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Some existence theorems for closed geodesics

W. BALIMANN, G. THORBERGSSON AND W. Zirer"

In the present paper we use elementary methods to prove some results on the
existence of closed geodesics. One of the main results is as follows:

THEOREM. Let g be a metric on P"R such that 1=86=K =1, where K
denotes the sectional curvature of M. Then g has at least g(n)=2n—s—1,
0=s=n-2%<2* closed geodesics without self-intersections, with lengths in
[, w/v8]<[m, 27], and which are not null-homotopic. If all closed geodesics of
length <2 are non-degenerate (an open and dense condition on the set of metrics
with respect to the C? topology), then g has at least n(n+ 1)/2 such closed geodesics.

Notice that this theorem does not follow from the corresponding existence
theorem for S™ in [BTZ2]. Moreover the proof is more elementary, since no use
is made of loop space methods.

The proof of the Lusternik—Schnirelmann theorem [LS] can be used to show
that any metric on P’R has three closed geodesics without self-intersections which
are not null-homotopic, see [Ba]. The ellipsoid with pairwise different principal
axes sufficiently close to one induces a metric on P"R with n(n+1)/2 closed
geodesics without self-intersections which are non-degenerate and not null-
homotopic and have length approximately 7r. One can achieve that the lengths of
all other closed geodesics are greater than any given number by choosing the axes
sufficiently close to 1.

Some of the other results in this paper are

() If M is homeomorphic to S™ and =<K =1, then there exists a closed
geodesic without self-intersections, with lengths in [27r, 47r], and with index n— 1.

(ii) If M is homeomorphic to S" and §=K =1, then there exist two closed
geodesics ¢ and d without self-intersections, with lengths in [2, 3], such that
ind(c)=n—-1 and ind (d)+null (d)=3(n—1).

(iii) If M is homeomorphic to S™ and =8=<K =1, and if K is not constant,

!This work was done under the program of the Sonderforschungsbereich SFB40 at the University
of Bonn. The second author was sponsored by the Fulbright Program. The third author was partially
supported by a grant from the National Science Foundation.
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then there does not exist any closed geodesic with length in [27/v8, 47]. f n=2
and if §<8=K =1, then there does not exist any prime closed geodesic with
length in (27/V8, 6).

(iv) If g, is the metric on P"R of constant curvature 1 and if g satisfies the
Morse condition g,<g <9g, then there exist at least g(n) closed geodesics with
lengths in (7, 377).

(v) A convex hypersurface in E"*! which contains a ball of radius r and is
contained in a ball of radius R has at least g(n) closed geodesics with lengths in
the interval [2#r, 2@wR] if 2r>R.

(if) and (iii) are partially proved in [Ka] and [Ts] respectively [Sul].

Some of these elementary results are existence results needed in [BTZ1],
where we examined stability properties of closed geodesics. Thus the present
paper can be used as an introduction to [BTZ1].

In Chapter 1 we examine closed geodesics on S", in Chapter 2 closed
geodesics on P"R, in Chapter 3 the Morse condition, in Chapter 4 closed
geodesics on convex surfaces, and in Chapter 5 closed geodesics on convex
hypersurfaces.

1. Closed geodesics on spheres

We first review the definitions of a few concepts and some of their properties.
M will always denote a compact Riemannian manifold.

Let A be the space of closed piecewise C~ curves c:I=[0,1]— M, and for
p €M let 2, be the subspace of A consisting of curves with ¢(0) = p. To a C* map
f:(I*,aI*)— (M, p) we associate the maps fq:(I*',9I* ") — (2, p) and
fa:(I*71 81 Y — (A, A% defined by fo(xq, ..., X )®)=Ff(x1,..., X1, t) and
fa =j°fa, where j:(Q,, p) — (A, A°) is the inclusion, A® the space of constant
curves, and p the constant curve with image p. (We have also used the convention
I°={0} and 3I°= &.)

Let hem (M), k=1, be a non-trivial homotopy class, and let f:(I*,aI*) —
(M, p) be a C” representative. We define

ag (h)=inf {max E(g(x)) | g homotopic to fn}
xel* !

a, (h) =inf {max] E(g(x))| g homotopic to fA}

xelk™

where E is the energy functional E(c) =12 f§ (¢, ¢) dt. For a compact manifold M
there always exists a k =1 such that m (M) # 0.
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Let V= V(c) denote the space of piecewise C~ vector fields along a closed
geodesic c € A satisfying (X(t), ¢(t))=0 for all tel and X(0)=X(1). On V we
define the index form of ¢ by

H(X Y)= Ll VX, VY)—(R(X, ¢)¢, Y)) dt.

