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On the cohomology of groups of p-length 1

Thomas Diethelm

1. Introduction

Let G be a finite group, whose order is divisible by the prime p, and let fc

dénote the field of p éléments. We consider the cohomology Hn(G, A), where A
is a simple fcG-module. It is well known that Hn(G, A) ^ 0 implies that A lies in
the principal block of fcG. We ask, if the converse is true, i.e. if to every simple
fcG-module A in the principal block there is an nel^J with Hn(G, A)^0.

Swan proved that this is true for the trivial module fc. Therefore the above

question has a positive answer for p-nilpotent groups (G OPPG). In this paper
we show: (Theorem 5.3) if G OPPPPG, then there are infinitely many n€N with

In §3 we first consider the case where G is of p-length 1. In order to show the
nontriviality of Hn(G, A) we analyze the action of the p&apos;-group Q G/OPPG on
the cohomology ring H*(OppG/OpG,k) of the p-group P=OPPG/OPG. We

prove the following resuit, which is of interest in its own right (Theorem 4.5):
If the p&apos;-group Q acts faithfully on the p-group F, then every simple

fcQ-module A appears infinitely often in JLf*(P, fc) as a direct summand.
The proof of this resuit is by induction on the length of a central séries of P

with elementary abelian factors. With the aid of this resuit we can prove Theorem
4.6:

Let G be a group of p-length 1, and let A be a simple fcG-module lying in the
principal block of fcG. Then Hn(G, A)^0 for infinitely many neN.

In §5 we show how the resuit for groups G of p-length 1 can be used to treat
the case where G OPPPPG. We do that by considering the extension

GIOPPPG.

Most of the results of this paper first appeared in the author&apos;s doctoral thesis
(ETH, Zurich, Switzerland, 1981; adviser: U. Stammbach).

379



380 THOMAS DIETHELM

2. Techinal lemmas

As a préparation we state the following well known results:

LEMMA 2.1. Let G beau extension ofa p&apos;-groupNby a group H,N&gt;-&gt;G —»H.

If V is an indécomposable kG-module lying in the principal block, then:

Hn(G, V)^Hn(H, V); n^O.

Proof. Since N is a p&apos;-group, V is centralisée! by N and the spectral séquence
of the extension N&gt;-~&gt;G-* H collapses.

LEMMA 2.2. Let G be an extension of a group N by a p&apos;-group H. If V is a

kG-module, then Hn(G, V) IT(N, V)H; n^O.

Proof. Since H is a p&apos;-group, the spectral séquence of the extension N &gt;-&gt; G —» H
collapses.

LEMMA 2.3. Let G be an extension of N by a group H, and let A be a

kG-module with CG(A)^N. Then:

Hn(N, A)H HomkH (Hn(N, k), A); n^O.

Proof. Since A is a trivial fcN-module, the universal coefficient theorem holds

IT(N, A)^Homk (Hn(N, fc), A).

The above isomorphism is natural and thus H acts diagonally on the right hand
side. Hence

Hn(N, A)H HomkH (Hn(N, k), A).

3. The cohomology of groups of p-length 1

Let G be a group of p-length 1 (G OPVP&gt;G), and let A be a simple
fcG-module lying in the principal block of fcG. Then OPPGc CG(A). ([6] p. 164.)

From Lemma 2.1 we obtain
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and from Lemmas 2.1, 2.2

Hl(G, A)

Let Q dénote the p&apos;-group G/OPPG, and let P dénote the p-group OPPG/OPG.
Then Lemma 2.3 yields

Hn(G, A) HomkQ (Hn(P, fc), A).

This préparation allows the proof of the following resuit.

THEOREM 3.1. Let G be a group of p-length 1, and let A be a simple
kG-module lying in the principal block of kG. Then:

if and only if A is a direct summand of Hn(P, k).

Proof

&quot;=&gt;&quot; If Hn(G, A) is nontrivial, then Homko (Hn(P, fc), A) is nontrivial, and the
simple fcQ-module A is a direct summand of JFfn(P, fc).

&quot;4=&quot; By Maschke&apos;s theorem Hn(P, k) is semi-simple. If A is a direct summand
of Hn(P, k) the projection onto A is a nontrivial fcQ-module homomorph-
ism f:Hn(P, fc) -» A. But the nontriviality of Homko (Hn(P, fc), A) implies
the nontriviality of Hn(G, A).

Note 3.1. It follows from Theorem 3.1, that it is necessary to analyze the
G/P-module structure of H*(P, fc) induced by conjugation of G in P. Since the
cohomology H*(P, fc) is the dual of H*(P, k), this is équivalent to analyze the
G/P-module structure of JFf*(P, fc). The advantage of working in cohomology is,

that we may use its algebra structure which is induced by the cup-product.

Note 3.2. Clearly the p&apos;-group Q G/OPPG acts faithfully on the p-group

4. The fcQ-module structure of H*(P, fc)

By Note 3.2, the p&apos;-group Q acts faithfully on the p-group P. This action
induces an action of Q on the cohomology ring H*(P, fc).

