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Quasilinear elliptic eigenvalue problems

MlCHAEL STRUWE(1)

Summary The generalized Palais-Smale condition mtroduced in [26] îs applied to obtain multiple
solutions of vanational eigen-value problems with quasihnear principal part, thereby extending some
welî-known existence results for semihnear elliptic problems

1. Introduction

Let 11 be a bounded domain in Rn and let a -(aa(i)Uza(i^n be a uniformly
elliptic, symmetnc, and bounded matrix function a :QxMN-^&gt;Mnxn. For ue
Hl2(O;UN) define the energy intégral

E(u) 11 a^(x, u) daul d^u1 dx. (1.1)

By convention, repeated Greek indices are summed from 1 to n, Latin indices
from 1 to N. Unless otherwise stated ail intégrais are taken over fl. Let
G : Hj&apos;2(f2; UN) -&gt; U be a sufficiently regular function (cp. conditions (3.4M3.7)).

In this note we présent existence results for the nonlinear eigen-value problem

G(m) 1, jx€R. (1.2)

The results obtained generalize results of Amann [1], [2], Ambrosetti [3], Berger
[6], Browder [7], Clark [8], Coffman [9], [10], Hempel [12], [13], Pohozaev [20],
Rabinowitz [21], [22] and others for semilinear eigenvalue problems. In the above

setting such problems correspond to functionals E with coefficients a a(x)
independent of m.

In contrast to this latter situation under the hypothèses made hère the
functional E need not be differentiable in Hj&apos;2. Thus the classical Palais-Smale

1 This research was supportée! by the Sonderforschungsbereich 72 of the Deutsche

Forschungsgemeinschaft
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510 MICHAEL STRUWE

condition (cp. [19], [24]) cannot hold in this space and the standard Lusternik-
Schnirelman theory of critical points (cp. [16], [23]) cannot be applied to obtain
solutions of (1.2). Instead the existence results presented will be deduced from the

generalization of the Lusternik-Schnirelman method that was introduced in [26].
In the next section this method will be briefly recalled; in particular, the

compactness Criterion A* will be restated which replaces the Palais-Smale
condition in applications of Lusternik-Schnirelman theory to irregular functionals.
Précise formulations and proofs of existence results for problem (1.2) are given in
Section 3.

Thèse results are not presented in the most conceivable generality. Instead

they hâve been selected as models to illustrate the application of Criterion A* in a
&quot;non-reflexive&quot; situation. Possible extensions and generalizations are mentioned
without proof in Section 4.

Remark that we retain a compactness assumption on the term VG(w) in (1.2),

cp. condition (3.7). However, even with coefficients aX] independent of u, the
Palais-Smale condition may no longer hold true for (1.2) if VG is only continu-

ous, i.e. if in assumption (3.7) p-2n/(n-2) is admitted. In this case (and with
coefficients independent of u) important progress has recently been made by
Brezis and Nirenberg [28], [29], cp. also [30].

It is a pleasure to thank Prof. J. Frehse and Dr. M. Meier for friendly and

helpful discussions.

2. The compactness criterion

Throughout this section we shall make the following Assumption A:

B is a reflexive Banach space with norm ||-||B. Te B is a dense subspace
of B (in ||-||B) given by T LLiTt, where {TJ is family of Banach (2.1)

spaces Tt with norms ||-||Tt.

E : B -* R{±°°} for any t g I is continuously Fréchet differentiable with
respect to Tt in the following sensé: For any ueB such that |£(m)|&lt;°°,

any iel, the derivative VE(u)eT* exists and the mapping u-»
VE(u)e T* is continuous on its domain.

Set T&apos; {£:T-*R|£|TiG7t for ail tel}. By (2.2) it is meaningful to define a
critical point of E as an élément ueB such that |E(u)|&lt;oo and VE(u) 0eT&apos;.

The value E(u) at such a critical point will be called a critical value of E.
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DEFINITION. A séquence {£J in T converges toOeT 7&gt;uniformly ifï for
any tel

UJl-^O (m-» oo).

As an illustration of this définition consider the extrême cases:

Ex. 1. Let B=T=TC Then for any ÇeT&apos; B*, any c:^ ||£|Ib-, IHIb*

denoting the norm in the dual B*. Thus, Tt-uniform convergence is équivalent to
norm-convergence in B*.

