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The Conway potential function for links

RicHARD HARTLEY

Conway introduced the potential function of a link in 1970, [1]. This potential
function, closely allied to the Alexander link polynomial, nevertheless has impor-
tant properties which the Alexander polynomial does not have. However, despite
this fact, no proof has appeared either for the properties, or even for the existence
of Conway’s potential function. That, then, is the purpose of this paper. Kauffman
[3] showed how to define what may be called the reduced potential function of a
link in terms of a Seifert matrix. This reduced potential function is an L-poly-
nomial in one variable. However, the potential function is essentially a function of
several variables, and I can see no way of generalising Kauffman’s method to
obtain the full potential function. Quite a different approach is therefore indi-
cated.

The potential function is determined except for sign by the Alexander polyno-
mial, since for a link with n components,

(t,—t7) - V) =A@) -t if n=1 (1.1)

V(ty,...,t)=A, ..., 4t if n>1 '
where V is the potential function, A is the Alexander polynomial properly chosen
with correct sign and u; are integers which are uniquely determined by the
requirement that V should satisfy the symmetry condition (5.5). But the Alexan-
der polynomial is not usually defined with a well determined sign. It is shown
here, however, how by defining a simple correspondence between the rows and
columns of an Alexander matrix obtained from a Wirtinger presentation, the
Alexander polynomial can be defined with a well determined sign. Then, one may
define a symmetric potential function using (1.1).

However, in order to derive properties of the potential function, and in
particular the replacement relations which are of central importance, it is neces-
sary to be able to determine in advance the values of the w; in (1.1) directly from
the link projection. This is perhaps the most delicate step in the definition of the
potential function. The values of the u; turn out to depend on the curvature of the
projection of the i-th component of the link.
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366 RICHARD HARTLEY

The method of proof of invariance of the potential function is somewhat old
fashioned, by means of the three PL moves of Reidemeister [S]. This is perhaps
justified by the fact that the potential function is not an algebraic invariant, and a
proof of its invariance must contain some geometric element. It is often the case
that a theorem is easily proven once one makes the correct definition. This is the
case here, and for that reason, tedious detail is often omitted.

The contents of this paper overlap in part with some of the results of a recent
monograph of Kauffman, [4], in which the Conway polynomial is treated from a
different point of view. Kauffman also notes the connection with what is in fact
the Whitney degree of the planar knot projection, called here the curvature, and
by Kauffman, curliness.

Finally, the notion of defining a correspondence between rows and columns in
an Alexander matrix was suggested to me by J. H. Conway in a brief conversation
in Galway in 1973, and this paper has developed as an expansion of that idea. It
was written down while I was a visitor at the J. W. Goethe University in Frankfurt
am Main in the summer of 1982, and I should like to express my appreciation for
the hospitality that was extended to me there.

§2. Definition of the potential function

We consider an oriented link, the components of which are numbered 1 to n
(n=1) in some way. It will be described how a potential function is assigned to
the link. If the link has more than one component, the potential function will be
an integral L-polynomial in the variables t,,...,t, that is an element of the
polynomial ring Z[t,t7',...,t,t,"]. If the link has one component, then the
potential function is of the form f(t,)/(t,—t1'), where f(t,) € Z[t,, t7'].

