taken over (2. Let
G:H}*(2;RN)— R be a sufficiently regular function (cp. conditions (3.4)~(3.7)).

In this note we present existence results for the nonlinear eigen-value problem
in HJ?(0Q;RM):

VE(u)= uVG(u), G(u)=1, wER. (1.2)

The results obtained generalize results of Amann [1], [2], Ambrosetti [3], Berger
[6], Browder [7], Clark [8], Coffman [9], [10], Hempel [12], [13], Pohozaev [20],
Rabinowitz [21], [22] and others for semilinear eigenvalue problems. In the above
setting such problems correspond to functionals E with coefficients a = a(x)
independent of u.

In contrast to this latter situation under the hypotheses made here the
functional E need not be differentiable in H}?. Thus the classical Palais~-Smale

! This research was supported by the Sonderforschungsbereich 72 of the Deutsche
Forschungsgemeinschaft.
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510 MICHAEL STRUWE

condition (cp. [19], [24]) cannot hold in this space and the standard Lusternik-
Schnirelman theory of critical points (cp. [16], [23]) cannot be applied to obtain
solutions of (1.2). Instead the existence results presented will be deduced from the
generalization of the Lusternik—Schnirelman method that was introduced in [26].

In the next section this method will be briefly recalled; in particular, the
compactness Criterion A* will be restated which replaces the Palais-Smale
condition in applications of Lusternik—Schnirelman theory to irregular functionals.
Precise formulations and proofs of existence results for problem (1.2) are given in
Section 3.

These results are not presented in the most conceivable generality. Instead
they have been selected as models to illustrate the application of Criterion A* in a
“non-reflexive” situation. Possible extensions and generalizations are mentioned
without proof in Section 4.

Remark that we retain a compactness assumption on the term VG(u) in (1.2),
cp. condition (3.7). However, even with coefficients a; independent of u, the
Palais-Smale condition may no longer hold true for (1.2) if VG is only continu-
ous, i.e. if in assumption (3.7) p=2n/(n—2) is admitted. In this case (and with
coefficients independent of u) important progress has recently been made by
Brezis and Nirenberg [28], [29], cp. also [30].

It is a pleasure to thank Prof. J. Frehse and Dr. M. Meier for friendly and
helpful discussions.

2. The compactness criterion
Throughout this section we shall make the following Assumption A:

B is a reflexive Banach space with norm ||||z. T< B is a dense subspace
of B (in ||||z) given by T=U,..; T, where {T.} is family of Banach (2.1)
spaces T, with norms |-|r.

E: B — R{£} for any t€ I is continuously Fréchet differentiable with
respect to T, in the following sense: For any u € B such that |E(u)| <,
any t€l, the derivative VE(u)e T* exists and the mapping u—
VE(u)e T* is continuous on its domain.

(2.2)

Set T'={¢£: T—>R| & e T* for all cel}. By (2.2) it is meaningful to define a
critical point of E as an element u € B such that |E(u)| <~ and VE(u)=0€e T".
The value E(u) at such a critical point will be called a critical value of E.
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DEFINITION. A sequence {£,,} in T’ converges to 0 T' T,-uniformly iff for
any tel

[€alF. =0 (m— ).
As an illustration of this definition consider the extreme cases:

Ex. 1. Let B=T=T, Then for any £e€ T'=B*, any o:||¢|% =||¢lg+, |I'|p
denoting the norm in the dual B*. Thus, T,-uniform convergence is equivalent to
norm-convergence in B*,

Ex. 2. Let 2<R" be a bounded domain, B=H}*(2), T=C3({2), and T, =
{A,|AeR}=R, e T. In this case, T,-uniform convergence is equivalent to weak
convergence in the sense of distributions.

In the application given below, a nontrivial choice of B, T, T, will be presented.
Let M be a subset of B such that E is finite on M. Assuming (2.1), (2.2) we
may then state our

CRITERION A*. If {u,.} is any sequence in M such that u,, — u weakly in B
and VE(u,,)— 0 T,-uniformly as m — », then we may extract a subsequence that
converges strongly to a critical point of E in M.