The index (resp. extended index) of ¢ as a closed geodesic, denoted by ind (c)
(resp. ind, (¢)), is the maximal dimension of a subspace U of V such that H | U is
negative definite (resp. negative semi-definite). The index (resp. extended index)
of ¢ as a geodesic segment, denoted by indg, (c¢) (resp. indg (c)+null, (c)) is the
maximal dimension of a subspace U of V consisting of vector fields X satisfying
X(0)=X(1)=0 such that H| U is negative definite (resp. negative semi-definite).
Obviously

ind (c)=indg (¢) and ind, (c)=ind, (c)+null, (¢).
In [BTZ1], (1.5) and (1.6), it is shown that
ind (¢)=ind, (¢)+n—-1 and ind,(c)=<indg (¢)+null, (c)+n—1.

These inequalities immediately give the following estimates of the index and the
extended index of a closed geodesic on a Riemannian manifold whose sectional
curvature satisfies 0<é=K=1:

T . - _
1) L(c)>k75:>1nd(c)~k(n 1)

L(c)<kw=>indy (c)<k(n—1)

see [BTZ1], (1.8) and (1.9).
We will frequently use the following injectivity radius estimate, see [CE],
[CG], [KS]:

(1.2) (Klingenberg). If M" is simply connected and the sectional curvature K of
M satisfies }=8=<K =1, or if n is even and 0<8=<K =<1, then the injectivity
radius of M satisfies i(M)= . In particular, biangles, geodesic loops, and closed
geodesics have length =2

The following theorem follows easily from critical point theory (e.g., apply
Lemma 22.5 in [Mi] to a finite dimensional approximation of A, see [Mi] §16) and
the fact that f — f, induces an isomorphism m (M) — m_,(A, A°) for k=2.
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1.3. THEOREM. Suppose wm.(M)#{0}, k=1. Then there exists a closed
geodesic of index <k —1 and of length a,(h) when h e m (M) is non-trivial. If
k =2, then there exists such a closed geodesic which is null-homotopic. O

Remark. The existence of a closed geodesic if ,(M)=0 is due to Birkhoff
[Bi] for M =S" and Fet-Lusternik [LF] in general.

1.4. THEOREM. Suppose that the sectional curvature K of M" satisfies 0<
8=K=1.

(i) Then there exists a closed geodesic of index <n—1 and length <2=u/V8. If
M is not homotopy equivalent to S™, then there exists a closed geodesic of index
<n/2 and length <m/Vé.

(ii) If M is homeomorphic to S™ and 8>}, then any closed geodesic of index
<=n—1 has index n—1, length in [2, 27/v8]<[21, 47), and no self-intersections.

Proof. (i) Since m (M)# 0 for some 1<k =<n there exists a closed geodesic ¢
of index =n—1 by (1.3). L(c)>2n/v/é would imply ind (c)=2(n—1) by (1.1),
which is a contradiction. If M is not homotopy equivalent to S™ there exists a k,
1=k=n/2, such that m (M)#0 and therefore a closed geodesic ¢ of index
<n/2=n-1, hence L(c)<u/V$ by (1.1).

(ii) Let ¢ be a closed geodesic of index =n—1. Then L(c)=<2n/v8<4x by
(1.1), and (1.2) implies L(c)=2m. Since 27 > a/V8, (1.1) implies ind (¢)=n—1,
hence ind (c) =n—1. If a closed geodesic has a self-intersection it is the union of
two loops, each of which has length at least 2#. This contradicts L(c)<4w. O

We now prove the existence of a second closed geodesic. Assume that
m(M")=0 and $=<8<K=1. Then M is homeomorphic to S", and hence
(M) =Z. Choose a fixed generator h € m,(M). According to theorem (1.3) there
exists a closed geodesic of length [ =+v2a,(h).

1.5. THEOREM. Suppose that M is homeomorphic to S™ and §<8<K=<1.

(i) (Karcher [Ka]) A geodesic loop ¢ of maximal length L <2x/V/8 is a closed
geodesic without self-intersections and indy (c) =3(n—1). Furthermore, ¢ is a
geodesic triangle of maximal perimeter.

(i) I=L, and l=L implies that there exists a closed geodesic c of length L
through every point p of M with ind, (c)=3(n—1). In particular, there exist two
different closed geodesics without self-intersections and lengths in [2m, 37].

Remarks. (a) The claim about ind, (¢) in (i) is not contained in [Ka] but was
communicated to us by Karcher. The proof in [Ka] contains a mistake. In using
the triangle inequality one has to make a separate discussion when equality
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occurs. In particular, it is not correct, as claimed there, that every geodesic
triangle of maximal perimeter is a closed geodesic. But by replacing some sides in
a triangle of maximal perimeter one gets a closed geodesic among the triangles of
maximal perimeter.

