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Une méthode pour minorer les exposants de Lyapounov et quelques
exemples montrant le caractère local d&apos;un théorème d&apos;Arnold et de
Moser sur le tore de dimension 2

MlCHAEL R. HERMAN

1. Introduction et notations

1.1. Pour r&gt;0 on considère le polydisque

Dnr={(zu zn)eCn | |zj&lt;r, l&lt;si&lt;n},

où, si zeC, |z|2 zz, ainsi que le polycercle

T? {(zu..., zn) e Cn | |z,| r, 1 &lt; i &lt; n},

qui est difféomorphe à Tn Rn/Zn, et on désigne la mesure de Haar normalisée
sur T&quot; par m ou dd (T1 sera toujours identifié au cercle unité T] de C par le
difïéomorphisme

1.2. Soit X un espace compact métrisable non vide et m une mesure de

probabilité sur X. On se donne une application continue g de X dans X et une
application continue A de X dans une algèbre de Banach (08, || || où || || est une
norme d&apos;algèbre de 38 sur (R.

Au couple (g, A) on associe l&apos;application fibrée (aussi appelée produit gauche,
produit croisé ou skew produit)

G : Oc, y) : Xx^-^(g(x), A(x)y)eXx®

au dessus de g : X-»X. On a, si k eN*,

Gk(x, y) (gk(jc), Akg(x)y), A\(x) A(gk~\x)) • • • A(x).

On pose

À+(g,A)=liminf^ où ak= f Uyg\\Ak(x)\\dm(x\ A+(g,
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454 MICHAEL R HERMAN

(L&apos;intégrale étant ici et dans la suite l&apos;intégrale inférieure.) (on peut avoir
À+(g, A) -oo). On note aussi À+(g, A) A+(X, g, A) pour indiquer que g : X-&gt;

X.
La valeur de À+(g, A) ne change pas si on remplace la norme de 98 par une

norme d&apos;espace de Banach équivalente. Ceci implique À+(g, A) À+(g&gt; A &lt;8&gt; 1), où
(A &lt;g&gt; l)(x) A(x) &lt;8) 1 e® ®|r C et 38 ®u C est l&apos;algèbre de Banach compléxifié de

08, sur laquelle on peut par exemple choisir pour norme sur C ||x ® À|| ||x|| |A|.

1.3. Si l&apos;application g préserve la mesure m (i.e. g%m m) alors la suite (ak)
est sous additive (i.e. ak+p&lt;ak4Op pour tout entier fc&gt;l et p&gt;l) et on a

et de plus la suite (2&quot;&quot;pa2p)psi est décroissante. Sous la même hypothèse, par le
théorème ergodique sous-additif [3] la suite de fonction ((l/fc)Log||Ag(x)||)ksl
converge, si fc —»+oo, m-presque partout vers une fonction *&quot;, presque partout
invariante par g et vérifiant Jx ^(x) dm À+(g, A).

Si g#m m, l&apos;application (g, A) —&gt; À+(g, A) gIR U{-&lt;»} est semi-continue
supérieurement si sur les couples (g, A) on met la topologie de la convergence
uniforme. Dans la littérature A+(g, A) s&apos;appelle Vexposant de Lyapounov
maximal.

1.4. Il y a un cas que nour allons décrire où, pratiquement par définition, on a

À+(g,A)&gt;0.
On se place dans la situation suivante: on suppose que Ç&amp;A est un espace de

Banach de norme notée || ||a et A une application continue de X dans l&apos;algèbre

«S?(â8i, 38x) des opérateurs IR-linéaires continus de 38 x dans 38 j avec la topologie de la
norme. On fait agir (g, A) sur Xx981 par G(x, y) (g(x), A(x)y). Si m est une
mesure de probabilité sur X on définit À+(G) À+(G).

DÉFINITION. On dit que l&apos;application fibrée G a une structure partiellement
hyperbolique si le fibre trivial Xxd&amp;1-*X est la somme directe de 2 fibres
continus Es et Eu (si xeX, E* désigne la fibre en xeX de Es) et s&apos;il existe des

nombres lx et l2 vérifiant, Ii&gt;l, li&gt;!2&gt;0, et C&gt;\ tels que, quels que soient

xeX et neN*, on ait:

- pour tout x€X,dim(E^)^0^= dim(Esx);
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On dit que Vapplication fibrée G a une structure hyperbolique quand de plus on
peut choisir 12&lt;1.

Remarques. 1) Cette définition implique que les fibres Eu et Es sont sous-
invariants par G (Le. G(Eu)aEu G(Es)czEs).

2) Si on se restreint aux G qui sont des homéomorphismes fibres, le fait que G
ait une structure partiellement hyperbolique (resp. hyperbolique) est une propriété
stable par perturbation de G dans la topologie la convergence uniforme [18, p.
100-1].

1.5. Résumé de Varticle
Nous nous proposons de donner une méthode pour constuire sur T7()xC2 ou

T&quot;ox(R2 des examples explicites d&apos;applications fibrées G IR-analytiques vérifiant
\+(T?0, G)&gt;0 mais n&apos;ayant pas de structure hyperbolique. MillionScikov a suggéré
en 1969 la possibilité d&apos;exemples au-dessus d&apos;une rotation irrationnelle de T1 [13]
(voir aussi [10] et [19]) (mais de tels exemples ne sont ni explicites, ni précis en ce

qui concerne les rotations qu&apos;on peut choisir).
Au §2 nous donnons une méthode abstraite pour minorer, sur des exemples

d&apos;applications fibrées G : D?oxCp -&gt;DrnoxCp holomorphes l&apos;exposant À+(G).
Cette méthode est basée sur l&apos;utilisation des propriétés des fonctions plurisoushar-
moniques. En 2.8 et 2.9 nous inclurons une généralisation aux groupes compacts
abéliens dont les groupes duaux sont totalement ordonnables.

Au §3 nous étudions des exemples où la méthode du §2 s&apos;applique

immédiatement.
En 3.2 nous démontrons un corollaire (immédiat) du théorème de C. L. C.

Siegel, tel qu&apos;il a été généralisé par E. Zehnder [20], sur les formes normales
d&apos;une application holmorphe au voisinage d&apos;un point fixe: le théorème de Siegel
fibre au-dessus d&apos;une rotation.

Les exemples 3.3 et 3.5 montrent que le théorème de Siegel fibre est un
théorème local et ceci indépendamment de toute condition arithmétique (il est
immédiat de voir que le théorème de Siegel est local ainsi que le montre
l&apos;exemple 3.4).

En 3.7 nous donnons un exemple au-dessus d&apos;un diflféomorphisme d&apos;Anosov

ayant des exposants mais pas de structure hyperbolique.
Au §4 nous donnons des exemples de difféomorphismes fibres R-analytiques F

de T^xlR2 F (Ra,A) où Rct(0)^e^a et A rfleT1-» A(0)eSL(2,R). Ces

exemples sont encore une application de la méthode abstraite du §2.

En 4.1 nous retrouvons l&apos;exemple que nous avons construit dans [5] et je
pense que le §2 est la version abstraite induite par cet exemple, qui n&apos;a pas de

structure hyperbolique puisque 6—&gt;A(0) n&apos;est pas homotope à une matrice
constante unité (cf 4.2).
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En 4.5 et 4.7 nous donnons des exemples où l&apos;application OeT1—&gt;A(0)e

SL(2,U) est homotope à la matrice constante unité.
Pour s&apos;assurer qu&apos;on peut choisir, dans l&apos;exemple 4.5, F sans structure

hyperbolique on montre que À+CR^ Rp • A)&gt;0 pour tout aeT1 et 0eT\ où

~ _/cos2ttj3 -sin27r/3\
3&quot;\sin27rj3 cos2-n£/

et on choisit /3 de façon ad hoc en utilisant la théorie du nombre de rotation
fibrée. On peut même fixer arbitrairement dans (T1-(Q/Z))xT1 le vecteur de

rotation du difïéomorphisme induit par F sur T1x P(U2) ayant des exposants et

pas de structure hyperbolique (voir 4.6).
Nos exemples one l&apos;avantage d&apos;être R -analytiques et de ne dépendre d&apos;aucune

condition arithmétique sur le vecteur de rotation.
4.13 montre que ces exemples n&apos;ont pas en général des propriétés analogues à

celles des contre-exemples de Denjoy sur le cercle.
L&apos;exemple 4.14 a des propriétés analogues à celles des exemples suggérés par

Millionscikov [13], exemples à propos desquels le lecteur se rapportera à R. A.
Johnson [10, 3.13 et §5] pour des démonstrations et quelques propriétés. Le
lecteur consultera aussi [8] et [9].

Les §§4.14 à 4.16 sont très semblables à certains des résultats de R. Johnson

[10] bien que l&apos;auteur de ces lignes les ait obtenus indépendamment. Dans
l&apos;annexe 4.17 nous avons, pour la commodité du lecteur, inclus une proposition
essentiellement due à R. Johnson.

Au §5 nous définissons et démontrons quelques propriétés du nombre de

rotation fibre pour des homéomorphismes de la forme F : (x, 6)eXxJ1-^(g(x),
h(x)(0))€XxT\ où x—»h(x)eHomeo+(T1) est homotope à l&apos;application constante

identité et X est un espace compact métrique. La raison de l&apos;esistence en
est presque la même que pour le nombre de rotation d&apos;un homéomorphisme du
cercle et la démonstration que nous en proposons est presque celle que nous
avons donnée pour les homéomorphismes du cercle [4, II]. Nous étudions aussi les

propriétés analogues à celles qu&apos;on a pour le cercle [4, II et III]. Pour d&apos;autres

généralisations aux homéomorphismes de Tn homotope à l&apos;Id le lecteur se

rapportera [4, XIII] (la situation est infiniment plus compliquée).
Le théorème d&apos;Arnold et de Moser [4, Appendice] a des corollaires fibres

5.11, 5.12 et 5.14. Le corollaire 5.12 est l&apos;analogue de la proposition [4, A.2.3]
pour les difléomorphismes du cercle. Le corollaire 5.14 (presque immédiat) du
théorème d&apos;Arnold et de Moser affirme que, pour les matrices fibrées à valeurs
dans PSL(2,U) au-dessus de translations diophantiennes de Tn~\ la conjugaison
fibrée de 5.12 se fait par des matrices fibrées. Pour des généralisations à des

matrices de plus de 2 variables et un affaiblissement des conditions diophantien-
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nés, le lecteur se rapportera à J. Moser [14] et en classe C°° à [6]. Le lecteur peut
aussi consulter H. Rùssmann [17].

Les exemples 4.6 et 4.12 montrent que le théorème d&apos;Arnold et de Moser sur
Tn, n&gt;2 est en un certain sens un théorème local, et ceci indépendamment de

toute condition d&apos;analycité ou d&apos;approximation par les rationnels du vecteur de

rotation, ce qui contraste avec le cas du cercle [4, IX].
Au §6.1 nous étudions la dépendance plurisousharmonique en fonction de

paramètres complexes de À+(g, A). En 6.2 et 6.3 nous donnons des applications
dont 6.2 nous semble inattendue.

Dans l&apos;exposé des exemples nous avons évité une trop grande généralité et un
caractère exhaustif bien que nos méthodes soient tout à fait générales. Le principe
est qu&apos;ayant la minoration du §2, on peut ensuite faire des modifications tout en
gardant la minoration. La minoration du Scolie de 4.1 est en général instable par
perturbation, et on peut montrer dans l&apos;exemple 4.1 par une perturbation C° que
l&apos;exposant tombe à 0.

L&apos;existence du nombre de rotation fibre pour certains homéomorphismes
fibres de XxT1 a été trouvée indépendamment de l&apos;auteur de cet article par R.
Johnson (un peu avant) [11], par une méthode très semblable. En fait la méthode
est la même que celle de [2] et [4, II]. Comme notre démonstration est plus
générale et que nous avons besoin de certaines des propriétés de 5.9 pour 5.12 et
4.12 nous avons inclus notre démonstration.

Les exemples de 4.7 confirment très simplement et généralisent une conjecture

de G. André et S. Aubry [1, 4.4]. J. Avron et B. Simon annoncent dans [A]
une démonstration rigoureuse de l&apos;argument esquissé par G. André et S. Aubry
[1,4.4].

Une partie des résultats a été annoncée au séminaire de théorie Ergodique de
l&apos;Université Paris VI en Janv. et Février 1980 (i.e. essentiellement le §2 et 4.1)
ainsi qu&apos;au séminaire de théorie ergodique tenu aux Plans sur Bex en Mars 1980.

Je voudrais remercier A. Chenciner, A. Fathi, J. P. Thouvenot et J. C. Yoccoz

pour des discussions fructueuses. Je voudrais aussi remercier très vivement
l&apos;Université de Warwick pour sa très grande hospitalité pendant mon séjour en
Juin et Juillet 1979 durant lequel ce travail a été en grande partie effectué.

Je remercie R. Johnson de m&apos;avoir signalé une erreur au §4.14 de la version

préliminaire. Je remercie M. Chaperon de m&apos;avoir aidé à relire le manuscrit, ainsi

que C. Harmide de l&apos;avoir tapé avec dextérité et grand soin et A. Fathi de m&apos;aoir

aidé à relire la version préléminaire.