Ex. 2. Let /2 c HT be a bounded domain, B HJ&apos;2(^), T=Co(/2), and Tt
{At | À eR} (R, te T. In this case, Tt-uniform convergence is équivalent to weak
convergence in the sensé of distributions.

In the application given below, a nontrivial choice of B, T, Tt will be presented.
Let M be a subset of B such that E is finite on M. Assuming (2.1), (2.2) we

may then state our

CRITERION A*. If {um} is any séquence in M such that um —» u weakly in B
and VE(wm)—» 0 TL-uniformly as m-+&lt;*&gt;, then we may extract a subsequence that
converges strongly to a critical point of E in M.

Remark. In Ex. 1 Criterion A* reduces to a variant of the classical Palais-
Smale condition. Similarly, imposing a coerciveness condition on E (with respect
to B) and assuming M to be regular (with respect to T, {TJ), from Criterion A*
the existence of saddle-type critical points characterized by &quot;mountain-pass&quot; or
&quot;minimax&quot; conditions may be derived for functionals which may be irregular in B
(cp. [26]).

Note that since we are exhausting the testing space T by a family of Banach

spaces {Tt}, the &quot;limit space&quot; T itself may be very badly behaved; in particular, it
need not be a reflexive Banach space.

In the applications given in Section 3 (and in those presented in [26]) Criterion
A* can be verified by introducing a &quot;necessary constraint&quot;, i.e. by restricting E to
a set M of admissible functions given by

M {u e B | &lt;VE(u), ¥(u)&gt; 0} (2.3)

for some mapping W. Necessary conditions of this kind seem to hâve been first
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introduced by Nehari [18] in 1957 as a means to improve properties of badly
behaved functions. Working with the constraint &lt;VE(u), u) 0 he and other
authors were able to dérive existence and multiplicity results for superlinear
elliptic boundary value problems (cp. [4], [5], [7], [9], [12], [18], [25]). For such

problems the functional in variation is neither bounded from above nor from
below on the whole space, whereas it was found to be coercive on the set of
functions satisfying the above constraint.

3. Quasilinear eigenvalue problems

In this section we apply Criterion A* to prove the existence of multiple
solutions for problem (1.2) mentioned in the introduction. The following assump-
tions (3.1)-(3.7) will be made throughout this section.

The symmetric matrix function a (aap) : il x |RN -^ Rnxn, a^ apa, is
measurable in xeQ, differentiable in ueRN, and for a.e.jc, duaafi(x, •)

is uniformly continuous in u, uniformly in x. Moreover, there is a

constant c such that |a|, |dua|, \u • dua(-, u)|&lt;c a.e. in (lxMN.

There exists À &gt; 0 such that

^|2 (3.2)

for a.e. (x, u, £) e Q x UN x RNn.

Also we shall need the one-sided condition:

There exists a constant À*&lt;À such that

-M-aua^(-,u)^^2A*|^|2 (3.3)

for a.e. (x, m,^)g/]xRnx(RNn.

With respect to the function G we suppose:

G : Hl&apos;2(O;MN) -* R(1) is continuous with respect to weak convergence
inHj&apos;2. G(u)&gt;0, G(0) 0. (34)

1 Hla(Q; UN) is the completion of the set of C°°-functions u : û, -+UN having compact support in
û with respect to the norm ||m||ij2 in fiu\2 dx. For brevity in the following we simply write HJ-2.
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G is continuously Fréchet differentiable in Hj&apos;2 with compact deriva-
tive VG:H1o2-*H1:=(H1o&gt;2)*.

(3&apos;5)

Moreover, we require the non-degeneracy condition:

At any point ueHj&gt;2 such that G(u)&gt;0 we have (VG(u), u)&gt;0. (3.6)

Finally, we also need a regularity condition:

For any u e Hj&apos;2 VG(u) e H1 is represented by a function g(x, u) such

that (VG(u),(p) $ g(u)çdx for ail &lt;peHl&apos;2, and g:f2xRN-&gt;(RN
9 w (2) (*&apos;&apos;)

satisfies the estimate for some p &lt; 2* :

\g(x, m)|^c(1 + |m|p~1) a.e. in &gt;fix[RN.