(b) L=2d(M). If L =2d(M), then for every two points p, q€ M at maximal
distance d(M) every geodesic through p is closed of length L and meets q. This
follows since a geodesic triangle (v,, v,, v3), where v, connects p and q, obviously
has perimeter =2d(M) and =2d(M) if y,*vy, is a geodesic.

Proof. (i) We only prove the claim about ind, (¢). A theorem of Toponogov
states that the perimeter of every geodesic triangle is <2#/v8, and if there exists
a geodesic triangle of perimeter 2#/v/8, then K is constant. We first assume that K
is not constant. Let ¢ be a geodesic loop of maximal length <2x/v8 and set
vi=c|[(i—1)/3, i/3], 1=i=3. The triple (v;, v», v5) is a geodesic triangle since
L(y;)=<m. Since K is not constant the perimeter of (v, v2.v3) is <2m/v6 =<3,
hence L(y;)<w. Therefore there are no pairs of conjugate points on v, Hence
each triple of vectors (X, X, X5), X; € T.(»M and X; 1 é(t), t, =i/3, determines
a unique broken Jacobi field J along ¢ such that J(t)=X; and J(1)=X,.
H(J, J) =0 since J corresponds to a variation of ¢ through geodesic triangles and ¢
is a geodesic triangle of maximal perimeter. Hence there exists a 3(n—1)-
dimensional subspace of V(c) on which H is negative semi-definite which implies
ind, (¢)=3(n—1). Since L(c)<2m/vé=3m, (1.1) implies ind, (¢)=3(n—1) and
hence ind, (¢) =3(n—1).

If K is constant, say K=1, it is clear that the great circles are triangles of
maximal perimeter and the above arguments show that their extended index ind,
is equal to 3(n—1).

(ii) Let h be a generator of m,(M). Then there exists a closed geodesic c¢; of
length [ =+2a, (h). Theorem (1.3) also applies to geodesic loops, i.e., for every
p € M there exists a geodesic loop ¢ of length v 2aq (h) and ind, (c)=n-—1, and
hence L(c)=2w/v8=3m. Furthermore by definition a,(h) =<ag,(h) for every
peM. Hence 27 <v2a, (h)s~/2aﬂp(h)$3fn-. A geodesic loop of maximal length
<2m/V8 is a closed geodesic c¢,, and ¢, and ¢, can be geometrically equal only if
L(c,)=L(c,)=L. But then x/2anp(h) =L for every p which implies by (i) that
there exists a closed geodesic ¢ of length L through every p and ind, (¢)=
3(n—1). O

Remark. We remarked above that there is a closed geodesic among the
geodesic triangles of maximal perimeter on a &-pinched manifold. More generally
one can apply Lusternik—Schnirelmann theory to a Z,-quotient of a space of
triangles on a &-pinched manifold to obtain n + 1 closed geodesics with lengths in
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the interval [2r, 27/+/8] if § =2. We briefly sketch how this can be done. A similar
proof will be carried out in more detail in chapter 2. In [BTZ2], theorem (4.1),
using much more complicated methods, the existence of g(n)=n+1 such
geodesics is proved on §-pinched manifolds if & =3.

If there is a geodesic triangle of perimeter 27/v8 on M, then K =34, and all
geodesics are closed of length 27/v8. Hence we may assume that there exists an
¢ >0 such that any geodesic triangle has perimeter <(2m/v8)—3e. Let v, w be
unit tangent vectors with the same foot point, and let v,, v, be the geodesics
determined by v,(0) =v, v,,(0)=w. Then

d(y,(m—€), y. (=€) +2(7 — &) < (2m/V8) — 3e <3mw— 3.

Hence d(y,(m—¢), yo(m—e))=m—e<i(M). Denote by U?*M) the set
{(v, w) | v, w are unit tangent vectors with the same foot point}. The above
inequality shows that the function f: UM — R, (v, w) = d*(y, (7 — &), V.. (7r — £))
is C. It is also invariant under the Z,-action (v, w) — (w, v) of U*M. (v, w) is a
minimum of f if and only if (v, w)e U'(M)={(v, w)e U*(M) |v=w}. U'(M) is
the fixed point set of the Z,-action on U*(M). Using the first variation formula
and the fact that the sides of the geodesic triangles have no conjugate points it is
easy to prove that (v, w) is a critical point of f if and only if v=w or v =—w and
the triangle corresponding to (v, w) is a closed geodesic. Hence Lusternik—
Schnirelmann theory implies that there are at least as many closed geodesics on M
with lengths in [27, 27/V/8) as the length of a maximal chain of homology classes
hy, ..., h, in H(U*(M)/Z,, U'(M)/Z,; Z,) with the following properties: & Nh, =
h;_, for some & € H¥(U*(M)/Z,; Z,), *>0, whose restriction to a sufficiently small
neighborhood of S'c/Z,={(v, w)|v=—w=¢(t)}/Z, vanishes for every closed
geodesic ¢ which is a geodesic triangle, see [BTZ2], (1.2) and (1.3). The length of
such a chain is n + 1 since (U*(M), U(M)) is an n— 1 bundle over T;M/Z, (where
Z, acts by v — —v) and since the cohomology ring of T;MJZ, is easily seen to be
generated by 6 H' and w € H" ! with the relations 8" =0, ©*=0, and 8" 'U
o =[T;M|Z,].

