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Une méthode pour minorer les exposants de Lyapounov et quelques
exemples montrant le caractére local d’un théoréme d’Arnold et de
Moser sur le tore de dimension 2

MicHAEL R. HERMAN

1. Introduction et notations
1.1. Pour r>0 on considere le polydisque
D} ={(zy,...,z,)eC"||z|=r, 1=i=<n},
ou, si z€C, |z|*>=zZ, ainsi que le polycercle
T ={(z1,...,2,)€C" ||zi|=r,1=<i=n},

qui est difféomorphe a T" =R"/Z", et on désigne la mesure de Haar normalisée
sur T} par m ou d@ (T' sera toujours identifié au cercle unité T} de C par le
difféomorphisme t — e>™).

1.2. Soit X un espace compact métrisable non vide et m une mesure de
probabilité sur X. On se donne une application continue g de X dans X et une
application continue A de X dans une algébre de Banach (2, ||||) ou ||| est une
norme d’algebre de A sur R.

Au couple (g, A) on associe 'application fibrée (aussi appelée produit gauche,
produit croisé ou skew produit)

G:(x,y): XxB—(g(x), A(x)y)e X x%B
au dessus de g: X — X. On a, si keN*,
G*(x, y)=(g"(x), Af(x)y), Af(x)=A@E"'(x)--- A).
On pose
Mg A)=lminf  ob - | LoglAi(ldm(,  A.(s A)eRUL-=3:
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(L’intégrale étant ici et dans la suite l'intégrale inférieure.) (on peut avoir
A (g, A)=-=). On note aussi A,(g, A)=A,(X, g A) pour indiquer que g: X—
X.

La valeur de A, (g, A) ne change pas si on remplace la norme de 8 par une
norme d’espace de Banach équivalente. Ceci implique A, (g, A)=A,(g, A® 1), ou
(AR®DNx)=AXx)R1eB R, C et BQy C est 'algébre de Banach compléxifié de
g, sur laquelle on peut par exemple choisir pour norme sur C |lx ® Al|=|lx|| |A].

1.3. Si 'application g préserve la mesure m (i.e. gum = m) alors la suite (a;)
est sous additive (i.e. a,.,<a +a, pour tout entier k=1 et p=1) et on a

. A G

et de plus la suite (27%ay),~; est décroissante. Sous la méme hypotheése, par le
théoreme ergodique sous-additif [3] la suite de fonction ((1/k) Log ||A%(x)Di=1
converge, si kK — +%, m-presque partout vers une fonction ¥, presque partout
invariante par g et vérifiant fx ¥(x) dm =A,(g A).

Si gem=m, Papplication (g, A)— A, (g, A)eRU{~=} est semi-continue
supérieurement si sur les couples (g, A) on met la topologie de la convergence
uniforme. Dans la littérature A, (g, A) s’appelle l’exposant de Lyapounov
maximal.

1.4. 11y a un cas que nour allons décrire ou, pratiquement par définition, on a
A.(g, A)>0.

On se place dans la situation suivante: on suppose que %, est un espace de
Banach de norme notée || ||; et A une application continue de X dans 1’algébre
Z(B,, RB,) des opérateurs R-linéaires continus de %B, dans B, avec la topologie de la
norme. On fait agir (g, A) sur X X3, par G(x,y)=(g(x), A(x)y). Si m est une
mesure de probabilité sur X on définit A,(G) = A, (G).

DEFINITION. On dit que ’application fibrée G a une structure partiellement
hyperbolique si le fibré trivial X XRB,— X est la somme directe de 2 fibrés
continus E° et E* (si xe X, E désigne la fibre en xc X de E®) et s’il existe des
nombres 1, et |, vérifiant, 1,>1, 1,>1,>0, et C>1 tels que, quels que soient
xe€ X et neN*, on ait:
~ pour tout x € X, dim (E%) # 0 # dim (E3);

- siv, € EL |G ()i =C 7111 vy,
- si Wy € E:’ an(wx)Hl = Clg "wxnl
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On dit que Uapplication fibrée G a une structure hyperbolique quand de plus on
peut choisir [, <1.

Remarques. 1) Cette définition implique que les fibrés E* et E® sont sous-
invariants par G (i.e. G(E*)c E* G(E®)< E®).

2) Si on se restreint aux G qui sont des homéomorphismes fibrés, le fait que G
ait une structure partiellement hyperbolique (resp. hyperbolique) est une propriété
stable par perturbation de G dans la topologie la convergence uniforme [18, p.
100-1].

1.5. Résumé de larticle

Nous nous proposons de donner une méthode pour constuire sur Ty, xC? ou
Tr. XR? des examples explicites d’applications fibrées G R-analytiques vérifiant
A.(T7, G)>0 mais n’ayant pas de structure hyperbolique. Million$¢ikov a suggéré
en 1969 la possibilité d’exemples au-dessus d’une rotation irrationnelle de T* [13]
(voir aussi [10] et [19]) (mais de tels exemples ne sont ni explicites, ni précis en ce
qui concerne les rotations qu’on peut choisir).

Au §2 nous donnons une méthode abstraite pour minorer, sur des exemples
d’applications fibrées G : Dy, XCP — Dy XCP holomorphes I’exposant A.(G).
Cette méthode est basée sur I'utilisation des propriétés des fonctions plurisoushar-
moniques. En 2.8 et 2.9 nous inclurons une généralisation aux groupes compacts
abéliens dont les groupes duaux sont totalement ordonnables.

Au §3 nous étudions des exemples ou la méthode du §2 s’applique
immédiatement.

En 3.2 nous démontrons un corollaire (immédiat) du théoreme de C. L. C.
Siegel, tel qu’il a été généralisé par E. Zehnder [20], sur les formes normales
d’une application holmorphe au voisinage d’un point fixe: le théoréme de Siegel
fibré au-dessus d’une rotation.

Les exemples 3.3 et 3.5 montrent que le théoréme de Siegel fibré est un
théoreme local et ceci indépendamment de toute condition arithmétique (il est
immédiat de voir que le théoreme de Siegel est local ainsi que le montre

I’exemple 3.4).
En 3.7 nous donnons un exemple au-dessus d’un difféomorphisme d’Anosov

ayant des exposants mais pas de structure hyperbolique.

Au §4 nous donnons des exemples de difféomorphismes fibrés R-analytiques F
de T'XR*> F=(R,, A) oi R, (0)=0+a et A:0eT'—> A(0)eSL(2,R). Ces
exemples sont encore une application de la méthode abstraite du §2.

En 4.1 nous retrouvons I’exemple que nous avons construit dans [5] et je
pense que le §2 est la version abstraite induite par cet exemple, qui n’a pas de
structure hyperbolique puisque 6 — A(6) n’est pas homotope & une matrice
constante unité (cf 4.2).
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En 4.5 et 4.7 nous donnons des exemples ou I'application 8 T' — A(9) e
SL(2,R) est homotope a la matrice constante unité.

Pour s’assurer qu’on peut choisir, dans I’exemple 4.5, F sans structure hyper-
bolique on montre que A,(R,, Rg - A)>0 pour tout acT' et BT, o

R (cos 2mB —sin 2178)

8 \sin2#B  cos 27

et on choisit B8 de fagon ad hoc en utilisant la théorie du nombre de rotation
fibrée. On peut méme fixer arbitrairement dans (T'—(Q/Z))xXT' le vecteur de
rotation du difféomorphisme induit par F sur T'XxP(R? ayant des exposants et
pas de structure hyperbolique (voir 4.6).

Nos exemples one ’avantage d’€tre R-analytiques et de ne dépendre d’aucune
condition arithmétique sur le vecteur de rotation.

4.13 montre que ces exemples n’ont pas en général des propri¢tés analogues a
celles des contre-exemples de Denjoy sur le cercle.

L’exemple 4.14 a des propriétés analogues a celles des exemples suggérés par
MillionsCikov [13], exemples a propos desquels le lecteur se rapportera a R. A.
Johnson [10, 3.13 et §5] pour des démonstrations et quelques propriétés. Le
lecteur consultera aussi [8] et [9].

Les §84.14 a 4.16 sont treés semblables a certains des résultats de R. Johnson
[10] bien que l'auteur de ces lignes les ait obtenus indépendamment. Dans
I’annexe 4.17 nous avons, pour la commodité du lecteur, inclus une proposition
essentiellement due a R. Johnson.

Au §5 nous définissons et démontrons quelques propriétés du nombre de
rotation fibré pour des homéomorphismes de la forme F : (x, 8) e X X T' — (g(x),
h(x)(0))e XXT?!, ot x — h(x) e Homeo,(T!) est homotope 2 I’application cons-
tante identité et X est un espace compact métrique. La raison de ’esistence en
est presque la méme que pour le nombre de rotation d’'un homéomorphisme du
cercle et la démonstration que nous en proposons est presque celle que nous
avons donnée pour les homéomorphismes du cercle [4, IT]. Nous étudions aussi les
propriétés analogues a celles qu’on a pour le cercle [4, I et III]. Pour d’autres
généralisations aux homéomorphismes de T" homotope a I'Id le lecteur se
rapportera [4, XIII] (la situation est infiniment plus compliquée).

Le théoréme d’Arnold et de Moser [4, Appendice] a des corollaires fibrés
5.11, 5.12 et 5.14. Le corollaire 5.12 est I’analogue de la proposition [4, A.2.3]
pour les difféomorphismes du cercle. Le corollaire 5.14 (presque immédiat) du
théoréme d’Arnold et de Moser affirme que, pour les matrices fibrées a valeurs
dans PSL(2,R) au-dessus de translations diophantiennes de T"?, la conjugaison
fibrée de 5.12 se fait par des matrices fibrées. Pour des généralisations a des
matrices de plus de 2 variables et un affaiblissement des conditions diophantien-
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nes, le lecteur se rapportera a J. Moser [14] et en classe C” 4 [6]. Le lecteur peut
aussi consulter H. Rissmann [17].

Les exemples 4.6 et 4.12 montrent que le théoréeme d’Arnold et de Moser sur
T", n=2 est en un certain sens un théoreme local, et ceci indépendamment de
toute condition d’analycité ou d’approximation par les rationnels du vecteur de
rotation, ce qui contraste avec le cas du cercle [4, IX].

Au §6.1 nous étudions la dépendance plurisousharmonique en fonction de
parametres complexes de A,(g, A). En 6.2 et 6.3 nous donnons des applications
dont 6.2 nous semble inattendue.

Dans I’exposé des exemples nous avons évité une trop grande généralité et un
caracteére exhaustif bien que nos méthodes soient tout a fait générales. Le principe
est qu’ayant la minoration du §2, on peut ensuite faire des modifications tout en
gardant la minoration. La minoration du Scolie de 4.1 est en général instable par
perturbation, et on peut montrer dans ’exemple 4.1 par une perturbation C° que
I’exposant tombe a 0.

L’existence du nombre de rotation fibré pour certains homéomorphismes
fibrés de X X T' a été trouvée indépendamment de 'auteur de cet article par R.
Johnson (un peu avant) [11], par une méthode trés semblable. En fait la méthode
est la méme que celle de [2] et [4, II]. Comme notre démonstration est plus
générale et que nous avons besoin de certaines des propriétés de 5.9 pour 5.12 et
4.12 nous avons inclus notre démonstration.

Les exemples de 4.7 confirment trés simplement et généralisent une conjec-
ture de G. André et S. Aubry [1, 4.4]. J. Avron et B. Simon annoncent dans [A]
une démonstration rigoureuse de I’argument esquissé par G. André et S. Aubry
[1,4.4].

Une partie des résultats a été annoncée au séminaire de théorie Ergodique de
I’Université Paris VI en Janv. et Février 1980 (i.e. essentiellement le §2 et 4.1)
ainsi qu’au séminaire de théorie ergodique tenu aux Plans sur Bex en Mars 1980.

Je voudrais remercier A. Chenciner, A. Fathi, J. P. Thouvenot et J. C. Yoccoz
pour des discussions fructueuses. Je voudrais aussi remercier tres vivement
I’Université de Warwick pour sa trés grande hospitalité pendant mon séjour en
Juin et Juillet 1979 durant lequel ce travail a été en grande partie effectué.

Je remercie R. Johnson de m’avoir signalé une erreur au §4.14 de la version
préliminaire. Je remercie M. Chaperon de m’avoir aidé a relire le manuscrit, ainsi
que C. Harmide de I’avoir tapé avec dextérité et grand soin et A. Fathi de m’aoir
aidé a relire la version préléminaire.

1.6. Notations
Si X est un espace compact métrique, on note C°(X)= C%X,R) I'espace des
fonctions continues sur X a valeurs réelles avec la norme ||¢||lce =sup ,cx |@(x)]. Si
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Y est un espace topologique, C°(X, Y) désigne les applications continues de X
dans Y avec la topologie compacte ouverte. Si ¥ est une application de X dans Y
le graphe de ¥ est I'esemble {(x, ¥ (x))e XX Y | xe X}.

Pour K=R ou C, SL(2, K) désigne le groupe des matrices 2x2 sur K
déterminant 1.