EXAMPLE 3.1. The assumptions (3.4)-(3.7) are satisfied with G(u)
$\u\pdx, for some pe]l,2*[. The assumptions (3.1)-(3.3) are satisfied with
aa(i (A + arctg (\u\2))8aP, where 8a(i 1 if a /3, 0 else.

We will show that the gênerai assumptions (2.1), (2.2) are satisfied for the
functional E given by (1.1), if we let B Hj&apos;2(f2;IRN), T=Hj&apos;2nL0O(fi;lRlv), and
for any LeN let TL be the set T equipped with the norm ||#||l IHIi,2 + £~1 II&apos;IU

LEMMA 3.1. Assumption A is satisfied with B, TL, T, and E as above.

Moreover, for any LeN the function VE:Ho&apos;2~&gt;T* is uniformly bounded on
Hla-bounded sets U, and for any such U the mappings VE(w+-): TL —» T* are
continuous at 0 e TL, uniformly with respect to ueU.

Proof. (2.1) is trivially verified. Similarly, it is easy to check that E is finite on
Hla and differentiable with respect to TL, for any LeN. Indeed, for any u e Hj&apos;2,

any &lt;p e H}/1 H L°°

&lt;VJE(u), q&gt;)
I aal3(x, u) daul dp&lt;pl +&amp;1 du,aap(x, u) daul d^u1 dx, (3.8)

and the stated continuity properties may readily be derived from condition (3.1)
and standard convergence theorems. By (3.1) and (3.8) also the uniform bounded-
ness on Hj&apos;2-bounded sets of VE : Hj&apos;2 -» T* is immédiate, q.e.d.

22* oo, if u 2.
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Thus it is meaningful to define a critical point m of E subject to the constraint
G(u) l.

DEFINITION 3.1. ueHl&apos;2 is called a critical point of JE on the set {ue
Hq&apos;2 | G(u) 1} iff there exists a number ja eU such that

If m is a critical point of E the value E(u) is called critical.

Of course, in the semilinear case we may take T=B ffJ&apos;2 and the above

définition reduces to the standard définition of a constrained critical point.
Set

M {ueHj&apos;2|G(w) l}. (3.9)

Now we can formulate our first resuit:

THEOREM 3.1. Suppose conditions (3.1M3.7) are satisfied and that M^ 0.
Then there exists a constant px &gt; 0 such that whenever the condition

\dua\&lt;pl a.e. in OxUN

is satisfied there exists a solution (u,/Lt)€Hj&apos;2nL°°(i7;IRN)xR of problem (1.2),
characterized by the condition

ueM:E(u)=ME(v).
veM

In the symmetric case a much stronger existence resuit may be obtained. Assume
that

u) a.e. in (lxUN (3.10)

and

G(u) G(-ii) for ail ueH1»2. (3.11)

Let

X {Ac Ho&gt;2\{0} | A is closed and symmetric}



Quasilinear elliptic eigenvalue problems 515

and define the Krasnoselskii &quot;genus&quot; y:-£-»N0U{a&gt;} on X by letting 7(0) 0,
and for A f 0 :

y(A) min{mGN|3/i:A--*Rm\{0}, h is continuous, h(-u) -h(u)}

if {•••}/ 0, y(A) oo else (cp. [9], [14]). The genus has the following properties
(cp. [21,Lemma 1.1]):

PROPOSITION 3.1. Ut A, BeX:
i) If there exists an odd continuous mapping h:A-*B then y(A)^y(B).
ii) y(AUB)&lt;7(A) + 7(B)
iii) If A is compact, then y(A)&lt;oo and there exists a neighborhood N of A in

HJ&apos;2 such that NeX and y(N) y(A).
For any leN set

Xt {A g X | A c M, y(A) ^ /, A is compact},

and for any ]3 e U let

be the set of constrained critical points of E of energy /3. We then obtain:

THEOREM 3.2. Suppose conditions (3.1)~(3.7), (3.10), (3.11) are satisfied
and that X^ 0 forl&lt; m. Then for any k^m there is a constant pk such that if the

condition

a.e. in fîxRN

is satisfied there exist solutions (uh jllj) g Hj&apos;2 H L°°(/2; UN) x R, 1 &lt; / 2s k, o/ problem
(1.2) characterized by the generalized minimax-principle

m, GM:E(wl) j8f:= inf supE(u).
AeXj ueA

1//or some numbers Je, IgN we

0 ft - •
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and, in particular, K^ must be infinité. Finally, if Xrf 0 for ail leN

j8,-&gt;oo (J-&gt;oo).