We now discuss certain gaps in the length spectra of closed geodesics and
geodesic loops. If 7;(M)=0 and ;=K =1, then we already know from (1.2) that
there does not exist any closed geodesic or geodesic loop with length in [0, 27).
As was observed by Tsukamoto [Ts] the proof of Berger’s rigidity theorem
implies the following result:

(1.6) Suppose m;(M)=0 and ;=K =<1. If there exists a closed geodesic of length
2w, then M is isometric to a sphere with K=1, or to a projective space P*C,
P“H, P?>Ca equipped with their standard metrics.
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Remark. If w;(M)=0, i(M)=m, and 0<K =1, then a closed geodesic of
length 27 and of positive index is contained in a totally geodesic, embedded
surface of constant curvature 1. This follows easily using arguments as in the
proof of [Be], Theorem 4. For dim M = 2 this was already proved by Klingenberg.

We already know that there exist closed geodesics in the interval [2, 27/V8]
if M is homeomorphic to S™ and 3=8=<K=1. The next gap in the length
spectrum is given by

1.7. THEOREM. If M is homeomorphic to S™ and i=8<K =<1, and if K is
not constant, then there does not exist any closed geodesic with length in
[27/V8, 4],

Remarks. (a) In [Th] it was proved that there does not exist any closed
geodesic with length in [27/V8, 47) if #<8=K =1 unless K=34.

(b) Tsukamoto [Ts] claims that a closed geodesic without self-intersections on
a simply connected manifold with 1< 8 =<K =1 does not have length 27/v/8 unless
K = 4. But his proof contains a gap. For even dimensions a complete proof of his
result was given by Sugimoto (now Goto) [Sul, Theorem B and C. Using the
injectivity radius estimate (1.2) the proof in [Su] can be shortened considerably
and carries over directly to odd dimensions.

Proof. If there is a closed geodesic of length =47 and with self-intersections,
then it is the union of loops one of which has length < 2. Since i(M)= = by (1.2)
a geodesic loop of length <27 is a closed geodesic of length 2. By (1.6) this
implies K=1. If there exists a closed geodesic ¢ of length 27/V8 e[27/V8, 4],
1<8§'=<8, and K#1, then ¢ has no self-intersections contradicting the theorem of
Tsukamoto-Sugimoto quoted in Remark (b) above. This proves the theorem. [

1.8. COROLLARY. If m;(M™")=0 and ;=K =1, then there exists a closed
geodesic ¢ without self-intersections, ind (c)=n—1, and length in [2m, 47]. Unless
K=1, or K=31, or M isometric to P*C, P*H, P>Ca equipped with their standard
metrics, we have 27w <L(c)<4w and ind (c)=n—1.

Proof. This follows by combining (1.7) with the proof of (1.4). [

Remark. Notice that on P*C, P*H, and P?Ca, equipped with their standard
metrics, the closed geodesics have index 1, 3, and 7 respectively.
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2. Closed geodesics on real projective spaces

In this chapter we examine the existence of closed geodesics on P"R and
manifolds with m,(M)=2,.

2.1. THEOREM. Suppose M is diffeomorphic to P"R and g is a metric such
that 3=8=<K=1. Then g has at least g(n) closed geodesics without self-
intersections, with lengths in [m, w/v8]<[m 2w], and which are not null-
homotopic. If all closed geodesics of length <2 are non-degenerate, then g has at
least n(n+1)/2 such closed geodesics.

Remark. The indices of the closed geodesics in (2.1) lie in the interval
[0,2(n—1)]. Using the methods developed in [BTZ1] and [BTZ2] one easily
obtains stability properties of these closed geodesics.

Proof. Since M is not simply connected, we have d(M) =< /28 by a result of
Shiohama, see [Sh], Proposition 2.1. If m(M)=12,, $=6=<K=1, and d(M)=
m/2V/8, then a result of Sakai [Sa], p. 428, implies that M is isometric to S™ or P*C
with their standard metrics. Since the theorem is obvious for such spaces we can
assume d(M)<m/2V8 <.