1.6. Notations
Si X est un espace compact métrique, on note C°(X) C°(X, M) l&apos;espace des

fonctions continues sur X à valeurs réelles avec la norme IMIco supxeX|&lt;p(x)|. Si
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Y est un espace topologique, C°(X, Y) désigne les applications continues de X
dans Y avec la topologie compacte ouverte. Si W est une application de X dans Y
le graphe de ^ est l&apos;esemble {(x, V(x)) e Xx Y \ x e X}.

Pour K U ou C, SL(2, K) désigne le groupe des matrices 2x2 sur K
déterminant 1.

Pour p un entier positif on désigne par &lt;£(RP,MP) (resp. i£c(Cp,Cp)) les

applications R-linéaires (resp. C linéaires) de IRP dans IRP (resp. Cp dans Cp). On

supposera toujours que les espaces vectoriels Rp (resp. Cp) sont munis de leurs
bases canoniques, et on identifiera les espaces i£([Rp,[Rp) et i£c(Cp,Cp) à des

espaces de matrices. On considérera toujours S£C(C2, C2) comme espace vectoriel
sur C.

On désignera par P(R2) l&apos;espace projectif sur U de dimension 1 (i.e. les droites
de M2 passant l&apos;origine). Le groupe PSL(2,U) SL(2,{R)/{_ee} où e est la matrice
unité, agit canoniquement par transformations projectives surP([R2). On supposera

toujours que SL(2,U) ou PSL(2,U) agit surP(R2) par cette action. L&apos;espace

P(U2) est identifié à Tl par P(R2) T7x~-x-

2. Théorème de minoration des exposants

2.1. On considère une application / holomorphe d&apos;un voisinage de OeCn dans

Cn vérifiant la condition suivante.

!a)

II existe ro&gt;0 tel que / soit holomorphe sur un voisinage de D?o.

Si / vérifie la condition *&apos;ro et

d) / laisse invariant la mesure de Haar sur T&quot;o (i.e. f%m m),

on dit que / vérifie la condition *&apos;ro.

2.2. Exemples d&apos;applications vérifiant *&apos;

a) Pour tout n, l&apos;application

(zl9...,zn)-*(plzu...9pnzn) |ft| l,l&lt;i&lt;n,

vérifie la condition *J. pour tout r&gt;0.

b) Si n 1, l&apos;application z —? z2 vérifie *i.

1 /#m désigne la mesure image directe de la mesure m par l&apos;application continue /.



Une méthode pour minorer les exposants de Lyapounov 459

c) Si n 2, (z1,z2)-^(zlz2,z1z2) vérifie *;, cette application sur T? étant

(2
1\

)&apos;

d) Si n 2, (z1,z2)-^(z1(z2-b)/(l-bz2), /3z2), où b et 0eC, |6|&lt;l, |/3| =1,
vérifie *{.

e) Si n 2, beC, 0&lt;|b|&lt;l alors (zx, z2) ^&gt; (zl(z2-b)l(l-bz2), zxz2) vérifie

*! mais pas *[.

2.3. On se donne / vérifiant la condition *ro et une application holomorphe A
d&apos;un voisinage de D?o dans une algèbre Banach sur C, â8, || || étant une norme sur
C de l&apos;algèbre 98. Sur T&quot;o on met la mesure de Haar m. On note encore / la
restriction de / à T ?o. On considère l&apos;application fibrée (/, A) de T ?0 x â8. Si a g 38 on
note le rayon spectral de a par

Rspec(a)= lim ||an||1/n Inf ||an||1/n.
n—*+oo n&gt;l

THÉORÈME. Sous les hypothèses ci-dessus on a

A+(/,A)^Log(Rspec(A(0))).

Démonstration. La fonction z -&gt;(l/fc)Log||Ajr(z)|| est plurisousharmonique,
voir [7, 2.6.1] (on se ramène au cas n 1 et on fait la même démonstration que
[7, 1.6.6]). On a (cf. par exemple [12]):

f J
n \ Log \\A^z)\\dm =&gt;£ Log ||Afk(0)|| \ Log ||Ak(0)||;
ro

or

Inf j Log ||Ak(0)|| Log (Rspec(A(0)))

et donc

Inf ak/k &gt;Log (Rspec(A(0))). ¦ks=l

2.4. Remarque. Soit / l&apos;exemple 2.2 a) et A une application holomorphe d&apos;un

voisinage de D?o dans une algèbre de Banach S8. L&apos;application (/, A) définit une

famille d&apos;applications fibrées dépendant d&apos;un paramètre 0&lt;r&lt;rodeT?xâ8 dans

lui-même. Soit l&apos;application re[0, ro[-*À+(T?,/, A) aussi notée k+(r,f,A). On a

les propriétés suivantes (pour / et A fixés):
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a) r-&gt;k+(r,f,A) est monotone non décroissante;
b) r -» À+(r, /, A) est convexe en Log r;
c) r g [0, ro[ —&gt; À+(r, /, A) est continue;
d) À+(0,/,A) Log(Rspec(A(0)));
e) si À+(r, /, A) —oo pour un r&gt;0 alors pour tout r, À.+(r, /, A) — oo.

En effet, par la même démonstration que celle de 6.1, la fonction zeC—&gt;

À+(|z|,/, A) est sousharmonique et il suffit d&apos;appliquer [12.2.3].

2.5. Si dans 2.3 on suppose que /:U70 —»T70 est totalement uniquement
ergodique (i.e. pour n/0, fn est uniquement ergodique, pour un exemple cf. 2.2.
a)), alors, par une démonstration analogue à celle de [5], on peut prouver 2.3 en
n&apos;utilisant que le principe du maximum.

2.6. La minoration de 2.3 est stable par parturbation de (/, A) vérifiant les

conditions de 2.3 et en supposant de plus que A(0) est un point de continuité de
la fonction Rspec : $8 —» IR+ (cette fonction est continue en tout point de 08 si 98 est

une algèbre unitaire de dimension finie). On peut montrer que l&apos;on n&apos;a pas, en
général, de minoration stable si l&apos;on perturbe l&apos;application fibrée (/, A) de T ?ox 38

dans la topologie de la convergence uniforme.

2.7. Il serait intéressant de savoir si, dans le théorème 2.3, on peut évaluer la

différence A+(/, A)-Log(Rspec(A(0))) en utilisant la théorie du potentiel. Si

n 1, cette différence peut être envisagée, en un sens à préciser, comme une
généralisation de la formule de Jensen (cf. 6.1).

2.8. Groupes abéliens compacts dont les groupes duaux sont totalement ordonnables
On suppose que X G est un groupe abélien compact métrique dont le

groupe dual G soit sans torsion. Ceci équivaut à dire que G est connexe. On

suppose la loi de groupe de G notée additivement.
Il suit de [16, 8.1.2] que G peut être considéré comme un sous-groupe du

groupe additif R (i.e. G est un groupe solénoïdal).
G peut donc être muni d&apos;un ordre total P compatible avec sa structure de

groupe: il existe un monoïde P^â vérifiant:

OgP, P^PaP, Pn(-P) {0}, PU(-P) G.

Ce que nous allons voir dépend de l&apos;ordre P choisi sur G et on a souvent intérêt
dans les exemples à choisir P de différentes façons.

On met sur G la mesure de Haar normalisée m. On suppose que g:G-+G
est une affinité continue P-positive: g est la composition d&apos;une translation de G et
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d&apos;un endomorphisme continu P-positif : g(P)czPy où g:G-*G est Pendomor-
phisme dual de g.

Si l&apos;affinité g est surjective, alors g préserve la mesure de Haar m de G (un
endomorphisme continu est surjectif si et seulement si g est injective).

EXEMPLES. • On convient que toute translation de G est P-positive.

• Soient G T2, g 1 et (1, À) une direction propre de g.

On choisit P {(m, n)eZ2\ m+Àn&gt;0}, voir [16. 8.1.7]. L&apos;automorphisme g de
T2 est P-positif.

2.9. Soit 38 un algèbre de Banach sur C avec la norme || ||. On définit
Hp,m^Hp(G, m, 38) {&lt;p e L°°(G, m, 38) | &lt;p(x) 0 si jc ^ P}. On vérifie que Hpm est

une algèbre de Banach et si &lt;p et ^ e Hpm, on a

&lt;p«/f dm &lt;p dm • u// dm 1.

(Il suffit d&apos;utiliser la densité dans Hpç% des polynômes trigonométriques de Hpm,

pour la topologie de L2, propriété résultant d&apos;arguments standards en considérant
la convolution de &lt;p eHpj par des polynômes trigonométriques de G à valeurs

réelles.)
On définit de façon analogue les espaces Hp^q^l. Pour plus de détails sur

cette généralisation, due à Helson et Lowdenslager, des espaces d&apos;Hardy le

lecteur consultera [16, chap. 8].

PROPOSITION. Si (p e Hp&amp; alors on a

Log||&lt;p(0)N f Loglk(*)ll dm(x).

Démonstration. Par [16, p. 205], si l&apos;on pose 4(&lt;p) exp JLog||&lt;p(x)|| dm(x)
alors

A(&lt;p)= Inf f|eQ(x)|2||&lt;p(x)||dm(x),
Qen J

ôù Cl désigne l&apos;ensemble des polynômes trigonométriques Q vérifiant Q(0) 0 et
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Q(x) O si x^P. On a pour tout QeO

ll&lt;p(0)lh||e2Q(pdm|&lt;j|eo|2|M|dm

et le résultat suit. ¦
2.10. On se donne G un groupe abélien compact métrisable avec un ordre

total P sur G,g:G-+G une affinité P-positive surjective et A eHp(G, m, 38).

On a A o g eH^m et X^g(0) Â(0).
Pour l&apos;application fibrée (mesurable) (g, A) de G x 38, la même démonstration

que 2.3 donne en utilisant 2.9:

PROPOSITION. Avec les hypothèses ci-dessus on a

A+(g, A) &gt;Log (Rspec (Â(0))).

Remarque. La condition *i de 2.1 est satisfaite par des transormations / de T?

qui ne sont pas nécessairement des affinités du groupe Tï, voir 2.2 d).

3. Exemples avec des matrices holomorphes

3.1. On se place sur C et on considère f&amp;(z) j3z, |j3| 1.

1) Soit A :zeC-*ez eC* GL(l,C) alors par la formule de Jensen on a

pour tout r&gt;0, A+OTj,/^ A) 0.

2) On met sur l&apos;algèbre de Banach 38 sur C une norme || || d&apos;algèbre sur C. Par

exemple 38 ifc(C2, C2). On considère une application polynomiale

A :C -&gt; /3, A(z) A0+zAx + • • • + zpAp où les A, g 38

pour i 0,1,..., p et p &gt; 1. On Suppose que Ap vérifie Rspec (Ap) ^ 0.

PROPOSITION. Sowr tes hypothèses ci-dessus, si r—?+&lt;», aiors on a
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Démonstration. On pose C(Z) ZPAO+ • • • + Ap (i.e. on pose Z 1/z pour se

placer au voisinage de +») et on a C(Z) A(z)lzp). On a si |Z| r, |Z| 1/r et

| Log||C(/8n-1Z) • • • C(Z)||+np Logr

et donc

A+(Tr\ /3, A) A+(T}/r, U, C) + p Log r.

Par 2.3 A+(TÎ,/3, C)&gt;Log(Rspec(Ap))&gt;-oo et donc, si r-»+oo, A+(Tî, /a, A)-*

3) Exemples deA.C-*SL(2,C)c^C(C2,C2) uértfïanr 2)

• z —&gt; où P est un polynôme de degré p &gt; 1.

• En composant des matrices de la forme z —» et des matrices

BeSL(2,C) on obtient des applications polynomiales A(z)-A0+- • • + Apzp et

quitte à considérer BA(z) avec BgSL(2, C) choisi de façon adhoc, on peut
supposer que la condition de 2) est vérifiée.

3.2. Une application du théorème de Siegel: le théorème de Siegel fibre
On se donne des entiers positifs k et p. On considère

| l si

une application A :D^-&gt;^C(CP, Cp) holomorphe sur l&apos;intérieur de D*, r &gt;0, telle

que A(0)eGL(p, C) soit une matrice diagonale

et on suppose qu&apos;il existe A g C* tel que

satisfasse à la condition diophantienne suivante: il existe C&gt;0, y&gt;0 tels que l&apos;on
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ait

pour l&lt;/&lt;p, l&lt;t&lt;fc et i (îi,.. ,ip+k)eNp+k vérifiant |i| 2rJ&gt;2.