Pour p un entier positif on désigne par LR, RP) (resp. Lc(CP CP)) les
applications R-linéaires (resp. C linéaires) de R? dans RP (resp. CP dans CP). On
supposera toujours que les espaces vectoriels R? (resp. CP?) sont munis de leurs
bases canoniques, et on identifiera les espaces L(RP,RP) et L(C? CP) a des
espaces de matrices. On considérera toujours £(C?, C? comme espace vectoriel
sur C.

On désignera par P(R?) I’espace projectif sur R de dimension 1 (i.e. les droites
de R? passant ’origine). Le groupe PSL(2,R)=SL(2,R)/,_...; ou € est la matrice
unité, agit canoniquement par transformations projectives sur P(R?. On suppo-
sera toujours que SL(2,R) ou PSL(2,R) agit sur P(R?) par cette action. L’espace
P(R?) est identifié¢ & T' par PR>)=T"/,-_..

2. Théoréme de minoration des exposants

2.1. On considére une application f holomorphe d’un voisinage de 0 C" dans
C" vérifiant la condition suivante.

n
ro*

a) Il existe r,>0 tel que f soit holomorphe sur un voisinage de D
*,4b) f(Dy)< Dy, et f(T;)<=T,.
¢) f(0)=0.

Si f vérifie la condition *, et
" . . . 1
d) f laisse invariant la mesure de Haar sur T; (i.e. fym =m),
on dit que f vérifie la condition *; .

2.2. Exemples d’applications vérifiant *'
a) Pour tout n, I’application

(Zla"->Zn)_->(Blzl,"°9ann) |Bi|=1,1SiSns

vérifie la condition *, pour tout r>0.
b) Si n=1, l'application z — z? vérifie *;.

! fom désigne la mesure image directe de la mesure m par I'application continue f.
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¢) Si n=2, (zy, z,) = (23z,, 2,2,) vérifie *}, cette application sur T2 étant

RN . - . (2 1
conjugiee a I'automorphisme de T>=R?/Z> défini par la matrice ( 1 1).

d) Si n=2, (zy, z,) = (z;(z,— b)/(1 - bz,), Bz,), ou b et BeC, |b|<1, |B] =1,
vérifie *1.

e) Si n=2, beC, 0<|b|<1 alors (z, z,) = (z%(z,— b)/(1—bz,), z,2,) vérifie
*, mais pas *j.

2.3. On se donne f vérifiant la condition *, et une application holomorphe A
d’un voisinage de D} dans une algébre Banach sur C, 3, || || étant une norme sur
C de l'algébre &B. Sur T,, on met la mesure de Haar m. On note encore f la
restrictionde f a T 7 . On considére ’application fibrée (f, A)de T, X %B. Siae B on
note le rayon spectral de a par

Rspec (a) = lim [la|["" = Inf la" "

THEOREME. Sous les hypothéses ci-dessus on a
A (f, A)=Log (Rspec (A(0))).

Démonstration. La fonction z — (1/k) Log||A%(z)|| est plurisousharmonique,
voir [7, 2.6.1] (on se raméne au cas n=1 et on fait la méme démonstration que
[7, 1.6.6]). On a (cf. par exemple [12]):

= J — Log||AX(z)|dm =— Log |AX(0)|| = — Log |A*(0)]};
kI k k k

or

Inf ~ Log ||A*(0)]] = Log (Rspec(A (0)))

k=1 k

et donc

Inf a,/k =Log (Rspec(A(0))). W

k=1

2.4. Remarque. Soit f ’exemple 2.2 a) et A une application holomorphe d’un
voisinage de D dans une algébre de Banach %. L’application (f, A) définit une
famille d’applications fibrées dépendant d’un parameétre O=<r=ry de T 7 X% dans
lui-méme. Soit Papplication r€[0, ro[—=A.(T 7}, f, A) aussi notée A.(r,f, A). On a
les propriétés suivantes (pour f et A fixés):
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a) r— A, (r,f, A) est monotone non décroissante;

b) r— A (r,f, A) est convexe en Logr;

c) rel0, ro[— A.(r, f, A) est continue;

d) A.(0, f, A) =Log (Rspec (A(0)));

e) si A (r,f, A)=—c0 pour un r>0 alors pour tout r,A.(r, f, A) = —ox.
En effet, par la méme démonstration que celle de 6.1, la fonction zeC —
A.(z|, f, A) est sousharmonique et il suffit d’appliquer [12.2.3].

2.5. Si dans 2.3 on suppose que f:T; — T est totalement uniquement
ergodique (i.e. pour n# 0, f* est uniquement ergodique, pour un exemple cf. 2.2.
a)), alors, par une démonstration analogue a celle de [5], on peut prouver 2.3 en
n’utilisant que le principe du maximum.

2.6. La minoration de 2.3 est stable par parturbation de (f, A) vérifiant les
conditions de 2.3 et en supposant de plus que A(0) est un point de continuité de
la fonction Rspec: B — R, (cette fonction est continue en tout point de B si B est
une algebre unitaire de dimension finie). On peut montrer que I’on n’a pas, en
général, de minoration stable si I'on perturbe I’application fibrée (f, A) de T X B
dans la topologie de la convergence uniforme.

2.7. Il serait intéressant de savoir si, dans le théoréme 2.3, on peut évaluer la
différence A, (f, A)—Log (Rspec (A(0))) en utilisant la théorie du potentiel. Si
n=1, cette différence peut étre envisagée, en un sens a préciser, comme une
généralisation de la formule de Jensen (cf. 6.1).

2.8. Groupes abéliens compacts dont les groupes duaux sont totalement ordonnables

On suppose que X =G est un groupe abélien compact métrique dont le
groupe dual G soit sans torsion. Ceci équivaut 3 dire que G est connexe. On
suppose la loi de groupe de G notée additivement.

11 suit de [16, 8.1.2] que G peut étre considéré comme un sous-groupe du
groupe additif R (i.e. G est un groupe solénoidal).

G peut donc étre muni d’un ordre total P compatible avec sa structure de
groupe: il existe un monoide P< G vérifiant:

0eP, P+PcP, Pn(=P)={0}, PUP)=G.

Ce que nous allons voir dépend de 'ordre P choisi sur G et on a souvent intérét
dans les exemples a choisir P de différentes fagons.

On met sur G la mesure de Haar normalisée m. On suppose que g:G— G
est une affinité continue P-positive: g est la composition d’'une translation de G et
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d’un endomorphisme continu P-positif: §(P)= P, ot §:G — G est ’endomor-
phisme dual de g.

Si I'affinité g est surjective, alors g préserve la mesure de Haar m de G (un
endomorphisme continu est surjectif si et seulement si § est injective).

EXEMPLES. - On convient que toute translation de G est P-positive.

2 1
- Soient G=T?2, g = (1 1) et (1, A) une direction propre de §.

On choisit P ={(m, n)eZ*| m +An =0}, voir [16. 8.1.7]. L’automorphisme g de
T? est P-positif.

2.9. Soit B un algebre de Banach sur C avec la norme | || On définit
Hpg=H%G, m,B)={pc L*(G, m, B) | $(x) =0six § P}. On vérifie que Hp 5 est
une algebre de Banach et si ¢ et yc Hpg, On a

fovan(Joan)-{foon)

(I1 suffit d’utiliser la densité dans Hp g des polyndmes trigonométriques de Hp g,
pour la topologie de L?, propriété résultant d’arguments standards en considérant
la convolution de ¢ € Hpg par des polyndmes trigonométriques de G a valeurs
réelles.)

On définit de fagon analogue les espaces Hp g, q = 1. Pour plus de détails sur
cette généralisation, due a Helson et Lowdenslager, des espaces d’Hardy le
lecteur consultera [16, chap. 8].

PROPOSITION. Si ¢ € H} g alors on a

Log u«‘»(musja Log lle (0]l dm (x).

Démonstration. Par [16, p. 205], si 'on pose A(¢)=exp | Log |l¢(x)l| dm(x)
alors

A(e)= Inf [ 16797 o) dm(),
QeN

ou (2 désigne ’ensemble des polyndmes trigonométriques Q vérifiant Q(0)=0 et
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QO(x)=0 si x5 P. On a pour tout Qe 2

60 =

[ 200 dm| < [ 1e°Plel am

et le résultat suit. 1B

2.10. On se donne G un groupe abélien compact métrisable avec un ordre
total P sur G, g:G — G une affinité P-positive surjective et A € Hp(G, m, B).

Ona A-.geHpget Q(O)=A(O).

Pour 'application fibrée (mesurable) (g, A) de G X B, la méme démonstration
que 2.3 donne en utilisant 2.9:

PROPOSITION. Avec les hypotheéses ci-dessus on a
A.(g, A)=Log (Rspec (A(0))).

Remarque. La condition *; de 2.1 est satisfaite par des transormations f de T}

qui ne sont pas nécessairement des affinités du groupe T7, voir 2.2 d).

3. Exemples avec des matrices holomorphes

3.1. On se place sur C et on considére f3(z) = Bz, |B|=1.

1) Soit A:zeC—e*eC*=GL(1,C) alors par la formule de Jensen on a
pour tout r=0, A (T}, fs, A)=0.

2) On met sur I’algébre de Banach & sur C une norme || || d’algébre sur C. Par
exemple B = £(C?, C?). On considére une application polynomiale

A:C""’B, A(Z)=A0+ZA1+"‘+ZpAp Oﬁ les A,G%

pour i=0,1,...,p et p=1. On Suppose que A, vérifie Rspec (A,)#0.

PROPOSITION. Sour les hypotheéses ci-dessus, si r — +, alors on a

/\+(Trls fBa A) —> +00,
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Démonstration. On pose C(Z)=ZPA,+- - -+ A, (i.e. on pose Z = 1/z pour se
placer au voisinage de +=) et on a ((Z)= A(z)/z?). On asi |Z|=r1, |Z|=1/r et

Log|A(B"'2) - - - A(2)|=LoglIC(B"'Z) - - - C(Z)||+ np Log r
et donc
A*I—(-“-:a fB; A) = I\.+(T}/,-, fB9 C) + P LOg r.

Par 2.3 A,(T %, f5, C) =Log (Rspec (A,)) > — et donc, si r—>+o, A, (T}, fz, A)—
+oo, W

3) Exemples de A :C — SL(2,C) < %(C?, C?) vérifiant 2)
P(z) -1\ . 3 S

- ——a( 1 0), ou P est un polyndme de degré p=1.
1 P(2)
0

B e SL(2,C) on obtient des applications polynomiales A(z) = A,+- -+ A,z" et
quitte a considérer BA(z) avec Be SL(2,C) choisi de fagon adhoc, on peut
supposer que la condition de 2) est vérifiée.

- En composant des matrices de la forme z —-—>( ) et des matrices

3.2. Une application du théoréeme de Siegel: le théoreme de Siegel fibré
On se donne des entiers positifs k et p. On considére

fa(z1, ..., z) =(B1z1, . - -, BZk), B=(Bi---,Bk) |Bl=1 si 1=i=<k,

une application A : D*¥ — £.(CP, C?) holomorphe sur I'intérieur de DY, r>0, telle
que A(0)e GL(p,C) soit une matrice diagonale

wo-(5-2)

et on suppose qu’il existe A e C* tel que

wo-(0)

satisfasse a la condition diophantienne suivante: il existe C>0, y>0 tels que 'on
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ait

NS A Bp e BNl =CliP

i A Bl - B =B =Cil ™

pour 1=j=p, 1=sl=sk et i=(,...,i,)eN"* vérifiant |i| = 3i, = 2.

PROPOSITION. Sous les conditions ci-dessus il existe 0<<R,<r dépendant
seulement de v, C, et r, une application holomorphe B :D}‘z0 — GL(p,C), B(0)=e=
la matrice unité, tel que si z€ Dy_ on ait

B(fe(2))'A(z)B(z) = A(0).
Démonstration. On considere le C-difféomorphisme local
F:(z,m)€(C* XC", 0) — (fz(2), AA(z)n) € (C* x C", 0)

Par le théoreme de C. L. C. Siegel, généralisé par E. Zehnder [20], il existe un
unique germe de difféomorphisme holomorphe h:(C**?, 0) — (C**?, 0) vérifiant
Dh(0)=e et

h™' o F o h(z, 1) = (fg(z), AA(0)7)

si ||n||+||z]| est assez petit. La série formelle de h est aussi unique (moyennant la
condition Dh(0)=e), et on vérifie sans peine que, formellement,

h(z,m)=(z,B(z)n), B(0)=e.