Let v be any unit tangent vector of M and let c,(t) be the geodesic determined
by ¢é,(0)=v. There is a first t(v) >0 such that ¢, |[—s, s] is not minimizing for any
s> t(v). We have 2t(v)=<d(M), and hence t(v) < w/4v8 < /2. Since there is no
conjugate point along c, | [—t(v), t(v)], there is a second geodesic segment d,, such
that  d,(-t(0)=c,(-t(v)) and d,(t®)=c,(t®). (¢ |[-t(), tL)D*
(d;* | [=t(v), t(v)]) is not null-homotopic since i(M) = . ¢ is uniquely determined
since (M) =Z,. Hence t(v) and d,(—t(v)) depend continuously on v and satisfy
the equation

d*(c,(t(v)), exp2t(v)d,(—t(v)))=0.

Since there are no conjugate points for t <, t(v) depends differentiably on v by
the implicit function theorem.

Suppose v is a critical point of the function t. Given two vectors X 1 ¢,(—t(v))
and Y L ¢,(t(v)) there exists a variation ¢, of ¢, through geodesics such that
¢co=¢, and

d d _
s s=oCS(t(v))=Y, = szocs(—-t(v))—X.

Set v(s) = ¢,(0)/]|¢,(0)||. Then by the chain rule and the first variation formula we
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(o) =2 | Lie[-t(o(s), o)D)
0 S ls=0

S

_OL(ds[—t(v(S)), t(v(s))])

4,6, 1))~ (5|  d i), d,(-1(w))

ds

s=0 s=0

=(Y, d,(t(0)))~(X, d, (= t(v))).

Hence a critical point of t corresponds to a closed geodesic on M of length 4t(v).
Such a closed geodesic does not have self-intersections since 4t(v) <2

The definition of t implies t(v)=t(—v). Hence we obtain a differentiable
function on T;M/6, where 6v=—v, and the critical points correspond to closed
geodesics. Notice though that each closed geodesic ¢ gives rise to a circle of
critical points é(t+a), 0=a=1. Lusternik—Schnirelmann theory implies that
there exist at least as many critical circles as there are homology classes h;, . . ., h;
in Hy(T;M/6,Z,) such that &£ Nhy=h,_y, i=2,3,...,s, for some cohomology
classes & e H*(T;M/0,7Z,), *>0, with the property that £ vanishes on every
sufficiently small neighborhood of a critical circle ¢(t+a), 0=a =<1, see [BTZ2],
(1.2) and (1.3). We now show that there exist g(n) such homology classes. Since
the unit tangent bundles with respect to g and the constant curvature 1 metric g,
are 6 equivariantly diffeomorphic, the computation can be done for the case
M = (P"R, go). )

The geodesics on M =(S", g,) are the great circles. Each unit tangent vector
ve T;M determines a unique parametrized great circle vy, with v,(0)=v. This
identifies T;M and the space G of all parametrized great circles. We have an O(2)

action on G defined by ¢ry(t) = y(¥t) for € O(2). Let 0= [(1) _(1)] and ¢ =

[~(1) _2]60(2)- Then T;M corresponds to G/¢ and T;M/0 to G/I', where

I'=7,XZ, is the subgroup of O(2) generated by 6 and ¢. Let G = G/O(2) be the
space of unparametrized great circles on S™. Hy(G, Z,) has a basis of n(n+1)/2
homology classes [a, b], 0=<a=<b=n—1, of dimension a + b. Denote by (a, b) the
corresponding dual basis of H*(G, Z,). Then (0, 1) is the first Stiefel-Whitney
class of the S° bundle G/SO(2) — G and (1.1) is the second Stiefel-Whitney class
of the S* bundle G/6 — G. (0, 1)**>2U(1,1)*=(n—1,n—1) and (0, 1)*>* 271 =
0, and hence G has a chain of g(n) subordinate homology classes, and each chain
of subordinate homology classes has length < g(n), see [K1], p. 49.
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The second Stiefel-Whitney class of the S! bundle p: G/I' — G is zero since it
it twice the second Stiefel-Whitney class of G/ — G. The Gysin sequence of p
then implies that p* is injective and p is surjective. Choose a class h,,, such that
px(heey) =[n—1, n—1]. From the naturality of cup and cap products it follows
that the classes h;, 1=<i=<g(n), inductively defined by

hg(n)——l = p*(l, 1) N hg(n)’ «vy hl = p*((l, 1)S U (0, 1)2n—-s~2) N hg(n)

are non-zero. Hence they are a chain of g(n) subordinate homology classes in
Hy(G/T') = Hy (T, M]/6).

We now show that p*(0, 1) and p*(1, 1) vanish on a sufficiently small neigh-
borhood U of a critical circle in T;M/6. If U is a tabular neighborhood of the
critical circle, then it has the homotopy type of a circle and hence p*(1, 1) | U=0.
p*(0, 1) | U vanishes if U is sufficiently small since p*(0, 1) is the Stiefel-Whitney
class of the bundle q: T;M — T;M/6, and q~'(U) — U is trivial if U is sufficiently
small. This finishes the proof of the existence of g(n) closed geodesics.