Our problem is to détermine thèse fcQ-modules which are direct summands of
H*(P, fc).
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LEMMA 4.1. Let the p&apos;-group Q act faithfully on the elementary abelian

p-group E Cp1* x • • • x C(pm)- Then every simple kQ-module A is infinitely often a
direct summand o/H*(jE, fc).

Proof. It is well known, that the cohomology ring H*(£s, fc) contains the
polynomial ring fc[xl5 x2,..., xm]; Xj gH2(C(pi), k) as a subring. The generators
Xi, x2,..., Xm correspond to a basis of E, and Q acts faithfully on the subspace
(xu x2,. xm) of H2(E, fc). By the theorem of Steinberg [7], every simple
fcQ-module A is infinitely often a direct summand of fc[x1? x2,..., xm], and

k[xu x2,..., xm] is a direct summand of H*(E, fc).

Note 4.1. The map 4 :fc[x1?..., xj-^ k[x\\ x£], f(xl9...9xm)*+
f(xu x^n)^ f(x\\ xp; s 0,1, 2,... is a fcQ-module isomorphism.
Therefore fc[Xi, x2,..., xm] contains infinitely many copies of itself.

LEMMA 4.2. LetE C(pl) x Cf x • • • x C(pm) 5e an elementary abelian central
subgroup of the p-group P. Then for some seN the polynomial ring
fc[x?\ x%\ x£] lies in the image of the restriction map

res:H*(P,fc)-»H*(E,fc).

Proof. We consider the spectral séquence E2J Hl(P/E, H&apos;(E, fc)) =&gt;

Hl+J(P, fc) of the extension E &gt;-&gt; P-» P/E. Since E is a central subgroup, we get
HJ(E, fc)p/E H}(E, fc).

There is a cup-product [4]

with the following rules
(i) a-6 (-l)&quot;&apos;+»&apos;5-a;

(ii) d,(a - b) d^a • b + (-l)l+la • d^
aeEl;J; beEl/J&apos;.

Suppose O^xeEf2. Since charfc p, one easily checks that d2(xp)

Now xp is a nontrivial cocycle of E%2p and d3(xp2) p • d3xp • xp(p&quot;1) 0.

Itération of this process yields 0 f xps e E^&apos;+f. By a theorem of Evens [1] the

spectral séquence of a finite group extension stops, i.e. there is a reN with
Et E«. Now s f-2 yields 0 f xpI €E%2p\ but xps then lies in the image of the

restriction map

res : H2p*(P, fc) -* H2ps(E, fc).
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It follows that the polynomial ring k[x\\..., x£] lies in the image of the
restriction map.

Note 4.2. It follows from the naturality of the LHS-spectral séquence, that, if
the p&apos;-group Q acts on the extension E &gt;-» P -» P/E, then the restriction map

res :H*(P, fc)-*H*(E, fc)

is a kQ-module homomorphism.

LEMMA 4.3. Let the p&apos;-group Q act on the central extension E&gt;-*P~» PIE.
Let N dénote the centralisator CQ(E). Then every simple k(Q/N)-module A is

infinitely often a direct summand of H*(P, k).

Proof. The group Q/N acts faithfully on E. By Lemma 4.1 and Note 4.1 every
simple fc(Q/N)-module A is infinitely often a direct summand of k\x\\ %£].
By Lemma 4.2 A is infinitely often a direct summand in the image of the
restriction map

res :H*(P,k)-»H*(E,k),

and by Note 4.2 A is infinitely often a direct summand of H*(P, k).

THEOREM 4.4. Let the p&apos;-group Q act on the central extension E &gt;* P -» PIE.

If the simple kQ-module A is a direct summand of H*(P/E, k), then A is

infinitely often a direct summand of H*(P, k).

Proof. We consider the spectral séquence E^ Hl(P/E, HJ(E, fc))4&gt;Hl+J(P, k)
associated with the extension J5&gt;~&gt; P-» PIE. Let JBX, B2,..., Bm be the simple
direct summands of E°* and let Al9 A2,..., An be the simple direct summands
ofJEf&apos;0.

Since E is a central subgroup, we get

k)&lt;8&gt;H&apos;(E,

k

and Eli} is a direct sum of tensorproducts Aa®Bb. If we let the p&apos;-group Q act

diagonally on E^°®E?j, then the map El;0®E^1 ^ E1;1 is a fcO-module
homomorphism.

First we prove that there is a simple fcO-module As depending on A such that
As is a direct summand of El0. Secondly we show that A is infinitely often a



384 THOMAS DIETHELM

direct summand in the image of the map

^ EU*.

(1) Let V be the smallest i such that A is a direct summand in some
tensorproduct As(g)Bu with As CE2&apos;0 and Bu c E°&apos;*. We show that As is a direct
summand in E^&apos;°:

If As lies in the image of the difïerential à, : E^~r&quot;&quot;1-r-&gt; E»&apos;°, then As is a

direct summand in some tensorproduct AX®BV with

At ç E^1&quot;-1-0 and Bv c E£&apos;r.