We start with a regular projection of the link. If some connected component of
the link projection has no crossing points, define V(t;)=(t;—t;')"" if L has one
component (L is a trivial knot) and V(t,,...,t,)=0 if L has more than one
component (L is a split link). From now on we exclude this possibility. At a
crossing point of the projection, two arcs meet, one passing under and one over.
By cutting the undercrossing arc at the point where it crosses under, the link is cut
into m arcs (where m is equal to the number of crossing points) called generating
arcs. Thus at each crossing point, P, of the projection three generating arcs meet,
one arc passing over at P, one arc terminating at P and one exiting from P (with
regard to the link orientation). These last two arcs together make up the
undercrossing arc at P. Now, number the crossing points P,,..., P, and the
generating arcs u,, ..., U, in such a way that ; is the generating arc which exits
from P, If generating arc u; belongs to the j-th link component, then give u; the
label t,.
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To a path, a, in the plane of projection, which does not start or end at a point
on the link projection, and which avoids the crossing points, we can associate an
element, a, of the free group, F(u,, ..., u,) generated by the u; as follows. One
moves along the path writing down the sequence of generating arcs crossed, more
precisely writing u; if u; is crossed from right to left and u; ! if it is crossed from
left to right. Using this, we read off a Wirtinger relator, R;, at each crossing point,
P, of the projection, as follows. R; is the word in the y; corresponding to a small
loop which starts at a point to the right of both over- and undercrossing arcs at P,
and proceeds anticlockwise around P, Thus, for a positive crossing, P, (the
undercrossing arc crosses under the overcrossing arc from right to left), relator R,
is wuui'u;" and for a negative crossing (the undercrossing crosses under from
left to right), R; is uuu; 'u; ', where in each case y, is the overcrossing arc. Now
let 6 be the map from ZF(u,, ..., u,) to Z[t;, t1', ..., t. t."] which takes each y;
to its label, and define the m X m Jacobian matrix, M, by M;; = (3R,/au;)°.

From a basic formula of the free differential calculus, we have

Z (u{—1) - (j-th column of M)=0 (2.1)
i=1

The link projection divides the plane of projection into regions. Let w; be a
path from a base point b in the unbounded region to a point close to P; and to the
right of both under- and overcrossing arcs, w; the corresponding word in
F(uy, ..., u,). If the w; are chosen so that they do not intersect except at b, then
for some permutation, o, of degree m representing the anticlockwise order of the
w; about b we have

-1 -1 -1 __: :
Vo Ro®o()) * Wo@Roe@Wod * * * WommRomWem =id in Fluy, ..., t,)

from which it follows that
Z w? - (i-th row of M)=0 (2.2)
i=1

Now, if M™ denotes the matrix obtained from M by deleting the i-th row and
j-th column, then from (2.1) and (2.2) we have that

(—1)"*1 det (M) /wd(ul — 1) = (=1)**' det (M*")/wi(uf - 1)

So, defining

D(ty, ..., t)=(—1)" det (MP)/w?(uf-1) (2.3)
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for any i and j, we see that D is independent of the choice of i and j. (If M is a
1x 1 matrix, define det (M®V)=1.) It is also clear that D does not depend on the
original numbering of the crossing points and generating arcs, since a renumber-
ing corresponds to a simultaneous identical permutation of the rows and columns
of M. Thus, D depends only on the link projection and numbering of the
components of the link. By its very definition, if n>1, D(t,,...,t,) is the
Alexander polynomial of the link, and if n=1, then D(t;)=(t;,—1)"" - A(t,). It
will turn out that for different projections of the same link, the value of D differs
only by a factor t%: - - - t&. Hence the value of D is determined as to sign, and so
represents a signed form of the Alexander polynomial.

We now need to determine the factor 4 - - - th= in (1.1) required to make the
potential function symmetric. For each component of the link, trace out the
Seifert circuits in the projection of that component, and let its curvature equal
(number of anticlockwise circuits) — (number of clockwise circuits). Let k; be the
curvature of the i-th component. Further, for each i, let »; equal the number of
crossing points in the link projection for which the overcrossing arc has label ¢
(belongs to the i-th component of the link). Now define

V(ty, ..., t)=D({3,...,t3)-ty1---t* where w; =«k;— . (2.4)

This, then, is Conway’s potential function.

§3. The potential function is a link invariant

We have shown in the previous section that the potential function defined
there is uniquely determined by the link projection. We now show that it remains
invariant under transition from one projection to another via the three basic
Reidemeister moves, and hence it is a link invariant.

In the definition of the potential function the numbering of the generating arcs
is immaterial and may be suited to our convenience. Similarly, since we may
choose to delete any row and column from the Jacobian matrix we will assume
that the row and column deleted are not among those specifically considered. This
is always possible as long as the projection has at least one more generating arc
besides those explicitly shown. Once we have shown that the introduction or
removal of trivial loops (first basic move) does not change the potential function,
this desirable situation may be achieved by the introduction of redundant trivial
loops. For the same reason we may always assume that the generating arcs shown
in diagrams are all different. The only exceptions to these rules, therefore, are in
the verification of invariance for the removal of trivial loops from a component
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which has at most one other crossing point (which must also belong to a trivial
loop). This must be treated as a rather trivial special case. Details are omitted.