EXAMPLE. If the coefficients aaP and the function G are given as in
Example 3.1 ail the assumptions (3.1)-(3.7), (3.10), (3.11) are satisfied, M^ 0
and Xrf 0 for ail leN. Moreover, for a scalar équation (N= 1) or a plane System
(n 2) the parameters pk may be chosen as pk °° (cp. Section 4).

Remarks. For coefficients aaP aap(x) independent of u as a spécial case of
Theorem 3.2 we obtain the well-known existence results cited in the Introduction.

For gênerai elliptic eigenvalue problems of the type

-âu + f(x,u,Vu) 0 (3.12)

only the results of Browder [7] seem to hâve been available. However, by using a

standard Palais-Smale type condition Browder was forced to impose the &quot;un-

natural&quot; growth condition on the free term in (3.12):

with p&lt;2*-l and q&lt;(n + 2)/n if n&gt;2, resp. p&lt;oo, q&lt;2 if n 2 (cp. [11]). In
the case of quadratic growth (q 2) which naturally arises from variational
problems like the problems considered hère the question of existence of non-
minimum critical points seems to hâve been completely open.

Bounds for the numbers p^ in terms of the structure parameters of the System
(1.2) can be obtained from the proof of Lemma 3.4 ii) (cp. (3.16)).

To prove Theorems 3.1, 3.2 we first need an additional information on the set
of admissible functions.

LEMMA 3.2. i) The mapping u h*(VE(ii), m) from H^HL00 into U continu-
ously extends to ueHj2.

ii) For any ueM there exists a unique number jul ^(w) such that

iii) The mapping u —&gt; fi(u) from M into U is bounded on (HJ&apos;2-) bounded sets,

hence continuous.

Proof. i) Given any u e HJ&apos;2 and any séquence {&lt;pm}, (pm e Hj&apos;2 H L°°, such that
&lt;pm —&gt; u in Hj&apos;2 as m—&gt;oo we show that limm_^oo(VE(&lt;pm), &lt;pm) exists and is
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independent of the approximating séquence {&lt;pm}. Indeed,

&lt;VE(&lt;pm), &lt;pm) | a«*U &lt;pm) da&lt;plm dt&lt;plm + \(p&gt;m dM,a«*(x, &lt;pm) d^d^ dx.

By Lusin&apos;s theorem, given any number 8 &gt; 0 there exists a set Es c ft such that
meas (E8) &lt; 8 and çm —&gt; u uniformly on Q\ES as m -&gt; ». Hence also a(-, &lt;pm) -&gt;

a(-, m) and &lt;pm
• ôMa(-, &lt;pm)-&gt; w • dua(-, m) uniformly on /2\JSS as m—»œ; and

since &lt;pm -» w in Hj&apos;2(m -&gt; ») we obtain

f

j aapU, m) aawl apwl +|wJ dMla^(x, u) aawl a^w1 dx (m -» oo).

On the remainder set Eô by uniform boundedness of a, m • dua(-, u) and uniform
absolute continuity of J|V&lt;pm|2 dx we may estimate

a°^(x, &lt;Pm)da&lt;Pm^m+29mdu&apos;0aP(*, &lt;Pm)^m^m^ ^ ^(8),
iJe8

where c(8)-»0 (8—&gt;0), uniformly in m. Hence the statement follows on first
letting m —&gt; oo and then passing to the limit 8 -» 0.

ii) By condition (3.6) statement ii) is immédiate from i).
iii) To show iii) note that the mapping u »-» (VE(u), u) is bounded on bounded

sets. Moreover, by compactness of VG and weak continuity of G from condition
(3.6) it follows that |(VG(w), m)| is uniformly bounded from below by some

positive constant if u ranges in any given bounded subset of M. This proves
boundedness. From the boundedness continuity follows by uniqueness, part
ii). q.e.d.