Remark. In Ex. 1 Criterion A* reduces to a variant of the classical Palais—
Smale condition. Similarly, imposing a coerciveness condition on E (with respect
to B) and assuming M to be regular (with respect to T, {T.}), from Criterion A*
the existence of saddle-type critical points characterized by ‘“‘mountain-pass” or
“minimax’’ conditions may be derived for functionals which may be irregular in B

(cp. [26]).

Note that since we are exhausting the testing space T by a family of Banach
spaces {T,}, the “limit space” T itself may be very badly behaved; in particular, it
need not be a reflexive Banach space.

In the applications given in Section 3 (and in those presented in [26]) Criterion
A* can be verified by introducing a “necessary constraint”, i.e. by restricting E to
a set M of admissible functions given by

M={ueB|(VE(u), ¥(u))= 0} (2.3)

for some mapping ¥. Necessary conditions of this kind seem to have been first
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introduced by Nehari [18] in 1957 as a means to improve properties of badly
behaved functions. Working with the constraint (VE(u), u)=0 he and other
authors were able to derive existence and multiplicity results for superlinear
elliptic boundary value problems (cp. [4], [5], [7], [9], [12], [18], [25]). For such
problems the functional in variation is neither bounded from above nor from
below on the whole space, whereas it was found to be coercive on the set of
functions satisfying the above constraint.

3. Quasilinear eigenvalue problems

In this section we apply Criterion A* to prove the existence of multiple
solutions for problem (1.2) mentioned in the introduction. The following assump-
tions (3.1)-(3.7) will be made throughout this section.

The symmetric matrix function a = (a*?): Q2 xRN — R"*", a*® = qP*, is"
measurable in x € £, differentiable in u €RY, and for a.e.x,d,a*?(x, *)

is uniformly continuous in u, uniformly in x. Moreover, there is a 3.1
constant ¢ such that |a|, |0,a|, |u - d,a(:, u)|=c a.e. in Q2 XRN.
There exists A >0 such that

a®®(x, u)éo£p= A € (3.2)

for a.e. (x, u, £) € 2 xRN xRN,
Also we shall need the one-sided condition:
There exists a constant A* <A such that
—u - 3,a°P(, u) €L Ep=21% [¢|* (3.3)
for a.e. (x, u, £) € Q xRN xRN",
With respect to the function G we suppose:

G:H}*(2;RY) - R® is continuous with respect to weak convergence

in H?. G(u)=0, G(0)=0. (3.4)

1 H32(2;RN) is the completion of the set of C*-functions u:{ — RN having compact support in
2 with respect to the norm |juf? , =, |Vu|* dx. For brevity in the following we simply write H?.
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G is continuously Fréchet differentiable in H{? with compact deriva-

tive VG:Hy? — H ':= (H}H)*. (3.5)

Moreover, we require the non-degeneracy condition:
At any point ue H{? such that G(u)>0 we have (VG(u), u)>0. (3.6)
Finally, we also need a regularity condition:

For any ue Hy®> VG(u)€ H™' is represented by a function g(x, u) such

that (VG(u), ¢)=Jg(u)edx for all o H}?, and g:QxRY—->RN
2n @

n—-2

3.7

satisfies the estimate for some p <2*=
lg(x, w)|=c(1+|ulf™") ae.in QxRN

EXAMPLE 3.1. The assumptions (3.4)—(3.7) are satisfied with G(u)=
§lul? dx, for some pe]l,2*[. The assumptions (3.1)—(3.3) are satisfied with
a*® = (X +arctg (|u}?))8,5, where 8,5 =1 if a=p,=0 else.

We will show that the general assumptions (2.1), (2.2) are satisfied for the
functional E given by (1.1), if we let B = Hy*(Q2;RY), T=H}*NL*(2;R"), and
for any LeN let T, be the set T equipped with the norm ||| = |||, 2+ L |||}

LEMMA 3.1. Assumption A is satisfied with B, T;, T, and E as above.
Moreover, for any LeN the function VE:Hy*— Ty is uniformly bounded on
H{}?-bounded sets U, and for any such U the mappings VE(u+-): T, — T are
continuous at 0 € Ty, uniformly with respect to u e U.