In that part of the link projection which is altered by the Reidemeister move
there are at most three link components involved. For convenience we give them
labels 7, s, t instead of ¢, 4, &, write k,, k;, k. instead of «; and v, v,, v, instead of
v,. For each of the three Reidemeister moves one must consider various cases
depending on the orientation of the link components, and in the case of removal
of trivial loops, whether the loop is clockwise or anticlockwise. We consider
explicitly only one representative case for each type of move. Quantities with
primes (') refer to the diagram on the left, unprimed quantities the diagram on the
right in each case.

First basic move:
Q _—/\/U1’U2
Uy <« up

Here R} = u,u,u5 'u;" and so (with ¢; standing for column i),

det (M'®) = “(—:—;—ti—%“ =t-|lc;+e, | #|=1t - det (MP).
1 2

Since the factor (—1)'"/w(u?—1) is unchanged we have D'=t-D. However,
vi=p+1, ki=k,—1, so V'=V from (2.4).

Second basic move:

M3

su/1 S*—u;'_ﬁs\

-1, - -1,,—1
Now, R} =u u,u;'u;', R)=usu,u;'u3'. Thus,

1 -t 0 s—-1]0 1 0 -1 O 0
det M)=l0 ¢t -1 1-s|0|=|0 ¢t -1 1-5]|0
¢, 0 ¢ Ci | * c; 0 ¢35 ¢, |+*

L cerer

0 c+e; ¢4 | *

=t-lle;+e; ey | Hl=1t-det (MP)




370 RICHARD HARTLEY

Hence as before, D' =t - D. However, v;= v, +2 and other values are unchanged.
Thus, V'=V.

Third basic move:
t

u t
W\ XA
u u

Here
R;=ujusu;'us’, R; = uyuguy'ug’, R; = uglzug'us’,
R, = ujugu; 'ug’, R, = uyuzuz'uz’, R; = ugusug'us’.
Thus,
1 -t 0 0 s—1 O 0
. 0O 1 0 —-r 0 s—-110
det (M'®) =
M=o 0 +r 0 -1 1-t]0
¢, 0 ¢ ¢, ¢s Ce¢ | *
1 0 —rt s—1 st—t |0
=10 r O -1 1-t |0

1 rs—1) -n 0 s—1]0
=10 r 0 -1 1-t]|0]=A.
c, GC; Cs Cs Ce¢ |*

The first step is by adding ¢ times the second row to the first then eliminating the
second row and column. The second step is by adding s—1 times the (now)
second row to the first. Similarly,

1 —r 0 0O 0 s-1
0 1 s-1 -t O 0
0O O r 0 -1 1-—t¢

c; O C; €4 Cs Cg

det (M) =

o o O

*
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which is transformed to A by adding r times the second row to the first and
eliminating the second row and column. Thus, D’ = D, and since the values of the
v’s and the «’s are unchanged, V'=V.

From this we conclude that the potential function is a link invariant.

§4. The reduced potential function

We may define a reduced potential function, V, for a link by

Vi =(t—tYH)-V(,...,1.
This is an integral L-polynomial. It has two basic properties.
(4.1) For the trivial knot, V(t)=1.

(4.2) (Replacement relation.) For three links, K,, K_ and K, which differ only in
one place as shown,

\ \./'
K, K- Ko
the potential functions satisfy V.)=V_ )+ @—tY) V).
Proof of (4.2). For convenience we introduce an extra trivial loop in K, and
K_, which does not alter the potential function.

