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On the cohomology of groups of p-length 1

THOMAS DIETHELM

1. Introduction

Let G be a finite group, whose order is divisible by the prime p, and let k
denote the field of p elements. We consider the cohomology H"(G, A), where A
is a simple kG-module. It is well known that H"(G, A) # 0 implies that A lies in
the principal block of kG. We ask, if the converse is true, i.e. if to every simple
kG-module A in the principal block there is an neN with H*(G, A)#0.

Swan proved that this is true for the trivial module k. Therefore the above
question has a positive answer for p-nilpotent groups (G = O,,,G). In this paper
we show: (Theorem 5.3) if G = O,,,,G, then there are infinitely many n eN with
H"(G, A)#0.

In §3 we first consider the case where G is of p-length 1. In order to show the
nontriviality of H"(G, A) we analyze the action of the p’-group Q = G/O,,,G on
the cohomology ring H*(O,,G/O, G, k) of the p-group P=0,,G/O,G. We
prove the following result, which is of interest in its own right (Theorem 4.5):

If the p'-group Q acts faithfully on the p-group P, then every simple
kQ-module A appears infinitely often in H*(P, k) as a direct summand.

The proof of this result is by induction on the length of a central series of P
with elementary abelian factors. With the aid of this result we can prove Theorem
4.6:

Let G be a group of p-length 1, and let A be a simple kG-module lying in the
principal block of kG. Then H"(G, A)# 0 for infinitely many neN.

In §5 we show how the result for groups G of p-length 1 can be used to treat
the case where G = O,,,,G. We do that by considering the extension

O,pp'G>> G > G|O,,,/G.

Most of the results of this paper first appeared in the author’s doctoral thesis
(ETH, Ziirich, Switzerland, 1981; adviser: U. Stammbach).
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380 THOMAS DIETHELM
2. Techinal lemmas

As a preparation we state the following well known results:

LEMMA 2.1. Let G be an extension of a p’-group N by a group H, N»>-> G —>» H.
If V is an indecomposable kG-module lying in the principal block, then:

H"(G, V)=H"(H,V); n=0.

Proof. Since N is a p’-group, V is centralised by N and the spectral sequence
of the extension N »> G —» H collapses.

LEMMA 2.2. Let G be an extension of a group N by a p’-group H. If V is a
kG-module, then H" (G, V)=H"(N, V)*; n=0.

Proof. Since H is a p'-group, the spectral sequence of the extension N »» G —» H
collapses.

LEMMA 2.3. Let G be an extension of N by a group H, and let A be a
kG-module with C5(A) =2 N. Then:

Hn(N’ A)HEHomkH (Hn(N; k)a A)a n=0.
Proof. Since A is a trivial kN-module, the universal coefficient theorem holds
Hn (N, A) EI_Iornk (Hn(N’ k)s A)'

The above isomorphism is natural and thus H acts diagonally on the right hand
side. Hence

H"(N, A)" =Homyy (H,(N, k), A).

3. The cohomology of groups of p-length 1

Let G be a group of p-length 1 (G=0,,,G), and let A be a simple
kG-module lying in the principal block of kG. Then O,.,G < Cs(A). ([6] p. 164.)
From Lemma 2.1 we obtain

_H'(G/O,,G, A)=H!(G, A)
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and from Lemmas 2.1, 2.2
H (G, A)= H"(Op,pG/OprG, A)G/OuG

Let Q denote the p’-group G/O,,,G, and let P denote the p-group O,.,G/O, G.
Then Lemma 2.3 yields

H"(G, A)=Hom,, (H,(P, k), A).
This preparation allows the proof of the following result.

THEOREM 3.1. Let G be a group of p-length 1, and let A be a simple
kG-module lying in the principal block of kG. Then:

H"(G,A)#0

if and only if A is a direct summand of H,(P, k).
Proof.

“=>” 1If H"(G, A) is nontrivial, then Hom,, (H,(P, k), A) is nontrivial, and the
simple kQ-module A is a direct summand of H, (P, k).

“&” By Maschke’s theorem H, (P, k) is semi-simple. If A is a direct summand
of H, (P, k) the projection onto A is a nontrivial kQ-module homomorph-
ism f: H,(P, k) — A. But the nontriviality of Hom,o (H,(P, k), A) implies
the nontriviality of H"(G, A).

Note 3.1. It follows from Theorem 3.1, that it is necessary to analyze the
G/P-module structure of Hy(P, k) induced by conjugation of G in P. Since the
cohomology H*(P, k) is the dual of Hg(P, k), this is equivalent to analyze the
G/P-module structure of H*(P, k). The advantage of working in cohomology is,
that we may use its algebra structure which is induced by the cup-product.