Par I'unicité des séries formelles il suit qu’il existe R, tel que B : D§ — GL(p, C)
soit une application holomorphe et vérifie les conclusions de la proposition. W

3.3. Un exemple
E+P -1
Soit ZEC——>A(Z)=( (2)

1 O)ESL(Z,C) oun P(z)=az+---+a,z",

. 4 3 . a 0 2mia »
a,#0, E€R et |[E|<2, A(0) est conjugué a la matrice 0 g)aveces e“™, ou
o

acT' vérifie 2cos2wa =E. On vérifie que pour Lebesgue presque tout E e
1-2,2[ et BeT] (i.e. |B| = 1) 'application fibrée (f5, A) de C X C? satisfait 2 3.2. Il
en résulte, pour un tel choix et par 3.2, que la fonction r — A, (r, fg, A) (cf. 2.4) ala
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propri€té€ suivante: il existe r,>0 tel que
A(r fa, A)=0, si 0=r=r,. (D)

Par 3.1.2) on a

Arf,A)— +oo, si r— 4o (2)
]() ro ﬁi

graphe de A, (r, f5, A)

3.4. Remarque. La propriété (2) montre que le théoréme de Siegel n’est pas
un théoréme global, ce qui n’est pas étonnant du tout:

EXEMPLE. Soient F\(z4, z,) = (12, + 23, a»25), Fy(zy, z5) = (24, z,+ 23) avec
o €C, || =1, a; # 1 # ;. On pose G =F, o F,' qui est un difffomorphisme de

0
C? tel que G(0)=0, DG(0)= (“1

0 ) G possede 3 autres points fixes que 0
a3

solutions de

z3=(1—a,)z, }

F1(2)2F2(Z) ou z :(zl’ ZZ)C){ZZ—‘—‘(“I‘FQZ)ZZ

:ZZ:O et Z%Z(az*l)ﬂ—al)z.

Il en résulte que le difféomorphisme G n’est pas conjugué sur tout C? a sa
partie linéaire en 0!

3.5. Nous allons donner un autre exemple ou 3.3(1) se produit.

1) Soient f;:C—C de la forme fz(z)=PBz, |Bl=1, et A(z)=A,+2zA,¢e
L(CP,CP) ou A, et A, sont des matrices constantes. Si B8 est une racine
primitive g*™ de I'unité on a

Tr (A3(2))=Tr (A3)+Tr (A%)z9Ba@ V2,

ol Tr désigne la trace et B2 2= +1. (Tr (A{(z)) = P(z) ol P est un polyndme
de degré q dont le terme constant et celui de degré q sont ceux proposés; or
P(Bz)=P(z) (puisque Tr(B;B,)=Tr(B,B;)), donc les autres termes du
polyndme P sont nuls.)
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2) On suppose que

2cos2ma+ Az -—1)

Aa(z)= ( 1 0

acR/Z, AeC—{0}, |\|=1. Si B =e?™"% ou p et q sont premiers entre eux avec q
impair, on a

Tr (A{(2)) =2 cos 2qma + A9z (+)

3) PROPOSITION. On fixe A€C, A#0, |A|=1. Il existe un G5 dense G, <
T'x T} tel que, si (a, B)e Gy, alors A, (1, f,, A,,) =0.

Démonstration. Par 1.3, la fonction (a, B) = A, (1, fs, A,,) est semi-continue

supérieurement. On veut montrer que, pour tout &£>0, louvert U, =

{(a, B) | A (1, fg, As)) <€} est dense. 1l suivra que () _, Uy, est un G dense.
nelN
Pour voir que U, est dense il suffit de montrer qu’il existe un entier N >0 tel que

sia=p;/q, B=e>9 ot (p;,q)=1, (p,q)=1, q est impair et g=N, alors
0=A(1, fa, A, sgn) <e.

On a
Tr (AL(2)) =2+ %29,

donc le maximum des modules des valeurs propres de Af(z) sur T} est majoré

par ¢, =1+ (A[*)/2+(A|*+Z|A]**)Y? (puisque I’équation des valeurs propres de
A(z) est Y2~ (2+A%z%)Y+1=0). Or

1
A+(1> fBa Apllq,)\) Sa I—‘Og Cq-

Dongc, si q — +o, comme |A|<1, 1/qLogc,—0. W

4) PROPOSITION. II existe un Gs dense G,<T'Xx T} tel que si (a, B)e G,
alors pour tout r>0

@,(a, B) =sup (Max (A ) =+

neN \|z|=r
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5) Remarque. Si (a, B)e G, et a#0 ou 3 alors, sur tout voisinage de 0, le
difféomorphisme holomorphe de (CXC? 0) F(z, n)=(Bz, A(z)n) n’est pas
holomorphiquement équivalent a sa partie linéaire, qui est, pour a#0 ou 3,
conjuguée a une matrice unitaire.

Démonstration de 4). Par la monotonie de &,(a, B) (voir 2.4a)), il suffit de
montrer que, pour tout neN*, H,,. ={(a, B) | ®,,.(a, B) = +=} est un G; dense et
de poser G,= N,y Hy,. L’application (a, B) — ®,,.(a, B) est semi-continue
inférieurement et donc Hy,, est un Gs. H,,, est dense puisqu’il contient tous les
a=pi/q, B=¢e*""% (p;,q) =1, (p, q) =1, q impair, car pour un tel couple il existe
un z, arbitrairement petit tel (A, ,)%(zo) soit une matrice hyperbolique. W

6) Si on choisit (a, B)e G;NG,, alors la fonction r— A, (7, fa, A,a) Vérifie
pour tout O0=r=<1, A.(r,fs, A,2)=0. Si r—+o, comme A#0 par 3.1.2),
A1, fa, Agp) = to. Comme (a, B)e Gy, si a#0, ou 3, alors la remarque 5)
s’applique.

7) Ce que nous venons de faire reste valable sur T} tant r<1/|A|. Si r>1/|A] il
existe un ouvert U dense de (a, A, B) tel que si (a, A, B)e U alors (fg, A,
agissant sur T} X C? ait une structure hyperbolique. (En effet, si zeC et N>0
vérifie |Az|N >4 et si B est une racine primitive ¢*™ de 'unité avec q =N, alors
par (+) on a, pour tout aeT’, |Tr (Aa,,\)‘f‘e(z)l>2. Ceci implique que la matrice
(A, 2)A(2) est une matrice hyperbolique sur C et de plus ses directions invariantes
dépendent holomorphiquement de z pour |Az|™ >4. 11 suffit alors d’appliquer la
remarque 2) de 1.4.)

9) On peut démontrer le théoréeme de Siegel fibré pour (fg, A,)), tres simple-
ment de la fagon suivante. On pose a =e”™* et on cherche une application
holomorphe

z—v(z)= (2;}3) eC?

telle que 'on ait

() (2o 1))

avec 1,(0) =a et m,(0) = 1. Soit

n2(Bz) = any(2)
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et
an(Bz) +amy(Bz) — (a+ @)ny(z) = Azn,(2).

Si on écrit m1(2) =Y =0 bz* on a les relations de récurrences:
bp=a
Ab,_,=P,(B")b,, so n=1

avec P,(z)=(z/a)+(a/z)—(a+(1/a)). Si pour tout n=1, B"#1 et B"#a? on
peut résoudre et on obtient:
_ A"a

P.(B) - P.(B")

b,

Pour étudier la convergence on remarque, que par la formule de Jensen, on a
o Log |P,(e*™)| d8 =0 et il suit d’'un théoréme de Koksma [K] (on peut aussi
adapter larticle d’'Hardy et Littlewood [H]), que si aeT"' est fixé, alors pour
Lebesgue presque tout BT, si n— +%, (1/n) Log|P,(B) - - - P,(B™)| — 0.

I1 en résulte que pour, Lebesgue presque tout (a, B)e T'x T}, (avec a# 1 et
B n’est pas une racine de l'unité) il existe 2 applications holomorphes sur
{z|lz|<|AI™Y, z = vi(2)eC? i=1,2, telles que a matrice H(z) = (v,(2), v,(2))
(i.e. ayant les vecteurs colonnes v,(z) et v,(z)) vérifie

A@HE=HE)(S 7)o HO=(] ?)

Il en résulte que det H(z) =det H(Bz) et donc comme a# +1 et que B n’est pas
une racine de l'unité, on a det H(z) =det H(0) # 0. On obtient finalement, si
_ _ a 0
2l<IA ™, H (B2 A @H@ = (] ),
Remarques. 1. Si a=0 ou 3 (i.e. si « ==1) alors pour Lebesgue presque

tout Be T, il existe un nombre 0<R,<|A|™" et des matrices Hy(z) et H;,»(z)
holomorphes inversibles sur {z | |z| < R}, et c€C* telles que 'on ait

44

c) . 1
si a=0,3.
0 « ’

H;'(B2)A \(2)H,(2) = (
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(La démonstration est presque la méme. On détermine d’abord un vecteur

z
holomorphe vl(z)z(zlgzb comme ci-dessus, puis on considére la matrice
2
holomorphe H,(z) = (v,(2), v,(2)) ot v,(z) =( 0 ) On a
1/m(2)

_ o Cu(2)
H; ' (B2)AH, )= (0 “?)
0 «
pour |z|<R, et a=0, 3 ou c,(z) est une fonction holomorphe sur{z ||zl < Ry}
La remarque suit facilement en conjugant par des matrices de la forme z —

b =)
0 1 /7
2. Pour Lebesgue presque tout a et B, par la démonstration ci-dessus le

théoréme de Siegel est valable sur {z||z|<|A|"'}. Par 3.1, si r>1/|A|, on a
A._,.(Ti, fBa Aa,)\)> O

3.6. Une exemple avec une matrice non inversible en un point
On consideére fg(z) =B(z), IB|=1, zC et

E -1+z

z——>A(z)-—-(1 0 ), ou EcR, E>2.

On a par 2.3, pour tout r >0, A,(T;, fg, A)>0. Si on considere I’application fibrée
(fs» A) sur T xC? alors det (A(z))=1-2z s’annule en z =1. Par la formule de
Jensen on a, si 0<r<1, f;:Log|l—2z{dm =0 et donc si 0<r<1 I'application
fibrée (fs, A) sur T} xC? a 4 exposants de Lyapounov sur R non nuls: 2 sont
égaux a A, (T}, fs, A) et 2 a —A (T}, fg, A). (11 suffit de considérer

1
Z-_)WA(Z):B(Z)’ Z% 1,

de noter que B(z)e SL(2,C), Log||B*' | T;lle L'(m) et d’appliquer [15] en utilis-
ant le fait que B(z) est une matrice définie sur C.)

3.7. Un exemple avec un difféomorphisme d’ Anosov
Soit f:C%—C?, f(z,, z,) =(232,, 2,25) (voir 2.2. ¢)) f(1,1)=(1, 1). Soit

E'—A.Zl —1

1 O)ESL(Z,C), ou EeR, E>2.

A(zy, 2)) = (
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On a Log (Rspec (A(0)))>0. On suppose que E est fixé, et que A eR vérifie
|E—A|=2. La matrice

E-\A -1
aan-(51% 7))
est donc elliptique (i.e. conjugué a une matrice unitaire) si |A — E| <2 et paraboli-
que si E—A ==%2,
Le difféomorphisme fibré (f, A) sur T1xC? par 2.2a) et 2.3 vérifie A.(f, A)>0
mais le diffémorphisme fibré n’a pas de structure hyperbolique puisque f(1, 1) =
(1,1) et que A(1, 1) est une matrice de SL(2,R) elliptique ou parabolique.

Remarque. Pour E—\ ==+2, le difféomorphisme fibré (f, A) ne laisse pas
invariant un scindement continu (non trivial) du fibré (trivial) T2XC?2. On peut
construire d’autres exemples (f, B,) de difféomorphismes fibrés de T3 xR? qui ne
laissent invariant aucun scindement continu (non trivial) du fibré T3XR? et qui
vérifient A (f, B,)>0. Pour cela on choisit f un difféomorphisme d’Anosov
comme ci-dessus, B, comme en 4.1 avec A >1 et on raisonne comme en 4.2.

3.8. Un exemple d’application dans SL(2,C) sans structure hyperbolique
On considére fg:C —C, fg(z) =Bz avec B=¢€"", acR—-Q, et

E+Az -1

zeC-——»A(z)=( 1 0

)e SL(2,C)

ou EeR, E>2 et AeC*.

On suppose que B est choisit pour que 3.2 s’applique a (fg, A), (pour
Lebesgue presque tout « cela sera le cas). Il en résulte qu’il existe r,>0, tel que
pour 0<r=r,, on ait:

(T2 fo A)=Log u>0 avec p =Rspec(A(0));

fe X A agissant sur D; XC? a une structure hyperbolique.

Par 3.1, si r— +x, A(TL £ A)—> +oo,

PROPOSITION. Sous les hypothéses ci-dessus il existe r,>0, tel que le
difféomorphisme fibré fs X A de T} xC? n’ait pas de structure hyperbolique mais
vérifie par 2.3:A,(T;,, f, A)=Log p.
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Démonstration. Raisonnons par IP’absurde. Si pour tout r>0, le
difféomorphisme fibré fx A de T!xC? avait une structure hyperbolique cette
structure dépendrait continument de r et méme analytiquement. Cette structure
hyperbolique sur T} XC?= E$@® E¥ serait complexe (i.e. les fibrés continues E; et
E! seraient des fibrés complexes, puisque A est une matrice définie sur C, dans la
définition de 1.4, on peut multiplier les vecteurs v, et w, par A eC*). Les fibrés
E; et E} comme fibrés continues complexes dépendraient R-analytiquement de
r>0 (cela résulte de la démonstration [18 p. 100-101] en complexifiant le
parameétre r). Il en résulterait que la fonction r — A, (7, fg, A) est R-analytique ce
qui est absrude. W

4. Exemples avec SL(2,R)

4.1. a) on se place sur T' et on considére la rotation (ou translation) R,(0) =
0+ a. Soit B, : T!'— SL(2,R) la matrice

cos 2O —sin 27l
sin2w@  cos 26

B,‘(G)—*—( )A (1) ou A€R et A=1.
O X

On considére sur T xR? le difféomorphisme fibré associé a (R,, B,). Nous allons
démontrer & nouveau le théoréme 3.1. de [5]. On met sur T' la mesure de Haar
notée m ou dé.

