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Wall&apos;s obstructions and Whitehead torsion

S^awomir Kwasik

In this note we show that the Wall-type obstruction defined by S. Ferry in [4]
is in fact the original Wall&apos;s one. As a conséquence we obtain the géométrie proof
of the Product Formula (see [5]) for the Wall finiteness obstructions.

1. Introduction

Let X be a topological space which is homotopy dominated by a finite CW
complex. In [9] C. T. C. Wall introduced the obstruction w(X) which is an
élément of K0(Z(tti(X))) to décide when X has the homotopy type of some finite
CW complex. Alternatively in [4] S. Ferry has found, in a géométrie manner, an
analogous obstruction cr(X) in Wh(XxSl). The natural question about the
relation between thèse two obstructions was not considered in [4] (note that this
question was explicitly asked by H. J. Munkholm in [10]). The purpose of this
note is to fill this gap. We prove a rather expected resuit that thèse two
obstructions are the same. To be more précise; we prove that w(X) is the image
of cr(X) under the Bass-Heller-Swan isomorphism, thus answering the question
from [10].

As a conséquence we obtain the géométrie proof of the Product Formula for
the Wall finiteness obstructions. Originally the Product Formula was proved by S.

Gersten in [5] in a purely algebraic manner. This note does not prétend to the

orginality, but we hope that it will a little bit clarify the geometry of the Wall
finiteness obstruction.

We will assume some familiarity with the simple homotopy theory. An
excellent référence is [3].

2. Wall&apos;s obstruction and simple types

In our note we will consider the Whitehead group of an arbitrary topological
space following [8].
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Let us recall the construction of the obstruction to the finiteness given by S.

Ferry in [4].
Let X be a topological space which is homotopy dominated by a finite CW

complex K, i.e. there exist maps g : X-+ K, f : K-&gt;X such that fg^idx. By the
theorem of M. Mather (see [6]) XxS1 has a homotopy type of a finite CW
complex. To see it we repeat his beautiful géométrie argument. Namely, consider
the mapping torus T(a) of the map a gf : K —» K; recall that T(a) is the space
obtained from the mapping cylinder M (a) by identifying the top and bottom of
M (a) using the identity map. Of course we can assume that up to homotopy type
T(a) is a finite CW complex. Now the following picture shows that XxS1-
T(a).

We will dénote this homotopy équivalence by &lt;P:T(a)—&gt;XxS1 and its
inverse by &lt;2&gt;-1 : Xx S1 -» T(a).

DEFINITION 2.1 (S. Ferry [4]). Let T : XxS^XxS1 be a homeomorph-
ism given by T(x, 6) (x, S). We define a(X) &lt;P^(r((p-1T0))eWh(XxS1),
where t^&quot;1!^) is a torsion of the homotopy équivalence Q^TiPiTia)—*
T(a).

It turns out (see [4]) that &lt;r(X) is well-defined (does not dépend from /, g and

K) and cr(X) 0 if and only if X is a homotopy équivalent to some finite CW
complex.

The crucial rôle in our considérations plays the following Bass-Heller-Swan

décomposition of the Wh functor (see [1], [2]).
Let X be a topological space. Then there exists a functorial direct sum

décomposition

Wh(XxS1)=Wh(X)eNil(X)0Nil(X)eKo(X)

where by Nil (X), K0(X) we mean Nil (Z(tt1(X))), K0(Z(tt1(X))) respectively.

Using this we prove:
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THEOREM 2.2. Let Xbe a topological space which is homotopy dominated by
a finite CW complex. Then the Wall finiteness obstruction w(X) is a image ofa(X)
under the Bass-Heller-Swan décomposition of Wh (XxS1).

Proof. Let Kbea finite CW complex and let g : X-» K, f : K-* X be maps
such that /g =* idx. As previous by T(a) we dénote the mapping torus of the map

Let &lt;P : T(a)-&gt;XxS1 be a homotopy équivalence. The natural infinité cyclic
covering of XxS1 induces an infinité cyclic covering I(a) of T(a).

The space I(a) is an infinité CW complex with two ends €+, e_ which correspond
to the two ends of the real line.

Observe that the homotopy équivalence h &lt;î&gt;~1T&lt;$&gt;:T(a)—» T(a) induces a

proper homotopy équivalence h between /(a) and its reversed copy I(a) (re-
versed with respect to the ends).

Without loss of generality we can assume that h is a strong proper déformation

retraction of I(a).
Now we proceed as in [7]. In I(a) consider a subcomplex L such that L is a

neighborhood of e+ and (J(a)-L)U I(a) is a neighborhood of €_. Put Lx
I(a)C\L and consider the pair (L, 1^). It can be easly proved (see Lemma 4.5 in
[7]) that the pair (L, Lt) is homotopy dominated by a pair (LqUL^ Lx), where Lo
is a finite subcomplex of L. Then the cellular chain complex Qe(£, £i) of the
universal covering p:L-+L of the pair (L,Lt), which is a free Zi^ilia))-
complex is chain homotopy dominated by the free ZCTr^/Ca^-complex C*(L0U
£l5 Lj); we used the notation: for every Bel, B= p~1(B). Hence we can define
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where is the
Wall obstruction. It is not difficult to see that w(I(a), I(a), e+) is well-defined i.e.
does not dépend of the choice of Lt.