PROPOSITION. Sous /es conditions ci-dessus il existe 0&lt;Ro&lt;r dépendant
seulement de y, C, et r, une application holomorphe B : Dro -» GL(p, C), B(0) e

/a matrice unité, tel que si z e Dro on ait

B(/3(z))-1A(2)B(Z)

Démonstration. On considère le C-difféomorphisme local

Par le théorème de C. L. C. Siegel, généralisé par E. Zehnder [20], il existe un
unique germe de difféomorphisme holomorphe h :(Ck+p, 0)—?(Ck+P, 0) vérifiant
Dft(0) e et

si ||t)|| + ||z|| est assez petit. La série formelle de h est aussi unique (moyennant la
condition Dh(0) e), et on vérifie sans peine que, formellement,

Par l&apos;unicité des séries formelles il suit qu&apos;il existe JR0 tel que B :Dro—&gt; GL(p, C)
soit une application holomorphe et vérifie les conclusions de la proposition. ¦
3.3. Un exemple

Soit z€C-*A(z) (E+^(z) ~^eSL(2,C) où P(z) a1z + - • • + OpZp,

aD^0, EeU et |J5|&lt;2, A(0) est conjugué à la matrice avec a e2™a, où

aeT1 vérifie 2cos27ra JB. On vérifie que pour Lebesgue presque tout Ee
]~2,2[ et &amp; el\ (i.e. |0| 1) l&apos;application fibrée (/3, A) de C xC2 satisfait à 3.2. Il
en résulte, pour un tel choix et par 3.2, que la fonction r —&gt; À+(r, /3, A) (cf. 2.4) a la
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propriété suivante: il existe ro&gt;0 tel que

À+(r,/p,A) 0, si 0&lt;r&lt;ro. (1)

Par 3.1.2) on a

À+(r, /, A)-» +oo, si r-»+oo (2)

0 r0 r

graphe de À+(r,/3, A)

3.4. Remarque. La propriété (2) montre que le théorème de Siegel n&apos;est pas
un théorème global, ce qui n&apos;est pas étonnant du tout:

EXEMPLE. Soient Fx{zx, z2) (cx1zl + z\, a2z2), F2(zu z2) (zl9 z2 + z\) avec

at eC, |a,| - 1, ax ^ 1 ^ a2- On pose G F{ ° F2X qui est un diflféomorphisme de

C2 tel que G(0) 0, DG(0) (^1 Y G possède 3 autres points fixes que 0
\0 OL2JOL2

solutions de

Fx{z) F2{z) où z iZu2j\
4&gt;z2 0 et ^C^DdO

II en résulte que le difïéomorphisme G n&apos;est pas conjugué sur tout C2 à sa

partie linéaire en 0!

3 5. Nous allons donner un autre exemple où 3.3(1) se produit
1) Soient /3:C-^C de la forme /3(z) pz, ||3| 1, et A(z) A0 + zAle

«S?C(CP, Cp) où Ao et Ai sont des matrices constantes. Si |3 est une racine
primitive qème de l&apos;unité on a

Tr (AJ(z)) Tr (Ag q-D/2.

où Tr désigne la trace et /3q(q~1)/2 -bl. (Tr {A%{z)) P(z) où P est un polynôme
de degré q dont le terme constant et celui de degré q sont ceux proposés; or
P(&amp;z) P(z) (puisque Tr(B1B2) Tr(B2B1)), donc les autres termes du

polynôme P sont nuls.)
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2) On suppose que

1\

a eR/Z, A eC-{0}, |A| &lt; 1. Si 0 e2™p/« où p et q sont premiers entre eux avec q

impair, on a

Tr (A%(z)) 2 cos 2q&lt;na + kqzq. 4-

3) PROPOSITION. On fixe AeC, A^O, |A|&lt;1. Il existe un Gô dense G^
T1 x T\ tel que, si (a, fi) e Gl9 alors A+(l, fb, AaA) 0.

Démonstration. Par 1.3, la fonction (a, j3)-^ A+(l,/0, AaA) est semi-continue
supérieurement. On veut montrer que, pour tout £ &gt;0, l&apos;ouvert Ue

{(a, 0) | A+(l,/3, AaA)&lt;e} est dense II suivra que rin25l U1/n est un Gô dense
neM

Pour voir que L/e est dense il suffit de montrer qu&apos;il existe un entier N&gt;0 tel que
si a pjq, /3 e2mp/q, où (p^ q) 1, (p, q) 1, q est impair et q &gt;N, alors

On a

donc le maximum des modules des valeurs propres de Aq&amp;(z) sur T} est majoré

par cq l4-(|A|q)/2 + (|A|q+||A|2q)1/2 (puisque l&apos;équation des valeurs propres de

A%{z) est Y2-(2 + AV)Y+l 0). Or

A+(l, /3, APl/q&gt;k) &lt;- Lx)g cq.

Donc, si q —&gt; +00, comme |A| &lt; 1, 1/q Log cq —&gt; 0. ¦
4) PROPOSITION. Jî existe un G8 dense G2&lt;=T1xTi tel que si (a,p)eG2

alors pour tout r&gt;0

4&gt;r(a, fi) sup (Max ||(Aa.x)?B(2)||) -
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5) Remarque. Si (a, j3)eG2 et a^O ou 5 alors, sur tout voisinage de 0, le
difféomorphisme holomorphe de (CxC2,0) F(z, tî) (0z, A(z)ti) n&apos;est pas
holomorphiquement équivalent à sa partie linéaire, qui est, pour a^O ou |,
conjuguée à une matrice unitaire.

Démonstration de 4). Par la monotonie de &lt;£r(a, |3) (voir 2.4a)), il suffit de

montrer que, pour tout n eN*, H1/n ={(a, |8) | 4&gt;1/n(a, j3) +00} est un Gfi dense et
de poser G2= nn€py*H1/n. L&apos;application (a, 0)-&gt;&lt;f&gt;1/n(a, (3) est semi-continue
inférieurement et donc H1/n est un G8. H1/n est dense puisqu&apos;il contient tous les
&lt;* PilÇ* 0 e2™^ (p1? q) \9 (p&gt; q) l? q impair, car pour un tel couple il existe

un z0 arbitrairement petit tel (AaA)^(z0) soit une matrice hyperbolique. ¦
6) Si on choisit (a, |8) e Gx H G2, alors la fonction r —? A+(r, /3, AûA) vérifie

pour tout 0&lt;r&lt;l, A+(r,/3,AûA) 0. Si r^&apos;+oo, comme À^O par 3.1.2),

A+(r,/3, AaA) —&gt;+00. Comme (a, /3)eG2, si a^O, ou J, alors la remarque 5)

s&apos;applique.

7) Ce que nous venons de faire reste valable sur T^ tant r &lt; 1/|A|. Si r&gt; 1/|A| il
existe un ouvert U dense de (a, A, 0) tel que si (a, A, j3)eL7 alors (fe, AûX)
agissant sur TjxC2 ait une structure hyperbolique. (En effet, si zeC et N&gt;0

vérifie |Az|N&gt;4 et si |8 est une racine primitive qème de l&apos;unité avec q^N9 alors

par (-h) on a, pour tout ael1, |Tr(AaX)^(z)|&gt;2. Ceci implique que la matrice
(AaA)^B(z) est une matrice hyperbolique sur C et de plus ses directions invariantes

dépendent holomorphiquement de z pour |Az|N&gt;4. Il suffit alors d&apos;appliquer la

remarque 2) de 1.4.)
9) On peut démontrer le théorème de Siegel fibre pour (f3, AaX), très simplement

de la façon suivante. On pose a e2ma et on cherche une application
holomorphe

telle que l&apos;on ait

\ /2cos27ra 1\/tïi(z)\
0/Wz)/Wz)

avec Th(0) â et -n2(0) 1. Soit

T)2(j3z)
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et

ârh(j3z) 4- arîiCjSz) - (a + â^iz) Azrh(z).

Si on écrit Th(z) Sk&gt;o ^kzk on a les relations de récurrences:

bo â

kbn^ Pa(pn)bn, so n^l

avec Pa(z) (z/a) + (a/z)-(a + (l/a)). Si pour tout n&gt;l, |8n/l et |3n^a2 on
peut résoudre et on obtient:

Pour étudier la convergence on remarque, que par la formule de Jensen, on a
JiLog|Pa(e2&apos;rrie)|^ 0 et il suit d&apos;un théorème de Koksma [K] (on peut aussi

adapter l&apos;article d&apos;Hardy et Littlewood [H]), que si aej1 est fixé, alors pour
Lebesgue presque tout (3 el\, si n -* +oo, (1/n) Log |Pa(/3) • • • P«(j3n)| -&gt; 0.

Il en résulte que pour, Lebesgue presque tout (a, j3)eT1xTl, (avec a^ ±1 et
j8 n&apos;est pas une racine de l&apos;unité) il existe 2 applications holomorphes sur
{z Hz^lAl&quot;1}, z-»t)t(z)GC2, î l,2, telles que a matrice H(z) (vx(z), v2(z))
(i.e. ayant les vecteurs colonnes vx(z) et v2(z)) vérifie

et

Il en résulte que det H(z) det H(|3z) et donc comme a j= ± 1 et que |3 n&apos;est pas
une racine de l&apos;unité, on a det H(z) det H(0) ^ 0. On obtient finalement, si

|z|&lt;|A|~\ H&quot;1^

Remarques. 1. Si a 0 ou \ (i.e. si a ±l) alors pour Lebesgue presque
tout jSgTÎ il existe un nombre 0&lt;.Ro&lt;|A|~1 et des matrices H0(z) et H1/2(z)
holomorphes inversibles sur {z | |z|&lt;K0}, et ceC* telles que l&apos;on ait

si a=0,i



Une méthode pour minorer les exposants de Lyapounov 469

(La démonstration est presque la même On détermine d&apos;abord un vecteur

holomorphe v^z) l. comme ci-dessus, puis on considère la matrice
Vrf2(z)/

holomorphe Ha(z) (vt(z), v2(z)) où v2(z) .Ona
M/tj^z)/

pour |z|&lt;-R0 et û 0, 5 où ca(z) est une fonction holomorphe sur{z | |z|&lt;jR0}

La remarque suit facilement en conjugant par des matrices de la forme z —»

\0 1 //
2 Pour Lebesgue presque tout a et |8, par la démonstration ci-dessus le

théorème de Siegel est valable sur {z | Iz^jA.!&quot;1}. Par 3 1, si r&gt;l/|X|, on a

3 6 Une exemple avec une matrice non inversible en un point
On considère /3(z) j3(z), l|3| l, zeC et

où EeR, JB&gt;2

On a par 2 3, pour tout r &gt;0, À+(Tj, /3, A)&gt;0 Si on considère l&apos;application fibrée
(/3, A) sur T} xC2 alors det (A(z)) 1 - z s&apos;annule en z 1 Par la formule de
Jensen on a, si 0&lt;r&lt;l, JT&gt; Log |l-z| dm =0 et donc si 0&lt;r&lt;l l&apos;application

fibrée (/3, A) sur T^xC2 a 4 exposants de Lyapounov sur R non nuls* 2 sont
égaux à À+(Tî, /3, A) et 2 à -À+(Tî, /3, A) (II suffit de considérer

|detA(z)|1/2
B(z),

de noter que B(z)eSL(2,C), LogHB*1| T}|| EL^m) et d&apos;appliquer [15] en utilisant

le fait que B(z) est une matrice définie sur C

3 7 Un exemple avec un difféomorphisme d&apos;Anosov

Soit /-C2^C2, f(zl9 z2) - (z2xz2, zxz2) (voir 2 2. c)) /(l, 1) (1,1) Soit

où EeR,
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On a Log(Rspee(A(0)))&gt;0. On suppose que E est fixé, et que KeU vérifie
|E-À|&lt;2 La matrice

est donc elliptique (i.e. conjugué à une matrice unitaire) si |À —E|&lt;2 et parabolique

si JE —À ±2.
Le difféomorphisme fibre (/, A) sur T2x&lt;C2 par 2.2a) et 2.3 vérifie À+(/y A)&gt;0

mais le diffémorphisme fibre n&apos;a pas de structure hyperbolique puisque /(l, 1)

(1,1) et que A(l, 1) est une matrice de SL(2,U) elliptique ou parabolique

Remarque. Pour E-X ±2, le difféomorphisme fibre (/, A) ne laisse pas
invariant un scindement continu (non trivial) du fibre (trivial) T?x&lt;C2. On peut
construire d&apos;autres exemples (/, Bk) de difféomorphismes fibres de T2xJR2 qui ne
laissent invariant aucun scindement continu (non trivial) du fibre TÏ x|R2 et qui
vérifient À+(/, Bx)&gt;0. Pour cela on choisit / un difféomorphisme d&apos;Anosov

comme ci-dessus, BK comme en 4.1 avec À &gt; 1 et on raisonne comme en 4 2

3.8. Un exemple d&apos;application dans SL(2,C) sans structure hyperbolique
On considère /3 :C -*C, /3(z) &amp;z avec 0 e2wc\ a eR -Q, et

,C)

où EgIR, E&gt;2 et AgC*
On suppose que j3 est choisit pour que 3.2 s&apos;applique à (f3, A), (pour

Lebesgue presque tout a cela sera le cas) II en résulte qu&apos;il existe ro&gt;0, tel que
pour 0&lt;r&lt;ro, on ait:

avec jx, =Rspec(A(0));

/$xA agissant sur D)o x C2 a une structure hyperbolique

Par 3.1, si r -* +&lt;», A+(TÎ, /, A) -&gt; +&lt;*&gt;.