Note 3.2. Clearly the p’-group Q= G/O,,G acts faithfully on the p-group
P=0,,G/0O,G.

4. The kQ-module structure of H*(P, k)

By Note 3.2, the p’-group Q acts faithfully on the p-group P. This action
induces an action of Q on the cohomology ring H*(P, k).

Our problem is to determine these kQ-modules which are direct summands of
H*(P, k).
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LEMMA 4.1. Let the p'-group Q act faithfully on the elementary abelian
p-group E=C{’x- - -x C{™. Then every simple kQ-module A is infinitely often a
direct summand of H*(E, k).

Proof. 1t is well known, that the cohomology ring H*(E, k) contains the
polynomial ring k[xy, X5, ..., X,]; x; € H(CY, k) as a subring. The generators
X1, X3, . . . , X, correspond to a basis of E, and Q acts faithfully on the subspace
(X1, X2, . . ., Xm) Oof H?*(E, k). By the theorem of Steinberg [7], every simple
kQ-module A is infinitely often a direct summand of k[x,, x,,..., x,.], and
k[xi, X5, . .., X ] is a direct summand of H*(E, k).

Note 4.1. The map o, :k[xs,...,x.]—=k[x5,...,x0], f(xy,...,x,.)—

fXgy oo, X)? =f(x%,...,x0); §=0,1,2,... is a kQ-module isomorphism.
Therefore k[x,, x,, ..., X,,] contains infinitely many copies of itself.

LEMMA 4.2. Let E=C’XC? X+ - - X Cy™ be an elementary abelian central
subgroup of the p-group P. Then for some seN the polynomial ring
k[xy', x5, ..., x%] lies in the image of the restriction map

res: H*(P, k) — H*(E, k).

Proof. We consider the spectral sequence E5'=H'(P/E, H'(E, k)) >
H'*(P, k) of the extension E>—> P-» P/E. Since E is a central subgroup, we get
EY= H'(E, k)" = H'(E, k).

There is a cup-product [4]

i.j i Y i+i'j+j
Er ®‘Er - Er

with the following rules

......

(ii) d,(a b) da - b+( 1)"*a - d,b
ae EY; be E'.

Suppose 0#xeEY? Since chark=p, one easily checks that d,(x?)=
pdyx - xP"1=0.

Now xP is a nontrivial cocycle of E3? and ds(x")=p - d5x° - x*®* V=0.
Iteration of this process yields 0+# x”" € E%Z". By a theorem of Evens [1] the
spectral sequence of a finite group extension stops, i.e. there is a teN with
E,=E.. Now s=t—2 yields 0 # x” € EZ*", but x* then lies in the image of the
restriction map

‘res: H* (P, k) — H? (E, k).
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It follows that the polynomial ring k[x%,...,x%] lies in the image of the
restriction map.

Note 4.2. It follows from the naturality of the LHS-spectral sequence, that, if
the p’-group Q acts on the extension E >> P —» P/E, then the restriction map

res: H*(P, k) — H*(E, k)
is a kQ-module homomorphism.

LEMMA 4.3. Let the p’-group Q act on the central extension E>—> P -» P/E.
Let N denote the centralisator Co(E). Then every simple k(Q/N)-module A is
infinitely often a direct summand of H*(P, k).

Proof. The group Q/N acts faithfully on E. By Lemma 4.1 and Note 4.1 every
simple k(Q/N)-module A is infinitely often a direct summand of k[x%", ..., x%].
By Lemma 4.2 A is infinitely often a direct summand in the image of the
restriction map

res: H*(P, k) - H*(E, k),
and by Note 4.2 A is infinitely often a direct summand of H*(P, k).

THEOREM 4.4. Let the p'-group Q act on the central extension E > P —» P/E.
If the simple kQ-module A is a direct summand of H*(P/E, k), then A is
infinitely often a direct summand of H*(P, k).

Proof. We consider the spectral sequence E5'=H'(P/E, H'(E, k))=> H'*(P, k)
associated with the extension E>—> P> P/E. Let By, B,, ..., B,, be the simple
direct summands of E%* and let A, A,, ..., A, be the simple direct summands
of E¥®,

Since E is a central subgroup, we get

H(P/E, H'(E, k))=H'(P/E, k) @ HI(E, k)=E5°®ES",

and E%' is a direct sum of tensorproducts A, ® B,. If we let the p’-group Q act
diagonally on E°Q®E® then the map EX®E> % EY is a kQ-module
homomorphism.

First we prove that there is a simple kQ-module A, depending on A such that
A, is a direct summand of E.°. Secondly we show that A is infinitely often a



384 THOMAS DIETHELM

direct summand in the image of the map
Ei'.0®E0,* H_) Ei"*.