PROPOSITION. On a A.(R,, B,)=Log ((A/2)+(1/2A)).
Démonstration. On  pose B=e>™, cos2m0=3(z+z""), sin2n0=

-21—i(z —z7Y), pour z =e2™, |z]=1. On se place sur T dans C. Soit

1 ay Lo 1 R
AD) 2(z+z ) 2i(z z7" /\:1 2(;: +1) 2i(z 1 A
g -2%(2—2“) -2-(z+z“‘) z %(22—1) %(22+1)
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On considére 'application fibrée (fz, A,) de T1XC?, ou fg(z) =Bz. On met sur

£c(C?,C? une norme d’algébre sur C. Pour z =e>™ on a

HAA(Bn—lz) T A)\(Z)" IHBA(O“”(H -Da)--- B)\(G)“
d’ou
A+(Ra, BA) = A4»(-{1-}, f{S’ AA)

Par 2.3 on a A, (T3, fs, Ay) =Log (Rspec (A, (0))) =Log (A/2+1/21). W

b) Par la méme démonstration que ci-dessus et en se placant aussi au
voisinage de +o comme en 3.1.2) on a le

Scolie. Soit B une algébre de Banach sur C (par exemple %c(C* C?)) et
A :T!'— B un polynéme trigonométrique de la forme

A0)= ) Ae®™™  ou A,.cA.

lki=n

Pour I’application fibré (R,, A) de T'x B, on a
A(R,, A)=Loga,,

ou

a,, = Max (Rspec (A,.), Rspec (A_,)).

c) Une généralisation de b) est la suivante: on se place sous les hypotheses de
2.10, et 'on considére un polyndme trigonométrique A : G — % de la forme

A(g)= ZAka(g) si gegG, ALe€RBR etpour O0k=n, x € G.
k=0

On suppose que X, est le minimum de ’esemble {xo, . . ., X,} pour 'ordre total P
sur G. Comme xoA € Hyg, on a, par 2.10, la

PROPOSITION. A.(g, A)=Log (Rspec (Ay)).

4.2. PROPOSITION. Soit B:T!'—SL(2,R) une application continue non
homotope a la matrice constante unité alors 1’homéomorphisme F =
(R,, B):T'xR?>—>T'xXR? n’a pas de structure hyperbolique (voir partiellement
hyperbolique).
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Démonstration. Si F laisse invariant 2 fibrés E* et E* sur T' de some directe
le fibré trivial, alors F agit comme homéomorphisme sur T'XP(R?), le fibré en
espaces projectifs associé un fibré trivial T'XR?, et laisse invariant les fibrés
projectifs associés a E* et E°. Comme les fibrés projectifs associés aux fibrés de
rang 1 E* ou E° sont triviaux, il en résulte que le difféomorphisme fibré

F:TxPR?> — T'xXPR?

pll lpl

Ra: -1]—1 le

laisse invariante I'image d’une section continue du fibré T' xP(R?*) — T, p, étant
la premiere projection. Ceci n’est pas possible car le difféomorphisme F de
T'XPR*=T'XT! est homotope a (8,,0,)eT>—(0,, 0,+2k0,)eT* avec ke
Z —{0}. L’existence d’une section continue invariante par F n’est pas compatible

1 0
avec l'action de Fy:H,(T? Z) < en homologie (i.e. (Zk 1)) |

4.3 Remarques. 1) Les fibrés E* et E° ne sont pas nécessairement triviaux
puisque, si & est le fibré de rang 1 non trivial sur T', (i.e. un ruban de Mdobius),
alors €@ ¢=T!xR? Pour tout cT", on définit B, (ve, we) = (Ave, (1/A)Ws) si
(Vg, Wo) € & D &, OU & est la fibre de € en 6 T' et A# 0 un nombre fixé. B, est
homotope a une matrice constante.

2) Si ’homéomorphisme fibré F:T'XP(R? < est de la forme F =(R,, B) ou
B est une application continue de T' dans PSL(2,R)=SL(2,R)/{—e, e}, laisse
invariant les graphes de 2 fonctions continues distinctes ¥;:T'—P(R? pour
i=1,2, alors il existe H(6, y)=(6, 1(0)y), ou |:T'— PSL(2,R) est une applica-
tion continue, tel que I'on ait

H™'oF°H(6,y)=(6+a, K(8)y), ou

1
)

K(G):(‘p(o) et @eCoT'RY).
En effet, si ¥, est homotope a une constante, alors il en va de méme de ¥, et il
suffit d’amener pour tout 6 les éléments W,(6) et ¥,(6) de P(R?) sur respective-
ment les points de coordonnées projectives (1,0) et (0,1) et si nécessaire
multiplier les matrices par —e. Si ¥; est de degré k # 0, il suffit de remplacer F par
SiloFoS,, ou S est défini en 5.16, pour se ramener au cas ou ¥, est homotope
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a une constante. Si F est de classe C" ainsi que les fonctions ¥;, alors on peut
supposer que H et K sont aussi de classe C".

4.5. Une exemple d’application dans SI(2,R) homotope a I’identité
On se donne £ >0 petit, n>0 et A tel que Ae >2+ 7. Soit

B(O)—[(l O)+ (cosZw() —Sil‘l2’ﬂ'0)] A O
“1\0 1/ ®\sin2w6  cos2w6 1Y
O X

On considére (R,, B) agissant sur T'xXRZ2. Par le scolie de 4.1 on a, pour tout
acT!, A\, (R, B)=Log (eA/2+¢€/2A). Si €>0 est assez petit, Papplication 0 ¢
T!'— C(0) = B(0)/(det B(6))'?e SL(2,R) est R-analytique et homotope & la mat-
rice constante unité. On a

1
A(R, O =\.(R,, B)— j Log (det B(8)) db,

si £ — 0, 1 {3 Log (det B(8)) d@ — 0 et donc si € est assez petit A, (R,, C)>0. On a
mieux:si BeT', on pose

R (cos 2@B —sin2wp

8~ \ sin 2@B  cos 271'{3) et (RgB)(6)=RsB(6),

on vérifie comme en 4.1 que A, (R,, RgB) =Log (eA/2+&/2)). Si €A >2+ 7, pour

£>0 assez petit, ’application T'560 — ﬁBC(O)e SL(2,R) est de classe C<,
homotope 2 la matrice constante 6 — e et on a pour tout a€T' et BT’

A(R,, RgC)>0 (1)

4.6. PROPOSITION. Soit « e T'—(Q/Z); pour tout BT, il existe une mat-
rice T' 26 — Cg(0) € SL(2,R) R-analytique, homotope a la matrice constante unité
et vérifiant:

a) A (R,, Cg)>0.

b) Le difféomorphisme induit sur T'xPR? par le difffomorphisme fibré
(R,, Cg) de T'xR? a pour vecteur de rotation (a, B) (cf. 5.16).

c) Le difféeomorphisme de T'XxXR? F=(R,,Cz) n’a pas de structure
hyperbolique.
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Démonstration. On se fixe a. On a par définition (voir 5.16) p(R,, R,C)=
(e, pr(R,, R,C)). Comme lapplication be T' — p,(RbC) est continue et monotone
croissante de degré 1, elle est surjective (voir 5.9.3)). Il existe donc b, tel que
pr(R, R,,C) = B. On choisit de fagon plus précise b,: on pose Iz ={b,, pf(ﬁ,hC) =
B}; Ig est un intervalle [a,, a,](a, =<a,). Soit

bielz si B&§Zamodl; bi=a,oua, si BeZamodl.

On pose Cg =R, C.

La propriété a) est vérifiée par (1), b) par construction. Si B&Zamod 1 la
propriété c) résulte de 5.17. Si BeZa(mod 1) alors (R,, Cg) n’a pas de structure
hyperbolique car ’ensemble des b tels que le difféomorphisme fibré (R, R,C) ait
une structure hyperbolique est ouvert et vérifie p;(R,, R,C)€Za mod 1. Or nous
avons choisi b, §IntI;. W

4.7. Un autre exemple d’application dans SL(2,R) homotope a l’identité
Soit p(8) = Yk |=n a€*™® un polyndme trigométrique de degré fixé n, n=1 et
a, € C. On suppose que |a_,|>1. Soit "application

p(6) -1

1 =
0T — A(0) < 1 0

)e SL(2,C).

Si p est a valeurs réelles (i.e. si @, = a_, pour tout entier k) alors A(8)e SL(2,R)
et réciproquement. Par le scolie de 4.1, on a pour le difféomorphisme fibré
(R,, A) de T'XC? A, (R, A)=Logla_,|.

(Si aeT'-(Q/Z) on peut donner de ce fait la démonstration encore plus
élémentaire, suivante: on vérifie san peine que, si peN,

(a‘in 0

| 1ar@nao=|(%" o

1
)| @or jim >Loghatlos =Loglad

et donc, par [5, 2.5] A.(T', R,, A)=Logla_,|. Si a€Q/Z on peut raisonner
comme dans [5, 3.2].)

4.8. Soit une fonction continue ¢ € C°(T',R) et E€R alors on pose

E+¢(6) -1

2,R).
) O)ESL( ,R)

AE‘OE-U—I%AE(O)=(

On considére ’homéomorphisme fibré (R,, Ag) de T'XR? On fixe aeT".
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PROPOSITION. I existe E,>0 tel que, si |E|> E,, (R,, Ag) ait une structure
hyperbolique.

Démonstration. On suppose que E>0, le cas E<0 étant analogue. On

cherche les variétés invariantes de (R,, Ag) en coordonnées projectives (lpio)),
Ve CAT',R), ¥>0 (si E<0 on suppose que ¥ <0). On a I’equation
1
1I’°Ra+*@=E+(p. (2)

On pose Ag+1/Ag=E pour E grand>2. On cherche ¥,=Ag(1+7m,) avec
Imillco=3 (et dépendant de E). L’équation que vérifie n; est:

LB 1

MR ) A @

Si E — +%, Ag — +oo, il suit pour E assez grand que I’application

1 neR_
Pg:m:—>—¢R__+ -
SERS W ¢ AZ(1+n°R_,)

envoie la boule {||n||co=3} dans elle méme et est une contraction lipschitzienne:
on a ||®g(a,) — P(a,)llco =k |la; — a,|| avec k < 1. Il existe donc un point fixe 0, de
®g. On détermine ainsi ¥, vérifiant (2) ot ¥; = Ag(1+1,) avec ||nllco<3.

Par la méme méthode on détermine une autre solution ¥, de I’équation (2)

1 1
¥,=—(1+m,) avec [nlco=3.
Ag 2

vi(6)
1

Si on pose vi(0)=( ) pour i=1,2,0n a

Ag(0)v,(0) = ¥;(0)v;(0 + a).

Soient H(6, y) = (6, 1(8)y), ou [(0) =(v,(0), v,(0)) (matrice ayant pour vecteurs
colonnes v, et v,; si |E| est assez grand on a det (1(0)) #0 pour tout 0), et
Fe(6,y)=(0+a, Ag(0)y). On a pour |E| assez grand

H™ o Fg>H(6,y)=(0+a, Ke(0)y),
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v.(6) 0 ) 3)

KE(O):( 0  W,0)

avec, si E>E,, ¥;>0etsi E<X-E,, ¥ <Opouri=1,2. W
4.9. PROPOSITION. Si E>Q0 et si ¥ >0 vérifie (2) alors on pose

M = Max ([ #lce,

1 1
E“ct)) etona —M+ M =E +||¢l|co.

Démonstration. On suppose que M =||¥||co, 'autre cas étant analogue. Soit 6,
tel que M =¥ o R_(6,;). On a I'inégalité

1 1
E+(p(00)= ‘IIOROL(BO)+_“I—’—(—052M+M’

et donc

1
M+—=E+Max¢(0). R
M 0

4.10. Remarque. 4.8 et 4.9 restent valables si I'on considere

E + @(x) -—1)
Ac(o)=(
e(x) 1 0
avec ¢ € C°(X,R), ou X est un espace compact métrique, et si I'on remplace
R, :T'—T! par un homéomorphisme g:X — X.

4.11. On considére (R,, Ag) comme en 4.8 et on suppose de plus a§Q/Z. On
releve E — Ag € CUTY, SL(2,R)) en E — Ag € C%T', D*(T")). On suppose que
SL(2,R) agit surP(R? par I’action standard, (voir 1.6). Soit pf(R,, Ag)€R le
nombre de rotation fibré (voir §5); on a, si ¢ et a € T'—(Q/Z) sont fixés:

a) E— p(R,, Ag) est une fonction continue et non-décroissante (elle est non
décroissante puisque E, <E, > AEl(x) <AE2(x) pour tout xeT).

b) La fonction pf(R,, Apy) est constante si |[E|> E, (ou E, est défini en 4.8), et
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on a
ps(R., Agp)=peZ so E=E,
p;(R,, Ag)=p—1 si E=<-E,.