NG /'“2 N\ " A
/\u, u4ﬂ<u, /\“4‘“1

u
Yok, K- K,

Let 6:ZF(uy, . .., u,)— Z[t, t"'] take all u to t, and denote (3R,/du;)° by M. If
D(t) = (-1)'* det (M)/w?, then V(t) = D(t?) - t*"*~! where now v is the number
of crossing points and « is the sum of curvatures of all components. Then,

det M) =1-¢t ¢+ 0 -1 t -t —-11]0
Ci € GC; c4l Ci C2 C; 04,*

1 0 -1 0f0] J1 0 -1 00
-1
|
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and
1 t-1 -t 010 1 ¢t -t —-110
detM@)=)0 1 0 -1]|0f=f0 1 0 -1 ]0
€ C €3 C4 |* C; C, C3 C4 | *

Hence,

det M) —det  MP)=|1 ¢t -t —-1]0
€, C; € C4 |*

1 1 0 OIO

1 1 -1 -—1l0

=1 t 0 0 0
€, C C3+C, Ci+c, | *

=(t—1) - det (M%),

This shows that D,(t)— D_(t) = (t—1) - Dy(t). However, v, =v_=2+v,, and
K. =kKk_=Ko+1, and so (4.2) follows.

We now show that the properties (4.1) and (4.2) characterise the reduced
potential function. (This was also proven by Kauffman [3].) The following part of
the proof deserves to be singled out.

=(t—-1lle;+es c,+e, | |

(4.3) (Induction principle). Let € be a class of links satisfying (i) the trivial knot is
in €, (ii) all split links are in €, (iii) if K, is in € and one of K, and K_ is in €,
then both K, and K_ are in €. Then € contains all links.

Proof. Consider a link, L, with m crossings. By interchanging overcrossing and
undercrossing for some number, h(L) of crossing points, L may be transformed
either to a split link or a trivial knot. Consider one of these crossings. Suppose it is
positive and denote L by L,. Then L, has m —1 crossings, whereas L_ has m
crossings but h(L_)<h(L.). By induction on m and h one deduces that L, isin €.

Now we prove

(4.4) (Uniqueness of the reduced potential function.) V(t) is the unique link
invariant, an L-polynomial defined for all links, which satisfies (4.1) and (4.2).

We assume that V'(¢) also satisfies (4.1) and (4.2) and let € be the class of
links for which V;(t)= V,(¢). It follows easily from (4.1) and (4.2) that V,(t) =
V. (t) = 0 for split links. (See for instance Kauffman [3].) By (4.3), then, € contains
all links.

From (4.4) we deduce the following important corollary.
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4.5) (SymmetrX of the reduced potential function.) For a link of n components,
Vi) =(=D" V().

Proof. Let V'(t)=(=1)""* V(t™Y). It is easily verified that V'(¢) satisfies (4.1)
and (4.2) since V(t) does. The vital point is that K, and K_ have the same
number of components, whereas the number of components of K, differs by one.

Similar in style is the following proposition.

(4.6) If ~L is the mirror image of L, a link with n components, then V,(t)=
=DV ().

To prove this, observe that (—1)""! V_, (¢) satisfies (4.1) and (4.2).

Let L be a link with n components and let G, be the complete graph on n
vertices. We give the edge joining the vertices i and j of G,, a weight equal to A,
the linking number of the i-th and j-th components of L. We say that G, is
weighted by L. Define the weight of a subgraph of G, to be the product of the
weights of all its edges. We can now determine more exactly the form of V(t).

(4.7) For a link L of n components, V(t) = (t—t )" 'H(t) where H(t) is an integral
L-polynomial in even powers of t and t™'. Forn=1, H(1)=1. For n>1, HQ1) is
equal to the sum of the weights of all spanning trees in G, weighted by L.

Let € be the class of links for which the proposition is true. It is trivially true
for the trivial knot and for split links. We assume (4.7) holds for K, and K, (or
K_). If the two arcs crossing in K, are from the same link component, then that
component splits into two components in K, and it follows that H.(t)=
H_(t)+(t—t™Y)?H,(t). If however the two arcs are from different components,
then these two components are amalgamated to one component in K, and one has
H,(t)=H_(t)+ Hy(t). Thus, all statements but the last are easily proven. The
value of H(1) may be deduced by induction continuing this line of argument,
however the details are omitted as the result will not be used further.

