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Explicit resolutions for the binary polyhedral groups and for other
central extensions of the triangle groups

RALPH STREBEL

Geometric background and algebraic results

This paper will exhibit two classes of finitely presented groups for which
explicit free resolutions can be obtained by direct algebraic calculations. The
resolutions will be either periodic of period 4, or of length 3.

1. The groups of the first class are central extensions of the triangle groups,
admitting a 2-generator 2-relator presentation. Specifically, let [, m, n be integers
with min (|I|, |m|, |n])=2 and define

G=G(, mn)=(a, B;a' =B =(aB)"). (1)

In the sequel the canonical images in G of «, resp. B, will be denoted by a,
resp. b.

The element (ab)" of G is central, being a power of either generator, and the
central quotient G(I, m, n)/{(ab)") is the triangle group

T=T(, mn)=(e,B;a' =™ =(aB)"=1)
=(a, B, y;a' =B =y"=afy=1). (2)

Every triangle group T can be realized faithfully as a group of isometries of the
sphere S?<R? when |I|™' +|m| '+ |n|"'>1 (or, equivalently, if T is finite), of the
Euclidean plane if |I["*+|m|'+|n|"'=1, or of the hyperbolic plane if
1|7 +|m|™'+|n|"' < 1. This action of T leads in all three cases to a tesselation of
the space in question by pairs of adjacent triangles — whence the name “triangle
group”. (See, e.g., [10], and the references cited there for proofs and more
details.)

2. Each of the groups G(l, m, n) occurs as the fundamental group of a suitable
Seifert fiber space. Such a space M is a compact 3-dimensional manifold equipped
with a foliation by circles, called fibers. The set of all fibers forms the orbit space,
which is a compact surface. The neighbourhoods of a fiber are fibered solid tori
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434 RALPH STREBEL

with the given fiber as their core, and depending on how these solid tori are
fibered, the given fiber is called exceptional or ordinary. From the fact that M is
compact it follows that there are only finitely many exceptional fibers.

In the special case where the orbit space of M is the 2-sphere and where there
are three exceptional fibers, the fundamental group I' of M has a presentation of
the form

IF'={a,B,v,¢; a'=" Bm=¢™, y"=¢", aBy =P and ¢ is central).

Here the pairs (I, I'), (m, m’) and (n, n’) are relatively prime, min (|l|, |m|, |n]) =2
and p is an arbitrary integer. For I'=m’=1, n’=-1 and p=0, the group I is
isomorphic with G(I, m, n). (See H. Seifert [15], or [13], for more details and
proofs.)

If the fundamental group I' of a Seifert fiber space M is finite, it admits a
faithful representation p: I' >> SO,(R) for which the induced action on S><R* is
fixpoint-free and the quotient space p(I')\ S? is homeomorphic to M (W. Threlfall
and H. Seifert [20, Part II, p. 568, Hauptsatz]). From this fixpoint-free action of I
on S? one can deduce (see, e.g., [2, p. 154]) that there exists a ZI'-free resolution
P—>» Z which has period 4 and is finitely generated in each dimension; in
particular, this is true for the finite groups G(I, m, n).

If the fundamental group I' of a Seifert fiber space M is infinite, M is in most
cases aspherical, as can be deduced from the sphere theorem (see [13, p. 56, Satz
5] for a precise statement). In particular, the spaces with an infinite G(I, m, n) are
aspherical, whence the infinite groups G(l, m, n) must be Poincaré-duality groups
of dimension 3.

3. Our first result describes for each G = G(I, m, n) an explicit ZG-free resolu-
tion of Z. These resolutions will have the same form up to dimension 3 for all
groups, they be finite or infinite, and will permit one to read off many properties
known on topological grounds. The proof will be uniform for all groups.

In order to define the resolution, choose the defining relators

r=(aB)"B™™ and s=(Ba)'a” 3)

for G(I, m, n); these relators do define G(I, m, n), as can be checked speedily. Let
F be the free group on {a, B}, and let D,, resp. Dg, denote the composite of the
partial derivation 9/da:F — ZF, resp. 9/0B:F— ZF, and the canonical ring
epimorphism ZF -» ZG.

THEOREM A. If G=G(l, m,n) and r,s are as before, the sequence of left
ZG-modules and ZG-homomorphisms

26 —7, ZG2(3:; £%) 7G* (i:g)mc " Z—>0 @)
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is exact. (Here € :ZG — Z takes g€ G to 1€Z.) Furthermore: (i) If G is finite, the
kernel of the left-most homomorphism is infinite cyclic, generated by the element
Y.{g | g € G}; therefore (4) leads by splicing to a periodic resolution with period 4.
(i) If G is infinite, the left-most homomorphism is injective and (4) is a ZG-free
resolution of Z; moreover, G is an orientable Poincaré-duality group of dimen-
sion 3.