Now let L_, L+ be a neighborhoods of e_, €+ so that I(a)-L+, I(a)-L_ are
again neighborhoods of €_, €+ respectively and L_UL+ I(a). Then L-.C\L+ is a

finite CW complex and since I(a) is homotopy dominated by a finite CW comples
(in fact by K) then from the Mayer-Vietoris séquence

0 Qc(L_ 0

we infer that Qc(£+) is chain homotopy dominated by a finitely generated free
complex. This gives us the well defined élément w(I(a), e+) w(C#(L+))e
ÉtoiZfaWa)))). Analogously we can define w(T(â)&apos;,€+)eK0(Z(&lt;Tr1(I(a)))). An
elementary property of the Wall obstructions yields:

a), Ha),

Observe (see Fig. 4) that in our situation w(J(a), e+) 0 and hHe(w(I(a))
w(J(a), €+) by a homotopy type invariance of the Wall obstruction.

«Ko)

~u

idx

Figure 4

Hence w(I(a), I(a), €+) /iHe(w(J(a))). The Bass-Heller-Swan projection (B-H-
S) : Wh(XxS1)-*K0(X) induces a natural projection p : Wh(T(a))-*K0(I(a)).
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This gives the following commutative diagram:

Wh(T(a))-^-*Wh(Xx S1)

(B-H-S)

where the map &lt;P : I(a)-+X-XxR is induced by &lt;P. So we hâve:

ê*p(T(&lt;p-xT&lt;P) (B-H-S)*^*-1!*) (B-H-S)WX)).

But &lt;P#p(r(&lt;P~1T&amp;) &lt;£*(w(I(a), ï(cx), €+)) by the Proposition 4.7 in [7], hence:

(B-H~S)(&lt;r(X)) &lt;M*(w(/(a))) w(X)

by the homotopy type invariance of the Wall obstruction.

COROLLARY 2.3 (Product Formula). LetXbe a topological space which is

homotopy dominated by a finite CW complex, and let L be a finite CW complex.
Then:

where i : X—&gt;LxXis given by i(x) (l0,x) for some loeL, and x(L) dénotes the

Euler characteristic of L.

Proof Let K be a finite CW complex and g : X —» K, f : K -» X be maps such

that /g ~ idx. Let T(a) be the mapping torus of the map a gf : K -» K and let
&lt;P : T(a)—»XxS1 be a homotopy équivalence. The space LxXisa homotopy
dominated by the finite CW complex LxK using the maps idxg : LxX-»
LxK, idxf;LxK-*LxX. Hence we hâve the homotopy équivalence
d&gt; : T(idXa)-*LxXxSl. But T(idxa) LxT(a) and without loss of the
generality we can write &lt;P idx&lt;P :Lx T(a) -* L x Xx S1. Now our finiteness
obstruction is given by:

By the product theorem for Whitehead torsion (see [3] for the nice and short
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géométrie proof) we hâve:

r(id x 0-^VP) X(L) • j*(t(#-1T«&gt;)

where / : T(a)-^Lx T(a) is given by j(t) (l0, 0, for te T(a). Hence
&lt;r(L x X) X(L) • i*(tr(X)), where i* : Wh(Xx Sx) -^ Wh(L x X x S1). Now the
formula w(LxX) ^(L) • i^(w(X)) follows from the naturality of the Bass-
Heller-Swan décomposition of WhCXxS1).

This work was done while the author was visiting the University of Heidel-
berg. I am grateful to Professor Dieter Puppe for the opportunity to work there.

Note added in proof:

In fact er(X) g Ko(X). This can be deduced from T. Chapman, Approximation
results in Hilbert cube manifolds, Trans. Amer. Math. Soc. 262 (1980), 303-334,
in particular, see p. 321 of this paper.

REFERENCES

[1] H. Bass, Algebraic K-tkeory, W. A. Benjamin, New York, 1969.
[2] H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Publ.

I.H.E.S, Paris 22 (1964), 67-79.
[3] M. Cohen, A course in a simple homotopy theory, Springer-Verlag, New York, 1970.
[4] S. Ferry, A simple-homotopy approach to the finiteness obstruction, In Proceedings: Shape Theory

and Géométrie Topology, Dubrownik 1981, Lect. Not. in Math. 870 (1981), 73-81.
[5] S. Gersten, A product formula for WalVs obstruction, Amer. J. Math. 88 (1966), 337-346.
[6] M. Mather, Counting homotopy types of manifolds, Topology 4 (1965), 93-94.
[7] L. C. SffiBENMANN, A total Whitehead torsion obstruction, Comment. Math. Helv. 45 (1970),

1-48.
[8] R. Stocker, Whideheadgruppe topologischer Râume, Inventiones Math. 9 (1970), 271-278.
[9] C. T. C. Wall, Finiteness conditions for CW complexes, Ann. of Math. (2) (1965), 55-64.

[10] Zentralblatt fur Mathematik, Mathematics Abstracts, 472 (1982) 57014, p. 318.

Mathematisches Institut,
Universitàt Heidelberg,
Im Neuenheimer Feld 288,
D-6900 Heidelberg,
West Germany

Institute of Mathematics,
University of Gdansk,
Wita Stowosza 57,
PL-80-952 Gdansk,
Poland.

Received November 17, 1982


	Wall's obstructions and Whitehead torsion.