In conclusion the set M may equivalently be expressed

u&gt; 0} (3.13)

with an additional constraint reminiscent of (2.3). In order to verify Criterion A*
for E on M the foliowing regularity resuit based on a device of Moser [17] will be

needed. For this lemma we also assume the foliowing auxiliary condition which
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will later be removed again:

3vo:u • dMa(-, u)&gt;0 for \u\^v0,a.e.inO. (3.14)

LEMMA 3.3. Assume in addition to the gênerai assumptions (3.1)-(3.7) that
condition (3.14) is satisfied for some number v0. Then, if {um} is a séquence in M
such that ||wm||i,2 — Muniformly in m, and such that um—&gt;&gt;u weakly in Hj&apos;2 while
VE(um) + /xm VG(wm) -* 0 TL-uniformly asm-*™ with ju,m ii(um), it follows that
u € Hl&apos;2 fi L°° and, moreover, ||u||oo^ c c(À, À*, n, N, il, p, M) for some function c

which is non-decreasing in M.

Proof. First note that by Lemma 3.2 the numbers /xm jut(wm) are uniformly
bounded by a constant depending only on the parameters of the System and the
number M.

For arbitrary numbers r&gt;0, v&gt;vQ define test vectors &lt;PmV= t^ |um|~1x

minfluj, v}r+1. Note that for any r,v, and Lo the séquence &lt;p^v is uniformly
bounded in TL for any L^L0. By TL-uniform convergence we thus obtain,
writing &lt;pr£=&lt;pm for brevity:

0= lim

lim I a

l(x, um)&lt;plmdx.

Let

l J aa*(x, um) daulm dp&lt;plm+ym du,aafi(x, um) daulm dfiulm dx

mgl(x, um)(plmdx.

By conditions (3.2), (3.3), (3.14) we estimate

f

1 f aa0(x, um)u*mdaulmu&gt;
&apos;{x||Mm(*)|=*v}

+ rf
| |um(x)|&lt;v}
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(a&quot;p(x, «m)+è«m • duaafi(x, um))dau&apos;mdfiulm\um\&apos;dx

C / i i \
r+1 I «0/ \| ^m^m | _i

|VMJ2|um|&apos;dx.
&lt;v}

Also note that by (3.2) for a.e. (jc, u, ^)€f2xjRNxRNn

as may be verified by transforming the positively semidefinite and symmetric

matrices a°^, S»,—j—jt)» resP* *nt0 diagonal form through orthogonal transformations

of the independent and dépendent variables xeRn, ueRN, resp. Thus,
letting M^ min{|Mm|, v) and noting that by a well-known theorem of Stampac-
chia Vu^ 0 a.e. on {x \ w^(x) v} we obtain

On the other hand

Passing to the limit m —» », from the Sobolev embedding theorem we thus obtain
with constants c c(À, A*, n, N, fi, p)

2! (1 + ImI&quot;&quot;1) \W\r+1 dx. (3.15)
m-*oo J

Choosing ro 0 and letting i/-»oo in (3.15) we obtain

1 Note that by condition (3.6) there exists a constant c&gt;0 such that ||u||ps= c for ||u||1f2
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Similarly, letting rl+1 (r, + 2)-p for ieN by induction it results from (3.15)
that

n&quot;2

with

_ rk + p

From the asymptotic behavior rl+1/rI~n/n~2 as i—»oo it is elementary to verify
that the products converge. By a standard estimate we thus obtain

ii||ri &lt; c ||u|£&lt; cMc : c(A, A*, n, N, il, p, M) q.e.d.

For j3eR, LgN define

is coercive with respect toLEMMA 3.4. i) The functional E:M

h) Assume fhaf condition (3.14) holds /or somc vp^0. TTien for any j8 ^0
existe a number p&gt;0 swch thaf the functional E satisfies Criterion A* on the set Mp
provided that \dua\&lt;p a.e. on f2xRN.

m) Under the assumptions of H) for any j8 ^ 0 there exists a number p such that
whenever \dua\&lt;p a.e. on /2xRN then the following is true:

If Xp 0 there exists LeM such that N^L 0.
Proof. i) By assumption (3.2) the first statement is immédiate.

ii) Let {um} be a séquence in Mp such that um —* u weakly in Hj&apos;2 and

VE|M(Mm) VE(Mm) + ^(Mm)VG(Mm)^0 TL-uniformly asm^oo. By i) of this

proof there exists a constant M=M((3) such that ||Mm||i,2 —^ uniformly in m.