4. The groups of the second class are central extensions of 1-relator groups. Let
F be the free group on {a;, ..., a,} and let p be a non-trivial element of F which
is not a proper power. Define

L = (ala - Oy [pt’ 0’,1], soay [pl: an])a (5)

where [=1 and [p, o]:=p' ;- p' -a; . Fori=1,...,n, let q,€ L denote the
canonical image of o; € F, and let D, be the composite of the partial derivation
3/0a;: F — ZF and the canonical ring epimorphism ZF -» ZL..

THEOREM B. If the notation is as before and n=2, the sequence of left
ZL-modules and ZL-homomorphisms
()
1—:a,,

(Dql[ﬂl,_axl T Du"[ﬂl,.al])
(Dap. .. Do p) Do [0 an] - Dy [0 @]
e i i <>

ZL" > ZL" —>5 71 —> 7 6)

ZL

is a ZL-free resolution of Z.

The groups L are only in special cases Poincaré-duality groups of dimension 3.
As we shall prove in Theorem 9 this happens if, and only if, F admits either a

basis &, My, ...,& M, such that p=[&,m] - - [§ m], or a basis
£,6,...,& for which p=¢3- -+ - €2 Tt follows that the Poincaré-duality

groups in the second class of groups are fundamental groups of Seifert fiber spaces
which have at most one exceptional fiber and an orientable, or non-orientable,
closed surface of genus g>0 as their orbit space.
1. Some general facts about the groups G(l, m, n)

Let [, m, n be arbitrary integers and set

G=G(, m n)=(a, B;a'=B™ =(aB)").

As before we denote the canonical images in G of a, 8 by a, b.
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Normalization of the parameters. The defining relations of G imply that
(ab)" =(ba)" and so the assignments a+>b, Br>a induce an isomorphism
G(l, m,n) > G(m, I, n). Similarly, the assignments a+>a~', B~>ab lead to an
isomorphism G(l, m, n) > G(—1I, n, m). These two types of isomorphisms allow
one to make any of I, —I, m, -m,n or —n the third parameter and so we can
assume that n =min (|l], |m|, |n|). By exchanging | and m, if need be, we arrive at
the normalization

IZm and min(|l,|m|)=n=0.

The groups G(l, m, 0) are free products {a) * (b), whereas the groups G(l, m, 1) are
all cyclic; indeed one has

G, m1)=(a,B;a'=B" =aB)=(a; a'=(a'")")
— (a; Cl(l~1)(m—1)—1>.

As the results of this paper are of little interest when specialized to cyclic groups

or to free products of cyclic groups, we shall henceforth assume, as we did in the

introduction, that min (|l|, |m|, |n])=2. The previous normalization can then be

sharpened to

IZm and min(|l],|m))=n=2. (7)

Isomorphic groups. Different triples satisfying this normalization condition
yield in general non-isomorphic groups, as is revealed by our

THEOREM 1. Let (I,, m,, n,) and (l,, m,, n,) be ordered triples of integers
satisfying (7). If G(l,, my, n;) and G(l,, m,, n,) are isomorphic, then either both
ordered triples are equal, or the two triples are related to each other as are (I, n, n)
and (n,—1, n).

For infinite groups G(I;, m;, n;) the assertion of Theorem 1 can be deduced from
a far more general result of P. Orlik et al. on the fundamental groups of Seifert
fiber spaces [13, p. 53, Satz 4]. However, whereas the proof of this more general
result is quite complicated, Theorem 1 can be established by merely comparing
the central quotients G(l, m;, n;)/{G(l, m;,n,;) and the abelianizations
G (I, m;, n,),,; for this reason we give an independent proof. Before embarking on
it we determine the abelianization of the group G(l, m, n).
Computation of the abelianized group. The relators r=(aB)"B™™ and s=
(Ba)"a™!, which can be used to define G, lead to the relation matrix R =
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( n n—m
n—I1 n
homomorphism Z> — Z? that takes (x,y) to the matrix product (x, y)- R. The
determinant of R is

) of G,. Put another way, G, is isomorphic to the cokernel of the

detR=(+mn—-Im=lmn(I"'+m'—n"), (8)
and so the theory of elementary divisors implies that

Gy =Z|ZexZ|Ze 9)
where e = gcd(l, m, n) and e’ =det R/e.

Proof of Theorem 1. Set G, =G(l, m;, n;) for i=1 or 2. We contend the
element (ab)™ generates the centre of G,. To see this, let (I, m, n) be a triple
satisfying (7) and let T = T(l, m, n) be the corresponding triangle group. If T is
infinite, its centre is trivial (see, e.g., [22, p. 126, 4.8.1]). If T is finite, it is either
dihedral, or it is polyhedral, i.e. isomorphic to 2, &, or As, and T will be trivial
except in case T is a dihedral group the order of which is divisible by 4. It follows
that {G(I, m, n) =((ab)"), except possibly if G is isomorphic to G(k, +2, 2) where
|k|=2 is even. These exceptional groups have the alternative presentation

G(k,2,2)=(a, B; a* =B* BaB™ ' =a™")

2k k 2 =1 -1 (k..-—>_-.-2)
= (@ B;a®* =1,a* =% Baf ' =)

and

Gk, ~2,2)=(a, B;a* =B % BB =a '™
=(a, B;a* =B BaB ™' = a® 7).