Of course, H(t) is nothing but a disguised and signed form of the Hosokawa
polynomial (see [2]), just as V(¢) is a disguised form of the Alexander polynomial.
In fact, with this viewpoint, (4.7) contains the main results of [2]. Corresponding
to Theorem 2 of Hosokawa, we may give a different description of H(1) as
follows: Let L be the matrix given by

Ly=-A; if i#]j
L;= ;1 Aij

i7j
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Let L* be the minor obtained by deleting the k-th row and I-th column of L.
Then H(1) = (—1)**" - det (L™*Y). It is a simple matter to prove this by induction
using the recursion relations for H derived above.

It follows from (4.7) that for knots of one component, V(1)=1, so V(¢) is
determined uniquely by the Alexander polynomial. For n=2, if H(1)#0, in
particular if all the linking numbers are positive, then the sign of H(1) determines
the correct sign for the potential function.

From the uniqueness of the reduced potential function it follows that our V(¢)
is equal to Kauffman’s Q(t). In particular, V() =det (tV—t"'V*) where V is a
Seifert matrix and V* its transpose. An important property of V(t) which is most
easily proven using the Seifert matrix is

(4.8) (Signature and nullity of links.) V.(i)=0 if and only if nullity(L)>1.
Otherwise, V. (i)=R - i°. Here i*=—1, R is a positive real number and o is the
signature of the link.

Proof. Suppose V is a kxk matrix. Then V(i)=det(iV+iV*)=
i* - det (V+ V*). Now V+ V* is congruent to a diagonal matrix, J, with p ones, q
minus-ones and r zeros on the diagonal, r = nullity(L) — 1. Further, det (V+ V*) =
R - det (J) for a positive real R. Now det (J) =0 if and only if r# 0. If r =0, then
V(i)=i*-(-1)9=ik-(-1)"9=i*29={?~9 (since k =p+q)=i°.

§5. Properties of the potential function

Similar to the replacement relation (4.2) we have for the (unreduced) potential
function

(5.1) (Replacement relation.) V., +V__= (4t +1t;'t;") Voo for links containing
the tangles

the components having labels t, and t,.
Similarly,

(5.2) (Replacement relation.) V,,+V__= (4,1, +1:.'1,) Voo in the case where one
of the two arcs in (5.1) is oppositely oriented.
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The proof of these relations is similar to the proof of (4.2) and is omitted. A
further property which is easily proven is

(5.3) If L is a link with n components, then
VLt t) =132 -ty =t 00 - Ve, L 8)

where V'(t,, ..., t,) is the potential function of the link obtained by eliminating the
first component of L and A, is the linking number between the i-th and j-th
components of the link.

Indeed, if we number the generating arcs of L such that u,,..., u, are the
consecutive generating arcs of the first component, we obtain, setting t; = 1 in the

) A . : . : .
matrix M, a matrix of the form (* ) A is a k X k matrix which gives rise to

B
the first half of the expression on the right of (5.3) and B gives rise to
Vi(ty,...,t,). See Torres [6] for a proof of this result for the Alexander
polynomial.

Applying (5.3) n—1 times we have the formula

(5-4) VL(la e e 1’ ti: 1’ LI ] 1) = Vl(tz) ‘ Hz=1,k¢i (tikik—. trklk) Wh'ere Vl(tl) is the po-
tential function of the i-th component of L.

We are now able to prove

(5.5) (Symmetry of the potential function.) V(ty,...,t)=D"V(1', ..., 6",

Proof. We assume the well known symmetry of the Alexander polynomial [6]
which implies that V(ty,...,t)=st] - -t V@7, ..., t;). From (5.4)
va,...,t, ..., 1)=Vi(t)G(t) where G;(t) = (=1)""'Gi(t;") and Vi(t)=-Vi(t;)
from (4.6). Then V,(t)G(t)=V({,...,t, ..., 0)=eV({@,...,t7%,...,1)=
et} V(tr G (57 ) = et - (=1)" Vi(£)Gi(t). Now V(1) # 0, and G(t;) # 0 as long as
all linking numbers are non-zero. In this case, therefore, v, =0 and € = (-1)", and
(5.5) is proven for the case where all A; are non-zero.