Applying Lemma 3.3 we obtain that ueHl^DL00 and that ||m||oo&lt;

c(A, A*5 n, N, O, p, M). Fix p&gt;0 such that

||m||ooP&lt;A-A (3.16)
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For meM let Am be the quadratic form Am(&lt;p) ^J aafi(x, um)da&lt;pl d^cp1 dy. By
convexity of Am we then obtain for every

Am(Mm)-Am(u)&lt;(VAm(um),um-M&gt;

(VE(um) + iit(wm)VG(Mm), um - u)~(tx(um)VG(uml um - u) (3.17)

- 2
J (&quot;m ~ u) dua^(x, uj daulm d^ulm dx.

By weak convergence um —&gt; m (m —&gt; oo)

lim sup Am(wm - w) lim sup [^(i^)-Am(u)],
m—&gt;o° m—*°o

and by compactness of VG and boundedness of ^(wm)

By Lusin&apos;s theorem for any ô&gt;0 there exists £§&lt;=/}, meas (J5Ô)&lt;8, such that
um -&gt; u uniformly on Q\E8. Denoting by c(8) any constant such that c(8) -&gt; 0

(8 -&gt; 0) we hence obtain

dxlim sup-- [ (um - u) duaafi(x, um) daulm d^ulm

lim sup-- (um-u)duaa(i(x, um)daulmd^ulmdx
m— 2 JEs

lim sup-- [ (um - u) duaafi(x, um) da(um - u)1 d^(um - u)1 dx + c(8)

Letting 8-&gt;0 and inserting our estimâtes into (3.17) we thus find that

À • lim sup |V(um - u)\2 dx &lt;lim sup Am(um ~ u)
m—*-oo J m~&gt;&lt;x&gt;

&lt;(À* + ||«||œ p) lim sup f |V(wm -u)\2 dx.

By our choice of p this implies that um -» u strongly in Hj&apos;2 as m -* oo, and hence

ii).
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iii) Given an arbitrary number (3 e R let p be chosen such that Criterion A* is

satisfied for the functional E on the set JM^+1. Suppose Kp~0 and assume by
contradiction that NptL=fi 0 for ail LeN. Select a &quot;diagonal&quot; séquence um e N^m,
meN. Note that umeMp+l for ail m, hence by part i) of this proof {um} is

bounded in Hj-2 and by the Banach-Saks theorem we may assume that um —* u

weakly in Hj&apos;2 as m -&gt; &lt;». Moreover, by continuous embedding TjLc^ TN, ||u||N^
\\u\\L for ail ue T, L^N, we hâve that for any LeN

lim sup ||VE |M(um)||T* &lt;lim sup \\VE |M(Mm)llT* 0.

Thus VE(um) +ii(um)VG(um)^&gt;0 TL-uniformly as m-+°°. By part ii) now we

may sélect a strongly convergent subsequence um -» u in Hj2 (m -*«), whence
m g Kp, contrary to the assumption that Kp 0. This concludes the proof. q.e.d.

LEMMA 3.5. For any numbers |3 eR, L€N rfiere ex/sfs a number 8&gt;0 and a
continuous mapping &lt;I&gt;L : M—» M such

1/ conditions (3.10), (3.11) are satisfied, &lt;\&gt;L may be chosen to be odd, Le.

&lt;M-w) --&lt;Mw)-

Proof. Fix an arbitrary number p eU and any LeN. The mapping &lt;£&gt;L will be
constructed from a &quot;gradient-line&quot; déformation in direction of a gradient-like
vector field related to VJE|MeT*. (For brevity we again write VE|M(u)

i) For any ueM let ^(u)e TL be a vector satisfying

By continuity of VE:HJ&apos;2-^ T* for any w€Àf there exists a neighborhpod V(w)
such that for ail veV(u)

(VE \M(v), £L(u)&gt;s||VE |M(»)|lît -2L-1.

Since M is a subset of a Hilbert space there exists a locally finite refinement

{V(ut)}teI of the covering {V(m)}. Letting {^JieJ be a partition of unity subordi-

nate to {V(uj} with continuous functions &amp; having support in V(ut) and such that

l, X^^1 onM&gt;
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we define

In the gênerai case we let eL(u) êL(u). In the symmetric case E(u) E(-u),
G(m) G(-m), corresponding to assumptions (3.10), (3.11), we define

In both cases eL :M-&gt; TL is a continuous vector field with the property that for
any ueM there holds

(VE |m(ii), eL(u))&gt;\\VE |M(M)IBt-2L-1.