Every element ge G(k, +2,2) is of one of the forms a"* or a"b; the centrality
condition bgh~!= g implies that a®* =1 in the first and that a*** V=1 in the
second case. Now the order of a in G(k,2,2) is 2k, while the order of a in
G(k,—2,2) is 2k(k —1); see, e.g., [5, §6.5, pp. 68-70], or the discussion below. So
h is a multiple of k in either case. Since b is not central, we conclude that
{G(k, £2,2) =(a*)=((ab)?).

Assume now that G,= G(l,, my, n;) and G, = G(l,, m,, n,) are isomorphic.
Then so are T, = T(l;, m,, n)) = G,/{G, and T, = T(l,, m,, n,). But T; and T, can
only be isomorphic if the unordered triples {|lj|,|m,|, |n{|} and {L)|, |m,l, |n,l}
coincide; this assertion is obvious if the T; are finite and it follows for the infinite
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triangle groups from the fact that the elements of finite order of T; have order
dividing |L|, |m;|, |n;| and that the orders |L|, |m;| and |n;| occur (cf. [22, p. 126,
Thm. 4.8.1.a)]). The normalization (7) now implies that n, = n, = n. In addition,
we have that

{Illlr Imll}z{“2|’ |m2|} (10)

Next we exploit the fact that (G,),, and (G,),, are isomorphic. In view of (8), (9)
and (10) this fact leads to the equation

Tt 4mit—-nt=e(l, ' +m3t—n™"),
where £ = +1. Suppose first that e =1 and set w:=17'+m7'=13'+m3". Clearly

p=00L=-m
p>0L=m>0, or >0, m<0 and [<|m]

pn<00>Lzm, or [>0,m<0 and [>|m]

Making use of these case distinctions and of (7), (10) one verifies quickly that
I7'+my'=11+m3" implies that [, =1, and m, = m,.
Finally let € =—1. Then

'+ +mit+mz ' =2n"1>0.

If all four summands of the left hand side are positive, (7) and (10) imply that
l,=1, and m; =m,. If one summand of the left hand side is negative, it follows
from (10) and (7) that two summands must be the negative of each other, whence
(7) implies that the two remaining summands are equal to n™'. So we are in the
special case where the two ordered triples are of the form (L n,n) and

(n,—lLn). O

We proceed to determine when the abelianized group G,, is infinite and when it
is trivial.

Groups with infinite abelianization. Assume the parameters are normalized as
in (7) and G,, is infinite. Then "'+ m™"=n"" by (8) and (9), and | and m will be
positive. Set d = ged(l, m)>0 and f=1/d, resp. g=m/d. From n™'=1"'+m ™' =
(f+ g)/dfg one sees that n is a multiple of fg, say n=e - fg, and so d becomes
e(f+ g). This shows that |, m, n are given by

{l=e-f(f+g), m=e-(f+g)g n=e-fg, (11)

where e =1 and f, g are relatively prime positive integers.
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Conversely, every triple (I, m, n) given by (11) satisfies ' +m ™' =n"'. Therefore
(11) characterizes the normalized triples leading to an infinite abelianization G,,.
Note that G,, =Z/Ze XZ by (9).

Perfect groups. If G, is trivial, i.e. if G is perfect, the parameters I, m, n satisfy
by (8) the equation (I+m)n—Im = +1, which can be rewritten as

(I-n)(m—-n)=n*¥1. (12)

The integral solutions of (12) are easily surveyed; an infinite sequence of solutions
is, e.g., given by the formula

(Lmn)=2n+1,2n—1,n) where n=2.

For n =2 equation (12) has the normalized solutions (5, 3,2) and (7, 3, 2). The
first gives the binary icosahedral group, the second the infinite group

G(7,3,2)=(a, B; a’ = B> = (aB)’) =(a, B, v; o’ = B> = (aB)?, v: = aB)
={a, B, v; &’ =B>=vy>=aBy)

discussed in [7].

Analysis of the finite groups G(l, m, n). We begin with the question which
triangle groups T(l, m, n) are finite. The answer is that this happens if, and only if,
|7 +|m|*+|n|"'>1. This answer is usually justified by letting T act on a
suitable space in the way indicated in 1 of the introduction. There is also a
little-known algebraic argument due to P. M. Curran [6]; it is in the spirit of the
proofs of this paper and runs briefly like this: Verify first that the canonical
images of a, B, v in

T(, m,n)=(a, B, y;a' =" =y"=afy=1) (14)

have orders I, m and n by constructing suitable quotient groups in which the
canonical images of «, 3, v have the desired order (see, e.g. [22, p. 135]). Then
use the following