Suppose now that all closed geodesics of length =<2+ are non-degenerate. We
first want to show that this implies that all critical points of t: TM —R are
non-degenerate critical circles. Let ¢ be a closed geodesic such that v =¢(0) is a
critical point of t. T;M can be viewed as a set of geodesic biangles as in the
beginning of the proof and hence T;M < A. Since E | T;M = 3t> the Hessian of t is
proportional to H | TT;M. The tangent space of T;M in A consists of piecewise
Jacobi fields with breaks at 0 and 1, and since dim T;M =2n — 1, it coincides with
the set of all such Jacobi fields. V(c) is the direct sum of these Jacobi fields and
the set of vector fields vanishing at 0 and 3. This direct sum is orthogonal with
respect to H. Hence the nullspace of E | T;M coincides with the nullspace of H.
Therefore all critical circles of t: TyM —R and hence also all critical circles of
t: T,M/6@ >R are non-degenerate. The local homology of a critical circle
vanishes in dimension # ind (c), ind (¢)+ 1 and is equal to Z, in dimension ind (c)
and ind (¢ + 1. The Morse inequalities for such functions now imply that there are
at least 1Y b,(G/T, Z,) critical circles. But the Gysin sequence of p:G/I' — G
implies Y b,(G/T’,Z,) =n(n+1) since the second Stiefel-Whitney class of p
vanishes. [

As we noted in the above proof, it follows by results of Shiohama [Sh] and
Sakai [Sa] that d(M)<w/2V8=m if m(M)=2Z,, $=<8=<K=1, and M not a
symmetric space of rank one. Then the proof of Lemma 4.1 in [Sh] applies and
shows that there is a closed geodesic ¢ of length 2d(M) through p and q if
d(p, q)=d(M). c is not null-homotopic since L(c)<2m. Clearly ¢ has maximal
perimeter in the set of all geodesic biangles with minimizing sides. Note that this
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also follows from the above proof: the first part of the proof only uses m;(M) =2,
and the curvature restrictions; ¢ corresponds to a maximum of t. As in the proof
of (1.5) it follows that ind, (¢) =2(n—1).

Since there is no conjugate point along a geodesic segment of length <,
there exists a closed geodesic d of length 2i(M) by Lemma (5.6) in [CE]. L(d)=m
by (1.2). d is not null-homotopic since L(d)<2#. Hence d is a shortest curve in
its homotopy class and therefore ind (d)=0. L(c)=L(d) since i(M)=d(M).
L(c)=L(d) implies i(M)=d(M). By (5.6) in [CE] this implies that all geodesics
are closed of length 2i(M). Since m(M) = Z, it follows that the universal covering
space of M is a Wiedersehen manifold and the generalized Blaschke conjecture,
recently proved by Berger, Kazdan, Weinstein, and Yang, implies that K is
constant, see [Bs].

Summarizing the above we obtain

2.2. THEOREM. Suppose that m,(M")=Z, and 3=8=<K=<1. Then there
exist two closed geodesics ¢ and d which are not null-homotopic, have no self-
intersections and satisfy

m<2iM)=L(d)=<L(c)=2d(M)=<u/V8
ind(d)=0 and ind,(c)=2(n—-1).

¢ has maximal perimeter in the set of all biangles with minimizing sides, and
L(d) = L(c) implies that K is constant. [

3. The Morse condition

To prove the existence of more than one closed geodesic on S", M. Morse
[Mo], p. 354, introduced the following condition: Let g, be the metric on S" of
constant curvature 1. Then the metric g on S™ satisfies the Morse condition if

8o <g<4g,

This condition immediately implies that the critical levels of certain homology
classes consisting of circles lie in (2, 47r). Hence the closed geodesics on which
they remain hanging cannot be iterates of each other. But this does not prove the
existence of geometrically different closed geodesics since these closed geodesics
could all be iterates of one short closed geodesic. In [Al] Alber stated the theorem
that g,=<g<4g, and 0<K=1 if n even or 3<K=1 if n odd implies the
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existence of g(n) closed geodesics without self-intersections and with lengths in
[27, 47r). Under these conditions there are no closed geodesics of length <21 by
(1.2). But the topological part of his proof turned out to be incorrect. Correct
proofs have been given in [BTZ2], [An], and [Hi]. In [BTZ2] it was also proved
that ;=K =1 implies the existence of g(n) closed geodesics, i.e. the Morse
condition is not needed for Z-pinched manifolds. In this chapter we give some
further theorems involving the Morse condition.
Let

d, =max d(p, q)