Now assume A;; =0. From (5.1) we have a formula Viiss+ Vo=
(b, + .Y V.. Identifying the link L as Ky we see that V; = Vo, may be
expressed in terms of the potential functions of K, .., (for which A,; =2) and
K., (for which A,; =1). If V.., and V., satisfy (5.5) then so does Voo = V.. So,
(5.5) follows by induction on the number of A; equal to zero.
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Next we consider the mirror image of L.
(5.6) If ~L is the mirrorimage of Lthen V_; (t;,...,t)=(D""' V. (t,,...,t).

As is well known, the Alexander polynomials of L and ~L are equal, so
Voi(ty,....t)=eV.(ty,...,t,). Using (5.4) we deduce that £ =(—1)""! as long
as all linking numbers are non-zero, since for a knot of one component, Vi (t) =
V_k(t) by (4.6). This may be extended to all links using (5.1) just as in the
previous proof.

Finally, we consider the effect of changing the orientation of one component
of a link.

(5.7) If L* is obtained from L by reversing the orientation of the first component,
then VL*(tls t29 sy tn) = ——VL(t-l—la 2, ..., tn)~

Once again from the properties of the Alexander polynomial we have
Vis(ty, ..., t) =€ V(t1' to, ..., t,). Using (5.4) we deduce that £ =—1 for links
with all linking numbers non-zero and extend to all links using (5.1) and (5.2).

§6. Axiomatic determination of the potential function?

The proofs in the last section of properties of the potential function unfortu-
nately rely on properties of the Alexander polynomial. Hence, they are more
cumbersome than the proofs of properties of the reduced potential function which
rely only on the two properties (4.1) and (4.2). For links with more than one
component, however, a simple set of defining “axioms’ for the potential function
are not known, at least to me. As an exercise the reader may like to attempt to
calculate the potential function of the Borromean rings using the derived proper-
ties of potential functions but without resorting to matrix calculations. (I cannot
do it.)

However, for many links, a simple set of properties suffice for the determina-
tion of the potential function. As an example, we show that the two properties

(6.1) For a split link, V=0.

(6.2) For a simple positive clasp, @ , V=1.

alo.ng with the replacement relations (5.1) and (5.2) are enough to determine the
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potential function of a 2-bridged link of two components. Note first that these

conditions imply that V= —1 for a negative clasp @\’)

Following Conway [1], one denotes a 2-bridged link by a sequence of integers
[a, - - - a,] which represents the link

-3y twists -3y 4

if k is even, and

O a— —wﬁ

if k is odd. (We do not worry too much about link orientation in this explanation.)
The links [a, - - - a,] and [b; - - - b;] are the same if the continued fractions

+...+_]_L. and bl+'—}'—+"°+"'1—
a4 a, bl—l bl

ak+

are equal. Every 2-bridged link has a notation [a, - - - a,] with all a; positive, and
since [1 a,; - a]=[a;+1 a,---a] we may assume a,>1. Now using (5.1)
or (5.2) we see that

V[a, az---ak]: —V[al—ct az~--ak]+A(tl, t2) * V[a1—2 ar--ay] (**)

where A(t,, t,) is one of (t,t,+t7't5") or (t;t5*+t;'t,) depending on the orienta-
tion of the strings crossing in the part of the diagram represented by a,. (The two
strings must belong to different components if L is to have two components.)
However, [0 a, - a]=[az - a], [-1 ay - -a]=[a,—1 az---a] and
[-2 a:- al=[2 a,—1 as;:---a] (f a,=1, this last one is equal to
[2+a; a4 - a.].) Therefore, in all cases, the two links on the right hand side of
(**) have smaller crossing number than the left hand side. Eventually, the
calculation reduces to the potential functions of [0] (split link) and [2] (simple
clasp) given by (6.1) and (6.2).
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As a result of this calculation we see that

(6.4) The potential function of a 2-component 2-bridged link is an integral
polynomial in t;t,+t7't;" and t;t5;' +1t7't,.

In view of the success for 2-bridged links, one is disposed to hope that the
potential function of any two-component link is uniquely determined by simple
“axioms.” It indeed seems possible that the replacemént relations, (5.1), (5.2) and
(4.1) along with values for the trivial knot, split links and the simple clasp may
uniquely determine the potential function of a two component link.
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