LEMMA 2 (P. M. Curran [6, p. 620]). Let I, m, n be positive integers and set
S={a,B,v;a'=B"=y"=p=1), (15)

where p is an arbitrary element of the free group on a, 3, v. Denote the canonical
images of a,B,y by a,b,c, and let |, m, i be their orders. If S is finite then
' vm '+ >1.
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Proof. Since S is finite, H'(S,ZS)=0. On the other hand, H(S,ZS)=
ker8%/imof can be computed by means of the exact complex of
left ZS-modules and ZS-homomorphisms associated with the presenta-

D« o 0

0 Dg8™ 0

0 0 Dx"
D, Dgp Dy

> 783
tion (15); cf. [2, p.45, Ex. 3(d), or p. 90, Ex.4(c) and (d)]). Clearly
imof=7S/Y{s|scS}-ZS and so rank(ima¥)=|S|—-1. Next ker
(ZS<ttat=*a 7Q)=(1—a)-ZS and hence rank ((1—a)-ZS)=|S|(1-1/1);
similar statements hold for the two other, analogous maps. It follows that ker 0%
equals the kernel of

b

(e~ N~

zS8* > 7S —> 7 —> 0

7S 2Pt Db) (1 q) - ZSBD(1—b) - ZSB(1—c) - ZS)rersposed

and thus rank (kerd%¥)=|S|(1-1/D)+(1—-1/m)+(1+1/A)—1). The claim then
follows from |S|—1=rank (im 8%) =rank (ker 8%). O

To complete the determination of the finite triangle groups T(l, m, n), use that
a change of the order or the signs of the parameters [, m, n does not influence the
isomorphism type of the group; so one can assume that [Zm=n=2. The
solutions (1,2,2) of "'+ m™'+n~'>1 yield the dihedral groups of order 2[; the
remaining three solutions (I, 3, 2), where 1 =3,4,5, give the polyhedral groups
s, ©, and U (cf. [5, p. 7 and p. 67)).
We now pass to the finite groups G(I, m, n) and begin with the simple

LEMMA 3. If min(|l],|m|,|n))=2 and T=T( m,n) is finite then G =
G(l, m, n) is likewise finite.

Proof. Assume the parameters are normalized as in (7). As T is finite one has
n=2 and |l|"'+|m| ' >1/2; a comparison with (11) discloses that G,, is finite.
The central extension {a')<IG - T gives rise to the exact sequence

H,G — H,T—(a")— Ga —> Ta» = 0. (16)

Since T is finite, H,T is so, and then (16) shows that (a') and hence G are
finite. [

The determination of the finite groups G(I, m, n) can be completed as follows:
By (7) and the previous reasonings n can be assumed to be 2. Since G is a finite
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2-generator, 2-relator group, its multiplicator H,G is trivial (see, e.g., [2, p. 46,
Ex. 5]). The central extension (a') <G -» T gives rise to the exact sequence (16),
the exactness of which implies that

Ka' =1Ga| - |HT| - | Tl (17)

The quotient |H,T|-|T,,|~" can be shown to be 2/4, resp. 2/3, 2/2 or 2/1 for
T(l, 2, 2), resp. T(l, 3,2). On the other hand, G,, is by (8) and (9) equal to 4,
resp. 3, 2 or 1 for the special cases G(l,2,2), resp. G(l, 3,2), the parameter [
being positive.

It follows that [{(a')l=2 in all these special cases and so these groups are the
binary dihedral, resp. polyhedral groups (cf. [5, §6.5]).

Now let G(I, m, 2) be an arbitrary finite group and set

Gy:= G(\ll, lmla 2) ={ay, Bo; al(;' = '()mI = (01030)2>

Because alll = bi™' = (ayb,)? has order 2, the assignments a+—>a,, B+>b, extend to
an epimorphism G » G, and give rise to a central extension

(a®'Y <G > G, (18)
By (17) and (8), (9) the kernel (a*') has order

u, m)=[1""+m™ =3 - (7 +|m[ =7

The sequence (18) will split whenever u(l, m) and the order of G,= G(|l|, |m]|, 2)
are relatively prime. Upon computation one finds that the values of u(l, m)
corresponding to the sequence of signs — —, + —, — +, + + are

31,19, 11 and 1 for the triple (5, 3, 2) with |Go| =120

13,7, 5 and 1 for the triple (4, 3, 2) with |G,| =48

7,3,3 and 1 for the triple (3, 3, 2) with |Gy| =24

I+1,1—1, 1 and 1 for the triples (I, 2, 2) with |Gy|=4.1
Hence the only extensions (18) which may not split correspond to the groups

G(-3,3,2)=G(@3, —3,2) and G(l,—-2,2) for odd l=3. These extensions do in
fact not split, as can be seen from the 5-term sequence

0—0—(a*") = Gy — (Goap =0

induced by (18) and the facts that G,, is cyclic in all these cases, while [(a*')| and
|(Go)ap| are not relatively prime.



442 RALPH STREBEL

2. Proof of Theorem A

The proof relies on two auxiliary results. The first of them asserts that
sequence (4), occurring in the statement of Thm. A is always a complex and that it
is exact if H'(G, ZG) is trivial; it can be established by an easy calculation. The
second result shows that H(G, ZG) is trivial for our groups G; its proof makes
use of an argument of Serre’s and Stallings’ characterization of finitely generated
groups with infinitely many ends.