PROPOSITION. Sous les hypothèses ci-dessus il existe rx&gt;0, tel que le

difféomorphisme fibre /3xA de T^xC2 n&apos;ait pas de structure hyperbolique mais
vérifie par 2.3 : À+(T r\, /, A) &gt;Log |t.
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Démonstration. Raisonnons par l&apos;absurde. Si pour tout r&gt;0, le

difïéomorphisme fibre fxA de T^xC2 avait une structure hyperbolique cette
structure dépendrait continûment de r et même analytiquement. Cette structure
hyperbolique sur T* xC2 E* © EJ* serait complexe (i.e. les fibres continues Esr et
E&quot; seraient des fibres complexes, puisque A est une matrice définie sur C, dans la
définition de 1.4, on peut multiplier les vecteurs vx et wx par À eC*). Les fibres
E* et E&quot; comme fibres continues complexes dépendraient R-analytiquement de

r&gt;0 (cela résulte de la démonstration [18p. 100-101] en complexifiant le

paramètre r). Il en résulterait que la fonction r —&gt; À+ (r, /p, A) est M -analytique ce

qui est absrude. ¦
4» Exemples avec SL(2, R)

4.1. a) on se place sur T1 et on considère la rotation (ou translation)
0 + a. Soit Bk:Tl-*SL(2,M) la matrice

-sin27T0\/À 0\

On considère sur T1 x|R2 le difïéomorphisme fibre associé à (R^, Bk). Nous allons
démontrer à nouveau le théorème 3.1. de [5]. On met sur T1 la mesure de Haar
notée m ou dO.

PROPOSITION. On a A+(i^,Bx)&gt;Log((A/2) + (l/2A)).

Démonstration. On pose j3 e2inot, cos27r0 èU + z~1), sin27T0

-t (z - z&quot;1), pour z e2™6, |z| 1. On se place sur T} dans C. Soit

avec A
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On considère l&apos;application fibrée (fp, AÀ)deTjxC2, où /3(z) j3z On met sur
^c(C2, C2) une norme d&apos;algèbre sur C Pour z e27ne, on a

||Bx(0 + (n-l)a) Bx(0)||

d&apos;où

Par 2 3 on a A+CTi, /3, Ax) ^Log (Rspec (Ax(0))) Log (A/2+1/2A) ¦
b) Par la même démonstration que ci-dessus et en se plaçant aussi au

voisinage de +oo comme en 3 1 2) on a le
Scolie Soit â8 une algèbre de Banach sur C (par exemple «Sfc(C2, C2)) et

A T* —» 38 mm polynôme tngonométnque de la forme

A(0)= X Ake27nfce ou Ake38
|k|=sn

Four Vapplication fibre CR«, A) de T1 x â8, on a

où

a» Max (Rspec (An), Rspec (A n))

c) Une généralisation de b) est la suivante on se place sous les hypothèses de

2 10, et l&apos;on considère un polynôme tngonométnque A G —» 3ft de la forme

Z AkXk(g) si geG, Akeâ8 et pour 0&lt;fc&lt;n, XkeG
k=0

On suppose que Xo est le minimum de l&apos;esemble {xo, Xn) P°ur l&apos;ordre total P

sur G Comme £0A g H^^, on a, par 2 10, la

PROPOSITION A+(g, A) &gt; Log (Rspec (Ao))

4 2 PROPOSITION Soit B T1-&gt;SL(2,R) une application continue non

homotope à la matrice constante unité alors Vhoméomorphisme F
(Ro^B) T1x|R2—&gt;Txx(R2 n&apos;a pas de structure hyperbolique (voir partiellement
hyperbolique)
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Démonstration. Si F laisse invariant 2 fibres Eu et Es surT1 de some directe
le fibre trivial, alors F agit comme homéomorphisme suriPxP^2), le fibre en

espaces projectifs associé un fibre trivial T^xtR2, et laisse invariant les fibres

projectifs associés à Eu et Es. Comme les fibres projectifs associés aux fibres de

rang 1 Eu ou Es sont triviaux, il en résulte que le difféomorphisme fibre

&quot;I

T&apos;xPtfR2)

R»: T1

laisse invariante l&apos;image d&apos;une section continue du fibre T1 xP([R2) —»T\ px étant
la première projection. Ceci n&apos;est pas possible car le difféomorphisme F de

^xPQR^Tf^xT1 est homotope à (Bl9 02)eT2-&gt;(01, 62 + 2k0l)eT2 avec ke
Z-{0}. L&apos;existence d&apos;une section continue invariante par F n&apos;est pas compatible

avec l&apos;action de F^rH^T2, Z) *r&gt; en homologie (i.e. m. ¦
4.3 Remarques. 1) Les fibres JE&quot; et Es ne sont pas nécessairement triviaux

puisque, si £ est le fibre de rang 1 non trivial sur T1, (i.e. un ruban de Môbius),
alors f©^ T1xR2. Pour tout Bel1, on définit BK(ve, we) (\ve, (1/A)we) si

(vB, w0) g Çe © £0, où Çe est la fibre de f en 6 e T1 et À ^ 0 un nombre fixé. BK est

homotope à une matrice constante.
2) Si l&apos;homéomorphisme fibre F:Jl xP([R2) ^ est de la forme F (ROC, B) où

B est une application continue de T1 dans P5L(2,R)==SL(2,R)/{-e, e}, laisse

invariant les graphes de 2 fonctions continues distinctes *; :T1-»P(IR2) pour
i 1, 2, alors il existe H(0, y) (S, l(B)y), où l :Jl -* PSL(2, R) est une application

continue, tel que l&apos;on ait

(6)) où

et

En effet, si yP1 est homotope à une constante, alors il en va de même de ^2 et il
suffit d&apos;amener pour tout 6 les éléments ^(0) et V2(0) de P(R2) sur respectivement

les points de coordonnées projectives (1,0) et (0,1) et si nécessaire

multiplier les matrices par -e. Si Wx est de degré k £ 0, il suffit de remplacer F par
Sk1 ofo sk, où Sk est défini en 5.16, pour se ramener au cas ou ^ est homotope
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à une constante. Si F est de classe Cr ainsi que les fonctions %, alors on peut
supposer que HetK sont aussi de classe Cr.

4.5. Une exemple d&apos;application dans Sl(2,U) homotope à Videntité
On se donne e&gt;0 petit, tjX) et A tel que Ae&gt;2-Ht]. Soit

On considère (R^^B) agissant sur T1xR2. Par le scolie de 4.1 on a, pour tout
aeT\ A+Cl^, B)&gt;Log(eA/2 + e/2A). Si e&gt;0 est assez petit, l&apos;application Se
T1 -* C(0) B(0)/(det B((9))1/2 g SL(2, R) est (R-analytique et homotope à la matrice

constante unité. On a

-- Log(detB(0))d0,

si e -? 0, | JJ Log (det B(0)) d0 -&gt; 0 et donc si e est assez petit A+(i^, C)&gt;0. On a
mieux:si 0€T\ on pose

on vérifie comme en 4.1 que A+CR,,, £3B)&gt;Log(eA/2 + e/2A). Si eA&gt;2 + T), pour
e&gt;0 assez petit, l&apos;application T19«-&gt;R3C(fl)eSL(2,R) est de classe C°,
homotope à la matrice constante 0-^eetona pour tout «gT1 et peT1

(1)

4.6. PROPOSITION. Soir «gT1-(Q/Z); pour tout jSgT1, il existe une matrice

T19 6 —&gt; Cp(6)g SL(2, R) M-analytique, homotope à la matrice constante unité
et vérifiant:

a) A+(JRa,Q)&gt;0.
b) Le difféomorphisme induit sur T1xP(R2) par le difféomorphisme fibre

(JR^, Q) de TPxR2 a pour vecteur de rotation (a, p) (cf. 5.16).
c) Le difféomorphisme de T1xR2, F (Ra, Cfi) n&apos;a pas de structure

hyperbolique.



Une méthode pour minorer les exposants de Lyapounov 475

Démonstration. On se fixe a. On a par définition (voir 5.16) p(RoiyRbC)
(a, pfiRa, RbC)). Comme l&apos;application b el1 -&gt; pf(RbC) est continue et monotone
croissante de degré 1, elle est surjective (voir 5.9.3)). Il existe donc bx tel que
pf(Rw RblC) j3. On choisit de façon plus précise b,: on pose 1&amp; ={bu pf(RbtC)
|3}; I3 est un intervalle [ai, a2](a1&lt;a2). Soit

bxeî&amp; si p^Zamodl; b1 al on a2 si /3€Zamodl.

On pose C3 RblC.
La propriété a) est vérifiée par (1), b) par construction. Si /3^Za mod 1 la

propriété c) résulte de 5.17. Si |3 g/a(mod 1) alors (JR^ C0) n&apos;a pas de structure
hyperbolique car l&apos;ensemble des b tels que le difïéomorphisme fibre (R^, RbC) ait
une structure hyperbolique est ouvert et vérifie pfiRa, RbC) eZa mod 1. Or nous
avons choisi bx ^ Int 1p. I
4.7. Un autre exemple d&apos;application dans SL(2,R) homotope à Videntité

Soit p(0) Siki-sn ake2mke un polynôme trigométrique de degré fixé n, n ^ 1 et

ak€C. On suppose que |a_n|&gt;l. Soit l&apos;application

Si p est à valeurs réelles (i.e. si âk a_k pour tout entier fc) alors A(0) e SL(2, R)
et réciproquement. Par le scolie de 4.1, on a pour le difïéomorphisme fibre

(Ra,A) de T^xC2 \+(Ra,A)^Log\a^n\.
(Si aeT1-(Q/Z) on peut donner de ce fait la démonstration encore plus

élémentaire, suivante: on vérifie san peine que, si peN,

d&apos;où ^^
et donc, par [5, 2.5] À+(T\ jR«, A)&gt;Log|a_n|. Si a€&lt;Q/Z on peut raisonner

comme dans [5, 3.2].)

4.8. Soit une fonction continue &lt;peC°(Tl,U) et EeU alors on pose

On œnsidère l&apos;homéomorphisme fibre (i?«, AE) de T1 xR2. On fixe a eT1.
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PROPOSITION. Il existe Eo&gt;0 tel que, si |J5|&gt;E0, (R^, AE) ait une structure
hyperbolique.

Démonstration. On suppose que JE&gt;0, le cas JE&lt;0 étant analogue. On

7^(0^cherche les variétés invariantes de (Ra, AE) en coordonnées projectives I,

VeC°(T\M), V&gt;0 (si E&lt;0 on suppose que «r&lt;0). On a l&apos;équation

(2)

On pose ÀE4-1/ÀE=E pour E grand&gt;2. On cherche &apos;91 ÀE(1 + Th) avec
Ihillc0 —2 (et dépendant de E). L&apos;équation que vérifie r\x est:

AE

Si E —» +o°, ÀE —»¦ +0°, il suit pour E assez grand que l&apos;application

1 _ T)°i?_

envoie la boule {||tj||co&lt;5} dans elle même et est une contraction lipschitzienne:
on a ||^E(a1)-&lt;3&gt;E(a2)||co~fe ll^i —a2|| avec fc&lt;l. Il existe donc un point fixe 17x de
&lt;2&gt;E. On détermine ainsi 9X vérifiant (2) où ^r1 ÀE(l-hr)1) avec |hi||c&gt;&lt;2-

Par la même méthode on détermine une autre solution W2 de l&apos;équation (2)

V2 — (1 + Tb) avec halle» =^-.
àe z

Si on pose u,(0) 1 pour i 1, 2, on a

Soient H(0, y) (6, l(0)y), où 1(0) (vi(6), v2(6)) (matrice ayant pour vecteurs
colonnes vt et t&gt;2; si |JE| est assez grand on a det(J(0))^O pour tout 0), et
FE(0, y) (0 + a, AE(0)y). On a pour |E| assez grand
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OÙ

avec, si E&gt;EQ, %&gt;0 et si E&lt;-Eo, %&lt;0 pour i 1, 2. ¦
4.9. PROPOSITION. Si E&gt;0 et si ^&gt;0 uéri/ie (2) alors on pose

et on a l + Af&lt;

Démonstration. On suppose que M 11^1^0, l&apos;autre cas étant analogue. Soit 0O

tel que M ^°i^(0o). On a l&apos;inégalité

et donc

M

4.10. Remarque. 4.8 et 4.9 restent valables si l&apos;on considère

avec &lt;p g C°(X, M), où X est un espace compact métrique, et si l&apos;on remplace

R^ : T1 —» T1 par un homéomorphisme g : X —&gt; X.

4.11. On considère (!*«, AE) comme en 4.8 et on suppose de plus a^Q/Z. On
relève E-&gt; AE e C0(T\ SL(2,R)) enE-&gt;AEeC°(T\ D^T1)). On suppose que
SL(2,R) agit surP(IR2) par l&apos;action standard, (voir 1.6). Soit pf(Ra,ÂE)eU le

nombre de rotation fibre (voir §5); on a, si &lt;p et aeT1-(Q/Z) sont fixés:

a) E —&gt; py(-R«, ÂE) est une fonction continue et non-décroissante (elle est non
décroissante puisque Ei&lt;E2^&gt; AEl(x)&lt;ÂE2(x) pour tout xeJ1).

b) La fonction pfCR«, AE) est constante si |E|&gt;E0 (où Eo est défini en 4.8), et
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on a

(RÂ) l so E&gt;JE0

p-l si E&lt;-Eo.

(Ceci résulte de 4.8, en utilisant 5.9.3) et en remarquant que le chemin E-+ AE
est homotope, les extrémitées restant la même composante connexe par arc de
l&apos;esemble {BeC°(T\ SL(2,R)) | CR«, B) agissant surT^lR2 a une structure

hyperbolique} au voisinage deE +ooetE -oo, au chemin E -&gt; f Y

4.12. Soit

où EeU, p(O) T\k\^n^k^2mk0 est un polynôme trigonométrique réel, de degré
n&gt;l et vérifiant Log|a_M|&gt;0 (n&gt;l); par 4.7, pour tout JE, on a

/E + p(0) -1\
L&apos;application 0€T —»1 1 est évidemment [R-analytique et

homotope à la matrice constante j et donc à e.