The module A is then a direct summand in the tensorporoduct (At®Bv)&lt;g)Bu
At®(Bv&lt;g&gt;Bu).

But Bv(8)fîu ©WBW and therefore A is a direct summand in At®Bw. Since

Bw is a direct summand of E\y* it follows that A is a direct summand of E^&apos;&quot;1&apos;*.

This contradicts the minimality of V. Hence As is a direct summand of E£o.
(2) By Lemma 4.2 and Lemma 4.3 Bu is infinitely often a direct summand in

the image of the restriction map

res :H*(P,k)-*H*(E, k) Le.

Bu is infinitely often a direct summand of JE°*. Hence A is infinitely often a

direct summand in E£0&lt;8)E£*.

If A is contained in the kernel of the map E£0®JS2;* ^ E£*, then A lies in
the image of some difïerential 4- : E^ ~r~1* —&gt; E^*.

This contradicts the minimality of T. It thus follows that A is infinitely often a

direct summand of E^*.

THEOREM 4.5. If the p&apos;-group Q acts faithfully on the p-group P, then every
simple kQ-module A is infinitely often a direct summand of H*(P, k).

Proof. Let us consider the lower central séries of P

We obviously can refine this séries to a central séries

with elementary abelian factor groups p&lt;l&gt;/p&lt;l+1) and P(o&gt;/P(1)
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If Q acts faithfully on P, Q acts faithfully on P/&lt;P(P), see for example [5] p.
102.

By Lemma 4.1 every simple fcQ-module A is infinitely often a direct sum-
mand of H*(P/JP(1), k). By Theorem 4.4 A is infinitely often a direct summand of
H*(P/Pi2\ k). Iterating this step for the factor groups P/P(l) yields the resuit that
A is infinitely often a direct summand of H*(P, k).

THEOREM 4.6. Let G be a group of p-length 1, and let A be a simple
kG-module lying in the principal block of kG. Then

Hn(G, A) + 0 for infinitely many neN.

Proof. Let A* dénote the dual of A. By Theorem 4.5 A* is infinitely often a

direct summand of H*(P, k). Dualisation yields the fact that A is infinitely often a

direct summand of H%(P, k). By Theorem 3.1 Hn(G, A) is nontrivial for infinitely
many neN.

5. The case G OPPPPG

LEMMA 5.1. Let N&gt;^&gt; G -» P be a group extension with \P\ pa; aeN, and
let A be a kG-module. Then

Hn(lSI, A) + 0 4&gt; Hn(G, A) + 0.

Ptoof. We consider the long exact séquence [3] p. 224

-&gt; Hn(G, A) -» Hn(N, A) -* Ext£ (JP, A) -»

where IP dénotes the augmentation idéal of the factor group P. Let IP* dénote
the dual of IP* then there is a natural isomorphism

Ext£ (IP, A) Hn(G, iP*(8)A).

Since P is a p-group, ail composition factors of IP* are isomorphic to the trivial
module fc. A composition séries of /P* induces a composition séries of IP* &lt;8&gt;

k A,
of which ail composition factors are isomorphic to A.

If Hn(G, IP*&lt;8)kA) is nontrivial, it follows by induction, that Hn(G,A) is

nontrivial.
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From Hn(N, A) ^0 and from the above séquence we may conclude that
Hn(G, A) or H&quot;(G, IP*&lt;8)k A) and hence again Hn(G, A) is nontrivial.

LEMMA 5.2. Let G be a p-solvable group with normal subgroup N, and let A
be a simple kG-module lying in the principal block of fcG. Then:

(i) A =©^=1 Bx as a kN-module and ail Bt are simple kN-modules.
(ii) The simple kN-modules Bt lie in the principal block of kN.

Proof. (i) is a conséquence of Clifford&apos;s theorem.
(ii) For p-solvable groups the following holds [2] p. 279

CG(A)^ OPPG O A lies in the principal block of fcG

Since OPPG is the maximal p-nilpotent normal subgroup of G, Op&gt;pN is a

subgroup of Op&lt;pG. Therefore we get OP&apos;pJVc OPPG ^CG(A)9 and thus ail Bt are

simple fcN-modules lying in the principal block of kN.

THEOREM 5.3. Let G OPPPPG, and let A be a simple kG-module lying in
the principal block of fcG. Then

Hn(G, A) f 0 for infinitely many neN.

Proof. We consider the extension

The factor groups G/OPPPG is a p-group, and the normal subgroup Op&gt;ppG has

p-length 1.

By Lemma 5.2 A is a direct sum of simple fc(OP&apos;PP&apos;G)-modules B, lying in the

principal block of fc(OPPP&apos;G). By Theorem 4.6 fPCOpppG, Bt) is nontrivial for
infinitely many neN, and Lemma 5.1 yields

Hn(G, A) + 0 for infinitely many neN.
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