Let F=F({a, B}) be the free group on a and B. As in the introduction set
r=(aB)"B™™ and s = (Ba)"a”!, and define G = G(l, m, n):=(a, B;r, s). Assume
Imn#0.

LEMMA 4. Let 3;:ZG—ZG? and 8,:ZG? — ZG? be the homomorphisms of
left ZG-modules given by multiplying on the right by the matrices

(1-b,1-a) and (g“r DB’).
.S Dgs

Then im 05 < ker 9, and the homology group ker d,/im 95 is Z-isomorphic with the
first cohomology group HY(G,ZG). Moreover, if HYG,ZG) is trivial so is
H*G, ZG).

Proof. We shall compute H'(G,ZG) by means of the well-known exact
sequence

2G*257G* 257G —=>7—>0, (19)

where 3, is as above, 3;(A, u)=A(1—a)+u(1—Db) and €:ZG —Z is the unit
augumentation (cf. [2, p. 90, Ex. 4]). For reasons that will become clear at a later
stage of the proof we extend (19) by adding 95 to the left ending up with the
sequence

D,r Dar)
(1—b, 1—a) 2 D_s Dpgs

P—>7:7G >7G ick (“") »ZG —>7 — 0. (20)

Note that at this stage the sequence P is not known to be a complex.
The dual sequence P* = Hom,g (P, ZG) can be described in dual bases as

(1-b, 1-a) ) (g:; g;;) ) (}:b)
G ———2G*e——7IG «——17QG, (21)
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where all modules are right ZG-modules and the matrices describe ZG-linear
homomorphisms by multiplication on the left. In order to revert to left ZG-
modules we use the ring antiautomorphism 7:ZG = ZG, obtained by extending
the inversion g—>g~' in the group Z-additively. This transforms (21) into the
sequence of left ZG-modules

(D) *(D,s) 1-b-!
(1—a-!, l—b*')\ 2 T(Dgr) T(Dgs) R 2 1—a-!

3 7ZG ,ZG >ZG. (22)

Also H'(G, ZG) =ker 8%/im 8% is Z-isomorphic to the homology of (22) at the left
middle module ZG?>.

So far only the fact that G is given by a 2-generator 2-relator presentation has
been used. We now bring into play the pecularity of G that the assignments
ar>a~!, B—b ! induce an automorphism o: G= G; indeed

(@b - (b7 ™™ = (ba) "b™ = b™(ab) ™" = ((ab)"b ™) ' = 1

and, similarly, (b"'a™")" - (a~")"'=1. By means of this isomorphism o and by
exchanging the two summands of both middle modules ZG? in (22) we arrive at
the isomorphic sequence

o1(Dgs) or(Dgr) 1—a
(1-b, 1—a) 2 or(D_s) or(D.r) 2 1—b

G——7ZG »1G-———ZG (23)

Observe that we know at this stage that the homology is defined at the middle left
term and that it is isomorphic to H'(G,ZG). Our aim is to verify that the
(2 x2)-matrix displayed in (23) is identical with the (2 X 2)-matrix of the sequence
P defined in (20). Once this is known, P> Z must be a complex and its homology
in dimension 2 equals H'(G, ZG). In addition, if H'(G,ZG)=0 the complex
P> Z is exact and can be used to compute H*(G, ZG). If this is done, the above
manipulations show that H*(G, ZG) is isomorphic to the homology of (23) at the
right middle term, i.e. to the homology of P—» Z in dimension 1. As this
homology is a priori known to be trivial, H*(G, ZG) must be trivial and all
assertions of Lemma 4 will be established.
The entries D,r and Dgr of the (2 2)-matrix displayed in (20) are:

D,r=D,((«B)"B™™) =(sign n) - (1 +ab+- - - +(ab)"™") - (ab)*" """
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and

Dgr = Dg((@B)"B ™) =(sign n) - (a+aba +- - -+ (ab)™'a) - (ab)™ D72

—(signm) - (1+b+---+bm=1). pm-imbr2

The entry Dgs arises from D,r by exchanging throughout a and b, while D,_s
arises from Dgr by exchanging a and b, and replacing m by l. The composite o © 7
transforms a product x;x, - * x,, where each factor is one of a,a™', b or b, into
the reversed product x; - - - x,x,, and it is Z-linear. Using these facts one checks
easily that o o 7 exchanges D,r and Dgs, while it fixes Dgr and D,s, these group
ring elements being Z-linear combinations of palindroms. It follows that the
(2 X 2)-matrices displayed in (20) and (23) are identical. O

LEMMA 5. If min (|l|, |m|, |n))=2 then H\(G,ZG)=0.

Proof. The claim is true for finite groups on general grounds; but the following
argument takes care of them at no extra expense.

Let I, m;, n, be integers greater than 1 and let T(l;, m,, n,) be the corres-
ponding triangle group. By a result of Serre’s [16, p. 85, 6.3.5] every inversion-
free action of T(l;,, m;,n,) on a tree has a fixed point; in particular, no
homomorphic image of T(l,, m;, n;) can be a non-trivial amalgam A *-B.