3.1. LEMMA ([Sh]. If d,>w for every pe M and K=}, then the length of
every closed geodesic is > 2.

Proof. Let ¢ be a closed geodesic with L(c)=<2# and let p=c(0). Since
d, >, there exists a point q€ M with d(p, q)> . Let d be a minimal geodesic
from p to q. Then we have a generalized triangle whose one side consists of ¢ and
the two minimal sides are d. This is a generalized triangle in the sense of the
Toponogov comparison theorem since L(c¢)=<2w and 2L(d)>2m=L(c). Since
the angles of one of the minimal sides with ¢ is =m/2, it follows from To-
ponogov’s theorem that d(p, q) <, a contradiction. [

Remark. A theorem of Berger and Grove-Shiohama [GS] states that K =1
and d, > 7 for some pe M implies that M is homeomorphic to S™.

As a first consequence we obtain the following theorem.

3.2. THEOREM. If d,>w for every pe M and K =3, then there exist at least
n—1 closed geodesics with lengths in (2w, 47].

Proof. Since a closed geodesic ¢ with L(c) >4 has index =2(n — 1), it follows
as in the proof of (3.3) in [BTZ2] that there exist n—1 closed geodesics of length
=41. By (3.1) every closed geodesic has length > 27 and hence these n—1 closed
geodesics are geometrically different. [

Remark. It does not follow that these closed geodesics have no self-
intersections. Notice also that d, > for every p € M follows from one half of the
Morse condition, namely g > g,.

3.3. THEOREM. If g is a metric on S™ with g, < g <4g, and K =}, then there
exist g(n) closed geodesics with lengths in (2, 4).
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Proof. g>g, implies that d,>= for every pe M and hence all closed
geodesics have lengths > 2. g <4g, implies that the homology classes considered
in [BTZ2] thm. (2.4), have critical levels <47 and hence the theorem follows
from the methods in [BTZ2]. O

Finally we observe that on P"R the Morse condition suffices without any
curvature assumptions.

3.4. THEOREM. Let g be a metric on P"R and g, the metric on P"R with
constant curvature 1. If g,<g <9g,, then there exists at least g(n) closed geodesics
which are not null-homotopic and with lengths in (, 3m).

Proof. g> g, implies that every closed curve which is not null-homotopic, and
hence every closed geodesic which is not null-homotopic, has length >m. We
denote by Ay the unparametrized closed curves on P"R which are not null-
homotopic, by Ag those curves in A4 whose energy with respect to the g metric is
<a, and by A%, those in Ay whose energy in the g, metric is <a. Then
g0 < g <9g, implies that we have the following inclusions

T2 [3m c A
AFP < AT AR (*)

Every curve in Ay has odd multiplicity. The closed geodesics in A$%’>~ consist of
the ones of minimal length, i.e., the great circles. Hence A§7%’>" is homotopy
equivalent to G(2, n—1), the space of unoriented two planes in R" *1 Thus A5
and A1r %2 have g(n) subordinate homology classes and the inclusions in (%)
together with naturality of cap products implies that A$™”? also has g(n) sub- -
ordinate homology classes. Standard Lusternik—Schnirelmann theory now implies
that there exist g(n) closed geodesics in A3™7?, i.e. g(n) closed geodesics with
lengths <37. Since every closed geodesic has length > and since two fold
iterates do not lie in Ay, these closed geodesics are geometrically different. [J

4. Closed geodesics on convex surfaces

In this chapter we study metrics of positive curvature on S2. As is well-known,
such metrics can be realized by embeddings into Euclidean space E>. We first
improve Theorem (1.7) on the gap in the length spectrum. We get the following
result.

4.1. THEOREM. Suppose M is diffeomorphic to S* and 3<8=<=K=1. Then
there does not exist any prime closed geodesic with length in (2m/V8, 617).



Some existence theorems for closed geodesics 429

Remark. This implies that there exists no closed geodesic with length in
(4m/V8, 67r) if 8 >4, since a closed geodesic of length <6 which is not prime is a
twofold cover of a closed geodesic without self-intersections and hence has length
=4m/V8 by [Tol.

Proof. We say that a prime closed geodesic c¢:[0,1]—= M has k self-
intersections if k =Y, cime) FHO0=t=<1|c(t)=x}—1). If a prime closed geodesic
has only one self-intersection, it is the boundary of a convex polygon and hence
has length =<27/v/8 by [To]. If ¢ has more than one self-intersection one has the
following cases: Either there exist 0<t, <t;<t,<t;=<1 with c() = c(t}), or there
exist 0=t, <t, <tz <t;<t,<t;<1 with ¢(t;) = c(t}). In the first case ¢ consists of
at least two geodesic loops and a biangle, in the second case of at least three
biangles. In either case L(c)=6m by (1.2). O

Remark. It follows from arguments as in the proof that there do not exist
prime closed geodesics with 1, 2, or 3 self-intersections if §>1, &, or § respec-
tively. Furthermore, if ¢ is a prime closed geodesic with k self-intersections, then
L(c)=<(k+2)m/V/& since the complement of ¢ consists of k+2 regions with
convex polygons as boundary.