Moreover, since VE |M: M-» T* is bounded on Hj&apos;2-bounded subsets of M the

same is true for eL.

ii) Let a:R—»IR be a continuous function satisfying O^a^l, a(f)=l if
l, a(r) 0 if r&gt;j8 + 2. For e&gt;0,

we m - ea(E(u))eL(u).

Note that we u for weAf\Mp+2. Also, by part i) and Lemma 3.4 i) the vectors

a(E(u))eL(u)e TL are uniformly bounded on M^+2-

By weak compactness of Mp+2 and assumptions (3.4), (3.6) there exists a

constant c&gt;0 such that (VG(u), u)^c on Mp+2- Hence by the implicit function
theorem there exists a number eo&gt;0 and a function r(e, u) of class C1 in e and

depending continuously on u such that

uc t(e, u)u&apos; i

for ail ueM, 0^e&lt;eo. Calculating E(ue) by Lemma 3.2 we obtain

E(u,)-E(i

de

&gt;de (3.18)

uB), &quot;e)£-ln r(e, u) de
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with a Landau function &amp;(e) such that o(e)/e —» 0 (e —» 0) uniformly with respect
to m g M. In particular, choosing £0 sufficiently small we may assume that
^(s)^sL~1. Moreover, by locally uniform continuity of VE|MeT* we may
assume that ||VE |M(we)|||*&lt;5L~1 whenever e&lt;e0 and \\VE |M(w)||^*&lt;4L~1.

Fix such a number 0&lt;e&lt;| and let ^{u)=ue. Set S e/2L&lt;1/L. Then, if
ô, either ||VJ5 ImMHtî^L&quot;1 and hence bv (3-18)

&lt; E(u) -2eL~l + eL1 E(u) - 28,

i.e. &lt;t&gt;L(u)eMp_s; or ||VE U^ln^L&apos;1 whence ||VE |M(^(w))|ln&lt;5L-1 while

Mii)) ^ E(u) + leL1 + eL1 &lt; ]8 + ^L&quot;1 &lt; ^ H- L&quot;1,

i.e.

Finally, in the case of assumptions (3.10), (3.11) &lt;t&gt;L(-u) -(f&gt;L(u). The proof
is complète, q.e.d.

Proof of Theorems 3.1 and 3.2 for coefficients satisfying (3.14).
i) Let j3=infueME(u). Choose Pi&gt;0 corresponding to Lemma 3.4 iii) and

assume that |dMa|&lt;px a.e. in QxUN. Then if K^ 0 by Lemma 3.4 iii) there
exists L such that NpL=0, and by Lemma 3.5 we can find 8&gt;0 and a

continuous mapping &lt;f&gt;L :M-&gt; M, such that ^&gt;jl(M/3+s)c: Mp_8. But Mp_s 0 and

a contradiction results, proving Theorem 3.1.

ii) In the case of Theorem 3.2 fix a number l &lt; m, and let ]8 j3j. Choose px &gt; 0

corresponding to Lemma 3.4 iii) and assume that |dMa| &lt; p, a.e. in il x UN. Then, if
Kp 0 as in part i) of this proof there exists a continuous mapping (j&gt;L:M-^ M
such that &lt;^l(^j3+s)c:^-ô f°r some number ô&gt;0. Moreover, by assumptions
(3.10), (3.11) &lt;f&gt;L can be chosen to be odd. Letting AeXi be such that A &lt;= Mp+Ô,

we thus obtain that &lt;f}L(A)e2i (cp. Proposition 3.1 i)) and satisfies &lt;f)L(A)&lt;^Mp_8.