Proof. (2.1) is trivially verified. Similarly, it is easy to check that E is finite on
H}? and differentiable with respect to T, for any L eN. Indeed, for any u e H?,
any pe Hy*NL”

(VE(u), ¢)= J a®?(x, u) d,u’ dgp’ +3¢’ 9,,a%P(x, u) d,u’ dgu’ dx, (3.8)

and the stated continuity properties may readily be derived from condition (3.1)
and standard convergence theorems. By (3.1) and (3.8) also the uniform bounded-
ness on H}?-bounded sets of VE: Hy? — TT is immediate. q.e.d.

22*=00, if n=2.
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Thus it is meaningful to define a critical point u of E subject to the constraint
Gu=1..

DEFINITION 3.1. ue H}y? is called a critical point of E on the set {ue
H}? | G(u) =1} iff there exists a number u €R such that

VE(u)+uVGu)=0eT'.
If u is a critical point of E the value E(u) is called critical.
Of course, in the semilinear case we may take T=B=Hj? and the above
definition reduces to the standard definition of a constrained critical point.
Set
M={ueH}*| G(u)=1}. (3.9)

Now we can formulate our first result:

THEOREM 3.1. Suppose conditions (3.1)-(3.7) are satisfied and that M# .
Then there exists a constant p, >0 such that whenever the condition

|0.a|<p, ae.in QxRN

is satisfied there exists a solution (u, u)€ Hy*NL=(2;RY)XR of problem (1.2),
characterized by the condition

ueM:E(u)= ig&E(v).

In the symmetric case a much stronger existence result may be obtained. Assume
that

a*?(x,u)=a*?(x,—u) ae.in OxRY (3.10)

and
G(u)=G(~u) forall ueH}?>. (3.11)

Let

3 ={Ac H}*\{0}| A is closed and symmetric}
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and define the Krasnoselskii “genus” y:3 —>NyU{®} on % by letting y(J) =0,
and for A# J:

y(A)=min{meN|3h: A —>R™\{0}, h is continuous, h(—u)=—h(u)}

if {---}# O, y(A)= else (cp. [9], [14]). The genus has the following properties
(cp. [21, Lemma 1.1]):

PROPOSITION 3.1. Let A, Be 3:
i) If there exists an odd continuous mapping h: A — B then y(A)=< y(B).
ii) y(AUB)=y(A)+ v(B)
iii) If A is compact, then y(A) < and there exists a neighborhood N of A in
H}? such that Ne X and y(N) = y(A).
For any leN set

3 ={AeX|AcM, y(A)=], A is compact},
and for any BeR let
K;={ue M| E(u)=B,3p:VE(u)+pVG(u)=0}
be the set of constrained critical points of E of energy 8. We then obtain:

THEOREM 3.2. Suppose conditions (3.1)—(3.7), (3.10), (3.11) are satisfied
and that 3,# & for | <m. Then for any k < m there is a constant p, such that if the
condition

l0.al<pe ae.in QXRN

is satisfied there exist solutions (w, w,) € Hy*NL>(2; RY)XR, 1=I=<k, of problem
(1.2) characterized by the generalized minimax-principle

w € M:E(w)=B,:= inf supE(u).

AeE, ucA

If for some numbers k, leN we have

B=B="""=B

then

y(Kg)=k+1
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and, in particular, Kg must be infinite. Finally, if 3,# & for all 1eN
B —x (1 - ).

EXAMPLE. If the coefficients a*® and the function G are given as in
Example 3.1 all the assumptions (3.1)-(3.7), (3.10), (3.11) are satisfied, M#
and 3,# & for all | eN. Moreover, for a scalar equation (N = 1) or a plane system
(n=2) the parameters p, may be chosen as p, = (cp. Section 4).

Remarks. For coefficients a*® = a*?(x) independent of u as a special case of
Theorem 3.2 we obtain the well-known existence results cited in the Introduction.
For general elliptic eigenvalue problems of the type

—Au+f(x,u,Vu)=0 (3.12)

only the results of Browder [7] seem to have been available. However, by using a
standard Palais-Smale type condition Browder was forced to impose the ‘“‘un-
natural” growth condition on the free term in (3.12):

If(x, u, m)|=c(1+|ulP+|n|?)

with p<2*-1 and q=(n+2)/n if n>2, resp. p<x, <2 if n=2 (cp. [11]). In
the case of quadratic growth (q=2) which naturally arises from variational
problems like the problems considered here the question of existence of non-
minimum critical points seems to have been completely open.