En utilisant 4.11 on démontre une proposition analogue à 4.6. Ces exemples
montrent que les corollaires du théorème d&apos;Arnold et de Moser 5.12 et 5.14 ne

sont pas globaux et ceci nonobstant des conditions d&apos;analycité ou d&apos;approximations

par les rationnels du vecteur de rotation contrairement au théorème
fondamental de [4] pour les difféomorphismes du cercle. Ces exemples sont à

rapprocher du caractère local du théorème de Siegel (cf. 3.3). Le lecteur se

rapportera aussi à 5.19.
Ces exemples ne sont pas analogues aux contre-exemples de Denjoy sur le

cercle (cf. [4, X]):

4.13. PROPOSITION. Soir (i?«, Q) vérifiant les conditions a) et b) de 4.6 et

tel que p(jR«, C3) (a, |3) ou a et &amp; sont irrationnels et rationnellement

indépendants. On fait agir F (R&lt;x,Cfi) sur T^xPflR2). Alors il n&apos;existe pas
d&apos;application continue H:!1 xP(R2) -*T2 homotope à VId telle que le diagramme
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suivant soit commutatif:

F:T1xP((R2) &gt; Tlx|
«i i»

Remarque. Ceci implique que le difïéomorphisme F de T^xPflR2) n&apos;est pas
topologiquement conjugué à une translation de T2.

Démonstration. Supposons, que H existe. Par le théorème d&apos;Osedelec (voir
par exemple [15]), puisque À+Ci^, C0)&gt;O, il existe une application d0-mesurable

s+ : T1 —&gt; P(U2) telle que le diagramme suivant soit commutatif d0-presque partout

(pi désigne la 1 ère projection)

Pli fdXS+ Pli IdXS+

K: T1 T1

(Le graphe de s+ est la direction invariante (dd presque partout) associée à

l&apos;exposant de Lyapounov maximal k+iR^, C3); il existe une section Wxs_
associée à -À+CR^, C3), et on a dO-presque partout s+i^S- (voir [5.6] et [8]).)

Si on relève HrT&apos;xPdR^-^T&apos;xT1 en H:M2-*R2 de la forme H(6U 02)

02), 02 + ^2(^1, ^2)) avec t|4 g C°(T2, R), on doit avoir

Tïl°F=T|1.

Ceci implique que r\i constante. En effet par [8] ou 4.17, F laisse invariant
un unique ensemble minimal M^0. Ceci force r\ x à être égale à une constante.
(On a t?hm= constante qu&apos;on peut supposer égale à 0. Soient e&gt;0 et Y un
voisinage ouvert de M tel que tout xeV vérifie |iîi(x)|&lt;e; puisque M est

l&apos;unique ensemble minimal de F, on a LLn Fi(T) T1xP(IR2). Donc |h1||C&quot;&lt;e

mais comme e&gt;0 est arbitraire le résultat suit.)
Il en résulte que H est fibre: il existe ceJ1 tel qu&apos;on ait le diagramme

commutatif:

H:T1xP(ptl) &gt; T&apos;xPflR2)

i b
R*. T1 &gt; T1
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Si H existe, il existe donc une application s, d0-mesurable, telle que le diagramme
suivant soit commutatif, d0-presque partout*

Pii lldxs là x s

d&apos;où

2ms(6+oc) __ -27ti3 2-n-is(e).

dQw

mais ceci implique que j8G/a(mod 1); or, nour avons supposé que a et |8 sont
irrationnels et rationnellement indépendants, et nous aboutissons ainsi à une
absurdité. ¦

4.14. On se donne CR^, AE) satisfaisant aux conditions de 4.7 et on suppose
de plus que a €T1-(Q/Z). Soit Ex le plus grand nombre réel tel que:

a) PfiRa, ÂE)eZ où ÂEi est un relèvement de AEl à D°(Jl);
b) le difféomorphisme fibre FEi (JR«, AEi) de TpxlR2 n&apos;ait pas de structure

hyperbolique. On peut aussi définir Ex ainsi: si Ee]Et, +oo[, FE a une structure
hyperbolique et FEl vérifie b).

Un tel nombre Et existe par 4.8, 4.11 et par le fait que l&apos;ensemble des

nombres EeU vérifiant b) est fermé (cf. 1.4 remarque 2). On note FE le difféomorphisme

induit par FE sur T1 xPflR2).

PROPOSITION. Le difféomorphisme FEi possède un unique ensemble minimal
M^T1xP(|R2) (M^0); M est Vadhérence du graphe d&apos;une fonction semi-continue
s :T1 —»P(R2) telle que le diagramme suivant soit commutatif:

^ &gt; TaxP(lR2)

pj Idxs fdxsIL

i^: Ti &gt; y1

Démonstration. Soit E2 très grand (E2 ^&gt; 2 ||p||c°)&gt; pour que le difféomorphisme
fibre FE2 (RCLiAEj) ait une structure hyperbolique telle que les directions

invariantes f2 f2 vérifient (*^)f&gt;0 (voir 4.8). On a donc l&apos;inégalité
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4.9, ME2+l/ME2&lt;E2 + ||p||co, où

Soit E3 le plus grand nombre réel&lt;JE2 tel que (R^, AEa) possède une structure

hyperbolique dont les directions invariantes ne soient pas de la forme f Ea l

avec 0&lt;(^E3X&lt;+oo. l
Je dis que le nombre E3 (s&apos;il existe) vérifie E3&lt;EX. En effet, pour E&gt;E3, les

directions invariantes existene et sont de la forme E
j, 0&lt;(tfrjE)l &lt;+°°,

i 1,2, et vérifient ME 4- 1/ME ^H2 + IIpIIc°- Ceci implique que ME&lt;C2, 1/ME &gt;

C2\ où C2&gt;1 est une constante et en particulier C^^^X &lt;C2. On arrive a

une contradiction puisque les directions invariantes varient continûment avec E
que le difféomorphisme fibre (R^, AE) a une structure hyperbolique (voir [18])
On a bien montré E3&lt;E1.

Si EX&lt;E^E2, on conclut que les directions invariantes de FE restent dans le
cône projectif positif C {(a, l)eP(IR2)| l/C2&lt;a&lt;C2} (on utilise surPflR2) les

coordonnées projectives).
Par 4.8 et 4.17 (voir aussi [8]) puisque FEi vérifie À+(FEl)&gt;0 et, par le choix

de Eu n&apos;a pas de structure hyperbolique, FEl laisse invariant un unique ensemble
minimal M et toute mesure de probabilité v de T1xP(R2) invariante par FEl
vérifie support (v) M.

OnaM^J1xC.
En effet, soit \xE une mesure de probabilité de T!xP(IR2) invariante par FE

(E1&lt;E&lt;E2) et ergodique. Puisque a gT1-(Q/Z), support(fxE) est une direction
invariante de FE dans T1xP(lR2) et donc support(jLiE)&lt;=T1xC. Soit (el)l^l une
suite de nombres réels telle que Ex&lt;et ^E2, et —&gt;Et si i —»+oo et que la suite
(/LLe)t tende vaguement vers la mesure de probabilité jll. Si i —&gt; +00, Fe-*FEi
uniformément, et la mesure /x est donc invariante par FEi (voir 5.6). Soit &lt;p une
fonction &gt;0 de classe C°°, nulle sur un voisinage V de T1xC dans T^xPflR2).
Comme ^et(&lt;p) ^ 0&gt; si e, -+EU on a jul(&lt;p) O et done support(jx)c: Y; comme Y
est arbitraire, il en résulte que support(ju,)c:T1xC. Or, support(jul) M et on a

bien démontré que McT^C
On définit, si 6eJ\ L(0) lnf {a&gt;0 | (0,(a, l))eM} et l+(0) sup{a &gt;0 |

(6, (a, 1)) g M}. On pose s : 6 -&gt; (L(«), 1).

Comme M est fermé, la fonction L est semi-continue inférieurement, et /+ est

semi-continue supérieurement. Puisque FE préserve l&apos;ordre sur chaque fibre
séparément de la fibration T^xPflR2)-*!1, et que FE(0, (0, l)) (0 + a, (-1, 0))
l&apos;ensemble gr(s) {(6, s(6)) | OeT1} est invariant par FEl et on a gr(s)&lt;=^M.
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L&apos;unique ensemble minimal M de FE est donc l&apos;adhérence de gr(s). L&apos;ensemble

M est aussi l&apos;adhérence de {0, (f+(0), 1) | Bel1}. M

Remarque. On a McM^ftd,^, l))|L(0)&lt;l)&lt;i+(0)}. L&apos;ensemble M1 est

fermé, sans point intérieur dans T1xP(|R2) et est invariant par FEl.
La mesure de Lebesgue de Mx est positive. En effet, par le théorème

d&apos;Osedelec il existe, puisque À+(FEl)&gt;0, 2 directions invariantes d0-mesurables
distinctes (de-presque partout) graphes de s+ et s_, supports des deux mesures de

probabilités de T1xP(|R2) jui+ et ja,_ invariantes par FEl et ergodiques [5]. On a

support((x+)=support(jUL_) M, voir 4.17. Pour d0-presque tout Bel1 s+(0) et
s_(0) limitent sur {0}xP(|R2), 2 intervalles invariants par FEl donc l&apos;un est contenu
dans Mx.

La mesure de Lebesgue de Mx est bien positive par le théorème de Fubini, car
si Mi était de mesure de Lebesgue nulle pour presque tout 0eT\ l&apos;ensemble

Mln({$}xP($2)) serait de mesure de Lebesgue nulle et donc ne contiendrait pas
un intervalle presque partout.

Question. Est ce que M M1tï

4.15. Remarques. 1. On vérifie sans peine que:
• les fonctions /± satisfont 1/C2^L^C2 (ce qui implique que l^eL00^));
• l+(6) f L(0) d0-presque partout;
• les fonctions l± sont solutions de l&apos;équation

I±(0+ &lt;*) +—— &lt;p(0) + E1, pour tout 0€T\ (2)
((0)

Si E &gt; Et l&apos;équation (2) à 2 solutions continues mais pour E EX les solutions

l± ne sont pas continues.
2. Chacun de 2 ensembles {(0, {l±{0), 1)) | 0 eJ1} est d0-presque partout égal à

une des directions invariantes données par le théorème d&apos;Osedelec (resp. aux

graphes de s+ et s_) et on a

f Log l+(0) d$ - f Log L(0) d$ À+(i^, AEl) &gt; 0.

(Cela résulte de ce que pour FEl les seules directions invariantes de -mesurables

sont presque partout égales aux graphes de s+ ou s_; voir aussi [10. §3.6].)

4.16. On se place dans les mêmes conditions que 4.10 et on suppose de plus
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que l&apos;espace X est connexe et que l&apos;homéomorphisme g de X est minimal et
uniquement ergodique. On définit pour FE (g, AE) de façon analogue à 4.14 un
unique nombre Et.

PROPOSITION. L&apos;homéomorphisme FEi induit par (g, AEl) sur XxP(R2)
laisse invariant un ensemble minimal M^0 possédant les propriétés suivantes:

• McXxC, où C est le cône {(a, l)eP([R2)| l/C2&lt;a&lt;C2} avec un C2&gt;1;

• M est Vadhérence du graphe d&apos;une application 0gX—?s(0) (L(0), l)€
P((R2), où 1/C2&lt;L&lt;C2, et la fonction L est semi-continue inférieurement;

• la fonction L vérifie

0gX; (2)

si E &gt; Ex Véquation

* -•- (2)

possède 2 solutions continues strictement positives.

Remarque. La fonction L peut être continue ainsi que le montre l&apos;exemple

A /2 ~]
AElM?

Démonstration. En utilisant 4.10, la démonstration est presque identique à

celle de 4.14. Comme on ne suppose pas A+(g, AEl)&gt;0, on n&apos;est pas sûr que
l&apos;homéomorphisme FEl laisse invariant un unique ensemble minimal; néanmoins,

par la même démonstration que 4.14, on obtient une mesure de probabilité fi
invariante par FEx et vérifiant support(jm)&lt;=XxC L&apos;ensemble fermé support(ja)
est invariant par FEi, et il suffit de considérer un ensemble minimal M^0,
Me support (jll) le reste du raisonnement étant analogue. ¦
4.17. Annexe

Dans cet annexe nous allons démontrer des résultats essentiellement dûs à R.

Johnson [8]:

PROPOSITION. Soit g un homéomorphisme minimal et uniquement ergodique
de Vespace compact métrique X. On suppose que A e C°(X, SL(2,IR)) vérifie

• À+(g,A)&gt;0;
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• L&apos;homéomorphisme fibre (g, A) agissant sur Xx|R2 n&apos;a pas de structure
hyperbolique. H en résulte que l&apos;homéomorphisme F induit par (g, A) sur XxP(U2)
laisse invariant un unique ensemble minimal M^0 et que toute mesure de

probabilité jjl de XxP(R2) invariante par F vérifie support(n) M.

Remarque. L&apos;homéomorphisme F peut être minimal; pour la construction
d&apos;un exemple voir [5].