But this contradicts the définition of p ft, concluding the existence proof.
In the case of degeneracy j8 ft • • • (3l+k for some numbers k, leN we

estimate 7(Kp) as follows. By Criterion A* the set K$ is compact. Hence from
Proposition 3.1 iii) we can find a symmetric neighborhood N of Kp, Ne Hj&apos;2\{0},

such that the closure NeX and y(N) ^(Kp). Again by Criterion A* there exists

L such that NpL&lt;^N. Let ô&gt;0, $L be chosen according to Lemma 3.5
corresponding to this number L and /3 and let A e 2l+k be such that A ci Mp+S. Then by
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Proposition 3.1.

k &lt; y(A) &lt; y(^L(A)) &lt; y((/&gt;L(A)\N,,L) + y(N)

But ^(A)\NftLcJ^.&amp; whence y(^(A)\N^L)&lt;!, and

(The proof of the asymptotic behavior of the séquence j3{ will be postponed to
the full proof of Theorems 3.1, 3.2 without assumption (3.14).)

Proof of Theorems 3.1, 3.2 (complétée). To remove assumption (3.14) approx-
imate the functional E by functions Ev with coefficients a&quot;f satisfying condition
(3.14) and coinciding with aaP for |u|&lt;v. To construct thèse coefficients let
&lt;p:R-*R be a smooth function such that 0&lt;&lt;p&lt;l, cp&apos;&lt;0, cp(O)=l, &lt;p(l) O.

Then given any number veN, for ue!RN, |m| 1, define

af(x, u - t) cp(t-v)a^(x, u • t) + (l-cp(t-v))kôafi.

Clearly, assumptions (3.1), (3.2) are satisfied for the coefficients a°f with the

uniform ellipticity constant A. Moreover, for any u

-u - duaa/(x, u) -&lt;p{\u\-v)u • dua^(x, u)-\u\ \&lt;p&apos;(\u\-v)\(aafi(x, u)~k • dttP).

Hence, by conditions (3.2), (3.3) on aaP, condition (3.3) is satisfied by the
coefficients a°f with the uniform constant À*&lt;À.

By the preceding proof there exist solutions (ub ^) of (1.2) for the functionals
Ev characterized by the condition Ev(ut) plv infAei:isupueAEv(u). Now, for
any u e M Ev(u)-^ E(u) (v—&gt;°°), and similarly, for any AeSi supweAEv(w)-»
supMeAE(u) (i/-&gt;oo). Hence plv -&gt; A(i&gt;-»°o), for any !&lt;m. By Lemma 3.3
therefore HmiII»^ c(À, À*, n, N, O, p, j8j +1) for v sufficiently large, and u, is in fact
a critical point of E with energy E(ui) j3j j8Iv for such v. (This also justifies
writing ux instead of ulv) This shows existence and by the preceding proof also

the assertion about K^ in the case of degeneracy now follows.
To show that j8( -»o° ({—»œ) assume by contradiction that j3{ ^c for ail IgN

with a uniform constant c. Then there exist sets AteXb leN, such that A
UiA|C:Mc+1. By [21, proof of Lemma 2.21] or [25, proof of Lemma 10] A
contains a séquence of mutually orthogonal vectors um e A, and by weak com-
pactness of Mc+1 we may assume that um-^u weakly as m -»«&gt;. But by mutual
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orthogonality of {um}, u 0. Hence from 0= G(u) limm_&gt;00 G(wm) 1 a
contradiction results. q.e.d.

4. Extensions and generalizations

Without proof we remark that in the subquadratic case corresponding e.g. to
functionals of the type

E8(u) [ |Vu|2 dx+f (aafi daul a^u&apos;)2&quot;672 dx, ô&gt;0 (4.1)

existence results similar to Theorems 3.1, 3.2 hold without any smallness assump-
tion on |dMa| in addition to (3.3).(1) By a différent kind of argument than used in
Section 3 also in case of quadratic growth such a smallness assumption can be
removed if either N=l (scalar équation) or n 2 (plane System). This may be
shown by approximating the functional E by functionals E8 of the form (4.1) and
using the regularity results of Ladyshenskaya-Ural&apos;tseva [15] for example, resp.
the results of Wiegner [28] for plane diagonal Systems to pass to the limit 8 -* 0 in
the Euler équations which are satisfied at the critical points of Es.

By the same techniques as presented above also existence results for the
boundary value problem

can be given under hypothèses similar to those of Theorems 3.1 and 3.2 plus
some additional hypothèses to ensure the regularity (with respect to TL, for any
LeN) of the set of admissible functions

M={ueHl&gt;2\(VE(u)-VG(u), u&gt; 0}.
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