Bounds for the numbers g, in terms of the structure parameters of the system
(1.2) can be obtained from the proof of Lemma 3.4 ii) (cp. (3.16)).

To prove Theorems 3.1, 3.2 we first need an additional information on the set
of admissible functions.

LEMMA 3.2. i) The mapping u+—>(VE(u), u) from Hy*NL> into R continu-
ously extends to ue Hy?.

ii) For any ueM there exists a unique number p=pu(u) such that
(VE(u)+ uVG(u), u)y=0.

iii) The mapping u — wu(u) from M into R is bounded on (H}*—) bounded sets,
hence continuous.

Proof. i) Given any u € Hy? and any sequence {¢,.}, ¢, € Hy*N L>, such that
¢ —>u in Hy? as m — o we show that lim,,_,.(VE(e,,), ¢..) exists and is
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independent of the approximating sequence {¢,,}. Indeed,

(VE(@m)s Om)= J AP (X, ©m) 0a@m 0@t 307, 0,8°P (X, @) a0t Ig@h, dx.

By Lusin’s theorem, given any number & >0 there exists a set E; < {2 such that
meas (E;)<#é and ¢,, — u uniformly on 2\E; as m — «. Hence also q(-, ¢,,) =
a(-,u) and ¢, - d,a(-, ¢,,) — u - d,a(-, u) uniformly on Q\E; as m — o; and
since ¢,, = u in Hy*(m — x) we obtain

I AP (X, @) 0o @in 0@t 300 0,58°P (X, @) 0o @i VpPin dX —
Q\E;

I a®P(x, u) d,u’ dgu’ +3u’ 9,,a%%(x, u) d,u’ dgu’' dx (m — ).
QO\E;

On the remainder set E; by uniform boundedness of a, u - d,a(:, u) and uniform
absolute continuity of [|Ve,.|> dx we may estimate

J a®P (X, @) 0Pl 0@ it 3¢0h 0,0a°B (X, @) 0a@ ' 0p@h, dX | = c(8),
Es

where ¢(8) = 0 (8 — 0), uniformly in m. Hence the statement follows on first
letting m — o and then passing to the limit § — 0.

ii) By condition (3.6) statement ii) is immediate from i).

iii) To show iii) note that the mapping u — (VE(u), u) is bounded on bounded
sets. Moreover, by compactness of VG and weak continuity of G from condition
(3.6) it follows that [(VG(u), u)| is uniformly bounded from below by some
positive constant if u ranges in any given bounded subset of M. This proves
boundedness. From the boundedness continuity follows by uniqueness, part
ii). q.e.d.

In conclusion the set M may equivalently be expressed
M={ue Hy*\{0}| G(u) =1, p :(VE(u) + uVG(u), u)= 0} (3.13)
with an additional constraint reminiscent of (2.3). In order to verify Criterion A*

for E on M the following regularity result based on a device of Moser [17] will be
needed. For this lemma we also assume the following auxiliary condition which
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will later be removed again:
Jvy:u-d,a(,u)=0 for |u|=vy a.e. in. (3.14)

LEMMA 3.3. Assume in addition to the general assumptions (3.1)~(3.7) that
condition (3.14) is satisfied for some number v,. Then, if {u,} is a sequence in M
such that |u,,||, » = M uniformly in m, and such that u,, — u weakly in H3* while
VE(u,,)+ 1,,.VG(u,,) = 0 T, -uniformly as m — « with w,, = u(u,,), it follows that
ue Hy*N L™ and, moreover, |ull.=<c=c(A, A*, n, N, Q, p, M) for some function c
which is non-decreasing in M.

Proof. First note that by Lemma 3.2 the numbers w,, = n(u,,) are uniformly
bounded by a constant depending only on the parameters of the system and the
number M.

For arbitrary numbers r=0, v=v, define test vectors @5’ =u,, |U,| "X
min {|u,,|, v}"*'. Note that for any r, v, and L, the sequence ¢7” is uniformly
bounded in T; for any L=L,. By T,-uniform convergence we thus obtain,
writing ¢’ = ¢,, for brevity:

0= lim (VE(w,)+ 1, VG(u,), ¢..))