(Ceci résulte de 4.8, en utilisant 5.9.3) et en remarquant que le chemin E — Ag
est homotope, les extrémitées restant la méme composante connexe par arc de

I'esemble {Be C%T?, SL(2,R))|(R,, B) agissant sur T'XR? a une structure

hyperbolique} au voisinage de E = +x et E =—», au chemin E — (f —01)

4.12. Soit

E+p(6) - 1\)
Ag(0 ——-( ,
£(0) 1 0
ou E€R, p(6) =Y <n ae>™*® est un polyndéme trigonométrique réel, de degré
n=1 et vérifiant Log|a_,|>0 (n=1); par 4.7, pour tout E, on a

)L,.(Ru, AE) 2I-Jog ‘a—n"

E+p(6) -1

1 O) est évidemment [R-analytique et

L’application 6eT'— (

~ - O ~
homotope a la matrice constante ( 0 ) et donc a e.

1

En utilisant 4.11 on démontre une proposition analogue a 4.6. Ces exemples
montrent que les corollaires du théoréme d’Arnold et de Moser 5.12 et 5.14 ne
sont pas globaux et ceci nonobstant des conditions d’analycité ou d’approxima-
tions par les rationnels du vecteur de rotation contrairement au théoréme
fondamental de [4] pour les difféomorphismes du cercle. Ces exemples sont a
rapprocher du caractére local du théoréme de Siegel (cf. 3.3). Le lecteur se
rapportera aussi a 5.19.

Ces exemples ne sont pas analogues aux contre-exemples de Denjoy sur le
cercle (cf. [4, X]):

4.13. PROPOSITION. Soit (R, Cg) vérifiant les conditions a) et b) de 4.6 et
tel que p(R,,Cg)=(a,B) ou a et B sont irrationnels et rationnellement
indépendants. On fait agir F=(R,, Cg) sur T'xXPR?. Alors il n’existe pas
d’ application continue H:T* xP(R?) — T2 homotope a I’Id telle que le diagramme
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suivant soit commutatif:

F:T'XPR?*») — T'%<XP®R?

Hl ln

. 2 5 2
R(a,B) . T G -ﬂ.

Remarque. Ceci implique que le difféomorphisme F de T'xP(R?) n’est pas
topologiquement conjugué a une translation de T2

Démonstration. Supposons, que H existe. Par le théoreme d’Osedelec (voir
par exemple [15]), puisque A, (R,, Cg) >0, il existe une application df-mesurable
s, :T'>P(R? telle que le diagramme suivant soit commutatif d@-presque par-
tout (p, désigne la 1 ére projection)

F:T'XPR?*» — T'xPR>?

p:lIld Xs, pllTld xs,

Ra: -“-1_____________)-“-1

(Le graphe de s, est la direction invariante (df presque partout) associée a
’exposant de Lyapounov maximal A,(R,, Cg); il existe une section IdXs_
associée a —A,(R,, Cg), et on a df-presque partout s, # s_ (voir [5.6] et [8]).)

Si on releve H:T'XP[R? —>T'xT! en H:R?>—>R? de la forme H(6,, 6,) =
(6,+1,(04, 6,), 05+m2(0,, 6,)) avec n; € C°(T?,R), on doit avoir

7?1°I:—=7h-

Ceci implique que m; =constante. En effet par [8] ou 4.17, F laisse invariant
un unique ensemble minimal M# (. Ceci force n; a étre égale a une constante.
(On a 7, |p=constante qu'on peut supposer égale a 0. Soient ¢ >0 et V" un
voisinage ouvert de M tel que tout xe V' vérifie |n(x)|<e; puisque M est
'unique ensemble minimal de F, on a U;eny FI(V)=T'XP([R?. Donc ||n|lce<e€
mais comme & >0 est arbitraire le résultat suit.)

Il en résulte que H est fibré: il existe ceT' tel qu'on ait le diagramme
commutatif:

H:T'xPR?> — T'xP®R?

p,l lpl

R: T'—— T'
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Si H existe, il existe donc une application §, d@-mesurable, telle que le diagramme
suivant soit commutatif, d@-presque partout:

Rip):T? —> T?

pll‘[ld x§ IdX §Tlm

R,:T' — T!
d’ou

2mis(0+a) = e2'm'BeZ'rris ) .

€ dé—p.p.

mais ceci implique que B € Za(mod 1); or, nour avons supposé que a et B8 sont
irrationnels et rationnellement indépendants, et nous aboutissons ainsi a une
absurdité. W

4.14. On se donne (R, Ag) satisfaisant aux conditions de 4.7 et on suppose
de plus que a € T'—(Q/Z). Soit E, le plus grand nombre réel tel que:

a) p(R,, Ag)eZ ol Ag est un relévement de Ag, a D(TY);

b) le difféomorphisme fibré FE, =(R,, Ag,) de T!%xR? n’ait pas de structure
hyperbolique. On peut aussi définir E; ainsi: si E € ]E,, +[, Fg a une structure
hyperbolique et Fg, vérifie b).

Un tel nombre E,; existe par 4.8, 4.11 et par le fait que I’ensemble des
nombres E €R vérifiant b) est fermé (cf. 1.4 remarque 2). On note Fg le difféomor-
phisme induit par Fg sur T ! xP(R?).

PROPOSITION. Le difféomorphisme Fg_ posséde un unique ensemble minimal
M# T'xP(R?) (M+#0); M est I’adhérence du graphe d’une fonction semi-continue
s:T' >P([®R?) telle que le diagramme suivant soit commutatif:

Fg, T'XPR?) — T'xP®R?

e el

R, : T! —48 — T!

Démonstration. Soit E, trés grand (E,>2 ||p|lo), pour que le difféomorphisme
fibré Fg,=(R,, Ag,) ait une structure hyperbolique telle que les directions in-

(‘PEz)l) ((‘I’E)z

1 1 ) vérifient (Wg); >0 (voir 4.8). On a donc l'inégalité

variantes (



Une méthode pour minorer les exposants de Lyapounov 481
4.9, Mg,+1/Mg, < E, +|pllco, o0

_(—‘i’—l;): c"))'

Soit E; le plus grand nombre réel <E, tel que (R,, Ag,) possede une structure

( ‘I’ls,,) i)

M, = Max (Max (I(#e):cs

i=1,2

hyperbolique dont les directions invariantes ne soient pas de la forme (
avec 0 <(¥g,); <+wo.

Je dis que le nombre E; (s’il existe) vérifie E;<E;. En effet, pour E> E,, les
(q’f)i), 0<(¥g) <+,
i =1,2, et vérifient Mg + 1/Mg <E, +||pllco. Ceci implique que Mg <C,, 1/Mg =
C5', ou C,=1 est une constante et en particulier C;' =<(¥g); =C,. On arrive a
une contradiction puisque les directions invariantes varient continument avec E
que le difféomorphisme fibré (R,, Ag) a une structure hyperbolique (voir [18]).
On a bien montré E;<E;.

Si E, <E <E,, on conclut que les directions invariantes de Fg restent dans le
cOne projectif positif C={(a, 1)ePR?|1/C,<a=C,} (on utilise surP(R?) les
coordonnées projectives).

Par 4.8 et 4.17 (voir aussi [8]) puisque I:"E1 vérifie )\+(FEI)>0 et, par le choix
de E,, n’a pas de structure hyperbolique, Fg, laisse invariant un unique ensemble
minimal M et toute mesure de probabilité v de T'XP(R? invariante par Fg,
vérifie support (v) = M.

OnaMcT!'xC.

En effet, soit ug une mesure de probabilité de T'xP(R?) invariante par Fg
(E,<E =<E,) et ergodique. Puisque a € T '—(Q/Z), support(ug) est une direction
invariante de Fg dans T !XP(R?) et donc support(ug) =T 'XC. Soit (¢);~; une
suite de nombres réels telle que E,<e, <E,, ¢, — E,; si i > +» et que la suite
(u,,); tende vaguement vers la mesure de probabilité p. Si i -+, F, — Fg
uniformément, et la mesure w est donc invariante par Fg (voir 5.6). Soit ¢ une
fonction=0 de classe C”, nulle sur un voisinage V' de T'x C dans T'xP(R?>).
Comme ., (¢)=0, si ¢, — E;, on a u(p)=0 et done support(n) <= V'; comme V'
est arbitraire, il en résulte que support(w)<T 'x C. Or, support(w)=M et on a
bien démontré que McT'xC.

On définit, si 0T', [_.(0)=Inf{a>0|(0,(a,1))e M} et [.(8)=sup{a>0]|
(6, (a, 1))e M}. On pose s:0 — (1_(9), 1).

Comme M est fermé, la fonction l_ est semi-continue inférieurement, et [, est
semi-continue supérieurement. Puisque Fg préserve l'ordre sur chaque fibre
séparément de la fibration T!'xP[R?) — T, et que Fx(6, (0,1))=(0+a, (-1, 0))
I’ensemble gr(s) =1{(6, s(8))| 6 € T'} est invariant par Fg, et on a gr(s)c M.

directions invariantes existene et sont de la forme (
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L’unique ensemble minimal M de Fy est donc I’adhérence de gr(s). L’ensem-
ble M est aussi I’adhérence de {6, (1.(0), 1)|0<T'). W

Remarque. On a Mc M, ={(0,(b,1))|1_(0)=<b=<1,(0)}. L’ensemble M, est
fermé, sans point intérieur dans T'x[P(R?) et est invariant par Fg,.

La mesure de Lebesgue de M, est positive. En effet, par le théoréme
d’Osedelec il existe, puisque A, (Fg)>0, 2 directions invariantes df-mesurables
distinctes (d@-presque partout) graphes de s, et s_, supports des deux mesures de
probabilités de T'xP(R?) p, et u_ invariantes par Fg, et ergodiques [5]. On a
support (i) =support(u_) =M, voir 4.17. Pour df-presque tout 0T 5,(0) et
s_(6) limitent sur {6} X[P(R?), 2 intervalles invariants par Fg, donc I'un est contenu
dans M,.

La mesure de Lebesgue de M, est bien positive par le théoréme de Fubini, car
si M, était de mesure de Lebesgue nulle pour presque tout § € T', ensemble
M; N ({6} xP(R?)) serait de mesure de Lebesgue nulle et donc ne contiendrait pas
un intervalle presque partout.

Question. Est ce que M = M,?

4.15. Remarques. 1. On vérifie sans peine que:

- les fonctions I, satisfont 1/C, <1, =C, (ce qui implique que [3'e L>(d6));
- 1,(0) #1_(8) do-presque partout;

- les fonctions I, sont solutions de I’équation

LL(0+a)+ =¢@(0)+E,, pourtout @ecT’ (2)

1
1.(6)

Si E > E, P’équation (2) a 2 solutions continues mais pour E = E, les solutions
l. ne sont pas continues.

2. Chacun de 2 ensembles {(6, (1.(6), 1)) | 6 € T'} est dd-presque partout égal a
une des directions invariantes données par le théoréme d’Osedelec (resp. aux
graphes de s, et s_) et on a

1 1
L Log 1,(8) do = —L Log I_(6) d6 = A,(R,, Ag)>0.

(Cela résulte de ce que pour Fg, les seules directions invariantes d6-mesurables
sont presque partout égales aux graphes de s, ou s_; voir aussi [10. §3.6].)

4.16. On se place dans les mémes conditions que 4.10 et on suppose de plus
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que P’espace X est connexe et que I’homéomorphisme g de X est minimal et
uniquement ergodique. On définit pour Fg = (g, Ag) de fagon analogue a 4.14 un
unique nombre E,.

PROPOSITION. L’homéomorphisme Fg_ induit par (g, Ag) sur X xP(R?
laisse invariant un ensemble minimal M# () possédant les propriétés suivantes:

- Mc XXC, out C est le cone {(a, 1)ePR?) |1/C,=a=C,} avec un C,>1;

- M est ’adhérence du graphe d’une application 6 X — s(0)=(1_(0), 1)
PR?), ou 1/C,<1_=<C,, et la fonction I_ est semi-continue inférieurement;

- la fonction 1_ vérifie

L(g(()))+ﬁ=<p(0)+E1 pour tout 6eX, (2)

- si E>E, I’équation
Yo +~-1—— +E (2)

possede 2 solutions continues strictement positives.