Let us go back to the given group G. If a' = b™ has finite order, say k, then G
is a homomorphic image of T(l,, m,, n,), where l;=k|l|, m;=k|m| and n, =
k |n|, and so it is not a non-trivial amalgam. Moreover, G,, is finite. Stallings’
structure theorem (e.g. [17, p. 38, 4.A.6.5 and p. 57, 5.A.10]) therefore implies
that HY(G, ZG) is trivial.

If a' = b™ has infinite order, consider the central extension Z={(a')<IG - T.
It leads in cohomology to the exact sequence

HY(T, H%(Z, ZG)) > H'(G,ZG) — H%(T, H'(Z, ZG)) — H*(T, H°(Z, ZG))
—--- (24)

Since Z is infinite, H%(Z,ZG)=(ZG)# is trivial; because Z is an orientable
Poincare-duality group of dimension one, HY(Z,ZG)=7®;,ZG =ZT. Finally,
since T is infinite by Lemma 3, the exactness of (24) and the previous reasoning
imply that H(G,ZG) = H%T,ZT)=0, as asserted. [

The proof of Theorem A is now quickly completed. By assumption
min (||, |m|,|n)=2 and so Lemmata 3,4 and 5 apply. They show that the
sequence (4), which is identical with (20), is an exact complex and that H'(G, ZG)
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and H*(G, ZG) are both trivial. The kernel of 9;:ZG—ZG?, taking A €ZG to
(A(1-b), A(1—a)), consists of all A € ZG which are fixed by the generators b and
a, hence by all of G.

If G is finite, ker 95 is therefore generated by Y {g | g€ G} and the sequence

<} 9,

72G2—2 L 7G6E8E% 76> 762

is exact. This proves that (4) leads by splicing to a periodic ZG-free resolution of
Z having period 4.

If, on the other hand, G is infinite, ker 95 is trivial and (4) is a finite ZG-free
resvlution of Z. Moreover, G is an orientable Poincaré-duality group of dimen-
sion 3. Indeed, H'(G, ZG) and H*(G, ZG) are trivial by the previous remarks.
Next, if H*(G, ZG) is computed by means of (4), one obtains the following chain
of isomorphisms of right ZG-modules:

H*G,2G)=2ZG/(1-b)ZG +(1—-a)ZG =ZG/IG > 1Z.

The claim then follows from well-known results about duality groups (see, e.g.,
[1,p. 140, Thm. 9.2 and p. 173], or [2, p.220, Thm. 10.1, and definition on
p.221). O

Remark 6. If G is a binary dihedral group G(l, 2, 2), the periodic resolution
P —» Z obtained from sequence (20) by splicing, is isomorphic to the resolution
P’ - Z described by Cartan-Eilenberg [3, p. 252]. In order to see this, identify
G(l,2,2) and 7w =(x, y; x' = y>*=(xy)*) in the obvious way, and note that

DBr = DB(aBa ¢ B—l) =a— 1.
The function @: P — P’ which respects the dimensions of the chain groups, is the

identity in dimensions different from 2+4p and sends (A, w)eP,.y, to
(—m, A+ ub) € P} 4, can then easily be verified to be a chain isomorphism. [l

3. Proof of Theorem B

Let F be free on {a,, ..., ay}, let p be a non-trivial element of F which is not
a proper power, let [=1 and set

L=<al’ PN ¢ [pl, al], .- -’[pla an]>’
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where [p',a]:=p'-a;-p™'-a;'. f n=1, the group L is infinite cyclic and
ZL =271 -2 Z is an explicit ZL-free resolution of Z. So assume n=2.
Denote the canonical image in L of «; by a; that of p by r and write D,

for the composite F—2 5 7ZF—=" 5 7G. We aim at verifying that the se-
quence of left ZI-modules and ZL-homomorphisms

(Dql(p:val]‘ ’ 'Du"[‘-"'oal]) (1‘_"11
Dalfpl» a,] - Da“[p‘v a,] /. ]_a" ‘

ZL > 7L —» 7 (25)
is an exact complex. Our verification will be based on Lemma 7 below and
Lyndon’s Identity Theorem (cf. [9, pp. 158+ 161]) which asserts that

(D,,p.

yd SRR

—~  q-F ~ (D, p%....D, " . (i:ﬁ:) —~ g
ZL >ZL >ZL >Z7L—>» 7 (26)
is exact; here L denotes the 1-relator group {aj, ..., a,; p").

LEMMA 7. The canonical image re€ L of p e F\{1} has infinite order.

Proof. Since free groups are residually nilpotent there exists ¢ =1 such that
p € Y.F\ v.+1F. The obvious epimorphism L -» F/vy.,,F sends r to a non-trivial
element of the central subgroup vy F/vy..1F, which is known to be free abelian (cf.
[11, p. 341, Cor. 5.12Gv)]). O

We are now ready to prove that (25) is an exact complex. We begin by
verifying that the left-most homomorphism d5:ZL —ZL" is injective. If A e ZL
and A - D,p =0 for all j, then

0=Y (A Dp)(1-a) =AY (Dop-(1-a))=A - (1-7).