= lim Ia“ﬁ(x, Up) Qo 0@ m T3¢0, 3,10°P(x, U,,) OuUs, BglUs,

m—»x

+ g (X, Uy) @1y, dx.
Let

Al = J a®® (X, Up,) doUs, 0g@in+ 300, 3,0a°P(x, U,,) d,ul, dgu’, dx
A3 [ o5, ot d.
By conditions (3.2), (3.3), (3.14) we estimate
A,‘,,=I(a°‘"(x, Up) + 35U * 3,8°P(X, U,,)) D ul, dgul, (U, | " min {u,,|, v} dx
+ rj a®P(x, u,)u,, d,ulul, dgul, |u, |~ dx
{x | |um(x)|<v}

—V'HL e ) gty o
X | |t (x)|=v
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2J (a*B(x, u,,)+3u,, - 9,a°%(x, u,,)) o u’, daUpy |Up|" dx
{x | |um (x){<v}

i
Unlm

+ yr+IJ- a*®(x, um)(Su ‘"’“’?) Ol Ol [ U] !
{x | |t (x)} = v} [t

2()\-A*)j Vu,|* |u,| dx.

{x | lum ()| <2}

Also note that by (3.2) for a.e. (x, u, £) e 2 xRN xRM"
wul\ . .
a*?(x, u)(&,- —m—z)gae =0,

as may be verified by transforming the positively semidefinite and symmetric
u'u!
Juf?
mations of the independent and dependent variables x e R", ueR™, resp. Thus,
letting u),=min {|u,,|, ¥} and noting that by a well-known theorem of Stampac-
chia Vu?,=0 a.e. on {x | u%(x) = v} we obtain

matrices a®®, (Si,- - ), resp. into diagonal form through orthogonal transfor-

ALz A=A (r+2)72 (un) 2 2.

On the other hand
AR ot | (1t )20 i

Passing to the limit m — o, from the Sobolev embedding theorem we thus obtain
with constants ¢ =c(A, A*, n, N, Q, p)

lu* 6 mm-2 = c () *23F ;=< c(r+ 2)2,}5_‘32014 -

<c(r+2)*lim |AZ|= c(r+2)2j (1+]|ufY) ju*|*! dx. (3.15)
Choosing r, =0 and letting v — % in (3.15) we obtain

luflz«= CJ 1+|ulp dx=c |luls.®

! Note that by condition (3.6) there exists a constant ¢ >0 such that |Jul|, = ¢ for [juf, ,<M.
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Similarly, letting r,,, =;—f——2- (r;+2)—p for ieN by induction it results from (3.15)
that

”uHr = Cll(r‘+2)(ri+2)2/('*+2) "u"(r‘—!-p)/(rl+2)
+1

ri+p
= CZ"'#H r}za; ’Iu||g15i7}’
j=i
with
i = I —_—
7i rj+2j_<£ISiT’“ " t2

From the asymptotic behavior r,,,/r;,~n/n—2 as i — « it is elementary to verify
that the products converge. By a standard estimate we thus obtain

Jul <tim sup Jul, < ¢ Jul = cM* =:c(h, A%, n, N, 2, p, M) q.e.d.

For BeR, LeN define

M, ={u€M| E(u) < B},
Ny, ={ue M||E(u)-B|<L™}||VE(u)+ p(u)VG(u)|3:<5L7"}.

LEMMA 3.4. i) The functional E:M—R is coercive with respect to
ot EG) — e if ==,

ii) Assume that condition (3.14) holds for some vy=0. Then for any B =0 there
exists a number p >0 such that the functional E satisfies Criterion A* on the set Mj
provided that |0,a|<p a.e. on QXRN.

iii) Under the assumptions of ii) for any B =0 there exists a number p such that
whenever |9,a|<p a.e. on QxRN then the following is true:

If Kg = there exists LeN such that Ng; = .