Démonstration. Puisque À+(g, A)&gt;0, par [5], l&apos;homéomorphisme F laisse
invariant seulement 2 mesures de probabilités ergodiques /m+ et jll_. On pose
support (/x±) K±. Soit M 0 un unsemble minimal invariant par F. Par le
théorème de Markov-Kakutani, il en résulte qu&apos;il existe une mesure de
probabilité v invariante par F, ergodique et vérifiant support (*&gt;)&lt;= M (et donc
support (v) M puisque M est un ensemble minimal de F). On aM X+ou fc_

puisque v ia+ ou /m_. On suppose que M K+, l&apos;autre cas étant analogue, on
veut montrer que K+ K-.

On raisonne par l&apos;absurde. Si K+ ^ KL on a fx_(l£+) 0 (puisque F est

jx_-ergodique et que les ensembles compacts K+ et K_ sont invariants par F). Il
en résulte que l&apos;homéomorphisme F | K+ est uniquement ergodique l&apos;unique

mesure de probabilité invariante étant jll+.
Par [5] ou [8], si (x, v) e K+ c XxP(|R2), alors, si n -&gt; ±oo, (1/n) Log ||A;|(x)u||-&gt;

A+(g,A) en posant, pour n&lt;0, Al=(Â~1)^ et Â&quot;1(x) A~1(g~1(x)). Puisque
l&apos;homéomorphisme g de X est minimal, pour tout x eX, il existe v eP(!R2) tel que
(x, v) e K+, et on a donc

®si n^-œ, ||a;(jc)d|| —0.

Maintenant on utilise le résultat suivant(1) (du à R. Marié, J. Selgrade, R. J. Sacker

et G. R. Sell): puisque (g9A) n&apos;a pas de structure hyperbolique et que
l&apos;homéomorphisme g est minimal il existe (y, u)eXxP(R2) tel que

(2) sup||Ag(u)u||&lt;+oo

et donc (y, u)

LEMME. Quels que soient BeSL(2,U), et u, veU2 vérifiant ||u|| IHI=l et

\\u At?||^O, si ||Bt»||&lt;l/C, avec C&gt;0, alors on a ||Bm||&gt;C||u av\\.

Démonstration du lemme. Il suffit d&apos;écrire ||Bu|| ||Bu|| &gt;\\Bu aBv\\ \\uav\\. ¦
1 Voir par exemple, R. Mané, [M].
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Fin de la démonstration de la proposition. Par ®, @ et le lemme, on arrive à

une absurdité si K+^K_. La proposition résulte facilement de ce fait. ¦
5. Nombre de rotation fibre et quelques propriétés; application à des corollaires
du théorème d&apos;Arnold et de Moser

5.1. Soient X un espace compact métrique (/ 0) et g un homéomorphisme de
X. Soit xeX—&gt; h(x)GHoméo+(T1) une application continue, où Homéo+OT1)

désigne le groupe topologique des homéomorphismes de T1 préservant l&apos;orientation

avec la topologie compacte ouverte.
On définit l&apos;homéomorphisme FdeXxT1 par F(x, S) (g(x), h(x)(6)). F est

un homéomorphisme fibre, le diagramme suivant étant commutatif:

FiXxf1 XxT1

g: X &gt; X

On veut définir le nombre de rotation fibre; pour cela on suppose que
l&apos;application xeX—&gt; h(x)GHoméo+ (T1) est homotope à l&apos;application constante
égale à l&apos;idendité de T1. On peut donc relever l&apos;application x—&gt;h(x) à xgX—&gt;

MxJgD^T1) avec D°(T1) {ftGHoméo+ OR) | h(x + l) h(x)+l, si xeU}. On
définit l&apos;homéomorphisme F de XxR par F(x, 6) (g(x), h(x)(0)). Si ÀeR,
IdxRK est l&apos;application deXxR définie par (IdxRK)(x, 0) (x,0 + k).

Si Fx et F2 sont 2 relèvements de F à Xx|R alors Fx ° FJl(x, 6) (x, 6 + x(x))
où x;X-&gt;/, est une application continue. Il en résulte que si l&apos;espace X est

connexe alors Fx (Id xRp)° F2, avec p € Z.

5.2. On définit le nombre de rotation dans la direction de la fibre comme une
fonction de (x, 0)eXx(R par

Pf(F)(x, S) lim sup - (p2 o Fn(x, 6) - 6) e R

avec p2(x, 0) 0. (On note pf pour pfibre)- La fonction ^(F) a les propriétés:
a) Elle est Z-périodique en 0.

b) Si p g Z, pf((Id xRp)op) p + pf(F).
Il suit que si l&apos;espace X est connexe alors la foction (x, 0) —? pf(F)(x, 0) (mod 1) ne

dépend pas du relèvement F de F.
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c) Si pour tout x, fi!(x)&lt;h2U) (ie pour tout 0 hl(x)(6)^h2(x)(e)), où
h, e C°(X, D^T1)) pour i 1, 2) alors, pour tout (x, 0), on a

i)(x, 0)^ft(g, WOt, 0)

d) pf(F)(x,6) pf(F)(F(x,e))

Remarques 1) On peut remplacer T1 par Tn en supposant que l&apos;application

xgX—*ft(x)eHoméo(Tn) est homotope à l&apos;application constante égale à

l&apos;Identité de Tn et en posant si x -» h(x) e D°(Jn) est un relèvement de h et

F

0) hm sup j (p2 ° Fk(x, 0) - 6) e Un
k—*+°o K

avec p2(x, 0) $ et la lim sup étant la limite supérieure de chaque composante
Le lecteur peut se rapporter à [4, XIII 1 et 2]
2) II est nécessaire de supposer que x —» h(x) est homotope à l&apos;application

constante identité de Tn ainsi que le montrent les exemples suivants

a) X {1 point}, x -h&gt; h(x) A g Homéo (T2) où A P

b) X T\ xeT1-&gt;h(x)GHoméo+(T1) avec g(x) x + a, a^O et h(x)(0)
0 + x

Ces exemples montrent que le facteur 1/fc est ridicule

5 3 Soit F XxR-&gt;Xx[R comme en 5 1

PROPOSITION Soit xeX fixé
a) Que/s que soient 0x et 02&gt; on a pf(F)(x, 0X) ^(F)(x, 02)

b) Si pour un B^eU, la limite limn_^(l/n)(p2°Fri(x, 0i)~0i) (=ft(F)(x, 0t))
existe, alors pour tout 0e(R, la limite limn_+oo (l/n)(p2 ° F(x, 0)-0) existe et eHe

Démonstration Soit p2&lt;&gt;Fn(x, 0) h^(x)(0), où h^(x) h(gn~\x))
D^T1), si IgD^T1) on a l(0) 0 + (p(0) 9€C°aM») avec

Max &lt;p -Mm &lt;p &lt; 1 [4, II 2 2],

d&apos;où

-&lt;«,-«l&lt;i
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Remarque. Cette proposition n&apos;est pas correcte si on remplace T1 par Tw (voir
[4, chap XIII 1.3])

5.4. Le théorème suivant ne serait pas correct si l&apos;homéomorphisme g n&apos;est

pas uniquement ergodique mais seulement minimal (voir à ce propos [4, XIII
13])

THÉORÈME. On suppose que Vhoméomorphisme g de X est uniquement
ergodique, d&apos;une unique mesure de probabilité invariante jul sur X. Soit F (g, h) un
homéomorphisme de XxU comme en 5.1. Alors, si n-^+oo, \a suite de fonction
((l/n)(p2 ° Fn (x, 6) - 0))n2i converge uniformément vers une fonction constante ; cette

constante est notée Pf(P)

Rappels d&apos;exemples d&apos;homéomorphismes uniquement ergodiques:
Si X Tn~1 et si g R&amp; est une translation minimale de T&quot;&quot;1, alors g est un

homéomorphisme uniquement ergodique de Tn~\ l&apos;unique mesure de probabilité
invariante étant la mesure de Haar de Tn~\ Plus généralement pour un groupe
abélien compact, une translation est minimale si et seulement si elle est uniquement

ergodique
Pour démontrer le théorème nous avons besoin du lemme suivant:

LEMME. Soit Y un espace compact, G un homéomorphisme de Y. Soit $ une

fonction continue de Y, il/eC°(Y,U) telle qu&apos;il existe \eU tel que, pour toute

mesure de probabilité vdeY invariante par G, on ait JY *l* dv À. Alors, si n —&gt; +oo?

la suite

converge uniformément vers A

Démonstration du lemme. Il suffit de voir que i/r appartient à la fermeture

pour la topologie de la convergence uniforme de l&apos;ensemble des fonctions {A. +17 -
Tj°G|À€iR, tîgC°(Y)}, Or cela résulte du théorème de Hahn-Banach, en
utilisant le fait qu&apos;une mesure de Radon sur Y est invariante par G si et

seulement si elle est nulle sur l&apos;espace {r\ - tj ° G 117 € C°(Y)} et que toute mesure
de Radon v invariante par G s&apos;écrit de façon unique v v+-u_, où v+ et t)_ sont
des mesures positives étrangères invariantes par G (l&apos;invariance venant de
l&apos;unicité de la décomposition de Jordan) ¦

Démonstration du théorème de 5 4. On écrit F(x, 0) (g(x), 6 + &lt;p(x, 0)) avec



488 MICHAEL R HERMAN

&lt;p(x, e)eC°(XxJ1). On a

F(x, 6) (gn(x), S4- £ &lt;P ° F&apos;(x,

\ i=0

et donc

1 1 r1
— (p2°Fn(x, S) — 6) — &gt; &lt;p°Fl(x, 6).
n n I=o

Soient vl9 i — 1,2,2 mesures de probabilitiés invariantes par F sur XxT1. Chaque
mesure vx se projecte par px sur l&apos;unique mesure jll invariante par g.

Il résulte du théorème ergodique de Birkhoff et de 5.3 qu&apos;il existe un
ensemble BciT1 de /m-mesure 1 tel que, quels que soient xeB et OeT1, on ait

IV- 2- &lt;p°Fl(x,e)-+ceM

où c est indépendant de (x, 6)eBxT1. Comme l&apos;ensemble fîxT1 est de vt et v2
mesure 1 on a

J&lt;p dvi I ç dv2 &lt;

XxT1 ^XxT1

et le théorème résulte du lemme. ¦
5.5. Topologies

Sur l&apos;espace des applications continues de X dans D^T1) (noté par
C°(X, D°(T1))) et sur le groupe des homéomorphismes de X (noté Homéo (X)) on
met la topologie de convergence uniforme. Puisque X est compact métrique ces

espaces sont métrisables. Sur le sous ensemble de Homéo (X) Ue(X)
{g g Homéo (X) | g est uniquement ergodique} on met la topologie induite.

5.6. Soit Y un espace compact métrique; rappelons que, si l&apos;on munit l&apos;espace

des fonctions continues sur Y, C°(Y), de la topologie de la convergence uniforme
et l&apos;espace des mesures de probabilités sur Y (noté M(Y)) de la topologie vague
(ou topologie faible induite par la dualité cr(M(Y), C°(Y))), alors l&apos;espace M(Y)
est compact, métrisable, et on a le lemme immédiat:
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LEMME. Les applications suivantes sont continues:

(lui, g) eM(Y)x Homéo (Y) -» g*jx e M(Y).

5.7. Continuité du nombre de rotation fibre

PROPOSITION. L&apos;application

F (g, h) e Ue(X) x C°(X, D°(J1)) -&gt; Pf(F) e R

est continue.

Démonstration. Il suffit de montrer que, toute suite (Ft)I2rl, convergeant vers F
a une sous-suite (F^X^q, 0&lt;nl&lt;nl+l, telle que si i—&gt;+oo5 pf(Fni)-&gt;pf{F). On
écrit #, (&amp;, W + &lt;pt) et F (g, Id + &lt;p), où &lt;p, et &lt;p sont dans C°(XxT\[R). On
note F,(resp. F) l&apos;homéomorphisme induit sur XxT1 par F% (resp. XxT1), et vv

une mesure de probabilité sur XxT1 invariante par Fx. Soit (vni)l&gt;n une sous-suite
de la suite (i^), c MfXxT1) convergeant vaguement vers v e M(Y); on a, par 5.6,
F*v v puisque F^-^F uniformément. Par la démonstration de 5.4,

JxxT1 J
&lt;p dv

mais, par le lemme de 5.6, si i —&gt; +°°,

I &lt;P~ dVn ^ I (Ç dv. H

5.8. Remarques. 1. Il n&apos;est pas difficile de voir (par des arguments similaires à

5.7) que l&apos;application F—» pyCF) est continue pour la topologie uniforme au point
(gl5 h1)€l/e(X)xC°(X,D°(T1)) si on définit Pf(F) comme un fonction de F
(g, h)GHoméo(X)xC°(X,D°(T1)) ainsi que nous l&apos;avons fait en 5.2 (on peut
aussi remplacer la limsup par la liminf).

2. Si l&apos;homéomorphisme g préserve une mesure de probabilité fixée jul de X
(mais on ne suppose pas que g est uniquement ergodique) si h Id + &lt;pe

C°(X,D°(J1)) et si F=(g, h), alors, quand n-*+oo, (l/n)(p2&lt;&gt;Fn(x)(0)-6) tend

pour /ut-presque tout x et tout 6 vers une fonction ^gL°°(X, /ul), g invariante (cf.
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5.4). De plus l&apos;application

F=(g, ft)e{feHoméo (X) | /*|ui /ut}xC°(X, D^T1))-* f

est continue par la même démonstration que 5.7.