Remarque. La fonction [_ peut €tre continue ainsi que le montre '’exemple

2 =1

ae=(2 )

B0
Démonstration. En utilisant 4.10, la démonstration est presque identique a
celle de 4.14. Comme on ne suppose pas A,(g, Ag)>0, on n’est pas siir que
’lhoméomorphisme Fg, laisse invariant un unique ensemble minimal; néanmoins,
par la méme démonstration que 4.14, on obtient une mesure de probabilité u
invariante par Fg_ et vérifiant support(n) < X X C. L’ensemble fermé support (p)

est invariant par Fg, et il suffit de considérer un ensemble minimal M# @,
M < support (u.) le reste du raisonnement étant analogue. WM

4.17. Annexe
Dans cet annexe nous allons démontrer des résultats essentiellement das a R.
Johnson [8]:

PROPOSITION. Soit g un homéomorphisme minimal et uniquement ergodique
de I’espace compact métrique X. On suppose que A € C°(X, SL(2,R)) vérifie
: M(g, A)>0;
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- L’homéomorphisme fibré (g, A) agissant sur X XR?> n’a pas de structure
hyperbolique. Il en résulte que I’homéomorphisme F induit par (g, A) sur X XP(R?)
laisse invariant un unique ensemble minimal M#( et que toute mesure de
probabilité u. de X XP(R?) invariante par F vérifie support(u) = M.

Remarque. L’homéomorphisme F peut étre minimal; pour la construction
d’un exemple voir [5].

Démonstration. Puisque A,(g, A)>0, par [5], 'homéomorphisme F laisse
invariant seulement 2 mesures de probabilités ergodiques u, et w_. On pose
support(n.) =K.. Soit M=¢ un unsemble minimal invariant par F. Par le
théoreme de Markov-Kakutani, il en résulte qu’il existe une mesure de
probabilité v invariante par F, ergodique et vérifiant support(v)c M (et donc
support (v) = M puisque M est un ensemble minimal de F). On a M=K, ou k_
puisque v=pu, ou w_. On suppose que M=K, l'autre cas étant analogue, on
veut montrer que K, =K _.

On raisonne par P'absurde. Si K, #K_ on a u_(K,)=0 (puisque F est
wn_-ergodique et que les ensembles compacts K, et K_ sont invariants par F). 1l
en résulte que I’homéomorphisme F|K, est uniquement ergodique I’'unique
mesure de probabilité invariante étant ..

Par [5] ou [8], si (x, v) € K, = X XP(R?), alors, si n — +, (1/n) Log || A% (x)v||—
A.(g, A) en posant, pour n <0, A"=(A"H" et A7} (x) =AY (g (x)). Puisque
I’homéomorphisme g de X est minimal, pour tout x € X, il existe v e P(R?) tel que
(x,v)e K,, et on a donc

D si n—>-»,  ||Asx)v]|—0.

Maintenant on utilise le résultat suivant®” (du 2 R. Mané, J. Selgrade, R. J. Sacker
et G. R. Sell): puisque (g, A) n’a pas de structure hyperbolique et que
’homéomorphisme g est minimal il existe (y, u) e X XP(R?) tel que

@ sup |An(u)u|| <+oo

neZ

et donc (y, u)§K,.

LEMME. Quels que soient Be SL(2,R), et u, v eR? vérifiant |jul|=|v||=1 et
luAv||#0, si |Bv||<1/C, avec C=>0, alors on a |Bu||=C |luav).

Démonstration du lemme. 11 suffit d’écrire ||Bu||||Bv||=||BuABv|=|luav||. W

! Voir par exemple, R. Maié, [M].
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Fin de la démonstration de la proposition. Par D, @ et le lemme, on arrive 2
une absurdité si K, # K_. La proposition résulte facilement de ce fait.

5. Nombre de rotation fibré et quelques propriétés; application a des corollaires
du théoreme d’Arnold et de Moser

5.1. Soient X un espace compact métrique (# @) et g un homéomorphisme de
X. Soit x € X — h(x) e Homéo,(T') une application continue, ou Homéo (T")
désigne le groupe topologique des homéomorphismes de T' préservant ’orienta-
tion avec la topologie compacte ouverte.

On définit 'homéomorphisme F de X X T! par F(x, 8) = (g(x), h(x)(8)). F est
un homéomorphisme fibré, le diagramme suivant étant commutatif:

F: XXT! — XxT!

g: X —m X

(p1(x, 8) =x).

On veut définir le nombre de rotation fibré; pour cela on suppose que
’application x € X — h(x)e Homéo, (T') est homotope & I’application constante
égale A I'idendité de T'. On peut donc relever I’application x — h(x) 4 xe X —
h(x)e D%T") avec D°(T')={heHoméo, R) | h(x+1)=h(x)+1, si xeR}. On
définit I’homéomorphisme F de XXR par F(x, 6) =(g(x), h(x)(9)). Si AeR,
Id X R, est I'application de X XR définie par (Id X R,)(x, 6) = (x, 6 + A).

Si F, et F, sont 2 relévements de F 2 X xR alors E o F5'(x, 0)=(x, 6+ x(x))
ou x:X —Z, est une application continue. Il en résulte que si ’espace X est
connexe alors F, = (Id X R,)° E,, avec peZ.

5.2. On définit le nombre de rotation dans la direction de la fibre comme une
fonction de (x, 8)e X XR par

- 1 -
p¢(F)(x, 8) =lim sup - (p2oF"(x,0)—0)eR

n—s+o

avec p,(x, ) = 6. (On note p; pour pgpe). La fonction [)f(I:") a les propriétés:

a) Elle est Z-périodique en 6.

b) Si peZ, p((Id xR,)° F)=p+ p(F).
I1 suit que si ’espace X est connexe alors la foction (x, 8) — p;(F)(x, 6) (mod 1) ne
dépend pas du relevement F de F.
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¢) Si pour tout x, h;(x)<hy(x) (i.e. pour tout 8 h,(x)(8)=h,(x)(8)), ou
h, € C°(X, D*(T")) pour i =1, 2) alors, pour tout (x, 8), on a

Br(g, hy)(x, 0) <p(g, hy)(x, 6).

d) p(F)(x, 6) = p(F)(F (x, 6)).

Remarques. 1) On peut remplacer T' par T" en supposant que ’application
x€ X — h(x)eHoméo (T") est homotope a I’application constante égale a
I’Identité de T" et en posant si x — h(x)e D°(T") est un reléevement de h et
F:(x,0)e XXR" — (g(x), h(x)(0)) e X XR",

- 1 -
pr(F)(x, 8) = lim sup T (pp°o F*(x, 0)—0)cR"

k——->+oo

avec p,(x, ) =0 et la lim sup étant la limite supérieure de chaque composante.

Le lecteur peut se rapporter a [4, XIII 1 et 2].

2) 11 est nécessaire de supposer que x — h(x) est homotope a I’application
constante identité de T" ainsi que le montrent les exemples suivants:

2 1

a) X ={1 point}, x > h(x) = A e Homéo (T?) ou A = (1 1).

b) X=T!, xeT'— h(x)eHoméo, (T') avec g(x)=x+a, a#0 et h(x)(0) =
0+ x.

Ces exemples montrent que le facteur 1/k est ridicule.

5.3. Soit F: XXR — X *XR comme en 5.1

PROPOSITION. Soit x € X fixé.

a) Quels que soient 0, et 0,, on a 5,(13')(x, 0, = ﬁf(ﬁ)(x, 0,).

b) Si pour un 6,€R, la limite lim,,_,w(lln)(p2°1:""(x, 0,)—6,) (=ﬁf(I:")(x, 0,)
existe, alors pour tout 0 €R, la limite lim,_, . (1/n)(p; ° F(x, 6)— 0) existe et elle
est = py(F)(x, ) = pr(F)(x, 6,).

Démonstration. Soit p,° F"(x, 8) = hX(x)(8), ot hX(x)=h(g" ' (x))o---che
D%T"Y); si le DXT") on a 1(8)=0+¢(0) ¢ CXT',R) avec

Max ¢ —Mine <1 [4,1I1.2.2],

d’ou

1
B0~ B0 - (6, -0l <-.
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Remarque. Cette proposition n’est pas correcte si on remplace T' par T" (voir
[4. chap XIII 1.3]).

5.4. Le théoreme suivant ne serait pas correct si ’homéomorphisme g n’est
pas uniquement ergodique mais seulement minimal (voir a ce propos [4, XIII
1.3]).

THEOREME. On suppose que !’homéomorphisme g de X est uniquement
ergodique, d’une unique mesure de probabilité invariante p. sur X. Soit F= (g, h) un
homéomorphisme de X xR comme en 5.1. Alors, si n — +x, la suite de fonction
((1/n)(ps° E™(x, ) — 0)),.-1 converge uniformément vers une fonction constante; cette
constante est notée pf(f?).

Rappels d’exemples d’ homéomorphismes uniquement ergodiques:

Si X=T"""etsi g=R, est une translation minimale de T""', alors g est un
homéomorphisme uniquement ergodique de T"~!, 'unique mesure de probabilité
invariante étant la mesure de Haar de T"~'. Plus généralement pour un groupe
abélien compact, une translation est minimale si et seulement si elle est unique-
ment ergodique.

Pour démontrer le théoréme nous avons besoin du lemme suivant:

LEMME. Soit Y un espace compact, G un homéomorphisme de Y. Soit Y une
fonction continue de Y, Y C°(Y,R) telle qu’il existe A €R tel que, pour toute
mesure de probabilité v de Y invariante par G, on ait §y ¢ dv = A. Alors, si n — +x,
la suite

(w0,

i=0
converge uniformément vers A.

Démonstration du lemme. 11 suffit de voir que ¢ appartient a la fermeture
pour la topologie de la convergence uniforme de ’ensemble des fonctions {A +n —
n°G|AeR, neC’Y)}, Or cela résulte du théoréme de Hahn-Banach, en
utilisant le fait qu’une mesure de Radon sur Y est invariante par G si et
seulement si elle est nulle sur 'espace {n —m ° G | n € C°(Y)} et que toute mesure
de Radon v invariante par G s’écrit de facon unique v =v,—v_, ou v, et v_ sont
des mesures positives étrangeres invariantes par G (I'invariance venant de
'unicité de la décomposition de Jordan). W

Démonstration du théoréeme de 5.4. On écrit F(x, 0) = (g(x), 0+ ¢(x, 0)) avec
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o(x,0)e CU(XxT"). On a
- n—1
Fx 0)=(g"00, 0+ L 02 Fx 0))
i=0
et donc
1 . 1 n—1 .
— (2o F"(x,0)—0)=— Y, ¢°F'(x, 0).
n ni-o

Soient v;, i =1, 2, 2 mesures de probabilitiés invariantes par F sur X X T'. Chaque
mesure v; se projecte par p; sur 'unique mesure w invariante par g.

Il résulte du théoreme ergodique de Birkhoff et de 5.3 qu’il existe un
ensemble B T' de w-mesure 1 tel que, quels que soient xe B et 6T, on ait

= .
— Z ¢°oF'(x,0)—>ceR
ni-o

ou ¢ est indépendant de (x, 8)e BXT'. Comme I’ensemble B X T! est de v, et v,
mesure 1 on a

J‘ ¢ dv, = J edv,=c
XxT! X <T!

et le théoréeme résulte du lemme. W

5.5. Topologies

Sur I’espace des applications continues de X dans D%T?') (noté par
C°%X, D°(T 1)) et sur le groupe des homéomorphismes de X (noté Homéo (X)) on
met la topologie de convergence uniforme. Puisque X est compact métrique ces
espaces sont métrisables. Sur le sous ensemble de Homéo (X) Ue(X)=
{g e Homéo (X) | g est uniquement ergodique} on met la topologie induite.

5.6. Soit Y un espace compact métrique; rappelons que, si 'on munit ’espace
des fonctions continues sur Y, C°(Y), de la topologie de la convergence uniforme
et 'espace des mesures de probabilités sur Y (noté M(Y)) de la topologie vague
(ou topologie faible induite par la dualité o(M(Y), C°(Y))), alors ’espace M(Y)
est compact, métrisable, et on a le lemme immédiat:
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LEMME. Les applications suivantes sont continues:

(w, <p)eM(Y)><C°(Y)——>I educR;

X
(e, 8) e M(Y) X Homéo (Y) — ggm € M(Y).

5.7. Continuité du nombre de rotation fibré

PROPOSITION. L’application
F=(g h)e Ue(X)x C%X, D*T") — p;(F) eR

est continue.

Démonstration. 11 suffit de montrer que, toute suite (F,);~,, convergeant vers F
a une sous-suite (F, )=, 0<n, <n,,,, telle que si i — +o, pf(ﬁm) — p,(l:"). On
écrit F, =(g, Id+¢,) et F=(g Id+¢), ou ¢, et ¢ sont dans C¥XxT!,R). On
note F,(resp. F) 'homéomorphisme induit sur X X T! par F, (resp. X xT?), et v,
une mesure de probabilité sur X X T' invariante par F,. Soit (v, );=, une sous-suite
de la suite (»;); « M(X xT") convergeant vaguement vers v € M(Y); on a, par 5.6,
Fyv =v puisque F, — F uniformément. Par la démonstration de 5.4,

o F)=|  endv, )= [

XxT!

mais, par le lemme de 5.6, si i = +»,
J @, dv, %J¢dv. ||

5.8. Remarques. 1. Il n’est pas difficile de voir (par des arguments similaires a
5.7) que l'application F — @(F ) est continue pour la topologie uniforme au point
(g4, hy) € Ue(X) x C°(X, D°(T?)) si on définit 5;(F) comme un fonction de F=
(g, h) e Homéo (X)x C°(X, D%(T")) ainsi que nous I’avons fait en 5.2 (on peut
aussi remplacer la lim sup par la lim inf).