Proof. i) By assumption (3.2) the first statement is immediate.

ii) Let {u,} be a sequence in Mg such that u, — u weakly in Hy?> and
VE |m(u,,) = VE(u,)+ n(4,)VG(u,,) > 0 T, -uniformly as m — . By i) of this
proof there exists a constant M= M(B) such that |u,,|,,=M, uniformly in m.
Applying Lemma 3.3 we obtain that wueH{y*NL” and that |ul.<
c(A, A%, n, N, Q, p, M). Fix p>0 such that

lull <A —A*. , (3.16)
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For meN let A,, be the quadratic form A, (¢)=3J a*?(x, u,,) 0,0’ dg¢' dy. By
convexity of A,, we then obtain for every m eN:

A, (u,)— A, (W)=(VA, (u,), U, —u)
=(VE(u,,)+ n(u,)VG(u,,), u,, —u)—{(u(u,,)VGu,,), u,,—u) (3.17)

—% I(um —u) 3,a*?(x, u,,) d,ul, dgut, dx.
By weak convergence u,, = u (m — )
lim sup A,, (u,, — u) =lim sup [A,, () = A ()],
and by compactness of VG and boundedness of w(u,,)
(w(u,,)VG(u,), u,, —u)y—>0 (m—x).
By Lusin’s theorem for any 8 >0 there exists Es < (2, meas (Es) <§, such that

u,, — u uniformly on Q\E;. Denoting by c(8) any constant such that ¢(§) =0
(8 — 0) we hence obtain

: 1 . .
lim sup—5 J (U, — u) 3,a°%(x, u,,) ,u}, glt,, dx

: 1 . .
= lim sup——j (u,, — u) 9,a°%(x, u,,) d U, dgu,, dx
Es

m—co 2

m-—>co

=1im sup—% '[‘55 (U, — u) 3,a%(x, u,,) 0, (u,, — u)" 95(u,, — u)* dx+c(8)
<tim sup (V*+ [l ) 1900~ )P dx+ c(9).
Letting § — 0 and inserting our estimates into (3.17) we thus find that
A lir:‘l_s)gp J IV(u,, —u)|* dx sli’r}‘l_s)gp A, (u,, —u)

<(A*+|ull. p) lim sup J IV(u,, — u)|? dx.

By our choice of p this implies that u,, — u strongly in Hy* as m — o, and hence
ii).
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iii) Given an arbitrary number B €R let p be chosen such that Criterion A* is
satisfied for the functional E on the set M;,,. Suppose K; =(J and assume by
contradiction that Ny, # & for all L eN. Select a ‘““diagonal” sequence u,, € Ng
meN. Note that u, € Mg,, for all m, hence by part i) of this proof {u,} is
bounded in H§?* and by the Banach-Saks theorem we may assume that u,, — u
weakly in H3® as m — ». Moreover, by continuous embedding T; — Ty, |ully =
|u|l, for all ue T, L =N, we have that for any LeN

lim sup [VE |af(u, )7+ =<1lim sup [VE | (u1.)|}z = 0.

Thus VE(u,,)+ u(u,.)VG(u,,) = 0 T -uniformly as m — . By part ii) now we
may select a strongly convergent subsequence u,, — u in Hy? (m — ), whence
u € K, contrary to the assumption that K, = J. This concludes the proof. q.e.d.

LEMMA 3.5. For any numbers B €R, L €N there exists a number §>0 and a
continuous mapping ¢, : M — M such that

¢ (Mg 5)=Mg_sUNg;.

If conditions (3.10), (3.11) are satisfied, ¢; may be chosen to be odd, i.e.
¢ (—u)=—.(u).

Proof. Fix an arbitrary number B €R and any L eN. The mapping ¢, will be
constructed from a “gradient-line”’ deformation in direction of a gradient-like
vector field related to VE [y e TF. (For brevity we again write VE |\(u)=
VE(u)+ n(u)VG(u).)

i) For any ue M let & (u)e T, be a vector satisfying

"fL(u)"TL = "VE IM(u)“T?:» (VE IM(“), §L(u))2"VE IM(U)”%‘Z" L™

By continuity of VE : Hy* — T¥ for any u € M there exists a neighborhood V(u)
such that for all ve V(u)

(VE |um(v), & (0))Z|IVE |n ()7 —2L 7"

Since M is a subset of a Hilbert space there exists a locally finite refinement
{V(u,)},c; of the covering {V(u)}. Letting {{,},.; be a partition of unity subordi-
nate to {V(u,)} with continuous functions ¢, having support in V(u,) and such that

0=y;<1, X¢=1 onM,

vel
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we define

& (u)=Y v, (u)& (u,).

vel

In the general case we let e, (u)=¢é,(u). In the symmetric case E(u)=E(—u),
G(u) = G(—~u), corresponding to assumptions (3.10), (3.11), we define

er (u) =3(é (u)—é.(—u))=—e.(~u).