5.9. Propriétés
On se donne F=(g, h)e Ue(X)xC°(X, D°(J1)) On écrit F(x,6)

(g(x),h(x)(0)) (g(x), 0 + (p(x,0)) où (p6C°(Xxn On désigne par F
l&apos;homéomorphisme induit par F surXxT1.

On a les propriétés suivantes pour la fonction continue F—&gt; pf(F)eU:
1) Si p€Z,pf((IdxRp)op) p + f)f(F).
Si l&apos;espace X est connexe, on pose pf(F) Pf(F)(mod 1) et cela ne dépend pas

du relèvement F de F. Les propriétés suivantes ont alors des analogues immédiats

pour pf(F)eJ1.
Si l&apos;espace X n&apos;est pas connexe on pose Pf(F) py(F) mod D, où D cR est le

sous-groupe pf(g x N) avec N {14* -h x | x e C°(X, Z)}. Si H g x (Id + *), avec
Id + X e N on a Pf(H) Jx x(x) dfi(x).

Par la démonstration de 5.4 on vérifie que pf(F) modD ne dépend pas du
relèvement F de F.

Le groupe D est dénombrable car l&apos;esemble N l&apos;est (puisque avec la topologie
de la convergence uniforme N est discret et séparable l&apos;espace X étant compact
métrisable). On a toujours ZcD et D est le Z-module de R engendré les valeurs

fi(LO où 17, sont les ensembles compacts ouverts de X.
2) Si pour tout x € X on a ^(jc) &lt; h2(x\ où h, € C°(X, D^T1)) pour î 1, 2,

alors ^(g, h^^pfig, h2)-

3) II en résulte que la fonction suivante

Rk)oF) k(k)eU

est continue, monotone non décroissante, et vérifie fc(À -f-1) k(À) + l.
4) Si Pf(F) aeR, alors l&apos;homéomorphisme deXxi (g, R^)&quot;1 °Faun point

fixe. (Cela résulte de ce que Jxxt1 &lt;pdv a9 où v est une mesure de probabilité
invariante par l&apos;homéomorphisme F de T1xP(R2). La fonction &lt;p s&apos;annule donc
en au moins un point.)

5) Soit HOc, 6) (x, l(x)(6)), où leC°(X9D°(T1)). La même démonstration

que [4, II et XIII. 1] donne f)f(H o (g x jRJ o H&quot;1) a.
6) Soit g un homéomorphisme de X totalement uniquement ergodique (i.e.
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pour tout neZ-{0}, gn est uniquement ergodique) alors

7) Soit F - H o (g x RJ o H&quot;1 avec H(x, 0) (x, !(*)(«)) Par 5) ft(F) a On
a la

PROPOSITION pf((IdxRk)oF) at&gt;k=Q

Démonstration Si Ft (g, ht) e Ue(X) x C°(X, D^T1)) vérifie py(Fi) a et si

F H°(gxl&lt;JoH&quot;~1, alors F^F&apos;1 a un point fixe En effet par 4)

rhoméomorphisme H&quot;1 °Fi°F~l°H de XxR a un point fixe et donc aussi

Fi°F~l Si l&apos;on avait pf((IdxRx)°F) a pour un A^O, rhoméomorphisme
là xjRx de XxlR aurait un point fixe et donc A 0 ¦

8) Soient ge Ue(X) et a€(R fixé On pose Ô°(gxKa) la fermeture pour la
C°-topologie dans Ue(X)xC°(X, D°(TX)) de l&apos;ensemble {H&apos;^tgx^o
H | H(x, 6) (x, l(x)(0))9 I g C°(X, D°(V))}

PROPOSITION Pour tout Fl (g,h)eUe(X)xC°(X,D°(V)) vérifiant
pf(Fl) a et tout FeÔ^gxR^), Vhoméomorphisme FxoF* de XxR a un point
fixe

Démonstration Si l&apos;on fixe Fu alors pour tout H, par 4) Fl o

(H°(gx Ra) o H&quot;1)&quot;1 a un point fixe, or, l&apos;ensemble des F (g, h) avec g fixé et

h € C°(X, D0^1)) tel que Fx°F~l n&apos;ait pas de point fixe sur X xR est ouvert pour
la C°-topologie ¦

COROLLAIRE Si FeÔ°(g xRot) alors Pf((Idx#x) o p) a&lt;&amp;A 0

Remarque La proposition ci-dessus n&apos;est pas valable si on remplace T1 par
Tn

EXEMPLE X T\ g=«a où aeT&apos;-CQ/Z), h(x)eHoméo(T2),
Mx)(e1,02) (^1-f(p1(z), 02 + &lt;p2(x)), où &lt;PieC°°(T\R), JJ (pt(x)dx 0, pour i

1,2 et les fonctions cpx et &lt;p2
n&apos;ont pas de 0 commun

5 10 Le groupe G&lt;x&gt;(Jn)

On considère le sous-groupe G°°(Tn) de groupe des diflféomorphismes de Tn,

n&gt;2, défini par G0O(Tn) {(Ka xh) | aeln~\ h e CZ(Tn~\ Difl^ (T1))}, où, si
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aeT&quot;&quot;1, K:0eTn-1-&gt;0 + aeTn-\ et où C^T&quot;&quot;1 DifÇCT1)) désigne l&apos;ensemble

des applications de classe C°° de Tn-1 dans DiffXlT1) homotopes à l&apos;application

constante GeT&quot;&quot;1-»IdTi (i.e. heC00 veut dire que (x,6)eTn~1xT1-*
h(x,d)eT1 est de classe C°°). DifÇCF1) désigne le groupe topologique des

difféomorphismes de classe C°° préservant l&apos;orientation avec la C°°-topologie On
met sur G°°(Tn) la topologie C°°.

On définit aussi le sous-groupe de Homéo (T n) G°(T n) {(Ra x h) \ a e T n~\
h e Co(Tn~\ Homéo+ (T1))} et on met sur G°(Tn) la C°-topologie. On rappelle la
définition:

DÉFINITION. (ayp)eln~1xj1 satisfait à une condition diophantienne s&apos;il

existe C&gt;0, 7&gt;0 tel que, pour tout (fc0, ku..., fcn)eZx(Zn-{0}), on ait
Ifeo+fen^+L^MJ^Clkr, où |fc| suplsiasn|fcl| et (àJ)eUn est un
relèvement de (a, /3)eTn à IRn.

On rapelle que Lebesgue-presque-tout (a, j3)eTn satisfait à une condition
diophantienne.

Si (a, (3) e Tn satisfait à une condition diophatienne, alors la translation R^ de
T&quot;&quot;1 est minimale et donc uniquement ergodique.

5.11. Corollaire due théorème d&apos;Arnold et de Moser
On a le corollaire suivant du théorème d&apos;Arnold et de Moser, théorème qui

est démontré dans [4, Appendice] (voir aussi [6]).

COROLLAIRE 1. Soit (a,/3)6Tn~1xJ1 satisfaisant à une condition
diophantienne. H existe un voisinage Ya^ de (Ra, R^) dans G°°(Tn) et une
application continue pour la C°°-topologie (et même de classe C°° au sens d&apos;Hamil-

ton) SaW3: ro,3-&gt;T1xGO8(Tn) telle que SO£,3(F) (À, H) vérifie H(0) 0 et

Démonstration. Il suffit d&apos;appliquer [4, A] et [4, IV.5.1] pour s&apos;assurer que
He G°°(Tn). Cela résulte aussi de la démonstration de [4, A] ou de [6], (On peut
aussi raisonner directement et montrer que H est fibre exactement comme dans la
démonstration de 4.13.) ¦

Remarque. Si F définit un difïéomorphisme R-analytique de Tn il en est de

même de H (voir [4, A]).

5.12. COROLLAIRE 2. Soient (a, 0) satisfaisant à une condition diophantienne

et F (Ra, h)e VaS (voisinage du corollaire 1). On suppose que Of(F) j8

(ici X Tn-\ g RJ; il existe alors H IdT^ x l avec l e Co(Tn-\ DiC (T1)) tel

que Von ait F=H&lt;&gt;(RotxRf})oH~1.
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Démonstration. Il suffit d&apos;appliquer 5.11 et 5.9.7). ¦
5.13. Soit GZ(Tn) Tn-1xCo(Tn~\PSL(2M)Y- on suppose PSL(2,R) &lt;-*

DiflÇ(P(IR2)) DiflÇ(T1)î cette inclusion venant de l&apos;action canonique de

jRSL(2,R) sur(P([R2). L&apos;indice 0 dans Cq indique que l&apos;on ne considère que les

applications de classe C°° homotopes à l&apos;application constante xeT&quot;&quot;1—&gt;e.

L&apos;application

0^! /&lt;**,„_ -:-:)€SL(2J
\ sirv sin 2tt|3 cos 2

donne l&apos;application j3 -&gt;#2&lt;3 g T1^ PSL(2, (R)czDin^(T1). GZ(TM) est canonique-
ment un sous-groupe de G°°(Tn), et on utilise l&apos;indice L pour linéaire. On définit
aussi le sous-groupe de G°(Tn), G^(Tn) Tn~1 xCS(Tn&quot;\ PSL(2,R)).

5.14. COROLLAIRE 3. Soit (a, P)gTw&quot;1xT1 satisfaisant à une condition
diophantienne et (Ra, A)eYaSr)GZ(Tn) (voisinage du corollaire 1) vérifiant
Pf(Ra, A) 0. Alors il existe He GZ(Tn) tel que Von ait

1ère Démonstration. Par 5.12, il existe H1eGao(Jn) vérifiant + ); on veut voir
que Hx e GZ(Tn); or Hx est unique si on impose que: Hi(0) 0 et il suffit de voir
qu&apos;il existe H2eG£(Tn) (i.e. de classe C°) vérifiant + Il existe C&gt;1 tel que,
pour tout x€Tn-1 et tout entier n&gt;0, on ait

où A^Jix) A(i?(n_1)a(x)) • • • A(x) et || || est la fonction induite sur PSL(2, R) par
la norme sur J£(M2,M2), elle même induite par la norme euclidienne de M2: si

v (u1? t;2) g(R2, ||u||2 v\ + v\. En effet le diflféomorphisme Hx est de classe C1 et

donc

sup lidet DFn I

puisque F Hlo(Rax R^) o H^1 (cf. [4, IV 1]). DFn désigne la dérivée de Fn. Or
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(On utilise le fait que, si veU2, \\v\\ 1, v (cos 2tt0, sin 2ttO) pour un 6gT1 et

alors

jd/J_A /acos2ir0 4- b sin 2ttO\\ 1 \
d0 \2ir °tg \c cos IttB + d din lirOj) ~ \\Bv\\2&apos;)\\Bv

Par un théorème de Cameron (la démonstration étant analogue à celle de

[9-§2.5]) il existe H3eG£(Tn) (on peut supposer que H3 est homotope à

l&apos;identité) tel que H^FoH^1 (Ra, Ax), où A1(x) e2&quot;up(x) et &lt;peC°(Tn-\M).
Par l&apos;invariance du nombre de rotation fibre (cf. 5.9.5)), on a $jn 1 &lt;p(x) dx |3. Par
[4, XIII 5.3], il existe tj g C°(Trn-\ R) tel que H4(x, 0) (x, e2in(e+T|(x))) vérifie

H4 o H3 o F o HJ1 o Hj^x, (9) (x 4- a, e2m(e+0))

et

H2 H4oH3eGl(Jn) vérifie donc (-h). ¦
Remarque. On a montré en plus: si FeGZ(Tn) vérifie + auec un He

G°°(Tn) alors HeGZ(Tn) (et on a seulement utilisé le fait que R^xR^ est une
translation minimale de Tn).

2ème démonstration si le voisinage VaS est assez petit Pour tout tî&gt;0, si le

voisinage Fa3 est assez petit, on peut supposer qu&apos;il existe Ht e G°°(Tn) vérifiant
+ et ||Hi ~/dTn||ci&lt;rj. (Cela résulte de la continuité de l&apos;applications Sa# de

5.11). Puisque Ht est de classe C°°, on a:
a) La suite (JR^ • ÂyB€N d&apos;éléments de C^CT&quot;&quot;1, SL(2,R)) est bornée dans

la C°°-topologie, où

/ cos 27m/3 —sin 2imfï\
113 \ sin 27rn^ cos 2irNp /&apos;

avec fiel1 vérifiant 2{3 0, Â^(x)==À(R(n^1)a(x)) • • • Â(x) et x-^Â(x) est un
relèvement de x-*A(x)gPSL(2,IR) voisin de Kp. (C&apos;est possible puisque x—?