2. Si ’homéomorphisme g préserve une mesure de probabilité fixée p de X
(mais on ne suppose pas que g est uniquement ergodique) si h=Id+¢e
C°(X, D°%(T?)) et si F=(g h), alors, quand n — +, (1/n)(p, ° F"(x)(6) - 8) tend
pour p-presque tout x et tout 6 vers une fonction ¥ e L*(X, n), g invariante (cf.
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5.4). De plus I’application

F = (g, h)e{fe Homéo (X) | feu = u}x C°(X, D°(T")) — J Vdu R

X

est continue par la méme démonstration que 5.7.

5.9. Propriétés

On se donne F=(g h)eUe(X)xC%X,D%TY)) On écrit F(x,0)="
(g(x), h(x)(0)) =(g(x), 0+¢(x,0) ot @cC%XxT!). On désigne par F
I’homéomorphisme induit par F sur X x T

On a les propriétés suivantes pour la fonction continue F — p;(F)cR:

1) Si peZ, p(Id % R,) > F)=p+ p(F).

Si I'espace X est connexe, on pose pf(F) = pf(F )(mod 1) et cela ne dépend pas
du relevement F de F. Les propriétés suivantes ont alors des analogues immédiats
pour p(F)eT".

Si ’espace X n’est pas connexe on pose p(F) = pf(l:") mod D, ou D<R est le
sous-groupe pr(g X N) avec N={Ildg+x|x€C%X,Z)}. Si H=gx(Id+x), avec
Id+xeN on a p;(H) = fx x(x) du(x).

Par la démonstration de 5.4 on vérifie que p;(F) mod D ne dépend pas du
relevement F de F.

Le groupe D est dénombrable car ’esemble N I’est (puisque avec la topologie
de la convergence uniforme N est discret et séparable ’espace X étant compact
métrisable). On a toujours Z< D et D est le Z-module de R engendré les valeurs
w(U;) ou U; sont les ensembles compacts ouverts de X.

2) Si pour tout xe X on a h;(x)=<h,(x), ou h,e C(X, D%T"Y) pour i=1,2,
alors p(g, hy) =ps(g, hy).

3) 11 en résulte que la fonction suivante

A —p((IdxR,)F)=k(A)eR

est continue, monotone non décroissante, et vérifie k(A +1)=k(A)+ 1.

4) Si pf(ﬁ) = a €R, alors ’homéomorphisme de X xR (g, R,) "' F a un point
fixe. (Cela résulte de ce que fx.7: ¢ dv=a, ol v est une mesure de probabilité
invariante par ’homéomorphisme F de T'xP(R?). La fonction ¢ s’annule donc
en au moins un point.)

5) Soit H(x, 0) = (x, l(x)(0)), ou le C°(X, D°(T")). La méme démonstration
que [4, II et XIII. 1] donne p(H°(gxXR,)eH ) =qu.

6) Soit g un homéomorphisme de X totalement uniquement ergodique (i.e.
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pour tout neZ—{0}, g" est uniquement ergodique) alors
pf(f:“) = npf(ﬁ).

7) Soit F=Ho(gXxR,)°H™ " avec H(x, ) =(x, l(x)(8)). Par 5) ps(F)=a. On
ala

PROPOSITION. p((Id XR,)°F)=a & A =0.

Démonstration. Si E, = (g, h;) € Ue(X)x C°(X, D°(T")) vérifie p(F,)=a et si
F=H-(gxR,)°H™', alors F;cF™' a un point fixe. En effet par 4)
’homéomorphisme H 'oF, o F~'o H de XXR a un point fixe et donc aussi
E,oF7'. Si I'on avait ps((Id X R,) oF)=a pour un A#0, 'homéomorphisme
Id xR, de X xR aurait un point fixe et donc A=0. W

8) Soient g€ Ue(X) et a €R fixé. On pose 0°(g X R,) =1la fermeture pour la
C°-topologie dans Ue(X)xC%X,D°T') de I'’ensemble {H 'o(gxR,)°
H | H(x, 8) = (x, I(x)(8)), 1€ C°(X, D°(T"))}.

PROPOSITION. Pour tout F,=(g h)e Ue(X)xC%X, D(TY) vérifiant
p(F)) =« et tout Fe0°gxR,), I’homéomorphisme F,oF~' de XXR a un point
fixe.

Démonstration. Si 'on fixe Fl, alors pour tout H, par 4) Fl o
(He(gxR,)°H ") a un point fixe; or, ’ensemble des F = (g, h) avec g fixé et
h e CU(X, D°(TY)) tel que F, o F~! n’ait pas de point fixe sur X XR est ouvert pour
la C°-topologie. W

COROLLAIRE. Si Fe0%gxR,) alors p:(Id X R,) c F)=a& A =0.

Remarque. La proposition ci-dessus n’est pas valable si on remplace T! par
™

EXEMPLE. X=T!, g=R, o «aeT'-(@/Z), h(x)eHoméo (T?),
A(x)(8y, 6,) = (0, +¢1(2), 0+ ¢a(x)), oit € C(T',R), fo ¢i(x) dx =0, pour i=
1,2 et les fonctions ¢; et ¢, n’ont pas de 0 commun.

5.10. Le groupe G=(T")
On considére le sous-groupe G=(T") de groupe des difféeomorphismes de T",
n=2, défini par G(T")={(R.xh)|aeT""!, he C5(T"", Diff (TY)}, ou, si
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acT" !, R,:0eT" ' 0+acT" !, et ou CH(T" ' Diff(T")) désigne ’ensem-
ble des applications de classe C* de T" ! dans Diff(T"') homotopes a I’applica-
tion constante 8cT" ' —Idy (i.e. he C™ veut dire que (x,0)eT " 'xT!—
h(x,0)eT' est de classe C®). Diff3(T') désigne le groupe topologique des
difféomorphismes de classe C” préservant 'orientation avec la C*-topologie. On
met sur G*(T") la topologie C~.

On définit aussi le sous-groupe de Homéo (T") GT")={(R,xh)|acT"},
h e C)(T"', Homéo, (T"))} et on met sur G°(T") la C°-topologie. On rappelle la
définition:

DEFINITION. (a, B)eT " 'XT" satisfait a une condition diophantienne s’il
existe C>0, y>0 tel que, pour tout (ko,ki,...,k,)eZxXZ"—{0}), on ait
|ko+ knB+ 371 ki@ =Ck[™, ot |k|=supi=i=. |ki| et (& B)eR" est un
relevement de (a, B)eT" a R".

On rapelle que Lebesgue-presque-tout (o, B)T" satisfait & une condition
diophantienne.

Si (e, B) e T" satisfait a une condition diophatienne, alors la translation R, de
T ! est minimale et donc uniquement ergodique.

5.11. Corollaire due théoreme d’ Arnold et de Moser
On a le corollaire suivant du théoréme d’Arnold et de Moser, théoréme qui
est démontré dans [4, Appendice] (voir aussi [6]).

COROLLAIRE 1. Soit (a,B)eT" 'xT! satisfaisant a une condition
diophantienne. Il existe un voisinage V,z de (R,, Rg) dans G™(T") et une
application continue pour la C™-topologie (et méme de classe C™ au sens d’ Hamil -
ton) Sap: Vap—=T'XG™(T") telle que S,g(F)=(A, H) vérifie H(0)=0 et
F=Rp\°H°(R,xRg)°H ™"

Démonstration. 11 suffit d’appliquer [4, A] et [4, IV.5.1] pour s’assurer que
H e G=(T"). Cela résulte aussi de la démonstration de [4, A] ou de [6]. (On peut
aussi raisonner directement et montrer que H est fibré exactement comme dans la
démonstration de 4.13.) W

Remarque. Si F définit un difftomorphisme R-analytique de T" il en est de
méme de H (voir [4, A)).

5.12. COROLLAIRE 2. Soient (a, B) satisfaisant a une condition diophan-
tienne et F=(R,, h)e V,g (voisinage du corollaire 1). On suppose que p;(F)= 3
(ici X=T""', g=R,); il existe alors H= Id- Xl avec le Cg(T" !, Diff; (T?)) tel
que lon ait F=H°(R,xRg)-H .
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Démonstration. 11 suffit d’appliquer 5.11 et 5.9.7). R

5.13. Soit G{(T")=T""'xCs(T""!, PSL(2,R)): on suppose PSL(2,R) >
Diff;(P(R*)=Diff7(T '), cette inclusion venant de I’action canonique de
PSL(2,R) sur P(R?*. L’indice 0 dans Cj indique que I'on ne considére que les
applications de classe C” homotopes a I’application constante xe T" ' —e.

L’application

cos 2w —sin 2P

SL(2,R
sin 2B cosZwB)e @R)

Be'ﬂ"—»(

donne I'application 8 — R,z € T' < PSL(2,R) < Difff(T"). G{(T") est canonique-
ment un sous-groupe de G=(T"), et on utilise 'indice L pour linéaire. On définit
aussi le sous-groupe de G°(T"), GX(T™) =T 'x CYT" !, PSL(2,R)).

5.14. COROLLAIRE 3. Soit (o, B)e T" ' XT! satisfaisant a une condition
diophantienne et (R,, A)eV,gNGL(T") (voisinage du corollaire 1) vérifiant
pr(R,, A) = B. Alors il existe He GT(T") tel que I’on ait
(+) F=H<(R,XRg)oH .

lére Démonstration. Par 5.12, il existe H, € G*(T") vérifiant (+); on veut voir
que H, e G{(T"); or H, est unique si on impose que: H;(0) =0 et il suffit de voir
qu’il existe Hye G2(T") (i.e. de classe C°) vérifiant (+). Il existe C>1 tel que,
pour tout xe T" ! et tout entier n =0, on ait

AR I=C,

oll Ak (x)=A(Rp_na(x)) - - - A(x) et]| || est la fonction induite sur PSL(2, R) par
la norme sur £(R? R?), elle méme induite par la norme euclidienne de R?: si
v = (v, v,) €R?, ||v|]> = v3+ v3. En effet le diffomorphisme H, est de classe C' et
donc

- <o
det DF™

CoUT " <P (R?)

sup

n

puisque F = H, (R, X Rg) © Hi* (cf. [4, IV 1]). DF™ désigne la dérivée de F". Or

“(—i—e—t—})F “@ = | AR Jeocr-y.
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(On utilise le fait que, si veR?, |lv]|=1, v =(cos 270, sin 270) pour un 0T’ et

B=(a b)eSL(Z,R),
c d

alors

D __c_i_ (__1__ Koot (a cos 270 + b sin 2170)) 1 ‘)
do \2m B\ cos 2m0 + d din 270/ | BuF

Par un théoréme de Cameron (la démonstration étant analogue a celle de
[9-§2.5]) il existe H;e GY(T") (on peut supposer que Hj; est homotope 2
I’identité) tel que Hyc FoH3'=(R,, A,), ou A;(x)=e*™® et ¢ C/(T" ', R).
Par ’'invariance du nombre de rotation fibré (cf. 5.9.5)), on a [t~ ¢(x) dx = B. Par
[4, XIII 5.3], il existe n € C%(T" ', R) tel que Hy(x, 0) = (x, e>™©@*"™)) yérifie

H,o HyoFo Hy' o Hy'(x, 0) = (x +a, €2™*®)

et
H,=H,°H,e GX(T") vérifie donc (+). W

Remarque. On a montré en plus: si Fe G{(T") vérifie (+) avec un He
G™(T") alors He G(T") (et on a seulement utilisé le fait que R, X Rg est une
translation minimale de T").

2eéme démonstration si le voisinage V, g est assez petit. Pour tout n>0, si le
voisinage ¥, g est assez petit, on peut supposer qu’il existe H; € G™(T") vérifiant
(+) et |H;— Id||cr<m. (Cela résulte de la continuité de I’applications S,g de
5.11). Puisque H, est de classe C*, on a:

a) La suite (ﬁ_"a . A;‘z«),,e,\, d’éléments de C=(T"?, SL(2,R)) est bornée dans
la C™-topologie, ou

_ cos 27wnB  —sin 27nP

R,g = ( . = ),

sin 27tnB  cos 27NB

avec BeT! vérifiant 28 =B, AR (x) = A(Ru_pa(X)) * - - A(x) et x —> A(x) est un
relevement de x — A(x)e PSL(2,R) voisin de ﬁa. (Cest possible puisque x —
A(x) est homotope a I’application x — e.) Pour voir ceci, il suffit d’écrire la
matrice Ak en coordonnées polaires, en utilisant @D et [4, IV 1 et XIII 1.4].