In both cases e, : M — T; is a continuous vector field with the property that for
any u € M there holds

(VE |p(u), e (u))=||VE |y ()]s —2L7"

Moreover, since VE | : M — TF is bounded on H{>-bounded subsets of M the
same is true for e;.

ii) Let a:R—R be a continuous function satisfying 0<a =<1, a(f)=1 if
t=B+1, a(t)=01if t=B+2. For £¢>0, ueM let

u*=u—ca(E(u))e.(u).

Note that u®=u for ue M\M;,,. Also, by part i) and Lemma 3.4 i) the vectors
a(E(u))e (u)e Ty are uniformly bounded on Mg, ,.

By weak compactness of M,,, and assumptions (3.4), (3.6) there exists a
constant ¢ >0 such that (VG(u), u)=c on M;,,. Hence by the implicit function
theorem there exists a number &,>0 and a function 7(e, u) of class C' in ¢ and
depending continuously on u such that

u . =7(g, u)u*eM
for all ue M, 0<g¢ <g,. Calculating E(u,) by Lemma 3.2 we obtain
E(u.)— E(u) = E(u,)+ n(u)G(u,) — (E(u) + u(u)G(u))

=["L (B + G, de
o de
. j “(VE(,)+ p(WVG(w.), (e, wa(E@)e, (w) de (3.18)

+ J' e(VE(us) +u(WVG(u,), u,) 56; In (e, u) de

< —e(VEu)+ pn(u)VG(u), a(E(u))e.(u))+o(e),
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with a Landau function ¢(¢) such that o(¢)/e — 0 (¢ — 0) uniformly with respect
to ue M. In particular, choosing ¢, sufficiently small we may assume that
o(e)=<eL™'. Moreover, by locally uniform continuity of VE |,;e Tf we may
assume that [VE |y(u,)|3+<SL™' whenever e <¢g, and |[VE |y(u)|3+<4L".

Fix such a number 0<e=<J and let ¢, (u)=u,. Set 8=¢/2L<1/L. Then, if
u€ Mg, either |VE | (u)|2+=4L"" and hence by (3.18)

E(¢r(u))=<E(u)—2eL '+ eL™'=E(u)-28,
i.e. ¢ (u)e My_s; or |VE |p(u)|5+<4L"* whence |VE | (¢ (u))|%+ <5L™" while
E(¢(u)=E(u)+2eL'+eL'<B+4eL '=p+L7},

Finally, in the case of assumptions (3.10), (3.11) ¢, (—u) = —¢, (u). The proof
is complete. q.e.d.

Proof of Theorems 3.1 and 3.2 for coefficients satisfying (3.14).

i) Let B=inf, . E(u). Choose p,>0 corresponding to Lemma 3.4 iii) and
assume that |0,a|<p; a.e. in 2xXR". Then if K; = by Lemma 3.4 iii) there
exists L such that Ng; =, and by Lemma 3.5 we can find >0 and a
continuous mapping ¢, : M — M, such that ¢, (Mg,5) < M;_5. But M; ;= and
a contradiction results, proving Theorem 3.1.

ii) In the case of Theorem 3.2 fix a number [ <m, and let 8 = 8,. Choose p,>0
corresponding to Lemma 3.4 iii) and assume that |3,a|<p, a.e. in 2 XR". Then, if
Kz = as in part i) of this proof there exists a continuous mapping ¢, :M—> M
such that ¢, (Mg, s) = M;_s for some number §>0. Moreover, by assumptions
(3.10), (3.11) ¢, can be chosen to be odd. Letting A € 3; be such that A < Mg,
we thus obtain that ¢, (A) € 3, (cp. Proposition 3.1 1)) and satisfies ¢, (A)< M,_;.
But this contradicts the definition of 8 = 8, concluding the existence proof.