As r has infinite order by Lemma 7, (1 —r) is not a zero-divisor and hence A = 0.
Let 3,:ZL" — ZL" be the differential of (25) given by the (n X n)-matrix with
entries Dm[p', a;]. These entries can be described more explicitly; indeed:

D,[p,o]=D,(p' - ;- p”' - aj") =D, p' +r1' - Dpyo; — a;D, p' — Do
=(1—'a,) . Doqp‘+(r'—l) . Sii-

Here §; is the Kronecker symbol. A row vector (Ay,...,A,)eZL" lies in the
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kernel of 9, if, and only if,

0=Y X {(1-a) D'+ (' - 1)8;}

or, equivalently, if
nc (-0 =(TN0-a)) Do @n
)

foreveryi=1,2,...,n
Assume (A4, ..., A,)eker 9, and set p:=); A;(1—ga;). By applying the canoni-
cal ring epimorphism

T ZL->» ZL:=Za,, . .., a,; p")

to (27) one obtains the equations 0= - I-ja‘pl, where i ranges over 1,2,...,n;
they show that i is in the kernel of the second differential 3, of the exact
sequence (26). There exists therefore v € ZL with & = »(1—7). The kernel of the
canonical projection L » L is the cyclic, central subgroup generated by r',
whence ker (ZL - ZL) is the ideal generated by the central element 1—r'. So
there will exist v; € ZL with w = »,(1—r). The equations (27) now imply that

AN -(1-Y=p -Dp'=v;(1-nNQ+r+---+r'"HD,p
= 1,(1=r)Dyp =, - Dop - (1—1) (28)

for i=1,2,..,n Since r' has infinite order by Lemma 7, 1—r' is not a zero-
divisor of ZL. Therefore (28) implies that A, =v,- D,p for all i, i.e. that
(A1,...,A,) belongs to ima;. Conversely, if (A;,...,A,) is in imads, ie., if
X =v,D,p for some v, €ZL, one sees by reversing part of (28) that

(11 D)1 =1 =v, - (1=1) - Dyp',

while it is quite generally true that

v-(1-nN=v Y (Dup(1—-a))= Y, (11 D.p)(1~-a).
j i
Put together, these equations give

(11 Dep)(1—r1') = Z (11D,,0)(1 - @) * Dep'
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for every i; they show that the row vector d;(v,) satisfies the equations (27) or,
equivalently, that 9,(35(v,)) =0. The verification that (25) is exact at the left
middle module ZL"™ is now complete.

As the right half of (25) is exact on general grounds, the exactness of the
entire sequence (25) is established. [

4. Poincaré-duality groups among the groups L
In this section we shall determine which of the groups

L':(al, LR ’an;[pla al]: L 9[pl’ an])

are 2-dimensional and which of them are Poincaré-duality-groups of dimension 3.
The notation will be as in Section 3; in particular, pe F=F({ay,...,a,}) is a
non-trivial element which is not a proper power, [=Z1 and n=2. Let L and L
designate the 1-relator groups

L=(ay,...,a.;p") and L=(a,...,a,.;p)
We begin with the easy

LEMMA 8. (i) HY(L,ZL)=0.
(i) H'*'(L,ZL) and H'(L,ZL) are Z-isomorphic for all j = 1.
(iii) H*(L,ZL) is a ZL-homomorphic image of H3(L, ZL).

Proof. Spectral sequences, applied to the central extension {r')<IL -» L, and
the fact that (r') is infinite cyclic by Lemma 7, imply that

H*YL,ZL)=H'(L, H'({(*"), ZL))=H'(L, ZL)

for all j=0. These isomorphisms, together with the fact that L is infinite and
hence H%(L, ZL) = 0, establish (i) and (ii). Claim (iii) is a consequence of the facts
that the second cohomology group H %[, ZL) of the torsion-free 1-relator group
Lis by Lyndon’s Identity Theorem isomorphic with ZL/}:, (D, p- ZL), whereas
H3(L,ZL), when computed by the resolution (25), is given by
ZL[Y; (D,p -ZL). U

2-dimensional groups. Assume the cohomological dimension of L is less than
3. Then H*(L,ZL)=0 and so H 2(L ZL) will be trivial by Lemma 8(iii). But Lis
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a torsion-free 1-relator group, hence of cohomological dimension at most 2; it is

also of type (FP). Therefore the vanishing of H*(L, ZL) implies that L is at most

1-dimensional (cf. [1, p. 137, Lemma 9.1]), and so L is free by Stallings’ theorem.