A(x) est homotope à l&apos;application jc—»e.) Pour voir ceci, il suffit d&apos;écrire la

matrice AJ^ en coordonnées polaires, en utilisant ® et [4, IV 1 et XIII 1.4].
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b) Si r] est assez petit, on a

où e est la matrice unité de SL(2,U).
Soient Bn=(l/n) lr=o R-m* °Â^, n&gt;l; par a) la suite (Bn)neN* est

d&apos;adhérence compacte pour la C°°-topologie dans l&apos;espace de Fréchet-Montel
C~(Tn~\i?()R2,IR2)); soit B une valeur d&apos;adhérence de cette suite (i.e. telle qu&apos;il

existe une suite 0&lt;nl&lt;nl+1 d&apos;entiers telle que, si i—»+oos B^-^B dans la
C°°-topologie). Par b), on a ||B-c||c«&lt;| et donc BeC&quot;(Tn&quot;&quot;\ GL+(2,R)). Si

X€Tn,

R B() + j^(« Â^())
et donc, si

Il en résulte qu&apos;il existe c&gt;0 telle que pour tout xgT&quot;&quot;1, on ait det B(x) c. Si

B désigne l&apos;image de B dans C°° (Jn~\ PSL(2,R)), alors H Id xB e GZ(Tn)
vérifie + ¦

5.15 Remarques. 1. Le voisinage Fa&gt;3 est induit par un voisinage dans la

C2T+e-topologie et sa taille ne dépend que de la constante C&gt;0, où 7 et C sont
les constantes de la condition diophantienne 5.10 (cf. [4, A.2.5]).

2. On peut affaiblir la condition diophantienne sur (a, 0) (cf. 3.2 [14] et [6]).

5.16. Vecteur de rotation
Soit F (Ra, h)eG°(ïn), agissant sur Tn~1xT1. Si R^ est une translation

minimale de Tn~\ on définit le vecteur de rotation de F par

Cette définition est compatible avec celle de 5.2 remarques 1) et de [4, XIII. 1].

L&apos;existence et la valeur de p(F) sont invariantes par conjugaison par un

homéomorphisme de Tn homotope à l&apos;identité [4, XIII 1].

Si a — (ax,..., On-iJeT&quot;&quot;1, on définit le module Ma des fréquences comme le
Z-module de T1 engendré par ax,..., On-i.
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Si k (ki,..., fc^x) g Zn~\ on définit le difféomorphisme Sk : (x, 0) e
Tn&quot;&quot;1xT1-&gt;(x,e+&lt;k,x»eTn avec &lt;k,x&gt; Z fc^ si x (xl5..., xn_1). On a SkG
Tn-1xCtt&gt;(Tn-1,PSL(2,IR)), mais pour fc^O, Sk^G°(Tn). On définit des au-
tomorphismes extérieurs des groupes G°(Tn) et G?.(Tn) par F^Sk oFoSZ1, et
on a

p(Sk o F o S,1) (a, Pf(F) + &quot;f

et un isomorphisme de Z-modules

k gZ&quot;&quot;1

5.17. Vecteur de rotation et structure hyperbolique
Soit F= (Ra, f) g G°(Tn), où R^ est une translation minimale. On suppose que

Vhoméomorphisme F de Tn~1xT1 laisse invariant le graphe d&apos;une application
continue ^r:Tn~1-^T1. Par exemple, F est Thoméomorphisme induit surTn-1x
P(U2) par l&apos;homéomorphisme fibre (R&lt;x,Â)eTn~1xC0(Tn~\SL(2,M)) agissant
sur TM~1x{R2 et possédant une structure hyperbolique (cf. 4.2 et 4.3).

PROPOSITION. Soit F comme ci-dessus Si p(F) (a, p)eTn alors peMa.

Démonstration. Si *&quot; est homotope à une application constante alors |3 0.

On se ramène à ce cas en considérant Sk °F°Sk1 (cf. 5.16). ¦
5.18. Soient i^ une translation minimale de T&quot;&quot;1 et jSgT1. On pose F2,3

{FGG°(Tn) | p(F) (a, (3)} et F°,3 FX3nGO0(T1). Par la continuité de la fonction

pf les ensembles F^3 et F^3 sont fermés (pour la C°-topologie).
Il n&apos;est pas difficile de voir que les groupes topologiques G°(Tn), G^(Jn),

G£(Tn) et GZ(Tn) sont connexes par arcs et métrisables.

PROPOSITION. L&apos;ensemble F2# est connexe pour la C°°-topologie.

Démonstration. Soient L~ {(R, x f) e G°°(Tn) | y a, /(0)(0) 0} et H« -
{(Ry*f) g G°°(Tn) | y a}, on a L^HZ

En remontant à Tn~1x{R on vérifie que L* est connexe par arcs. Soit
l&apos;application continue, surjective (cf. 5.9.3); p2:H~-*LZ (R«x/)-»
(IdxR_m)o(Roixf), Si on identifie H^àT^C par l&apos;application (À,F)-*
(Id x Rk) o F alors p2 est la 2ème projection. Il suit, que puisque T1 est un espace
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compact métrique, que si F est un ensemble fermé de HZ alors l&apos;ensemble p2(F)
est fermé dans L^.

Si l&apos;ensemble fermé F~3 n&apos;est pas connexe alors F~3 F1\}F2 où Fiy i 1,2,
sont des ensembles fermés disjoints de H~. Or, les ensembles p2(Ft) i 1, 2, sont
fermés et vérifient p2(Fi)Up2(F2) L« et donc p2(Ft) H p2(F2) f 0. Soit y g
P2(^i)np2(F2), par 5.9.3), p^Cy) est un segment (pouvant être réduit à un point)
et il en résulte par l&apos;absurde que F^3 est connexe. ¦

Remarque. Par la même démonstration les ensembles F£3, ^HG^T&quot;) sont
connexes.

QUESTIONS. Si |3^Qa+Qmod 1 {resp. si $£Ta mod 1) et si feF% (resp.

°s H G°L(Jn)) est-ce-que pf((Id xRk)oF) f3 implique A - 0?

Pour de réponses partielles positives à ces questions cf. 5.9. 7) et 8). Des

résponses positives à ces questions impliquent respectivement que si j8 ^ Qa + Q
modl (resp. p^Zamodl) alors F°saH° (resp. F£3nG£(Tn)c]^nG2XTn))
est le graphe d&apos;une fonction continue de L£ dans R (resp. de L^D G£(Tn) dans R)
(cf. [4, III]).

Il suit de 5.17, que si (3 ela mod 1 alors G£(Tn) C)F^&amp; a un intérieur non vide
dans G^(Tn) (i.e. il contient l&apos;ouvert de ceux qui agissant sur T&apos;^xR2 ont une
structure hyperbolique). Il en résulte que F«3 a aussi un intérieur non vide
dans G°°(Tn) (en utilisant le fait qu&apos;un tore invariant par un diflféomorphisme
de classe C°°, normalement hyperbolique, est stable par perturbation C°° du

difïéomorphisme).
En utilisant les revêtements finis il en résulte que si |3€Q + Qa mod 1 alors

F£3 a un intérieur non vide dans G°°(Tn) (si (Ra,f)eGao(Jn)y et (R*,/) est un
relèvement à T&quot;&quot;1 xR, pour q gN* et p eZ les revêtements d&apos;ordre q s&apos;obtiennent

par (jRa, fq) où

i,X0,y)

5.19. On reprend les notations de 5.18. On pose

0:p {F°(«o,xRb)oF-1|F€G1T&quot;)} et

Par 5.9.5), on a 0~3c:F~3 (de plus 0«,3 est connexe).
Si (a,@) satisfait à une condition diophantienne il suit de 5.11, par

conjugaison C°°, que l&apos;ensemble 0«,3 est ouvert dans FX3 pour la C°°-topologie.
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PROPOSITION. Si (a, /3) satisfait à une condition diophantienne alors Ven-
semble 0«&gt;e n&apos;est pas fermé dans F£s pour la C°°-topologie.

Démonstration. Par l&apos;absurde. Si 0~3 était fermé dans F~3 alors il serait
ouvert et fermé et donc par 5.18, 0^ F^&amp;. Ceci contredit 4.6 et 4.13. ¦Par la remarque de 5.14, si R^ x JR3 est une translation minimale de Tn, alors

on a

Par la même démonstration on a la proposition.

PROPOSITION. Si (a, p) satisfait à une condition diophantienne alors
Vensemble 0~3X n&apos;est pas fermé dans FZt0nGZ(Tn) pour la C°°-topologie.

Remarque. Si a ne satisfait pas à une condition diophantienne alors l&apos;ensemble

0£^L n&apos;est pas fermé ni ouvert dans F^nG^T&quot;) (cf. [4, XIII 5]).

6. Complément: dépendance plurisousharmonique de paramètres complexes

6.1. Soient X est un espace compact métrique, jut une mesure de probabilité
sur X, et g : X —» X une application borélienne préservant la mesure /m.

On suppose que r&gt;0, peN* et que l&apos;application A:D?xX—»â8 est

borélienne, où 38 est une algèbre de Banach sur C avec la norme || ||. On suppose
que la fonction (r], x) —»||A(t|, x)|| est bornée sur DJxXet que, pour tout xeX,
l&apos;application tj —&gt; A(tj, x) est holomorphe sur l&apos;intérieur de Dpr (notée Int (D?)).
Pour t| fixé on note par A^ :X—» 98 l&apos;application x —» A(r\y x).

La mesure fx sur X étant donnée et t\ fixé pour l&apos;application fibre (g, A^) de

Xxâ8 comme en 1.2 et 1.3 on définit À+(g, AJelRU{-&lt;»}.

PROPOSITION. Sour les hypothèses ci-dessus la fonction r\eIntDpr-+
À+(g, Ari)eU U{-&lt;*&gt;} est plurisousharmonique.

Démonstration. On pose bfc(r), x) l/2k Log HCAJf(x)|| pour fc e M. Pour x € X
fixé, T} —» bfc(T), x) est une fonction plurisousharmonique. La fonction r\ -» ak(rj)
Ixbk(Tî, x)dfjt(x) est aussi plurisousharmonique: soient NeN et xgX fixé la

fonction tj ~&gt; ^nC^» x) ~ sup (bk(Tj, x), —N) est une fonction plurisousharmonique

bornée en module, et donc, par [12, 2.2.1], r] —» akN(îî) bktN(if], x) d[x est une
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fonction plurisousharmonique. La suite de fonctions (bktN)Nss0 est décroissante et
donc 17 —» ak(r)) InfNâ:0 (akN(r))) est une fonction plurisousharmonique (voir [7,
1.6.2]). Il en est finalement de même par 1.3 de la fonction r\ --»Infk ak(ri)

Remarque. Si p 1, par la décomposition de Riesz la fonction 17 —» À+(g,

est sur IntDj la somme d&apos;une fonction harmonique et de la fonction

où v est une mesure de Radon positive ou nulle. Cette décomposition de Riesz

peut, en un certain sens, être considérée comme une version &quot;abstraite&quot; de la
formule de Thouless.

6.2. Exemple d&apos;application

On se donne X, g, jll comme en 6.1 et une application borélienne B:X—»
SL(2, (R) telle que les fonctions x e X -» ||B(x)|| et x -&gt; HB^OOH soient bornées où
II II est une norme de #([R2,IR2).

Comme la décomposition d&apos;Iwasawa est un difïéomorphisme IR-analytique de

SL(2, R) sur NAK on peut écrire de façon unique

/A(x) b(x) \(cos(2mp(x)) -sin &lt;

\ 0 l/A(x)Àsin(2wp(x)) cos(2tt(p(x))

où &lt;p : X—* T1 est une application borélienne, les fonctions x —» À(x), x -* 1/A(x),
x —* b(x) sont boréliennes bornées et pour tout x e X, A.(x) &gt; 0. De plus, si X est

une variété IR-analytique, les fonctions &lt;p, \, b sont aussi dérivables que l&apos;est

l&apos;application x—»B(x). On écrit

/A(x) b(x) \
TW l 0 1/A(x))

et si «gT1,

/ x /cos 2ttcl —sin 2ira\
Xsin 2ira cos 2ira /

Si T(x)^ f sur un ensemble de fi -mesure positive, on a

Ô(B)= f è
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On considère l&apos;application fibre (g, Ba) de Xx&lt;£(M2, M2), on met sur X la mesure
jul et on a:

PROPOSITION. H existe un ensemble de a eT1 de mesure de Haar positive tel

que Von ait:

Démonstration. On pose

()£c(C2, C2)

n -a _où C 2l. 1)? C est la matrice complexe conjuguée et rjeC. On a si

T,a e2™ (i.e. si|nJ l)

A+(g, Ba) A+(g, A^).

Par 6.1 la fonction ijeC—»À+(g, An)€lR est sousharmonique et donc pour r\
appartenant à un ensemble de mesure de Haar positive de Tî (i.e. |tj| 1) on a

A+(g, A,)aA+(g, A0) A+(g; TC).

On veut montrer À+(g, TC)&gt;S(B), pour cela on pose L l et on a

où d(x)=|(A(x)+l/À(x) + ib(x)) Tr(T(x)C). Puisque L est une matrice constante

on a

et on vérifie que

A+(g, LXTCL) &gt; f Log \d(x)\ d^i(x) Ô(B).
Jx
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6.3. Un autre exemple
Soient X, jul, g et A :X-*,5fc(Cn,Cn) vérifiant les conditions de 6.1.
Soit a un élément de l&apos;algèbre de Lie de SL(n, C). La proposition suivante

résulte facilement de 6.1

PROPOSITION. Pour tout r&gt;0 il existe r\reC tel que Von ait \r)r\ r et

À+(g, A • exp (rîra)) &gt; A+(g, A)
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