Let o be the energy of a shortest closed geodesic. One can ask whether there
exists a homotopy class h € 7, (M) with a, (h) = a,. In general this is false as the
closed geodesic on the equator of an hour glass shows. We can prove:

4.2. THEOREM. Suppose M is diffeomorphic to S* and =<K=<1.If his a
generator of m,(M), then ay= a,(h). Any shortest closed geodesic on M has no
self-intersections and index 1.

Proof. By (1.6) we can assume that a shortest closed geodesic has length <4
and hence no self-intersections. ¢ has index =1 since a parallel orthogonal
vectorfield X along c satisfies H(X, X) <0.

M is the union of two closed balls B, and B_ such that B, NB_=im(c). B,
and B_ are both locally convex since ¢ is a geodesic. Let X be the parallel vector
field pointing into B,. The map f:S'X[—¢, e]—= M, (e>™, 5) = exp., (s - X(1)),
€ >0 sufficiently small, defines a variation of ¢ such that the closed curves f,
defined by f,(t) = f(t, ) lie in B, for 7>0 and in B_ for <0, and E(f,)<E(c)
for 7#0. One can now easily extend f to a variation f:S*x[~1, +1]— M with
E(f.)<E(c) for all 7# 0 and such that f. lies in B, for r>0 and in B_ for 7<0
and f,, f_, are point curves in B, resp. B_: deform f., into geodesic polygons in
B, and then apply the negative gradient flow of the energy in a finite dimensional
approximation, see [Mi], §16. The curves stay in B, since B, is locally convex and
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one eventually obtains point curves since there exist no closed geodesics of energy
< ay. f can be viewed as a map g: I?/0I> = S? — M such that g, (up to homotopy)
consists of the curves f.. g has degree *1 since the inverse image of c¢(t) consists
only of one point. Hence g is a generator of m,(M), and by changing X into —X if
necessary, g is in the homotopy class h. Hence a,(h)=<a, and since a is the
energy of a shortest closed geodesic we obtain a, (h) = ay.

If ind(c)>1 one can apply Lemma 2 in [CG] to a finite dimensional
approximation to show that a, (h) <ay,. This is a contradiction. Hence ind (¢) =

1. O

Remarks. (a) If one can show that a shortest closed geodesic on a convex
surface has no self-intersections the above proof would apply and show that
ag=a,(h) and ind (¢)=1.

(b) One can also show that for an arbitrary metric on S? a closed geodesic
without self-intersections which is shortest among all closed geodesics without
self-intersections has index =<1. This follows as in the above proof if one replaces
the negative gradient flow by the Lusternik-Schnirelmann deformation, which
leaves the set of closed curves without self-intersections invariant, see [LS] and
[Bal].

5. Closed geodesics on convex hypersurfaces

5.1. THEOREM. Let M be a convex hypersurface in E™*' which contains a
ball of radius r and is contained in a ball of radius R. Assume that 2r> R. Then
there are at least g(n) closed geodesics on M with lengths in the interval [27r, 2wR].

Remark. The projection of a convex hypersurface onto a convex hypersurface
inside its interior is length-decreasing. Hence the assumption 2r > R implies the
Morse condition. In addition, we have the estimate of C. Croke [Cr], Theorem
1.5: the closed geodesics on a convex hypersurface containing a ball of radius r
are of length =27r; equality occurring if and only if the hypersurface is
tangential to the ball of radius r along a great circle. Under the hypothesis of the
theorem we can prove that M has at least g(n) closed geodesics with lengths in
the interval [2#r, 2R) unless the ball of radius R is tangential to the hyper-
surface along a great circle.

Note that the proof below cannot be used to decide whether the g(n) closed
geodesics have self-intersections or not.

Proof. The intersections of M with two-planes define a map from the space of
parameterized circles on a sphere into the space P(M) (in the notation of
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[BTZ2]). The lengths of these curves are =<27R since they are contained in the
convex hull of circles on the sphere of radius R, and their lengths are <2#wR
unless M is tangential to the sphere of radius R along a great circle. As in
Theorem (2.4) in [BTZ2] this gives rise to g(n) subordinate homology classes in
(P?™R* (VN P)?>"*R%), The theorem of Croke quoted in the remark above now
implies, together with Lemma (1.5)(ii) in [BTZ2], that there are g(n) closed
geodesics on M with lengths in [27r, 27#R]. O
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