In the case of degeneracy B=,=--:= B, for some numbers k, [eN we
estimate y(Kg) as follows. By Criterion A* the set Kj is compact. Hence from
Proposition 3.1 iii) we can find a symmetric neighborhood N of K5, N< Hg*\{0},
such that the closure Ne 3 and y(N) = y(K;). Again by Criterion A* there exists
L such that Ng; © N. Let §>0, ¢, be chosen according to Lemma 3.5 corres-
ponding to this number L and B and let A € 3,,, be such that A < Mg, ;. Then by
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Proposition 3.1.

1+ k=7y(A)=y(¢.(A)) = y(¢(A)\Ng L)+ y(N)
= 'Y(d’L(A)\Np,L) + Y(KB)-

L

But ¢, (A)\Nz < M;_;, whence y(¢ (A)\N, )<, and y(Kz)=k+1.
(The proof of the asymptotic behavior of the sequence B, will be postponed to
the full proof of Theorems 3.1, 3.2 without assumption (3.14).)

Proof of Theorems 3.1, 3.2 (completed). To remove assumption (3.14) approx-
imate the functional E by functions E, with coefficients a$? satisfying condition
(3.14) and coinciding with a*® for |u|<v. To construct these coefficients let
¢:R—R be a smooth function such that 0=¢ =<1, ¢'<0, ¢(0)=1, ¢(1)=0.
Then given any number veN, for ueRY, |u| =1, define

asP(x,u-t)=@(t—v)a*P(x, u- ) +(1—@(t—v))A8 4.

Clearly, assumptions (3.1), (3.2) are satisfied for the coefficients a®® with the
uniform ellipticity constant A. Moreover, for any u

—u-0,a5P(x, u)=—e(u|-v)u - 3,a°®(x, u)—|ul |¢'(Jul— v)|(a*®(x, u) = A * d,g).

Hence, by conditions (3.2), (3.3) on a*?, condition (3.3) is satisfied by the
coefficients a*? with the uniform constant A* <A.

By the preceding proof there exist solutions (u;, ;) of (1.2) for the functionals
E, characterized by the condition E,(w)= B, =inf, .5 sup,.4 E,(u). Now, for
any ue M E, (u) = E(u) (v — »), and similarly, for any A€ 3, sup,., E,(u) —
sup,ca E(u) (v — ). Hence B,, = Bi(v—>x), for any I=m. By Lemma 3.3
therefore ||Jull.=<c(A, A*, n, N, Q, p, B, +1) for v sufficiently large, and u, is in fact
a critical point of E with energy E(u,)= B, = B,, for such v. (This also justifies
writing u, instead of u;,.) This shows existence and by the preceding proof also
the assertion about K in the case of degeneracy now follows.

To show that B, — « (I — ) assume by contradiction that B, =<c for all IeN
with a uniform constant c¢. Then there exist sets A, €3, [eN, such that A=
U:A,cM,,,. By [21, proof of Lemma 2.21] or [25, proof of Lemma 10] A
contains a sequence of mutually orthogonal vectors u,, € A, and by weak com-
pactness of M_,, we may assume that u,, — u weakly as m — «. But by mutual
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orthogonality of {u,}, u=0. Hence from 0= G(u)=1im,,_,., G(u,)=1 a con-
tradiction results. q.e.d.

4. Extensions and generalizations

Without proof we remark that in the subquadratic case corresponding e.g. to
functionals of the type

Es(u) = J |Vul? dx +J (a*? a,u’ dgu')>~%2 dx, §>0 4.1)

existence results similar to Theorems 3.1, 3.2 hold without any smallness assump-
tion on |d,a| in addition to (3.3).!” By a different kind of argument than used in
Section 3 also in case of quadratic growth such a smallness assumption can be
removed if either N=1 (scalar equation) or n=2 (plane system). This may be
shown by approximating the functional E by functionals E, of the form (4.1) and
using the regularity results of Ladyshenskaya—-Ural’tseva [15] for example, resp.
the results of Wiegner [28] for plane diagonal systems to pass to the limit § — 0 in
the Euler equations which are satisfied at the critical points of E,.

By the same techniques as presented above also existence results for the
boundary value problem

ue H?:.VE(u)-VGu)=0eT’

can be given under hypotheses similar to those of Theorems 3.1 and 3.2 plus
some additional hypotheses to ensure the regularity (with respect to T, for any
L eN) of the set of admissible functions

M={ue H}?|(VE(u)—VG(u), u)=0}.
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