(1) Let i’ be the smallest i such that A is a direct summand in some
tensorproduct A,®B, with A, < E5° and B, < E3*. We show that A, is a direct
summand in E.°:

If A, lies in the image of the differential d,: EX™""'"— E!°, then A, is a
direct summand in some tensorproduct A,&® B, with

A, cEy"' and B,cEY".

The module A is then a direct summand in the tensorporoduct (A,®B,)® B, =
A, R(B,®B,).

But B,®B, =€, B,, and therefore A is a direct summand in A,® B,,. Since
B, is a direct summand of EY* it follows that A is a direct summand of E5™"""*,
This contradicts the minimality of i’. Hence A, is a direct summand of EL°.

(2) By Lemma 4.2 and Lemma 4.3 B, is infinitely often a direct summand in

the image of the restriction map
res: H*(P, k) — H*(E, k) i.e.

B, is infinitely often a direct summand of E%*. Hence A is infinitely often a
direct summand in EL.°Q E%*.

If A is contained in the kernel of the map EL°® ES* 2> EL* then A lies in
the image of some differential d, : E-=""'* — Ei"*,

This contradicts the minimality of i’. It thus follows that A is infinitely often a
direct summand of EL*.

THEOREM 4.5. If the p’-group Q acts faithfully on the p-group P, then every
simple kQ-module A is infinitely often a direct summand of H*(P, k).

Proof. Let us consider the lower central series of P
P=PO=pV=...=pMm =,

We obviously can refine this series to a central series
P=PO=pV=...Pp®=¢

with elementary abelian factor groups P®/P¢*? and PO/P® = P/d(P).
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If Q acts faithfully on P, Q acts faithfully on P/@(P), see for example [5] p.
102.

By Lemma 4.1 every simple kQ-module A is infinitely often a direct sum-
mand of H*(P/P, k). By Theorem 4.4 A is infinitely often a direct summand of
H*(P/P?, k). Iterating this step for the factor groups P/P® yields the result that
A is infinitely often a direct summand of H*(P, k).

THEOREM 4.6. Let G be a group of p-length 1, and let A be a simple
kG-module lying in the principal block of kG. Then

H"(G, A)#0 for infinitely many neN.
Proof. Let A* denote the dual of A. By Theorem 4.5 A* is infinitely often a
direct summand of H*(P, k). Dualisation yields the fact that A is infinitely often a

direct summand of Hy(P, k). By Theorem 3.1 H"(G, A) is nontrivial for infinitely
many n eN.

S. The case G =0,,,G

LEMMA 5.1. Let N>> G - P be a group extension with |P|=p®; aeN, and
let A be a kG-module. Then

H"(N,A)#0 > H"(G, A)#0.
Proof. We consider the long exact sequence [3] p. 224
— H"(G, A)— H"(N, A) - Ext}, (IP, A) —

where IP denotes the augmentation ideal of the factor group P. Let IP* denote
the dual of IP* then there is a natural isomorphism

Ext (IP, A)= H"(G, IP*®A).

Since P is a p-group, all composition factors of IP* are isomorphic to the trivial
module k. A composition series of IP* induces a composition series of IP* @, A,
of which all composition factors are isomorphic to A.

If H* (G, IP*®, A) is nontrivial, it follows by induction, that H"(G, A) is
nontrivial.
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From H"(N, A)#0 and from the above sequence we may conclude that
H"(G, A) or H*(G, IP*®, A) and hence again H"(G, A) is nontrivial.

LEMMA 5.2. Let G be a p-solvable group with normal subgroup N, and let A
be a simple kG-module lying in the principal block of kG. Then:

(i) A=, B, as a kN-module and all B; are simple kN-modules.

(ii) The simple kN-modules B; lie in the principal block of kN.

Proof. (i) is a consequence of Clifford’s theorem.
(ii) For p-solvable groups the following holds [2] p. 279

Cs(A)20,,G& A lies in the principal block of kG

Since O,,G is the maximal p-nilpotent normal subgroup of G, O,,N is a
subgroup of O,,,G. Therefore we get O,.,,N < O,.,G =< C5(A), and thus all B; are
simple kN-modules lying in the principal block of kN.

THEOREM 5.3. Let G = O,,,,G, and let A be a simple kG-module lying in
the principal block of kG. Then

H"(G, A)#0 for infinitely many neN.
Proof. We consider the extension

0,'pyG > G » G/O,,,G.

p'pp
The factor groups G/O,,,,,G is a p-group, and the normal subgroup O,,,G has
p-length 1.

By Lemma 5.2 A is a direct sum of simple k(O,,,yG)-modules B; lying in the
principal block of k(O,,,G). By Theorem 4.6 H"(O,,, G, B;) is nontrivial for
infinitely many neN, and Lemma 5.1 yields

H"(G, A)#0 for infinitely many neN.
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