By a result of J. H. C. Whitehead’s (see, e.g., [9, p. 106, Prop. 5.10]) a 1-relator

group can only be free if the defining relator is either trivial or primitive. Since

p# 1, we conclude that p must be a member of some basis of F=F({ay, ..., a,}).
After a change of notation, we will have p = a, and

L={ay,...,o;[c},a], ..., [}, &, ]). (29)

This group can ve viewed as an HNN-extension with base group (a,), associated
subgroups both equal to (a}) and stable letters a,, . . ., a,; it can also be obtained
from the direct product ZXF({a,,...,a,}) by adjoining an I-th root. Both
descriptions allow to infer that every group of the form (29) has cohomological
dimension precisely 2 (recall that n = 2). Incidentally, the second description of L
reveals also that if [>1 or n>2, the group L has a subgroup of infinite index
which is free abelian of rank 2, hence, in particular, 2-dimensional, and therefore
L cannnot be a Poincaré-duality group of dimension 2 (by [18]). So the only
Poincaré-duality group of the form (29) is L ={a,, ay; [a;, as]).

3-dimensional Poincaré-duality groups. A second application of Lemma 8 will
be made in the proof of

THEOREM 9. The following statements are equivalent:
(i) There exists either a basis &, my, ..., &, m, of Fay, ..., a,}) with p=

[gly 771] e [fg, ng]a ora baSiS gla 62:' . -,ég Wlth p:§% g%' Tt Ei'
(ii) H3*(L,ZL) is infinite cyclic.
(II) L is a 3-dimensional Poincaré-duality group.

Proof. If (i) is true L has a presentation

<§1, N« &g Ny (U [&, n,-])l commutes with all §, 11,-> (30)

or a presentation
(£, ..., & (£3- &5 -+ - - €)' commutes with all &). (31)
If H3L,ZL) is computed by means of the resolution (25) one finds that

H*(L,ZL)=ZL/Yg (Dgp - ZL), where B ranges over the basis displayed in (30) or
(31).
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Assume first L has a presentation of the form (30); we contend that
Y6 (Dgp + ZL) is the augmentation ideal IL of ZL. In order to verify this we shall
prove more, namely that

I:= Y, (5/6¢(p)) - ZF+ Y, (3/om;(p)) - ZF

is the augmentation ideal IF of ZF. The key to this is the fact that the partial
derivatives of p':=[&,, ] - - [&-1, mg-1] With respect to &, m;,..., &, and
M1 agree with those of p. Hence we can assume inductively that

g—1 ap g—1 ap g—1 g_1
Ji= Y S5 ZF+ Y £ ZF= Y (1-§)-ZF+ Y, (1-n)- ZF.
1=1 9§ 1=; OM; 1=j 1=i

In particular, (1—p’) belongs to J. Let &, resp. n be short for &, resp. n,. From

3/3(p)=p' - (1—éng™) and d/am(p)=p'- (£—[& M)

one deduces that I < IF, and that (1—én¢~") and (¢ —[£, n]) belong to 1. Hence so
do

(1-&g™H-(1-§) —(¢-[EnD) - n=1-¢
A-&ng™) - En—n+)+(E-[EM])  (nP—n)=1—n,

and thus I = IF, as contended.

Assume next L is of the form (31). We assert that }; (8/0§(p)) - ZL =
2 (1+x;) - ZL; it will suffice to establish the corresponding statement for ZF. Set
p :=¢3 -+ - £2_. Then 8/3&(p’) =3/0¢(p) for j=1,...,g—1 and thus

J:= Y (3/0&(p)) - ZF= Y, (1+§&)-ZF.

1sj<g 1sj<g

Since 1—p' =Y 1zj<¢ (0/0&(p)) (1—§) is in J and as (3/0&,(p)) =p' - (1+&,), the
assertion is established. Finally the quotients ZF/Y; (1+¢) - ZF and ZL/Y,; (1+
x;) - ZL are infinite cyclic, as can easily be verified and so (ii) holds also for the
groups of the form (31).

Conversely, assume (ii) is true. Then I:=} D.p - ZL contains the element
1—r and I is a two-sided ideal. Therefore

HXL, zL)=2L / Y (D.p)- ZL=ZL/(I+ZL(1-rZL)=ZL/I
i
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is infinite cyclic. As in [1, p. 155, Remark] one sees next that L is actually a
Poincaré-duality group of dimension 2, and hence a surface group by a result of
B. Eckmann and H. Miiller [8, Thm. 1]. Work of H. Zieschang and N. Peczynski
([21], [12], cf. [22, p. 58, 2.11.9]) now guarantees the existence of a basis of
F({aj, ..., a,}) with either p =[]; [&, m;] or p =TI, 7.

Finally, we establish that (ii) implies (iii), the converse being evident. It suffices
to show that (ii) implies that H'(L,ZL)=0= H*(L, ZL). From Lemma 8 one sees
that H'(L,ZL) =0, and that

H*L,ZL)=H3*(L,ZL)=Z and that H?*L,ZL)=H\L,ZL).

Much as in [1, p. 155, Remark] one deduces from Stallings’ theory of groups with
infinitely many ends and from H?*(L,ZL)=Z that H'(L,ZL)=0, whence
H*L,ZzL)=0. O
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