Une méthode pour minorer les exposants de Lyapounov 495

b) Si n est assez petit, on a
sup [R_,g AR, — ellco-1 <3,
n=1

ou e est la matrice unité de SL(2,R).
Soient B,=(1/n)Yr=} R-_ne,og}‘za, n=1; par a) la suite (B,),n* est
d’adhérence compacte pour la C™-topologie dans I’espace de Fréchet-Montel
C=(T" !, £(R? R?); soit B une valeur d’adhérence de cette suite (i.e. telle qu’il
existe une suite 0<m; <n;,, d’entiers telle que, si i — +oo, B — B dans la
C>-topologie). Par b), on a |B—e|<3 et donc Be C*(T"! GL+(2 R)). Si
xeT",

B.(R.(x)) A(x)=R, - En(x)%ﬁs(ﬁw AR (0)-e)

et donc, si n; — +x,
B(R,(x)) - A(x)=Rg - B(x).

Il en résulte qu’il existe ¢ >0 telle que pour tout x € T""?, on ait det B(x) = c. Si
B désigne 'image de B dans C* (T"!, PSL(2,R)), alors H=Id XBe G{(T")
vérifie (+). W

5.15 Remarques. 1. Le voisinage V,g est induit par un voisinage dans la
C**=_topologie et sa taille ne dépend que de la constante C>0, ou vy et C sont
les constantes de la condition diophantienne 5.10 (cf. [4, A.2.5]).

2. On peut affaiblir la condition diophantienne sur (e, B) (cf. 3.2 [14] et [6]).

5.16. Vecteur de rotation
Soit F=(R,, h)e G%(T"), agissant sur T" 'xT!. Si R, est une translation
minimale de T"™!, on définit le vecteur de rotation de F par

p(F)=(a, pe(F))eT".

Cette définition est compatible avec celle de 5.2 remarques 1) et de [4, XIII.1].
L’existence et la valeur de p(F) sont invariantes par conjugaison par un
homéomorphisme de T" homotope a I'identité [4, XIII 1].

Sia=(ay,...,a,_;)eT"!, on définit le module M, des fréquences comme le
Z-module de T! engendré par a,, ..., Q1.
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Si k=(ky,...,k,_1)€Z"', on définit le difféomorphisme S, :(x, 0)e
T IXT' > (x, 0+<¢k, x) e T™ avec ¢k, x)=Y kx; si x=(x;,...,%,.1).- On a S, €
T 'xC*(T" ', PSL(2,R)), mais pour k#0, S;& G%T"). On définit des au-
tomorphismes extérieurs des groupes G°(T") et G{(T") par F— S, o Fo S; !, et
on a

p(S o Fo S )= (Oﬂ, Pf(F)‘*':lg kiai)

et un isomorphisme de Z-modules
ke Zn_l -—> pf(Sk oFo Szl) - pf(F) € ./“a.

5.17. Vecteur de rotation et structure hyperbolique

Soit F=(R,, f)e G°(T"), ou R, est une translation minimale. On suppose que
I’homéomorphisme F de T" 'XT! laisse invariant le graphe d’une application
continue ¥:T" ' — T'. Par exemple, F est ’homéomorphisme induit sur T" ' X
P(R? par I’'homéomorphisme fibré (R, A)e T 'x C%T" !, SL(2,R)) agissant
sur T" ' xXR? et possédant une structure hyperbolique (cf. 4.2 et 4.3).

PROPOSITION. Soit F comme ci-dessus Si p(F)=(a, B)T" alors Be M.,

Démonstration. Si ¥ est homotope a une application constante alors B8 =0.
On se raméne a ce cas en considérant S, c Fo S (cf. 5.16). W

5.18. Soient R, une translation minimale de T"" ' et B T'. On pose FJg=
{FeG%T")|p(F)=(a, B)} et Fog=FssNG™(T"). Par la continuité de la fonc-
tion ps les ensembles Fg 4 et Fy; sont fermés (pour la C'-topologie).

Il n’est pas difficile de voir que les groupes topologiques G°(T"), G{(T"),

2(T™) et GT(T™) sont connexes par arcs et métrisables.

PROPOSITION. L’ensemble F g est connexe pour la C™-topologie.

Démonstration. Soient Ly ={(R,xf)eG™(T")|y=a, f(0)(0)=0} et HZ=
(R, xf)e G=(T") | y=a}, on a L HZ.

En remontant & T"'XR on vérifie que L est connexe par arcs. Soit
I’application continue, surjective (cf. 5.9.3); p,:Hz—L3, (R, Xf)—
(Id X R_;q)) ° (R, X f). Si on identifie H; a T!x L2, par 'application (A, F)—
(Id X R,) ° F alors p, est la 2&me projection. 1l suit, que puisque T' est un espace
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compact métrique, que si F est un ensemble fermé de H{ alors I’ensemble p,(F)
est fermé dans L.

Si 'ensemble fermé F; 4 n’est pas connexe alors Fog=F,]IF, ou F, i=1,2,
sont des ensembles fermés disjoints de Hg. Or, les ensembles p,(F,) i =1, 2, sont
fermés et vérifient p,(F))Up,(F,)=L; et donc p,(F;)Npy(F,)#®. Soit ye
p.(F1) N p»(F,), par 5.9.3), p5'(y) est un segment (pouvant étre réduit 4 un point)
et il en résulte par 'absurde que F; est connexe. W

Remarque. Par la méme démonstration les ensembles Fg g, FogN G (T") sont
connexes.

QUESTIONS. Si B¢ Qa+Qmod 1 (resp. si B¢Za mod 1) et si fe Fo g (resp.
feFogNGL(T")) est-ce-que p((Id X R,) ° F) = B implique A =0?

Pour de réponses partielles positives a ces questions cf. 5.9. 7) et 8). Des
résponses positives a ces questions impliquent respectivement que si B5Qa +Q
mod 1 (resp. B&Za mod 1) alors FJzc HY (resp. FogNGLT™) < HANGY(T™))
est le graphe d’une fonction continue de L)) dans R (resp. de LSN G{(T") dans R)
(cf. [4, III)).

Il suit de 5.17, que si B € Za mod 1 alors G7(T") N F, g a un intérieur non vide
dans G(T") (i.e. il contient 'ouvert de ceux qui agissant sur T" ' XR? ont une
structure hyperbolique). Il en résulte que Fg g a aussi un intérieur non vide
dans G*(T") (en utilisant le fait qu’un tore invariant par un difféomorphisme
de classe C”, normalement hyperbolique, est stable par perturbation C* du
difféomorphisme).

En utilisant les revétements finis il en résulte que si BeQ+Qa mod 1 alors
FZ g a un intérieur non vide dans G™(T") (si (R,, f)e G™(T"), et (R,, f) est un
relévement 3 T" ' XR, pour q eN* et p € Z les revétements d’ordre q s’obtiennent

par (R,, f,) ol
- 1 p
(R )6.9) = (0 + o f0)ay) + L) ).
5.19. On reprend les notations de 5.18. On pose
0:.3 = {F o (Ra X RB) o }7_1 l Fe Gw(-ﬂ_")} et OZ,B,L = 0:’3 N G‘i('u"n)

Par 5.9.5), on a 03 g< F. 4 (de plus 07 est connexe).
Si (@, B) satisfait & une condition diophantienne il suit de 5.11, par con-
jugaison C*, que P'ensemble 03 g est ouvert dans F, g pour la C*-topologie.
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PROPOSITION. Si (a, B) satisfait a une condition diophantienne alors |’en-
semble 03 g n’est pas fermé dans F_ g pour la C™-topologie.

Démonstration. Par I'absurde. Si 03z était fermé dans F_ g alors il serait
ouvert et fermé et donc par 5.18, 03 g=F_ g. Ceci contredit 4.6 et 4.13. W

Par la remarque de 5.14, si R, X Rg est une translation minimale de T", alors
on a

07pL={F°(R,XRg)eF'| Fe GL(T")}.
Par la méme démonstration on a la proposition.

PROPOSITION. Si (a, B) satisfait a une condition diophantienne alors I’en-
semble 03 g, n’est pas fermé dans F_gN G (T") pour la C™-topologie.

Remarque. Si a ne satisfait pas a une condition diophantienne alors I’ensem-
ble 03 g, n’est pas fermé ni ouvert dans F_ gNG{(T") (cf. [4, XIII 5]).

6. Complément: dépendance plurisousharmonique de parameétres complexes

6.1. Soient X est un espace compact métrique, u une mesure de probabilité
sur X, et g: X — X une application borélienne préservant la mesure w.

On suppose que r>0, peN* et que lapplication A:D?XX—>%R est
borélienne, ou B est une algebre de Banach sur C avec la norme || ||. On suppose
que la fonction (7, x) = ||A (7, x)|| est bornée sur D? X X et que, pour tout x € X,
I'application n — A(n, x) est holomorphe sur I'intérieur de D} (notée Int (D?)).
Pour n fixé on note par A, : X — & l'application x — A(n, x).

La mesure p sur X étant donnée et m fixé pour I’application fibré (g, A,) de
X X% comme en 1.2 et 1.3 on définit A,(g, A,) eRU{—x}.

PROPOSITION. Sour les hypothéses ci-dessus la fonction me€IntD} —
A (g, A,)eRU{—ox} est plurisousharmonique.

Démonstration. On pose b, (n, x) = 1/2* Log||(A,)3"(x)|| pour k eN. Pour x e X
fixé, n — by (7, x) est une fonction plurisousharmonique. La fonction n — a,(n) =
fx bi(m, x) du(x) est aussi plurisousharmonique: soient NeN et xe X fixé la
fonction n — b, n(n, x) = sup (b, (7, x), —N) est une fonction plurisousharmonique

bornée en module, et donc, par [12, 2.2.1], n = a, n(0) = j b n(m, x) dp est une
X
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fonction plurisousharmonique. La suite de fonctions (b, n)n=0o €St décroissante et
donc  — a;(m) = Infy=o (ax n(m)) est une fonction plurisousharmonique (voir [7,
1.6.2]). 11 en est finalement de méme par 1.3 de la fonction n — Inf, a,(n) =

(g A) B

Remarque. Si p =1, par la décomposition de Riesz la fonction n — A, (g, A,)
est sur Int D! la somme d’une fonction harmonique et de la fonction

jLog In — x| dv(x)

ou v est une mesure de Radon positive ou nulle. Cette décomposition de Riesz
peut, en un certain sens, étre considérée comme une version ‘‘abstraite” de la
formule de Thouless.

6.2. Exemple d’application

On se donne X, g, u comme en 6.1 et une application borélienne B : X —
SL(2,R) telle que les fonctions x € X — || B(x)|| et x — ||B~'(x)|| soient bornées ol
Il || est une norme de L(R?, R?).

Comme la décomposition d’Iwasawa est un difféomorphisme R-analytique de
SL(2,R) sur NAK on peut écrire de fagon unique

A(x)  b(x) )(cos 2me(x)) —sin (2mp(x))>

B(x)= ( 0  1/A(x)/\sin Rme(x)) cos Rme(x))

ol ¢ : X — T! est une application borélienne, les fonctions x — A(x), x = 1/A(x),
x — b(x) sont boréliennes bornées et pour tout x € X, A(x)>0. De plus, si X est
une variété R-analytique, les fonctions ¢, A, b sont aussi dérivables que I’est
I’application x — B(x). On écrit

Alx)  b(x) )

T(")z( 0 1/A(x)

et siaecT!,

B.(x)= B(x) (cos 2ma —sin 21ra).

sin 2 cos 2mra

1 0 .
sur un ensemble de w-mesure positive, on a

Si T(x)# (0 1

5(B) = L 1 Log GG+ IAG)? + B2(x)]) du (x)>0.
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On considere application fibré (g, B,) de X X £(R? R?), on met sur X la mesure
@ et on a:

PROPOSITION. Il existe un ensemble de a € T' de mesure de Haar positive tel
que l’on ait:

A.(g, B,)=3(B).

Démonstration. On pose
A, (x) =(T(x)C+n2%e* *™T(x)C) e Lc(C? C?
1 o

i 1
Ne =€*™* (i.e. si |m,|=1)

N l = . . p ;
ou C=%( ), C est la matrice complexe conjuguée et neC. On a si

B,(x)=A,_(x)/(n,e*™*™) A (g, B,)=A.(g A,).

Par 6.1 la fonction neC —A,(g, A,)€R est sousharmonique et donc pour 7
appartenant 2 un ensemble de mesure de Haar positive de T} (i.e. |p|=1) on a

’\+(g’ Aﬂ) == A~4}—(g9 AO) = A+(g5 TC)~

1 0
On veut montrer A_(g, TC)=856(B), pour cela on pose L = (_i 1) et on a
0 c(x)
“T(x)CL -_-( )
L (x)C 0 d(x)

ot d(x)=3(A(x)+1/A(x)+ib(x)) =Tr(T(x)C). Puisque L est une matrice cons-
tante on a

A.(g, L7'TCL) = A.(g, TC)

et on vérifie que

Mg LTCL) = Logld()| du()=5(B). ®

X
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6.3. Un autre exemple

Soient X, u, g et A: X — Z-(C", C") vérifiant les conditions de 6.1.

Soit a un élément de l'algebre de Lie de SL(n, C). La proposition suivante
résulte facilement de 6.1.

PROPOSITION. Pour tout r>0 il existe n,€C tel que 'on ait |n,|=r et
A«»(g’ A- 248} (nra)) = A+(ga A)
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